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Symmetric representation rings are
A-rings

Marcus Zibrowius

ABSTRACT. The representation ring of an affine algebraic group scheme
can be endowed with the structure of a (special) A-ring. We show that
the same is true for the ring of symmetric representations, i.e., for the
Grothendieck—Witt ring of the representation category, for any affine
algebraic group scheme over a field of characteristic not two.
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Introduction

It is well-known that both the complex and the real representation ring
of any compact Lie group are A-rings! [AT69]. Similarly, for any affine
algebraic group scheme G over a field, with representation category G-Rep,
the exterior power operations endow the representation ring K(G-Rep) with
the structure of a A-ring. Indeed, this is a direct consequence of Serre’s
beautiful 1968 paper “Groupes de Grothendieck des schémas en groupes
réductifs déployés” [Ser68], in which Serre shows that the representation
ring of a split reductive group over an arbitrary field can be computed in
the same way as—and is in fact isomorphic to—the representation ring of
the corresponding group over C. As Serre mentions in his introduction,
establishing the A-ring structure was in fact one of his motivations for writing
the article.

The purpose of the present article is to complete the picture by es-
tablishing the A-ring structure on the “symmetric representation ring”?
GW(G-Rep), generated by isotropy classes of representations equipped with
equivariant nondegenerate symmetric forms. This ring GW(G-Rep) is to the
usual representation ring K(G-Rep) what the real representation ring is to
the complex representation ring in topology. See Section 1.1 for precise
definitions. We will show:

Theorem. For any affine algebraic group scheme G over a field of charac-
teristic not two, the exterior power operations induce a \-ring structure on
the symmetric representation ring GW(G-Rep).

To the best of our knowledge, this fundamental structure on GW(G-Rep)
has not been exposed before, except in the case when G is the trivial group:
the A-ring structure on the Grothendieck—Witt ring of a field has been stud-
ied by McGarraghy [McG02].

A-Terminology. There are at least two problems with the term “A-ring”.
Firstly, it is ambiguous: while Grothendieck originally distinguished between

(1) “A-rings” and  (2) “special A-rings” [SGA6, Exposé 0 App],
Berthelot instead refers to these objects as
(1) pre-A-rings and (2) A-rings [SGAG6, Exposé V].

In this article, we follow Berthelot. This seems to be the current trend,
and it has the merit that the shorter term is reserved for the more natural
object. In any case, the bulk of this article is devoted to proving that we
have a structure of type (2), not just of type (1).

Secondly, the term “A-ring” is misleading in that it puts undue emphasis
on A-operations/exterior powers. For example, from a purely algebraic per-
spective, the symmetric powers have just as good a claim to the title as the

1By a A-ring, we mean a “special A-ring”—see the paragraph on terminology below.
2See footnote 4 on page 1060 for a justification of this neologism.
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exterior powers. We refer to [Borl3] for a beautiful coordinate-free defini-
tion of A-rings as “rings equipped with all possible symmetric operations” in
a precise sense. Suffice it to remark here that the existence of a A-structure
on a ring includes the existence of many other natural operations such as
symmetric powers and Adams operations.

That said, we will nevertheless work with the traditional definition in
terms of exterior powers below. One technical reason for this is that exterior
powers behave well under dualization: the dual of the exterior power of
a representation is the exterior power of the dual representation, in any
characteristic. The same is not true of symmetric operations. Thus, in this
case the existence of well-defined symmetric powers on GW(G-Rep) follows
only a posteriori from the existence of a A-structure.

Outline. The article begins with a certain amount of overhead. We recall
some definitions and facts concerning symmetric representations, including
a discussion of the additive structure of GW(G-Rep) following Calmes and
Hornbostel’s preprint [CHO04].

Our proof (Section 2) that the exterior powers induce well-defined maps on
GW (G-Rep) follows a similar pattern as the usual argument for K(G-Rep),
using in addition only the well-known technique of “sub-Lagrangian reduc-
tion”.

When the ground field is algebraically closed, the fact that the resulting
pre-A-structure on GW(G-Rep) is a A-structure can easily be deduced in
the same way as in topology: in this case, the forgetful map

GW(G-Rep) — K(G-Rep)

exhibits GW(G-Rep) as a sub-A-ring of the A-ring K(G-Rep). However, over
general fields this argument breaks down. Section 3 is devoted to mending it:
we reduce to the “universal case”, i.e., the case when G is a product of split
orthogonal groups, show that the symmetric representation ring of such G
embeds into the symmetric representation ring of an extension of a maximal
split torus, and verify that the latter is a A-ring by a direct calculation.

The implications of the universal case are in fact not restricted to represen-
tation rings. The main application we have in mind is to the Grothendieck—
Witt ring of vector bundles on a scheme, in the same way that Serre’s result is
applied to the K-ring of vector bundles in [SGA6, Exposé VI, Theorem 3.3].
Details are to appear in forthcoming work.

Notation and conventions. Throughout, F' denotes a fixed field of char-
acteristic not two. Our notation for group schemes, characters, etc. tends
to follow [Jan03]. All representations are assumed to be finite-dimensional.

1. Symmetric representations

An affine algebraic group scheme is a functor G from the category of
F-algebras to the category of groups representable by a finitely-generated
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F-algebra:
G: Algr — Groups

A~ G(A)

We assume that the reader is familiar with the basic notions surrounding
such group schemes and their representations as can be found in [Wat79]
and [Jan03] or [Ser68]. In particular, while the basic notions involved in the
statement of our main theorem are recalled below, we undertake no attempt
to explain the structure and representation theory of reductive groups used
in the proof.

The terms representation of G and G-module are used interchangeably
to denote a finite-dimensional F-vector space M together with a natural
A-linear action of G(A) on M ® A for every F-algebra A. Equivalently, such
a representation may be viewed as a group homomorphism G — GL(M).
Given two G-modules M and N, the set of G-equivariant morphisms from
M to N is denoted Homg (M, N).

Many constructions available on vector spaces can be extended to G-
modules. In particular, G-modules form an F-linear abelian category G-Rep.
Tensor products of G-modules, the dual M"Y of a G-module M and its ex-
terior powers A’(M) are also again G-modules in a natural way. There is,
however, an important difference between the categories of G-modules and
the category of vector spaces: not every G-module is semi-simple, and a
short exact sequence of G-modules does not necessarily split.

The duality functor M +~ MY and the double-dual identification M =2
MYV give G-Rep the structure of a category with duality, which immediately
gives rise to the notion of a symmetric G-module in the sense of [QSS79]. We
hope there is no harm in providing a direct definition, even if we occasionally
fall back into the abstract setting later on. We first discuss all relevant
notions on the level of vector spaces.

Symmetric vector spaces. A symmetric vector space is a vector space
M together with a linear isomorphism p: M — MY which is symmetric
in the sense that x4 and u" agree up to the usual double-dual identification
w: M = MYV, The orthogonal sum (M, ;1) L (N, v) of two symmetric vector
spaces is defined as the direct sum M @& N equipped with the symmetry
1@ v. Tensor products and exterior powers of symmetric vector spaces can
be defined similarly, using the canonical isomorphisms MY @NV = (M®N)Y
and AY(MY) = (ATM)V.3

A morphism from (M, u) to (N,v) is a morphism ¢: M — N compatible
with ¢ and v in the sense that (Yve = p. An isomorphism with this prop-
erty is an isometry. The isometries from (M, u) to itself form a reductive

3In characteristic zero, one can likewise form symmetric powers Si(M , ) of symmetric
vector spaces. However, we do not have a canonical isomorphism S*(M") 2 (S*M)" in
positive characteristic (cf. [McGO05] or [Eis95, App. A.2]).
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subgroup O (M, i) of GL(M). If we equip F?" and F?"™! with the standard
symmetric forms given by

(1.1) and
0 03
10 1

with respect to the canonical bases, we obtain the usual split orthogonal
groups Og, and Ogy1.

We also have a canonical symmetry on any vector space of the form M &
MY, given by interchanging the factors. We write H(M) := (M®M", ()
for this symmetric vector space; it is the hyperbolic space associated with
M. The associated orthogonal group O(H (M)) is isomorphic to Os gim rs-

A sub-Lagrangian of a symmetric vector space (M, i) is a subspace

i N —> M

on which y vanishes, i.e., for which iV ui = 0. Equivalently, if for an arbitrary
subspace N C M we define

Nt :={me M| u(m)(n) =0 for all n € N},

then N is a sub-Lagrangian if and only if N ¢ N+. If in fact N* = N,
we say that M is metabolic with Lagrangian N. For example, H(M) is
metabolic with Lagrangian M.

Symmetric G-modules. A symmetric G-module is defined completely
analogously, as a pair (M, u) consisting of a G-module M and an isomor-
phism of G-modules pi: M — M which is symmetric in the sense that p and
w1 agree up to the double-dual identification of G-modules w: M = MV,
Equivalently, we may view such a symmetric module

e as a symmetric vector space (M, i) together with a G-module struc-
ture on M such that p is G-equivariant, or

e as amorphism G — O (M, p), where (M, p) is some symmetric vector
space.

All of the notions introduced for symmetric vector spaces carry over to this
situation.

We end this section with a well-known lemma that makes use of the
assumption that our field F' has characteristic different from two.

1.1. Lemma. For any symmetric G-module (M,p), the orthogonal sum
(M, p) & (M, —p) is isometric to the hyperbolic G-module H(M).

Proof.

(o (35)) =,y (e (28)
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1.1. The symmetric representation ring. The (finite-dimensional) rep-
resentations of an affine algebraic group scheme over F' form an abelian cat-
egory with duality (G-Rep,V,w). Its K-group and its Grothendieck—Witt
group are defined as follows:

1.2. Definition. K(G-Rep) is the free abelian group on isomorphism classes
of G-modules modulo the relation M = M’ + M" for any short exact se-
quence of G-modules 0 — M’ — M — M" — 0.

