New York J. Math. **21** (2015) 1179–1245.

C^* -algebras associated with textile dynamical systems

Kengo Matsumoto

ABSTRACT. A C^* -symbolic dynamical system $(\mathcal{A}, \rho, \Sigma)$ is a finite family $\{\rho_{\alpha}\}_{\alpha \in \Sigma}$ of endomorphisms of a C^* -algebra \mathcal{A} with some conditions. It yields a C^* -algebra \mathcal{O}_{ρ} from an associated Hilbert C^* -bimodule. In this paper, we will extend the notion of C^* -symbolic dynamical system to C^* -textile dynamical system $(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$ which consists of two C^* -symbolic dynamical systems $(\mathcal{A}, \rho, \Sigma^{\rho})$ and $(\mathcal{A}, \eta, \Sigma^{\eta})$ with certain commutation relations κ between their endomorphisms $\{\rho_{\alpha}\}_{\alpha \in \Sigma^{\rho}}$ and $\{\eta_{\alpha}\}_{\alpha \in \Sigma^{\rho}}$. C^* -textile dynamical systems yield two-dimensional subshifts and C^* -algebras $\mathcal{O}_{\rho,\eta}^{\kappa}$. We will study their structure of the algebras $\mathcal{O}_{\rho,\eta}^{\kappa}$ and present its K-theory formulae.

Contents

1.	Introduction	1180
2.	λ -graph systems, C^* -symbolic dynamical systems and their	
	C^* -algebras	1183
3.	C^* -textile dynamical systems and two-dimensional subshifts	1186
4.	C^* -textile dynamical systems and their C^* -algebras	1190
5.	Condition (I) for C^* -textile dynamical systems	1195
6.	Concrete realization	1204
7.	K-Theory machinery	1208
8.	K-Theory formulae	1217
9.	Examples	1234
	9.1. LR-textile λ -graph systems	1234
	9.2. Tensor products	1240
10.	Concluding remark	1242
References		1242

Received April, 4, 2012.

 $^{2010\} Mathematics\ Subject\ Classification.$ Primary 46L35, 37B10; Secondary 46L55, 37B10.

 $Key\ words\ and\ phrases.\ C^*$ -algebra, symbolic dynamics, subshift, K-group, tiling. This work was supported by JSPS KAKENHI Grant Numbers 20540215, 23540237 and 15K04896.

1. Introduction

In [24], the author has introduced a notion of λ -graph system as presentations of subshifts. The λ -graph systems are labeled Bratteli diagram with shift transformation. They yield C^* -algebras so that its K-theory groups are related to topological conjugacy invariants of the underlying symbolic dynamical systems. The class of these C^* -algebras include the Cuntz-Krieger algebras. He has extended the notion of λ -graph system to C^* -symbolic dynamical system, which is a generalization of both a λ -graph system and an automorphism of a unital C^* -algebra. It is a finite family $\{\rho_{\alpha}\}_{{\alpha}\in\Sigma}$ of endomorphisms of a unital C^* -algebra \mathcal{A} such that $\rho_{\alpha}(Z_{\mathcal{A}}) \subset Z_{\mathcal{A}}, \alpha \in \Sigma$ and $\sum_{\alpha \in \Sigma} \rho_{\alpha}(1) \geq 1$ where $Z_{\mathcal{A}}$ denotes the center of \mathcal{A} . A finite labeled graph \mathcal{G} gives rise to a C^* -symbolic dynamical system $(\mathcal{A}_{\mathcal{G}}, \rho^{\mathcal{G}}, \Sigma)$ such that $\mathcal{A} = \mathbb{C}^N$ for some $N \in \mathbb{N}$. A λ -graph system \mathfrak{L} is a generalization of a finite labeled graph and yields a C^* -symbolic dynamical system $(\mathcal{A}_{\mathfrak{L}}, \rho^{\mathfrak{L}}, \Sigma)$ such that $\mathcal{A}_{\mathfrak{L}}$ is $C(\Omega_{\mathfrak{L}})$ for some compact Hausdorff space $\Omega_{\mathfrak{L}}$ with $\dim\Omega_{\mathfrak{L}}=0$. It also yields a C^* -algebra $\mathcal{O}_{\mathfrak{L}}$. A C^* -symbolic dynamical system $(\mathcal{A}, \rho, \Sigma)$ provides a subshift Λ_{ρ} over Σ and a Hilbert C^* -bimodule $\mathcal{H}^{\rho}_{\mathcal{A}}$ over \mathcal{A} . The C^* -algebra \mathcal{O}_{ρ} for $(\mathcal{A}, \rho, \Sigma)$ may be realized as a Cuntz–Pimsner algebra from the Hilbert C^* -bimodule $\mathcal{H}^{\rho}_{\mathcal{A}}$ ([27], cf. [15], [39]). We call the algebra \mathcal{O}_{ρ} the C*-symbolic crossed product of \mathcal{A} by the subshift Λ_{ρ} . If $\mathcal{A} = C(X)$ with $\dim X = 0$, there exists a λ -graph system \mathfrak{L} such that the subshift Λ_{ρ} is the subshift $\Lambda_{\mathfrak{L}}$ presented by \mathfrak{L} and the C^* -algebra \mathcal{O}_{ρ} is the C^* -algebra $\mathcal{O}_{\mathfrak{L}}$ associated with \mathfrak{L} . If in particular, $\mathcal{A} = \mathbb{C}^N$, the subshift Λ_{ρ} is a sofic shift and \mathcal{O}_{ρ} is a Cuntz–Krieger algebra. If $\Sigma = \{\alpha\}$ an automorphism α of a unital C^* -algebra \mathcal{A} , the C^* -algebra \mathcal{O}_{ρ} is the ordinary crossed product $\mathcal{A} \times_{\alpha} \mathbb{Z}$.