GW(G-Rep) is the free abelian group on isometry classes of symmetric
G-modules modulo the relation ((M,un) L (N,v)) = (Mu) + (N,v) for
arbitrary symmetric (M, u) and (N, v) and the relation (M, u) = H(L) for
any metabolic G-module M with Lagrangian L.

We use the established notation K(F') and GW (F') for the K- and Grothen-
dieck—Witt groups of the category of finite-dimensional vector spaces. So
GW(F) = GW(1-Rep), where 1 denotes the trivial constant group scheme.

The tensor product yields well-defined ring structures on both K(G-Rep)
and GW(G-Rep). The ring K(G-Rep) is usually referred to as the repre-
sentation ring of G, and we refer to GW(G-Rep) as the symmetric repre-
sentation ring* of G. They can be related via the forgetful and hyperbolic
maps:

GW(G-Rep) EiR K(G-Rep)
GW(G-Rep) o K(G-Rep)
The forgetful map simply sends the class of (M, i) to the class of M, while

the hyperbolic map sends M to H(M). Note that F'is a ring homomorphism,
while H is only a morphism of groups.” We will need the following fact.

1.3. Sub-Lagrangian Reduction. For any sub-Lagrangian N of a sym-
metric G-module (M, ), the symmetry p induces a symmetry i on N+/N.
Moreover, in GW(G-Rep) we have

(M, 1) = (N /N,72) + H(N).

Proof. This is essentially Lemma 5.3 in [QSS79], simplified by our assump-
tion that 2 is invertible:

(M, ) = —(N*/N,—@) + H(N*) by [QSS79, Lemma 5.3]
:(NL/N7E)_H(NL/N)+H(NL) by Lemma 1.1
= (N‘/N, @)+ H(N) O

1of course, it is not the ring itself but rather its elements that are supposed to be sym-
metric. However, our terminology is completely analogous to the established usage of the
terms “complex representation ring” and “real representation ring” in the context of com-
pact Lie groups. More precise alternatives would be “ring of symmetric representations”
or “symmetric representations’ ring”.

SIn fact, H is a morphism of GW (G-Rep)-modules, but we do not need this.
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1.2. The additive structure. We recall some material from [QSS79] and
[CHO4] concerning the additive structure of K(G-Rep) and GW(G-Rep).
The group K(G-Rep) is the free abelian group on the isomorphism classes
of simple G-modules. Given a complete set X of representatives of the
isomorphism classes of simple G-modules, we can thus write

K(G-Rep) 2 Z(S) gcs. -

The structure of GW(G-Rep) is slightly more interesting. For simplicity,
we concentrate on the case when the endomorphism ring Endg(S) of every
simple G-module S is equal to the ground field F'. This assumption is
satisfied by all examples that we later study in more detail. In particular, it is
satisfied by all F-split reductive groups [Jan03, Cor. I1.2.7 and Prop. 11.2.8].
It ensures that every simple G-module is either symmetric, anti-symmetric
or not self-dual at all, and that any two given (anti-)symmetries on a simple
G-module differ at most by a scalar.

Let ¥4 € ¥ and ¥_ € ¥ be the subsets of symmetric and anti-symmetric
objects, and let g € ¥ be a subset containing one object for each pair of
nonself-dual objects (S, SY). On each S € 3, we fix a symmetry os.

1.4. Theorem. Let G be an affine algebraic group scheme over F such
that every simple G-module has endomorphism ring F. Then we have an
isomorphism of GW (F)-modules

GW(G-Rep) = GW(F) ((S,05))sex, DZ(H(S5))gex, ©Z(H(S))ges, -

The theorem may require a few explanations. The GW (F')-module struc-
ture on GW(G-Rep) is induced by the tensor product on G-Rep and the
identification of the subcategory of trivial G-modules with the category of
finite-dimensional vector spaces. On the right-hand side, we can consider
each copy of GW(F') as a module over itself, with a canonical generator
given by the trivial symmetry on F. The free abelian group Z can be
viewed as a GW(F')-module via the rank homomorphism GW(F) — Z. As
such, it is of course generated by 1 € Z. We can thus define a morphism of
GW (F)-modules

GW(G-Rep) & P GW(F) e P za P z
Sesy Sex_ Sexg

that sends the canonical generator of the copy of GW(F') corresponding
to S € ¥4 to (S,05) and the generator of the copy of Z corresponding
to S € ¥_UZXp to H(S). The theorem says that this morphism is an
isomorphism.

The inverse to a can be described as follows. A semi-simple G-module M
can be decomposed into its S-isotypical summands Mg. A symmetry p on
M necessarily decomposes into an orthogonal sum of its restrictions to Mg
for each S € ¥, and its restrictions to Mg @ Mgv for each S € ¥_U3Xg. In
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fact, we can always find an isometry

(12)  (Mp)= & ¢s-(S,05) @ P ns-H(S)d ) ms-H(S)

Sexy Sex_ Sexo

for certain symmetric forms ¢g over F' and nonnegative integers ng and mg.

In general, any symmetric G-module (M, u) contains an isotropic G-
submodule N C M such that N+ /N is semi-simple [QSS79, Theorem 6.10].
By Sub-Lagrangian Reduction 1.3, we then have

(M, ) = (N*/N,7) + H(N) in GW(G-Rep).

The first summand can be decomposed as in (1.2), and a decomposition of
the second summand can be obtained from the decomposition of IV into its
simple factors in K(G-Rep). Thus, even for general (M, 1), in GW(G-Rep)
we have a decomposition of the form

(13)  (Myp)= > ¢s-(S,08)+ Y ns-H(S)+ > ms-H(S)

Sexy Sex_ SeXo

for certain symmetric forms ¢g over F' and nonnegative integers ng and mg.
In particular, (M, x) decomposes into a sum, not a difference.

1.5. Remark (cf. [CHO4, Remark 1.15]). We can determine which sum-
mands in (1.3) have nonzero coefficients from the decomposition of M in
K(G-Rep). Indeed, the forgetful map GW — K is compatible with the
decompositions of GW(G-Rep) and K(G-Rep). On the summand corre-
sponding to S € X, it can be identified with the diagonal embedding
7 — 7 & 7Z, on the summand corresponding to S € ¥X_ with multiplica-
tion by two Z — Z, and on the summand corresponding to S € ¥ with the
rank homomorphism GW (F') — Z. This last map is of course not generally
injective, but it does have the property that no nonzero symmetric form is
sent to zero. We will use this observation to analyse the restriction

GW(SO,,-Rep) — GW(O,,-Rep)
in the proof of Corollary 3.18.

2. The pre-A-structure

In this section we show that the exterior power operations define a pre-\-
structure on the symmetric representation rings GW(G-Rep). We quickly
recall the relevant definition from [SGA6, Exposé V, Définition 2.1].

Given any commutative unital ring R, we write A(R) := (1 + tR][t]])*
for the multiplicative group of invertible power series over R with constant
coefficient 1. A pre-A-structure on R is a collection of maps \': R — R, one
for each i € Ny, such that A\? is the constant map with value 1, A! is the
identity, and the induced map

)\t: R — A(R)
T Zz‘zo N (r)tt
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is a group homomorphism. A pre-A-ring is a pair (R, A\*) consisting of a ring
R and a fixed such structure. A morphism of pre-A-rings (R, \*) — (R, \'®)
is a ring homomorphisms that commutes with the maps \. Following the
terminology of Berthelot in loc. cit., we sometimes refer to such a morphism
as a A-homomorphism regardless of whether source and target are pre-A-
rings or in fact A-rings (see Section 3.1).

2.1. Proposition. Let G be an affine algebraic group scheme over a field
of characteristic not two. Then the exterior power operations

N2 (M, ) = (MM, A" p)

induce well-defined maps on GW(G-Rep) which provide GW(G-Rep) with
the structure of a pre-A-ring.

We divide the proof into several steps, of which only the last differs some-
what from the construction of the A-operations on K(G-Rep).

Step 1. We check that \/(M, i) := (A*M, A*y) is well-defined on the set of
isometry classes of G-modules, so that we have an induced map

isometry
At: classes of p = A(GW(G-Rep)).
G-modules
Step 2. We check that ); is additive in the sense that
)\t((M7 /-L) 1 (Na U)) = )‘t(Mv #)At(Nv V)‘
Then we extend A; linearly to obtain a group homomorphism
At @ Z(M, 1) — A(GW(G-Rep)),

where the sum on the left is over all isometry classes of G-modules. By the
additivity property, this extension factors through the quotient of @ Z(M, )
by the ideal generated by the relations

(M, p) L(N,v)) = (M, ) + (N, v).
Step 3. Finally, in order to obtain a factorization
At GW(G-Rep) — A(GW(G-Rep)),

we check that A; respects the relation (M, p) = H(L) for every metabolic
G-bundle (M, u) with Lagrangian L. For this step, we need the following
refinement of the usual lemma used in the context of K-theory (see for
example [SGA6, Exposé V, Lemme 2.2.1]).

2.2. Filtration Lemma. Let 0 - L - M — N — 0 be an extension
of G-modules. Then we can find a filtration of A"M by G-submodules
A"M = M° > M' > M? > - together with isomorphisms of G-modules

(2.1) Mi/Mm ~ A'L @ A" 'N.
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More precisely, there is a unique choice of such filtrations and isomorphisms
subject to the following conditions:
(1) The filtration is natural with respect to vector space isomorphisms of
extensions. That is, given two extensions M and M of G-modules
of L by N, any vector space isomorphism ¢: M — M for which

0 L M N 0
s
0 L M N 0

commutes restricts to vector space isomorphisms M i M compat-
ible with (2.1) in the sense that

IR | &I

Mi/Mi-f—l Mi/ﬂiﬂ

1%
1%

ANL® AN

commutes. In particular, the induced isomorphisms ¢ on the quo-
tients are isomorphisms of G-modules.