G. Robertson–T. Steger [43] have initiated a certain study of higher dimensional analogue of Cuntz–Krieger algebras from the view point of tiling systems of 2-dimensional plane. After their work, A. Kumjian–D. Pask [19] have generalized their construction to introduce the notion of higher rank graphs and its C^* -algebras. The C^* -algebras constructed from higher rank graphs are called the higher rank graph C^* -algebras. Since then, there have been many studies on these C^* -algebras by many authors (cf. [1], [9], [10], [11], [13], [16], [19], [36], [42], [43], etc.).

M. Nasu in [34] has introduced the notion of textile system which is useful in analyzing automorphisms and endomorphisms of topological Markov shifts. A textile system also gives rise to a two-dimensional tiling called Wang tiling. Among textile systems, LR textile systems have specific properties that consist of two commuting symbolic matrices. In [28], the author has extended the notion of textile systems to λ -graph systems and has defined a notion of textile systems on λ -graph systems, which are called textile λ -graph systems for short. C^* -algebras associated to textile systems have been initiated by V. Deaconu ([9]).

In this paper, we will extend the notion of C^* -symbolic dynamical system to C^* -textile dynamical system which is a higher dimensional analogue of C^* -symbolic dynamical system. The C^* -textile dynamical system $(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$ consists of two C^* -symbolic dynamical systems $(\mathcal{A}, \rho, \Sigma^{\rho})$ and $(\mathcal{A}, \eta, \Sigma^{\eta})$ with the following commutation relations between ρ and η through κ . Set

$$\Sigma^{\rho\eta} = \{ (\alpha, b) \in \Sigma^{\rho} \times \Sigma^{\eta} \mid \eta_b \circ \rho_{\alpha} \neq 0 \},$$

$$\Sigma^{\eta\rho} = \{ (a, \beta) \in \Sigma^{\eta} \times \Sigma^{\rho} \mid \rho_{\beta} \circ \eta_a \neq 0 \}.$$

We require that there exists a bijection $\kappa: \Sigma^{\rho\eta} \longrightarrow \Sigma^{\eta\rho}$, which we fix and call a specification. Then the required commutation relations are

(1.1)
$$\eta_b \circ \rho_\alpha = \rho_\beta \circ \eta_a \quad \text{if } \kappa(\alpha, b) = (a, \beta).$$

A C^* -textile dynamical system provides a two-dimensional subshifts and a C^* -algebra $\mathcal{O}^{\kappa}_{\rho,\eta}$. The C^* -algebra $\mathcal{O}^{\kappa}_{\rho,\eta}$ is defined to be the universal C^* -algebra $C^*(x,S_{\alpha},T_a;x\in\mathcal{A},\alpha\in\Sigma^{\rho},a\in\Sigma^{\eta})$ generated by $x\in\mathcal{A}$ and two families of partial isometries S_{α} , $\alpha \in \Sigma^{\rho}$, T_a , $a \in \Sigma^{\eta}$ subject to the following relations called $(\rho, \eta; \kappa)$:

(1.2)
$$\sum_{\beta \in \Sigma^{\rho}} S_{\beta} S_{\beta}^{*} = 1, \qquad x S_{\alpha} S_{\alpha}^{*} = S_{\alpha} S_{\alpha}^{*} x, \qquad S_{\alpha}^{*} x S_{\alpha} = \rho_{\alpha}(x),$$
(1.3)
$$\sum_{b \in \Sigma^{\eta}} T_{b} T_{b}^{*} = 1, \qquad x T_{a} T_{a}^{*} = T_{a} T_{a}^{*} x, \qquad T_{a}^{*} x T_{a} = \eta_{a}(x),$$

(1.3)
$$\sum_{b \in \Sigma^{\eta}} T_b T_b^* = 1, \qquad x T_a T_a^* = T_a T_a^* x, \qquad T_a^* x T_a = \eta_a(x),$$

(1.4)
$$S_{\alpha}T_{b} = T_{a}S_{\beta} \quad \text{if} \quad \kappa(\alpha, b) = (a, \beta)$$

for all $x \in \mathcal{A}$ and $\alpha \in \Sigma^{\rho}$, $a \in \Sigma^{\eta}$.