(2) For the trivial extension, (L & N)* C A"(L @ N) corresponds to the
submodule

@, NLOA™IN @ MNLeA™IN
under the canonical isomorphism A"(L & N) = (P, NL®A"IN,
and the isomorphisms

(L@ N)i/(L @ N)Y+ S ANLo AN
correspond to the canonical projections.

Proof of the Filtration Lemma 2.2. Uniqueness is clear: if filtrations

and isomorphisms satisfying the above conditions exist, they are determined

on all split extensions by (2) and hence on arbitrary extensions by (1).
Existence may be proved via the following direct construction. Let

0 LSMEN=0

be an arbitrary short exact sequence of G-modules. Consider the G-morphism
NL® A" "M — A"M induced by ¢. Let M; be its kernel and M"* its image,
so that we have a short exact sequence of G-modules

(%) 00— M; — AN LIA"*M —s Mt —— 0

We claim that the images M* define the desired filtration of M.
Indeed, they define tﬁa desired filtration in the case M = L & N, and an
isomorphism ¢: M — M as in (1) induces (vector space) isomorphisms on
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each term of the corresponding exact sequences (x). Moreover, the induced
isomorphism on the central terms of these exact sequences is compatible
with the projection to A°’L ® A" *N. The situation is summarized by the
following commutative diagram:

0—— M; —— ANLOA" "M —— M ——0

0—— M; —— AL @ A" M —— M ——0

\ﬁ l u--k-;;:;:‘;ff'. e

ANL® AN

We claim that the projection to A°’L ® A" *N factors through M?, as indi-
cated by the dotted arrows. This can easily be checked in the case of the
trivial extension L& N. In general, we may pick a vector space isomorphism
¢: M — L& N as in (1). Then the claim follows from the above diagram

with L @ N in place of M . The same method shows that the induced mor-
phisms M* — A*L ® A""*N induce isomorphisms

Mi / M+t S AL @ APTIN.

Note that while we use vector-space level arguments to verify that they are
isomorphisms, they are, by construction, morphisms of G-modules. [l

Proof of Proposition 2.1, Step 1. The exterior power operation
A" G-Rep — G-Rep

is a duality functor in the sense that we have a natural isomorphism 7
identifying A*(MY) and (A'M)V for each G-module M. Indeed, we have
natural isomorphisms of vector spaces

~

me NS (AM)
OLA - N\ — (m1 N Amy — det(¢a(M5)))
[Eis95, Prop. A.2.7; Bou70, Ch. 3, §11.5, (30 bis)]. These isomorphisms
are equivariant with respect to the G-module structures induced on both

sides by a G-module structure on M. We therefore obtain a well-defined
operation on the set of isometry classes of symmetric G-modules by defining

XM, o) == (A'M, g 0 A'(p)).

Note however that the functor A? is not additive or even exact, so it does
not induce a homomorphism GW(G-Rep) — GW(G-Rep).

Proof of Proposition 2.1, Step 2. In order to verify the claimed addi-
tivity property of A, we need to check that, for any pair of symmetric
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G-modules (M, ) and (N, v), the natural isomorphism

A"(M & N) — PAM AN

7

defines an isometry

o

A((M, 1) L (N,v)) @ N(M, 1) @ AN, v).

Denoting the i*" component of this natural isomorphism by ®;, the claim
boils down to the commutativity of the following diagrams (one for each i),
which can be checked by a direct computation.

An(M\/ @NV) &AZ(M\/) ®An—7,(N\/)

J(WM NN

NINGM (AiM)v X (AnfiN)v

B

(A"(M @ N))Y — (A'M @ A"IN)Y

Proof of Proposition 2.1, Step 3. Let (M, ) be metabolic with Lagran-
gian L, so that we have a short exact sequence

(2.2) 0 L5 M8 1Y o

We need to show that A" (M, u) = A"H (L) in GW(G-Rep).

On the level of vector spaces, the exact sequence (2.2) necessarily splits.
In fact, we can find an isometry of vector spaces ¢: (M,u) — H(L) such
that the diagram

1R

0 L M LY 0

s

0——L——H(L)— LY ——0

of the Filtration Lemma 2.2, (1) commutes. For example, given any splitting
s of iV, let 5 be the alternative splitting 5 := s — %z’svus and define ¢ to be
the inverse of (7,5). We then have filtrations M*® and H(L)*® of A"M and
A™H(L) such that the isometry A"¢ restricts to isomorphisms M* = H(L)®
and induces isomorphisms of G-modules

Mi/MHl % H(L)i/H(L)iH .
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If n is odd, say n = 2k — 1, then H(L)* is a Lagrangian of A"H (L) and
hence M* is a Lagrangian of \"(M, 11). Therefore, in GW(G-Rep) we have:

XYM, p) = H(M")
A"H(L) = H(H(L)")

On the other hand, M* = H(L)* in K(G-Rep), since these two G-modules
have filtrations with isomorphic quotients. So the right-hand sides of the
above two equations agree, and the desired equality \"*(M, u) = A"H(L) in
GW (G-Rep) follows.

If n is even, say n = 2k, then H(L)**! is a sub-Lagrangian of A" H (L),
and (H(L)**YHL = H(L)*. Again, it follows from the fact that ¢ is an
isometry that likewise M**1 is an admissible sub-Lagrangian of \"(M, u),
and that (M**1)L = M*. Moreover, ¢ induces an isometry of symmetric
G-modules

(M* /vt ) = (HLF [z (T7))
The desired identity in GW(G-Rep) follows:

NF(M, p) = H(M®) + (M* /M)
(by Sub-Lagrangian Reduction 1.3)

= H(H(L)¥) + (H(L)*/H(L)*,(91))
= \FH(L) .

Note that, by construction, A’ = 1 (constant), A = id, and )\; is a ring
homomorphism. Thus GW(G-Rep) is indeed a pre-A-ring. We observe a
few additional structural properties.

2.3. Definition. An augmentation of a pre-A-ring R is a A-homomorphism
d: R— 7,

where the pre-A-structure on Z is defined by \'(n) := (7).
A positive structure on a pre-A-ring R with augmentation d is a subset
R-o C R satisfying the axioms below.® Elements of R~ are referred to as

positive elements; a line element is a positive element [ with d(l) = 1. The

6Definitions in the literature vary. The last of the axioms we require here, introduced by
Grinberg in [Gril2], appears to be missing in both [FL85, §I.1] and [Weil3, Def. 11.4.2.1.].
Without it, it is not clear that the set of line elements forms a subgroup of the group of
units of R.
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axioms are as follows:

e R~ := R-oU{0} is closed under addition, under multiplication and
under the A-operations.

e Every element of R can be written as a difference of positive elements.
e The element n - 1 is positive for every n € Z~y.

e d(z) >0

o \U@) (z) is a unit in R for all positive elements x.

e \Na =0 foralli>d(x)

e The multiplicative inverse of a line element is a positive element (and
hence again a line element).

On GW(G-Rep), we can define a positive structure by taking d(M, u) :=
dim(M) and letting GW(G-Rep)so C GW(G-Rep) be the image of the set
of isometry classes of G-modules in GW(G-Rep). Then the line elements
are the classes of symmetric characters of G.

2.4. Definition. A pre-A-ring R with a positive structure is line-special if
Mol 2) = 1FAF ()
for all line elements [, all elements x € R and all positive integers k.

2.5. Lemma. The symmetric representation ring GW(G-Rep) of an affine
algebraic group scheme is line-special.

Proof. It suffices to check this property on a set of additive generators of the
A-ring, for example on all positive elements. Thus, it suffices to check that
for any one-dimensional symmetric representation (O, w) and any symmetric
representation (M, p1), the canonical isomorphism O®F @ A¥M = AF(O® M)
extends to an isometry (O,w)®* @ \F(M, 1) = MN((0,w) @ (M, p)). O

3. The pre-A-structure is a A-structure

Having established a pre-A-structure on GW(G-Rep), our aim is to show
that it is in fact a A-structure. We briefly recall the definition and some
general facts before focusing on GW(G-Rep) from Section 3.2 onwards.

3.1. A-rings. A pre-A-ring R is a A-ring if the group homomorphism
>\t R — A(R)

is in fact a A-homomorphism, for a certain universal pre-A-ring structure on
A(R) [SGAG6, Exposé V, Définition 2.4.17]. This property can be encoded

"There are four different choices of multiplication on A(R) that yield isomorphic ring
structures, with respective multiplicative units of the form (1 £ t)il. We stick to loc. cit.
and use the multiplication whose unit is 1 + ¢.
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by certain universal polynomials

Pk EZ[xlw"uxlmylw'wyk]
Pk,j S Z[ml,. . .,xkj]

as follows: a pre-A-ring R is a A-ring if and only if A\;(1) = 1 + ¢ and®
(A1) Moz y) = Pe(Wla, ..., Moz Ay, ..o My
(A\2) NN () = Pej(Ma, ..., M)

for all x,y € R and all positive integers j, k. We refer to the equations (A1)
and (A2) as the first and second A-identity. Precise definitions of the polyno-
mials Py and Py ; are given in equations (3.1) and (3.2) below. Essentially,
the A-identities say that any element behaves like a sum of line elements.
A morphism of A-rings is the same as a morphism of the underlying pre-A-
rings, i.e., a ring homomorphism that commutes with the A-operations. We
continue to refer to such morphisms as A-homomorphisms.

Let us recall a few general criteria for verifying that a pre-A-ring R with
a positive structure is a A-ring.

Embedding: If we can enlarge R to a A-ring, i.e., if we can find a
A-ring R’ and a A-monomorphism R < R’, then R itself is a A\-ring.

Splitting: If all positive elements of R decompose into sums of line
elements, then R is a A-ring.

Generation: If R is additively generated by elements satisfying the
A-identities, then R is a A-ring.

More generally, if R is generated by line elements over some set of
elements that satisfy the A-identities, and if R is line-special, then
R is a A-ring. Precise definitions are given below.

Detection: If an element x € R lies in the image of a A-ring R’ under
a A-morphism R — R, then the second A-identity (A2) is satisfied
for . Likewise, if two elements z,y € R simultaneously lie in the
image of a A\-ring R’ — R, then both A-identities (A1) and (A\2) are
satisfied for {z,y}.

This criterion is particularly useful in combination with the gen-
eration criterion: in order to show that a pre-A-ring is a A-ring, it
suffices to check that each pair of elements from a set of additive
generators is contained in the image of some A-ring.

The embedding and detection criteria are easily verified directly from the
definition of a A-ring in terms of the A-identities. The splitting criterion
follows from the generation criterion and the first part of Lemma 3.4 below.
We discuss the generation criterion in some detail:

3.1. Generation Lemma. Let R be a pre-\-ring with a positive structure,
and let E C R be a subset that generates R as an abelian group (e.g.,

8For a pre-A-ring with a positive structure, A\;(1) = 1 + ¢ is automatically satisfied.
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E = R>¢). Then R is a A-ring if and only if the A-identities (A1) and (A2)
hold for all elements of E.

Proof. In general, given any group homomorphism between rings [: R — L
and a subset F C R that generates R as a an abelian group, [ is a morphism
of rings if and only if it maps 1 to 1 and ejey to I(eq)l(e2) for all elements
e1,es € E. Likewise, if R and L are pre-A-rings, then [ is a morphism of
pre-A-rings if and only if it maps ejea to I(e1)l(e2) and A(e) to Ai(I(e)) for
all e;,eg,e € E and all ¢ € N. The lemma is proved by applying these
observations to A\;: R — A(R). The assumption that R has a positive
structure is needed only to verify that \; sends the multiplicative unit 1 € R
to the multiplicative unit 1 +¢ € A(R). O

Both the generation criterion and the splitting criterion are special cases
of the following Line Generation Lemma.

3.2. Definition. Let £ C R be a subset of a pre-A-ring with a positive
structure. We say that R is generated by line elements over E if every
element of R can be written as a finite sum

i
for certain elements e € E and certain line elements [, in R.

3.3. Line Generation Lemma. Let R be a pre-A-ring generated by line
elements over some subset E. If R is line-special and if the A-identities
hold for all elements of E, then R is a A-ring.

The proofs of this lemma and the next are the only places where we
will need the definitions of the polynomials P, and Py ;. Given a tuple
x = (x1,...,2,), let \;(z) denote the i*® elementary symmetric polynomial
in its entries. The polynomials P and P ; are uniquely determined by the
requirement that the following equations be satisfied in Z[x1, ..., x,], for all

B Y Pi@), - A(@), M@)o @) T = T+ iy T)

k>0 1<i,j<n
(3.2) > ProiM@), . @) =] + 2, -2, T).
k>0 1< < <i;<n
Proof of the Line Generation Lemma 3.3. We claim that the follow-
ing equations hold in Z[a, x1, ..., 2k, B, Y1, ..., yk] and in Z[a, x1, ..., xg]:
(33) Pk(axla cee ,Oékl'k;, Byb ) ﬁkyk) = akﬁkpk(mlv sy Ty YLy - e ayk)
(3.4) Py j(axy, a?xy ... ,ozkja:kj) = aijkJ-(xl, ceey TE).

Indeed, this follows easily from the fact that \;(ax) = a'\;(z) by compar-
ing the coefficients of T* in the defining equations. Let us now apply the
Generation Lemma 3.1 to the subset

E':={le|e € E,l aline element in R}.
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We check that all elements of E’ satisfy the A-identities: for e € E and
l € R, we have

M (N (le)) = 1M X (Me) since R is line-special
= lijk,j (e, e, ..., /\kje) by the assumption on F
= Py j(le, N2, ... 1M )kie) by (3.4)
= Py j(le,\*(le), ..., A" (le))  since R is line-special.
Similarly, for e, es € F and any line elements l1,lo € R we have
Me(lier - loea) = P\ (lier), ..., Ao (lrer), At (lgen), . . ., \e(laen)). O

3.4. Lemma. Let K be a pre-A-ring with a positive structure.

(i) The M-identities (A1) and (A\2) are satisfied by arbitrary line ele-
ments.

(ii) The A-identities (A1) and (A2) are satisfied by a pair of positive
elements x and y both of rank at most two if and only if the identities
(A1) hold for k € {2,3,4}. Ezplicitly, for positive x and y of rank
at most two said identities read as follows:

N(zy) = 22 - N2y 4+ 92 - N2z — 202202y
N(zy) = zy - Na - Ny
N(zy) = (\2)? - (Ny)?

(i) K s line-special if and only if the identity (A1) is satisfied for any
pair of elements x,y € K with x a line element.

Proof. We sketch the proof of part (ii). Consider first the identities (A2).
If we set all variables x3,z4,... to zero in the defining equations (3.2) for
Py, ;, we obtain the identities

Sk Pea(Miz, Aoz, 0,. .., 0)TF = (1 4+ 2, T7)(1 + 22T)

— 1+ Mz T+ oz - T?
Yk Pro(Miz, Aoz, 0, . ... ,O)Tk =14mza9-T=1+Xoz-T
>k Pei(Mix, Aoz, 0,...,0)TF = 1 for all j > 3.

Thus, for any element = € K satisfying A*z = 0 for & > 3, the identities
(A2) may be written as

M) =Mz, X)) =222, AO\laz)=0forall k>3
MNZz) = X2z, A(A%z) =0 for all k> 2
M (Nz)=0forall j >3 andall k> 1.

If z is positive of rank at most two, then A2z is positive of rank at most one
and all these relations are trivial.
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Similarly, if we set all variables x3, x4, . .. and y3, ¥4, . . . to zero in the defin-
ing equation (3.1) for the polynomials Py, we obtain the following identity:
> oePe(Aix, Ao, 0,...,0, My, A2y, 0,...,0)
=1+ 211 T)(1 + 2192T)(1 + 2201 T) (1 + 22y2T)
=14+ Nz -\y)T
+ ((M2)? - Aoy + (Ay)? - Ao — 2D - Aoy) T°
+ (M My dow - Aay) T2+ ((hoz)” - (Aoy)?) T
The claims follow. (]

3.2. Reduction to the case of split orthogonal groups. Our goal is
to show that the pre-A-structure on the symmetric representation ring of an
affine algebraic group scheme defined above is in fact a A-structure. As a
first step, we reduce to the case of the split orthogonal group O,, and its
products Oy, X Opp,.

For comparison and later use, we recall from [SGA6, Exposé 0, App. RRR,
§2, 1) and 3)] the corresponding argument for the usual representation rings:
the fact that these are A-rings for any affine algebraic group scheme follows
from the case of products of general linear groups GL,,, X GLy,,.

3.5. Theorem (Serre). The representation ring K(G-Rep) of any affine
algebraic group scheme G is a A-ring.

Proof, assuming the theorem for GL,,, x GL,,,. Any finite-dimension-
al linear G-module can be obtained by pulling pack the standard represen-
tation of GL,, along some morphism G — GL,,. Its class in K(G-Rep)
is therefore contained in the image of the induced morphism of A-rings
K(GL;,,-Rep) — K(G-Rep).

Similarly, given two G-modules corresponding to morphisms G LN GL,
and G 225 GL,,,, we can consider the composition

G—-GxG —>(P1,P2) GLm1 X GLmza

where the first map is the diagonal. Under this composition, the standard
representation of GL,,, pulls back to the first G-module, while the standard
representation of GL,,, pulls back to the second. Thus, the classes of these
G-modules are both contained in the image of the induced morphism

K(GLy,, X GLyy,-Rep) — K(G-Rep).
Therefore, by the detection criterion, it suffices to know that
K(GLy,, x GLy,,-Rep)
is a A-ring. ([

For the case of GL,,, X GL,,, itself, see for example [Ser68] and the
remarks below.
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3.6. Theorem. The symmetric representation ring GW(G-Rep) of any
affine algebraic group scheme G over a field of characteristic not two is a
A-Ting.

Proof, assuming the theorem for O,,, x O,,,. A symmetric represen-
tation (pg,€) of G corresponds to a morphism G — O(E, €), where (E,¢€) is
some symmetric vector space. Of course, in general (E, ¢) will not be split,
but we can achieve this as follows:

As 2 is invertible, the orthogonal sum (E,¢€) @ (E,—¢) is isometric to
the hyperbolic space H(E) (Lemma 1.1). Let cg denote the trivial G-
module with underlying vector space E. Then the symmetric G-module
(pE,€) ® (cg,—€) corresponds to a morphism

G—O((Ee)d(FE,—€) =0 (H(E)) = O24imB-

Thus, the class of (pg, €) ® (cg, —€) is contained in the image of a morphism
of A\-rings
GW(O2 g4im g-Rep) — GW(G-Rep).

The second summand, the trivial representation (cg, —€), can be obtained
by pulling back the corresponding trivial representation from Osgim g. SO
the first summand, the class of (pg,€), is itself in the image of (3.2).

Likewise, given two symmetric representations (pg,€) and (pg, ¢) of G,
we can obtain (pg,€) @ (cg, —€) and (pr, ) ® (cp, —¢) by restricting from
O24dim E X O24im F; both (pg,€) and (pr, ¢) are therefore contained in the
image of a morphism

GW(O2dim £ X O2dim r-Rep) = GW(G-Rep).

So under the assumption that GW(Os gim g X O24im r-Rep) is a A-ring, we
can conclude as in the proof of Theorem 3.5. O

It remains to show that the theorem is indeed true for products of split
orthogonal groups. This is the aim of the following sections, finally achieved
in Corollary 3.18.

3.3. Outline of the proof for split orthogonal groups. The usual
strategy for showing that the representation ring of a split reductive group
is a A-ring is to use its embedding into the representation ring K(7-Rep) of
a maximal torus, and the fact that the latter ring is generated by line ele-
ments. However, on the level of Grothendieck—Witt groups, the restriction
to T cannot be injective: none but the trivial character of T" are symme-
tric, and hence the symmetric representation ring GW(T-Rep) only contains
one copy of the Grothendieck—Witt group of our base field. In contrast, all
simple O,,-modules are symmetric (see Proposition 3.17).

We are therefore led to look for a replacement for 7" with a larger supply
of symmetric representations. The candidate we choose is a semi-direct
product T x Z/2 of the torus with a cyclic group of order two, which we
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will refer to as an “extended torus”. As we will see, all representations of
T x Z/2 are symmetric.
Our proof can be summarized as follows:

Step 1. GW(T x Z/2-Rep) is a A-ring. As all simple representations of
T x 7Z/2 are of rank at most two, this can be checked directly in terms of
the A-identities. See Lemma 3.4 and Proposition 3.11 below.

Step 2. GW(SOs2p,+1 X SOg,,+1-Rep) is a A-ring: it embeds into
GW(T % Z/2-Rep),

where T is a maximal torus in the product of special orthogonal groups. See
Proposition 3.16.

Step 3. GW(O,,, x O,,,-Rep) is a A-ring: it is generated by line elements
over the image of GW(SO2y,, 11 X SO2y,+1-Rep) for appropriate n; and na.
See Corollary 3.18.

3.4. Representations of extended tori. The group Os is a twisted prod-
uct of SOy = Gy, and Z/2: for any connected F-algebra A, we have an
isomorphism

Gm(A) X Z/2 = 04(A)

w5 26 D)

We consider more generally semi-direct products T x Z/2, where T = G],
is a split torus on which Z/2 acts by multiplicative inversion, i.e.,

1'(0117”' 7ar) = (a1_17. .. 7a;1)

for (ai,...,ar) € T(A) and 1 € Z/2. If we introduce the notation |z| :=
(—1)* for x € Z/2, we can write the action as

v.(ar, - ay) = (alf\,... ale).

The group structure on T' x Z/2 is given by (a,z)(b,y) = (a - b*l, z 4+ 7) in
this notation.

We write T* := Hom(T', G,,,) for the character group of the torus, a free
abelian group of rank r. The one-dimensional T-representation correspond-
ing to a character v € T™ is denoted €.

3.7. Proposition (T x Z/2-modules). All representations of T x 7Z/2 are
semi-simple. The isomorphism classes of simple T X 7./2-modules can be
enumerated as follows:

1: the trivial one-dimensional representation.
d: the one-dimensional representation on which T acts trivially while
the generator of 7/2 acts as —1.
[€Y] := &Y @ e, for each pair of characters {~y,—v} of T with v # 0.
Here, 7./2 acts by interchanging the two factors. U
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The representation [¢9] := 1@ 1 with Z/2 switching the factors is isomor-
phic to the direct sum 1@ 6. For r = 1, [e!] is the standard representation
of 02.

Proof. Let V be a T x Z/2-representation. As T is diagonalizable, the
restriction of V' to T' decomposes into a direct sum of eigenspaces V,,. Writing
1 for the generator of Z/2, we find that 1.V, C V_,. Thus, Vpis a T x Z/2-
submodule of V', as is V, & V_,, for each nonzero 7.

The zero-eigenspace Vg may be further decomposed into copies of 1 and
0. For nonzero 7y, we can decompose V, into a direct sum of copies of €7,
and then V,, @V, decomposes into a direct sum of copies of €? & 1.7 = [e7].

Alternatively, we may find all simple 7" x Z/2-representations by applying
Proposition 4.4 and Lemma 4.5. Indeed, if we twist the T-action on € by
1 € Z/2 (see Definition 4.2), we obtain e~?, which is isomorphic to €7 if and
only if v = 0. (]

All representations of 7' x Z/2 are symmetric. For later reference, we
choose a distinguished symmetry on each simple representation as follows.

3.8. Proposition. The following symmetric representations form a basis of
GW(T x Z/2-Rep) as a GW(F)-module:

1T := (1,(1)), the trivial representation equipped with the trivial sym-
metric form.
6% = (4,(—1)), the representation & equipped with the symmetric form
(—1).
[T = ([e7], (YY) for each pair {,—v} with v # 0: the representation
[€7] equipped with the equivariant symmetric form

O e"@e? —— (e = Tge.
In short, the proposition says that we have an isomorphism of GW(F')-
modules

GW(T x Z/2-Rep) = GW(F) (1*,47, [ ) {y,=1 -
770

In analogy with the notation [¢?]*, we write [¢9] for the representation [€9]
equipped with the symmetric form (9 {). There is an equivariant isometry

o)

[T — (1@4,(§ %))

given by (1 1), s0 [9]T = (2)- 17+ (2)- 6" in GW(T x Z/2-Rep).

In order to check the A-identities for GW(T x Z/2-Rep), we will need to
understand tensor products and exterior powers in GW (T xZ/2-Rep). This
is the subject of the next two lemmas.
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3.9. Lemma. The tensor products of the above T x Z/2-modules are as
follows:

(P1) 62>
(P2) §® €] = [e"]
(P3) €7 ® [e"] =[] @ [e777).

Here, v and k are arbitrary characters of T (possibly zero).

Proof. The first isomorphism is obvious. For the other two isomorphisms,
we describe [e7] as the two-dimensional representation with basis vy, v_; and
action

(@, )0y = Vg, ® a'f”"WI caltler

In this notation, an explicit isomorphism [e?] = [e™7] is given by
01 e = [
® (0 2). 15
Uy Uy

The second two isomorphisms of the lemma can be described as follows:

1 0\ @[] =[]
(P2) (0 _1) : b,
(P3) € @ [e"] = [eY%] @ [e77*]
vy ®@vy = (v, 0)
vy ®@v_py = (0,0,). O

3.10. Lemma. With respect to the symmetric forms chosen in Proposi-
tion 3.8, the isomorphisms (P1)-(P3) and (R) are isometries:

(P1F) (5H)®2 = 1+

(P27) st @ et = et

(P37) [ @[] = [T L [T
(R*) "] = e

Moreover, for each character v of T, we have an isometry
(L%) A*([e] ") = ot

Proof. These are claims are about symmetries on vector spaces, which can
be checked in a basis. (P171) is clear. (R*) and (P2%) and boil down to the
following two identities:

(76) = "QOEH QD)
0 -1
(—1 o)zt((lJ—()l)<(1)(1))(6—1)
N——"
symmetry symmetry

on LHS on RHS
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For (P3"), we choose the following bases:
v v, VI®U_1, Vv_1Quv, v-1Quv_1€ [7]® [e"]
(01,0, (1,0, Oo),  (Ov1) €T e[,
Then the symmetry on [¢Y]" @ [e®]T, the symmetry on [¢YT#] L [¢7~*] and

the isomorphism (P3) are represented by the following three matrices Qp,
Qr and I, which do indeed satisfy the required identity Qr = ‘IQRrI:

0090 2000 0001
QL = 010 ; Qr= 0001 ) I=1{0100]-

100 0010 0010

as

01

0

0

0
Finally, A?([¢?]*) has basis v; A v_1, on which 1 € Z/2 acts as as —1,
and symmetry det ({§) = —1. So A%([¢7] is isometric to 6+ = (4, —1), as
claimed. g

3.11. Proposition. GW(T x Z/2-Rep) is a A-ring.
Proof. By the Line Generation Lemma 3.3, it suffices to check the A-

identities for the symmetric representations listed in Proposition 3.8. As
all of these are of rank one or two, these identities boil down to the equa-
tions given in part (ii) of Lemma 3.4. By part (iii) of the same lemma and
the fact that GW (T x Z/2-Rep) is line-special (Lemma 2.5), we can concen-
trate on the case z = [¢?]*, y = [¢®]T. So it suffices to check the following
three identities in GW (T x Z/2-Rep):
(3.5) N2 ([ 1) = ((["F)? = 22%[]F) - W[
+ (([en]+)2 . 2)\2[6K]+) _)\2[67]4-
+ 2X2[Y]T - N2[e] T
(3.6) N (M [FT) = [ - [T N[ F - 2[R
(3.7) AT - [e7]7) = (W[e]F)? - (W[e"] )2
Using the lemmas above, we see that both sides of (3.7) equate to 1T and
that both sides of (3.6) equate to [¢®*17] T+ [e*~7]|T. Equation (3.5) simplifies
to
[62’7}+ + [62n]+ + 254— — [62’7]4- + [62n]+ + 2[60]+ —9. 1+'
Thus, it suffices to show that
217 20 = 2[0)F
in GW(T x Z/2-Rep). As indicated below Proposition 3.8,
[ = (2)- 17 +(2) - 07,

so we can rewrite this equation as

(69) - 17+ (59) 0" =(33)- 17 +(§9) -0

This equation does indeed hold in GW(T' x Z/2-Rep) since the nondegen-

erate symmetric forms (3 9) and (29) are isometric over any field of char-

acteristic not two via the isometry (% 4 ) U
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Remark. When the ground field k contains a square root of 2, the repre-
sentation [¢9] is isometric to 1T L §T. In this case, Proposition 3.11 can
alternatively be proved without explicitly checking the A-identities. Namely,
it then follows from Lemma 3.10 that the subgroup

GW(T x Z/2-Rep)* := Z (1%, 67, [ ) 5.y
Y#0
is closed under products and exterior powers and is thus a sub-pre-A-ring of
GW(T x Z/2-Rep). This subring maps isomorphically to the A-ring
K(T x Z/2-Rep)

via the forgetful map and is thus itself a A-ring. Now, GW(T x Z/2-Rep)
is generated over GW(T x Z/2-Rep)™ by line elements, so we can conclude
via the Line Generation Lemma 3.3.

3.5. Representations of split special orthogonal groups. Let SO,
and SOg,+1 be the split orthogonal groups defined by the standard sym-
metric forms (1.1) (Section 1). The aim of this section is to show that the
symmetric representation rings of these groups are A-rings. We begin by
explaining our notation and conventions.

First, note that the two groups share a maximal torus T' C SO, C
SO9,41 which we can write as

T(A):{diag((%agl),...,(aona21>> ‘aiEAX}
respectively T'(A) = {diag ((aol a191> e (ag a%) ,1) ‘ a; € AX}.
Let

Y=, m) €T
denote the character T — G, that sends an element of T'(A) of the form
indicated to the product a]*-----a;". Then with respect to the usual choices,
the dominant characters for SO,,, are described by the conditions

127222 Y—1 2> >0 (m:2n+1)
V=2 > 2 Ynm1 2 |l (m = 2n).
We refer to these as 2n- and (2n + 1)-dominant, respectively. Given any
v € T*, we define
’yi = ('.)/17 vy Yn—1, _’Yn)
The following is immediate:
3.12. Lemma.
If v, >0, then 7 is 2n-dominant if and only if it is (2n + 1)-dominant.
If vn, <0, then v is 2n-dominant if and only if v~ is (2n+ 1)-dominant.

The usual partial order on T* is given by

(9/,7) satisfy conditions (Cy)—(C,) m=29n+1

/ = o=
=7 {(’y’,'y) satisfy conditions (C1)—(Cy) and (C,;) m =2n
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where the conditions are:
(Ci) N+ FY S Mt

(Cr) Y+ Frma =M<t Yo~ e
We say that a weight 4/ is smaller than 4 and write 4’ < 4 when 4/ < «
and 4" # 4. When it is not clear from the context, we say 2n- or (2n + 1)-
smaller to clarify which of the two orderings we are using. Note that any
character 4/ which is 2n-smaller than « is a fortiori (2n + 1)-smaller. We
will eventually need the following observation.

3.13. Lemma. Let vy and v be (2n+1)-dominant. If 4" is (2n+1)-smaller
than v~ , then it is 2n-smaller than 7.

Given an m-dominant weight vy, we write V for the simple SO,,-module
of highest weight +.

3.14. Lemma. When m is odd or a multiple of four, all simple represen-
tations of SOy, are symmetric.

When m = 2n with n odd, all simple representations V, with v, = 0 are
symmetric, while for v, # 0 we have V,YV =V,-.

One way to prove this lemma is to consider the restriction from SO,, to an
appropriate extended torus T x Z/2. We can define such tori by specifying
generators T of Z/2:

e For m=2n+1, let

o1
10
(="
The conjugation action of 7 on T is multiplicative inversion, so the
subgroup generated by 7 and T is indeed an extended torus T x Z/2.
e For m = 2n with n even, let
01
10
o
10
Then, as in the previous case, the subgroup generated by 7 and T is
an extended torus 1" x Z/2.
e For m = 2n with n odd, let
01
10
T = 01
10
1
1

Write T as T" X G,,,. The element 7 acts by multiplicative inversion
on T” and trivially on G,,, so the subgroup generated by 7 and T
has the form (77 x Z/2) X Gy,.



1080 MARCUS ZIBROWIUS

We thus have closed subgroups
STopy1:=T X7Z)2 — SO2p41
STy, =T X1Z)2 <+ SO, for evenn
STy, = (T'x7Z/2) x G, = SOy, for odd n.

Proof of Lemma 3.14. By [Jan03, Cor. I1.2.5], V) = V_ .

When m is odd or divisible by four, —wjq is the identity, so all simple SO~
modules are self-dual. The restriction of V,, to ST, contains the symmetric
simple ST,,-module [¢7] = €Y @ €Y~ as a direct summand with multiplicity
one, so the duality on V, must be symmetric.

When m = 2n with n odd, —wg acts as y — v~. Thus, for a dominant
character 7 the SO;,-module V, is dual to V,—. In the case v, = 0 we can
argue as before. O

The restriction K(SO,,-Rep) — K(ST,,-Rep) is a monomorphism since
its composition with the further restriction to 7" is. We claim that the same
is true for Grothendieck—Witt groups.

3.15. Proposition. The morphism induced by restriction
GW(SO,,-Rep) AN GW(ST,,-Rep)
is injective. In particular, GW(SO,,-Rep) is a A-ring.

At this point, we only give a proof of this proposition in the case when m
is odd. The cases when m is even can be dealt with similarly, but we will
not need them for our further analysis.

We will, however, need a generalization to products of special orthogonal
groups of odd ranks. If 7 € SOgp,4+1 and 7 € SOgp,+1 are the elements of
order two defined above, then (71, 72) has order two in SOgp, 41 X SO2py41-
Together with the maximal tori 77 and 75 of SOgy,4+1 and SOgp, 41, it gen-
erates an extended torus (T x Ty) x Z/2.

3.16. Proposition. The morphism induced by restriction
GW(SOQn1+1 X 802n2+1-R€p) — GW((Tl X TQ) X Z/Q-Rep)
is injective. In particular, GW(SOzp,+1 X SO2p,+1-Rep) is a A-ring.

Proof of Proposition 3.15 for odd m. The main point is to show that
the restriction is a monomorphism. Once we know this, the claim that
GW (SO,,-Rep) is a A-ring follows from Proposition 3.11.

As a preliminary exercise, consider the restriction

i*: K(SOp-Rep) — K(T-Rep).
One way to argue that this morphism is injective is as follows:
The isomorphism classes of the simple SO,,-modules V;, for the different

dominant weights -y form a Z-basis of K(SO,,,-Rep). Moreover, for dominant
weights v and p,



SYMMETRIC REPRESENTATION RINGS ARE A-RINGS 1081

— the coefficient of €7 in i*V}, is nonzero only if u = 7;
— the coefficient of €7 in "V, is 1.

Suppose e := 27 nyVy is an element of K(SO,,-Rep) that restricts to zero.
Let v be maximal among all dominant weights for which n, # 0. Then the
coefficient of €7 in i*e is precisely ny. So we find that n, must be zero, a
contradiction.

Essentially the same argument can be applied to the restriction

GW(SO,,-Rep) — GW(ST,,,-Rep).

As we have seen, all simple SO,,-modules are symmetric. Choose a symme-
try 6, on V, for each dominant -, so that

GW(SOm—Rep) = GW(F) <(V’Y’ 0’7)>'y dominant

GW(ST,,-Rep) = GW(F) (11,67, [e'y]+>{%_,y} with 420

For dominant weights v, u,
— the coefficient of [€7]T in i*(V},,6,) is nonzero only if p > =;
— the coefficient of [¢”]T in i*(Vj, 6) is a nondegenerate rank-one sym-
metric form (o).

Indeed, this can be checked by restricting to K(T,,-Rep).

Now suppose e := Z'y Oy (Vy,0y) with ¢, € GW(F) is an element of
GW(SO,,-Rep) that restricts to zero in GW(ST,,-Rep). Let 4 be maximal
among all dominant weights for which ¢, # 0 in GW(F'). Then the coeffi-
cient of €Y in i*e is ¢y - (ay). As (o) is invertible, we find that ¢, =0, a
contradiction. O

Proof of Proposition 3.16. A character v = (vy1,72) € (11 x Ty)* is
dominant for SOgp,+1 X SOgp,4+1 if and only if each 7; is dominant for
SOa2p,+1. The corresponding simple SO2;,, 41 X SO2y,+1-modules are of the
form Vy = V,, ® Vy,. In particular, all simple modules are again symmetric.
Using the ordering

(B1,p2) = (Y1,72) = w1 =71 and po = 9,

we can argue exactly as before. O

3.6. Representations of split orthogonal groups. In this section, we
finally deduce that the symmetric representation ring of the split orthogonal
group Oy, is a A-ring.

We take Oy, to be defined by one of the standard symmetric forms (1.1)
(Section 1) and write T" for the maximal torus of SO,, defined in the previ-
ous section. When m is odd, the orthogonal group decomposes as a direct
product, while for even m, we only have a semi-direct product decomposi-
tion:

O2p41 2 SO9p41 X Z/2 with Z/2 generated by —1,

O2n,  =S09, XZ/2 with Z/2 generated by diag (1,...1,(9})).

O
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We thus obtain the following well-known description of the simple O,;,-
modules.

3.17. Proposition.
(a) Each simple SOgy41-module V, lifts to two distinct simple Ogyq1-

modules V,y and V,y ® d, where § denotes the nontrivial character of
Z)2. All simple Ogpt1-modules arise in this way.

‘Zy TES
. LN
Vy @6

(b) Likewise, each simple SOap-module Vo with v, = 0 lifts to two dis-
tinct simple Osp,-modules ‘2, and V,y ® 0. For each dominant 7y with
Yo > 0 there is a simple Oay,-module 177 lifting V4@V, ; in this case,
Vy and Vy ® 0 are isomorphic. Every simple Ozn-module arises in
one of these two ways.

V'Y res
Yn =0: . — V5
N ®0
Yo >0: Uy — Vy®V,-.

(¢c) BEvery simple Op,-module is symmetric, for any m, and its endo-
morphism ring is equal to the base field F.

Proof. (a) is immediate from Proposition 4.1, and (b) follows from Corol-
lary 4.9: the automorphism « defined by conjugation with 7 already stabi-
lizes our chosen split maximal torus 7" in this case and the induced action
on T™ is given by a*(y) =v_.

(c) The claim concerning the endomorphism ring follows from the corre-
sponding fact for simple SO,,-modules and Lemma 4.10. It remains to show
that the simple O,;,-modules are symmetric. For odd m, this is clear. So we
concentrate on the case m = 2n.

When ~,, # 0, the module V,y is necessarily self-dual because it is the only
simple Og,,-module restricting to the self-dual SOg,-module V, &V, . To see
that it is symmetric, we consider instead the restriction to T' x Z/2, where
Z,/2 acts nontrivially only on the last coordinate of T' (see the beginning of
the proof): this restriction contains the simple symmetric 7' x Z/2-module

e n-1) ] =" e

as a direct summand with multiplicity one.

When v, = 0, we know that V,y is either self-dual or dual to ny ® 9.
In order to exclude the second possibility, recall that by our construction
Z/2 acts trivially on ¢¥ C V,. It follows that Z/2 acts trivially on the
two-dimensional subspace € @ e~ 7:

Lemma. When v, =0, Z/2 acts trivially on ¥ G e C V.
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Proof of the lemma. Consider the element

) diag ((98) .- - (93)) €809, (F) ifniseven
T ldiag ((98),...,(98),1,1)  €S09,(F) if nis odd.

This element commutes with the generator 1 = diag(1,...1,({})) of Z/2
and maps €7 to e(~7r"¥n-17) = ¢~ (cf. Lemma 4.3). d

The lemma implies that Z/2 also acts trivially on the subspace €Y e C
V:YV. So we must have V7V = V,. Finally, as V, restricts to a simple symmetric

SOs9,-module, the duality on f/',y must be symmetric. O

3.18. Corollary. GW(O,,-Rep) and GW (O, X Op,-Rep) are A-rings for
all m, my, ms.

Proof. (1) For the orthogonal group Og,4+1 of odd rank, the inclusion
SO2,41 < Ogpy1 is split by the projection gop41: O2p41 = SOgp41. Con-
sider the induced inclusion of pre-A-rings

GW(SOsps1-Rep) <2 GW(Oapy1-Rep).
By Proposition 3.15, GW(SOg,+1-Rep) is a A-ring. The description of the
simple Ogy,4+1-modules in Proposition 3.17 implies that GW(Ozg,+1-Rep) is
generated as a GW(SOs2,11-Rep)-module by 17 and §t. We may therefore
conclude via the Line Generation Lemma 3.3.
(2) For the orthogonal group Oz, of even rank we consider its embedding
into SOQn+1:

(3.8) SQQnC > 802n+1.

q2n
OZn

The image of the induced ring morphisms

GW (SO0, 1-Rep) 225 QW (0sn-Rep)

is a GW(F')-submodule of GW(O2,-Rep) which is a sub-pre-A-ring and, by
Proposition 3.15, in fact a A-ring. We claim that, as above, GW(Og,-Rep)
is generated over this submodule by the line elements 17 and 6:

(3.9) im(gs,) (17,6) = GW(Og2,-Rep).

Then the claim that GW(Og,-Rep) is a A-ring follows as for Ogy,4;.

To prove (3.9), we analyse how the simple SOg,,+i-modules restrict to
O9,. As our chosen maximal torus 7' is contained in all three groups in
diagram (3.8), we can do so by comparing weights. So let v be a (2n + 1)-
dominant character in 7. In the simple SOg2,41-module V,, the weight ~y
appears with multiplicity one, while all other weights that occur are (2n+1)-
smaller than ~.



1084 MARCUS ZIBROWIUS

Lemma (Weights of Og,-modules). Let v be (2n+1) dominant, and let V,y
be the corresponding Osy,-module as in Proposition 3.17. Then €Y appears
with multiplicity one in the restrictions of V,y and Vy ® 6 to T. All other
(2n + 1)-dominant weights p for which e* occurs in these restrictions are
(2n + 1)-smaller than ~y.

In fact, as the following proof shows, these weights p are even 2n-smaller
than .

Proof of the lemma. If v, = 0, we see from the restriction to SO, that
7 occurs with multiplicity one, and that all other weights that occur are
2n-smaller than 7.

If ~, > 0, the restriction to SOg,, shows that 7 and 4~ both occur with
multiplicity one, and that all other weights that occur are either 2n-smaller
than one or 2n-smaller than the other. Of these, the (2n + 1)-dominant
weights will necessarily be 2n-smaller than v, by Lemma 3.13. ([

Now consider the SOg,1-representation V, and its restriction to Og,,.
Write its decomposition into simple factors in K(Og,-Rep) as ¢35, (Vy) =
Zu nuf/u + ”LVM ® ¢ for certain nonnegative integers ny, n; As the restric-
tions of V, and ¢, (Vy) to T agree, the above lemma implies the following
equality in K(T-Rep):

~ a lin. comb. of e*
e’ + .
with g <on11y
a lin. comb. of ¥ with
= Z (1 + ) et + v (2n + 1)-dominant and
© V <ont1 4

n a lin. comb. of ¢¥ with v
non(2n + 1)-dominant

It follows that all g that appear with nonzero coefficient n,, + nL on the
right-hand side satisfy g <9,41 7, that 4 occurs among these u, and that
ny +nsy = 1. Thus:

* VY or > IS .
(3.10) g5,(Vy) =1« . + Z (npVu+n,Vy®0)  in K(O2,-Rep).
VY ® 6 [l:<2n+17

This implies that 1 and 0 generate K(O2,-Rep) as an im(gj;,,)-module, as
follows: Suppose the set of (2n + 1)-dominant weights for which V,y is not
contained in im(g3,) (1,9) is nonempty. Let o be a minimal element with
respect to the (2n+1)-ordering. Then neither V,y nor ny®5 will be contained
inim(g3,,) (1, ). But one of these will appear in the decomposition of ¢3,, (V)
as the only summand not contained in im(g3,,) (1, d), which is impossible.
The same argument applies to GW. Indeed, let v, be an arbitrary sym-
metry on the simple SOg,41-module V,. Consider the restriction of (Vs, vy)
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to Og,,. This restriction decomposes into a sum of simple symmetric objects
in GW(Og,-Rep) whose underlying objects are determined by the decom-
position (3.10) in K(Ogz,-Rep) (see Remark 1.5):

i (V,y,&,) or . .
G (Vo vy) = { . (Tt Z (Du(Vi, Op) + ¢L(Vua 9;;) ®d0")
(Vy,by) ® 6 B=<2n417

in GW(O2,-Rep) for certain symmetries 1, 6, and 9,’1 and certain coeffi-
cients ¢, ¢, € GW(F). A simple symmetric Og,-module (177,97) is con-
tained in the GW(F)-submodule im(g3,) (17,6™) for some symmetric form
ty on f/,y if and only if it is contained therein for every such form, as the possi-
ble symmetries on f/7 differ only by invertible scalars. We can therefore con-
clude as above, by considering a weight oy minimal among all those (2n+ 1)-
dominant weights for which (V4,6,) is not contained in im(gj,) (17,5%).
(3) Finally, for the product O,,, x O,,, we consider the morphism of
pre-A-rings
) (@mq Xqmo)*

GW (SO2p, 41 % SO2ny11-Rep GW(Opm, X Omm,-Rep)

where n; = |m;/2]. The simple Ogy,, X Ogp,-modules are of the form
Wi ® Wa, where Wi and Wy are irreducible representations of O,,, and
Om,. Let 6 and 6, be the one-dimensional modules on which O,,, and
O, act via the determinant, each equipped with some symmetry. Let w;
and wy be symmetries on W and Ws. As we have seen in the two previous
parts of the proof, we can write

(Wi,w1) = @, (1) + 67 g, (22)
(Wa,wa) = ¢, (1) + 05 ¢, (y2)

for certain elements x;,y; € GW(SO2p,,+1-Rep). In GW (O, X Opy,-Rep)
we therefore have

(Wi @ Wa,wr ®@wa) = Y (55 (65) (@my X @ms)* (w1 @ ).
1,j€{0,1}

Thus, GW(Oy,, X Opm,-Rep) is generated over im ((¢m, X ¢m,)") by the line
elements 17, 5{“ and 5, and we may once more conclude via the Generation
Lemma 3.1. ([l

4. Appendix: Representations of product group schemes

In this appendix, we collect some basic facts from the representation the-
ory of affine algebraic group schemes. Though we assume that all of these
are well-known, we have been unable to locate precise references. Recall that
all our representations are finite-dimensional. The ground field is denoted
F', as elsewhere in this article, but no assumption on the characteristic is
necessary in this appendix.
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4.1. Representations of direct products. Let G; and G2 be affine al-
gebraic group schemes over a field F.

4.1. Proposition. If Ey and Eo are simple G1- and Ga-modules, respec-
tiwely, and if Endg,(E2) = F, then

E1 ® Ey

is a simple G1 X Go-module. Conversely, if Endg,(E) = F for every simple
Go-module E, then every simple G1 X Go-module is of the above form.

Over algebraically closed fields, the conditions on endomorphisms become
vacuous. In this case, a proof may be found in [Ste68, § 12]. The correspond-
ing statement for Lie algebras, over any field, is included in [BZ64, § 3].

Proof. For the first statement, let W be any nonzero G1 x Go-submodule of
E1®FEs. Then, as Go-modules, F1 ® F5 and W are both finite direct sums of
copies of Es. Moreover, by our assumption on endomorphisms, the inclusion
W — E; ® Es may be described by a matrix with coefficients in F. This
implies that, as a Ga-module, W = V ® E» for some nonzero vector subspace
V of E7. In fact, V is necessarily a Gi-submodule of F: any nonzero linear
form ¢ on E5 induces a morphism of Gi-modules id ®¢: E1 ® Es — E7, and
the composition

V®FEy— FL®FEy— E;

is then a morphism of Gi-modules with image V. As Fj is simple, V must
be equal to Fy and, thus, W must be equal to F1 ® F».

For the second statement, let M be a simple (G X Go-module. Then for
any simple Go-module F we have an isomorphism

Homg, (E, M) ® E = (socg, M) g

of G1 x Ga-modules [Jan03, 6.15 (2)]. On the left-hand side, the action of
G1 x G2 on Homg, (E, M) is induced by its usual action on Hom(E, M);
it follows that Go acts trivially on Homg, (E, M) and that we may view
Homg, (E, M) as a Gi-representation. The action of G; x G2 on E is ob-
tained by trivially extending the given action of G5 on E. On the right-hand
side, socg, M denotes the Ga-socle of M and (—)g denotes its E-isotypical
part. The claim is, in particular, that (socg,M)g is a G1 x Ga-submodule
of M.

There must be some simple Ga-module E for which (socg, M) g is nonzero
[Jan03, 2.14 (2)]. As M itself is simple, we find

Homg,(E,M)® E= M

for this E. It remains to note that Homg, (E, M) is simple as a G1-module:
if it contained a proper Gi-submodule, M would contain a proper G X Ga-
submodule. O
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4.2. Representations of semi-direct products. We are mainly inter-
ested in semi-direct products with Z/2: in the orthogonal group Og, =
SOg;, x Z/2 and in the “extended tori” T x Z/2. In slightly greater general-
ity, we describe in this section how to obtain the simple representations of a
semi-direct product H x Z/p (p a prime) from the simple representations of
H. All corresponding facts for representations of compact Lie groups may
be found in [BtD95, VI.7]. The only exception is Corollary 4.9, which we
learnt from Skip Garibaldi; see [BGL14, Proposition 2.2].

Recall that a representation of an affine algebraic group scheme G consists
of an F-vector space V together with a natural A-linear action of G(A) on
V ® A for every F-algebra A. Such a representation is completely determined
by its restriction to connected F-algebras, so we may assume that A is
connected whenever this is convenient. In particular, as (Z/p)(A) = Z/p
for any connected A, a representation of the constant group scheme Z/p
is the same as a representation of the corresponding abstract group. An
H % Z/p-module is an H-module which is also a Z/p-module, such that

(x.h).(zwv) =z.(hv) €eV®A
for all connected F-algebras A and all x € Z/p, h € H(A) and v € V.
4.2. Definition. Let V be a representation of some normal subgroup scheme
H C G. Given an element g € G(F), the g-twisted H-module 9V has the

same underlying F-vector space V, with h € H(A) acting on 9V ® A as
ghg~"! does on V ® A.

4.3. Lemma. Let V be an H X Z/p-module. If U C V is an H-submodule,
then x.U C V is also an H-submodule, for any x € Z/p, and the action of
x on V induces an isomorphism of H-modules

-2y 24U

4.4. Proposition. Let V be a simple H x Z/p-module. Then
either V is simple as an H-module

or V = @uez)pU  for some simple H-module U that does
not lift to an H x Z/p-module.

In the second case, the action of y € Z/p on (uz)s € ©7U is given by
Y (uz)e = (Uaty)a-
Proof. By [Jan03, 2.14 (2)], we can find a simple H-submodule U C V.

Then ) .U is also an H-submodule of V, and in fact an H x Z/p-
submodule. As V' is simple, it follows that

Zx.U:V.

The stabilizer of U for the action of Z/p on the set of F-sub-vector spaces
{z.U} is either trivial or the whole group, so either all z.U are equal as
F-sub-vector spaces or they are all distinct. In the first case, we have V| =
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U, so Vg is a simple H-module. In the second case, the H-submodules
x.U must intersect trivially, so the above sum is direct and we have an
isomorphism of H x Z/p-modules

@‘EUi@x.U:V

xT

(Ug)y — (T u—yg)q,

with Z/p acting on the left-hand side as described in the proposition. Finally,
suppose that the H-module structure on U was the restriction of some H x
Z/p-module structure. Then we could define a monomorphism of H x Z/p-

modules
U— v
x
u— (1),
contradicting the simplicity of V. [l

It remains to determine which simple H-modules do lift to H x Z/p-
modules, and in how many ways.

4.5. Lemma. A lift of an H-module structure on an F-vector space U to
an H x Z/p-module structure corresponds to an isomorphism of H-modules

R

6: U = U
such that ¢P: U SWSWS .. SPU=U is the identity.

Proof. Given an H xZ/p-module structure on U lifting the given H-module
structure, take ¢ to be the action of 1 € Z/p. Conversely, given an isomor-
phism ¢ as described, define the Z/p-action on u € U by z.u := ¢*.u. O

4.6. Remark. Suppose U is a simple H-module over an algebraically closed
field of characteristic not p. Then U can be lifted to an H x Z/p-module
if and only if U = U! through an arbitrary isomorphism. Indeed, as F is
algebraically closed, Endp(H) = F, so ¢P is a scalar. Moreover, F' contains
primitive p*® roots, so we can normalize ¢ such that ¢ = 1.

4.7. Lemma. If an H-module U can be lifted to an H x Z/p-module U,
then

U®e
is also a lift for any character e* of Z/p. If, moreover, Endy(U) = F, all
lifts of U are of this form.

Proof. The first claim is clear since ef‘H is the trivial representation. For the
second statement, suppose ¢ and v are two different isomorphisms U = 1U
such that ¢ = ¢ = id. Then ¢~! o ¢ is an automorphism of the H-module
U, hence under the assumption Endy(U) = F it is given by multiplication
with some scalar A € F. Moreover, AP = 1. Writing U? and U" for the lifts
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of U determined by ¢ and ¢, and writing e* for the character of Z/p defined
by A, we have an isomorphism of H x Z/p-modules

Ut ®et S U?
u > A", O

4.8. Remark. For H x Z/p-modules of the form V =
isomorphisms of H x Z/p-modules

T
vez/p U, We have

Veer SV
given by (uz)z — (A*uy)s, for any character e of Z/p.

When H is split semi-simple, the preceding lemmas can be simplified as
follows. Fix a maximal split torus and a Borel subgroup T' C B C H. Let
T* := Hom(T,G,,) be the character lattice, and let A C T™ be the set of
simple roots corresponding to our choice of B. Any automorphism « of H
determines a unique automorphism a* of T* that restricts to a permutation
of A. Indeed, for any such «, there exists an element h € H(F') such that the
composition o’ of a with conjugation by h stabilizes T and B [Bor91, 19.2,
20.9(i)]. This automorphism o' is well-defined up to conjugation by an
element of T'(F') and thus induces a well-defined automorphism o* of T*.
Of course, a* is completely determined by its restriction to A, which is, in
fact, an automorphism of the Dynkin diagram of H.

4.9. Corollary. Let U be an irreducible representation of a split semi-simple
algebraic group scheme H over F. Suppose that the generator 1 € Z/p acts
on H via an automorphism «.

(i) The representation U can be lifted to a representation U of Hx Z]p
if and only if the induced automorphism o of T* fizes the highest
weight of U.
Moreover, if a lift U exists, then:

(ii) All other lifts are of the form U®e*, where X is a character of Z/p.
(iii) The lifts U ® e* for different characters \ are all distinct.

Proof. (i) Let u be the highest weight of U. We claim that 'U is the simple
H-module with highest weight o* (). Indeed, suppose first that « can be
restricted to both B and T, i.e., that « = ¢ in the notation above. Then
for any character v € T, €’ = e®¥. Moreover, as o sends simple roots
to simple roots, it preserves the induced partial order on T*. So the claim
follows. In general, the same argument applies to ' U, the twist of U by
1 € Z/p acting via o. As « and o’ differ only by an inner automorphism of
H, this representation is isomorphic to 'U.

We thus find that an isomorphism ¢: U — 'U exists if and only if a*
fixes p. It remains to show that such an isomorphism will always satisfy the
condition named in Lemma 4.5. To see this, we consider the inclusion

Homy (U, 'U) < Homy (U, 'U).
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When U and 'U are isomorphic, both contain e# with multiplicity one, so
the right-hand side contains Endp(e#) = F as a direct factor. If we choose
our H-equivariant isomorphism ¢ such that ¢ restricts to the identity on e#,
then ¢P will also restrict to the identity on e#. On the other hand, ¢? will
be multiplication with a scalar in any case, so for such choice of ¢ it will be
the identity.

(ii) follows directly from Lemma 4.7.

(iii) The proof of (i) shows that we may choose U such that the restriction
of the Z/p-action to e# C U is trivial. Then the restriction of the Z/p-
action on U @ e* to eM is given by A. So the lifts U @ e for different \ are
nonisomorphic. O

In the final lemma, we write endg(E) for the dimension of Endg(E) over
F.

4.10. Lemma (Endomorphism rings). Let H be an arbitrary affine alge-
braic group scheme over F, and let V be a simple H x Z/p-module. Then
endr,z/p(V) < endy (V) if Vg is simple,
endpyzp(V) = endg (U) if Vig =2 @,"U such that U 2 'U,
endyuzp(V) =p-endg(U)  if Vig =@, *U such that U = 'U.

Note that the isomorphism U =2 'U in the last statement necessarily violates
the condition of Lemma 4.5.

Proof. The first statement is clear since Endg,z/,(V) C Endg(V). For

the other two cases, note that V' = indgxz/ P(U). Indeed, for any H-module
U we have an isomorphism of H x Z/p-modules

indj;**/P(U) = Mor(Z/p, Ua) = @)U

[Jan03, 3.8 (3)], with y € Z/p acting on the right-hand side by

y(ux)x = (u:c+y)x-

Explicitly, this isomorphism can be described as follows: The representa-
tion ind U can be identified with a subspace of the vector space of natural
transformations from H x Z/p to U,, with the action of g € (H x Z/p)(A)
on such a transformation F' given by (9.F) := F o g~! [Jan03, 3.3 (2)]. We
send F' to (F(1,-x)), € @, U.

Given the identification of V with ind U, the lemma follows from a straight-
forward calculation:

endyz,/,(V) = hompy,z/,(ind U, ind U) = homp ((ind U)g, U)
= hOmH(@x mU, U) = ch homH(:”U, U)

If the *U are nonisomorphic, then only the summand endy(U) correspond-
ing to the trivial twist is nonzero. Otherwise, all p summands are equal to
endy (U). O
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