In Section 3, we will construct a tiling system in the plane from a C^* textile dynamical system. The resulting tiling system is a two-dimensional subshift. In Section 4, we will study some basic properties of the C^* algebra $\mathcal{O}_{\rho,\eta}^{\kappa}$. In Section 5, we will introduce a condition called (I) on $(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$ which will be studied as a generalization of the condition (I) on C^* -symbolic dynamical system [26] (cf. [8], [25]). In Section 6, we will realize the C^* -algebra $\mathcal{O}^{\kappa}_{\rho,\eta}$ as a Cuntz–Pimsner algebra associated with a certain Hilbert C^* -bimodule in a concrete way. We will have the following theorem.

Theorem 1.1. Let $(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$ be a C^* -textile dynamical system satisfying condition (I). Then the C^* -algebra $\mathcal{O}^{\kappa}_{\rho,\eta}$ is a unique concrete C^* -algebra subject to the relations $(\rho,\eta;\kappa)$. If $(\mathcal{A},\rho,\eta,\Sigma^{\rho},\Sigma^{\eta},\kappa)$ is irreducible, $\mathcal{O}_{\rho,\eta}^{\kappa}$ is simple.

A C^* -textile dynamical system $(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$ is said to form square if the C*-subalgebra of \mathcal{A} generated by the projections $\rho_{\alpha}(1), \alpha \in \Sigma^{\rho}$ and the C^* -subalgebra of \mathcal{A} generated by the projections $\eta_a(1), a \in \Sigma^{\eta}$ coincide. It is said to have trivial K_1 if $K_1(A) = \{0\}$. In Section 7 and Section 8, we will restrict our interest to the C^* -textile dynamical systems forming square to prove the following K-theory formulae:

Theorem 1.2. Suppose that $(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$ forms square and has trivial K_1 . Then there exist short exact sequences for $K_0(\mathcal{O}_{\rho,\eta}^{\kappa})$ and $K_1(\mathcal{O}_{\rho,\eta}^{\kappa})$ such that

$$0 \longrightarrow K_0(\mathcal{A})/((\mathrm{id} - \lambda_\eta)K_0(\mathcal{A}) + (\mathrm{id} - \lambda_\rho)K_0(\mathcal{A}))$$

$$\longrightarrow K_0(\mathcal{O}_{\rho,\eta}^{\kappa})$$

$$\longrightarrow \mathrm{Ker}(\mathrm{id} - \lambda_\eta) \cap \mathrm{Ker}(\mathrm{id} - \lambda_\rho) \ in \ K_0(\mathcal{A}) \longrightarrow 0$$

and

$$0 \longrightarrow (\operatorname{Ker}(\operatorname{id} - \lambda_{\eta}) \ in \ K_{0}(\mathcal{A}))/(\operatorname{id} - \lambda_{\rho})(\operatorname{Ker}(\operatorname{id} - \lambda_{\eta}) \ in \ K_{0}(\mathcal{A}))$$

$$\longrightarrow K_{1}(\mathcal{O}_{\rho,\eta}^{\kappa})$$

$$\longrightarrow \operatorname{Ker}(\operatorname{id} - \bar{\lambda}_{\rho}) \ in \ (K_{0}(\mathcal{A})/(\operatorname{id} - \lambda_{\eta})K_{0}(\mathcal{A})) \longrightarrow 0$$

where the endomorphisms $\lambda_{\rho}, \lambda_{\eta}: K_0(\mathcal{A}) \longrightarrow K_0(\mathcal{A})$ are defined by

$$\lambda_{\rho}([p]) = \sum_{\alpha \in \Sigma^{\rho}} [\rho_{\alpha}(p)] \in K_0(\mathcal{A}) \text{ for } [p] \in K_0(\mathcal{A}),$$
$$\lambda_{\eta}([p]) = \sum_{\alpha \in \Sigma^{\rho}} [\eta_a(p)] \in K_0(\mathcal{A}) \text{ for } [p] \in K_0(\mathcal{A})$$

and $\bar{\lambda}_{\rho}$ denotes an endomorphism on $K_0(\mathcal{A})/(1-\lambda_{\eta})K_0(\mathcal{A})$ induced by λ_{ρ} .

Let A, B be mutually commuting $N \times N$ matrices with entries in non-negative integers. Let $G_A = (V_A, E_A), G_B = (V_B, E_B)$ be directed graphs with common vertex set $V_A = V_B$, whose transition matrices are A, B respectively. Let $\mathcal{M}_A, \mathcal{M}_B$ denote symbolic matrices for G_A, G_B whose components consist of formal sums of the directed edges of G_A, G_B respectively. Let Σ^{AB}, Σ^{BA} be the sets of the pairs of the concatenated directed edges in $E_A \times E_B, E_B \times E_A$ respectively. By the condition AB = BA, one may take a bijection $\kappa: \Sigma^{AB} \longrightarrow \Sigma^{BA}$ which gives rise to a specified equivalence $\mathcal{M}_A \mathcal{M}_B \stackrel{\cong}{\cong} \mathcal{M}_B \mathcal{M}_A$. We then have a C^* -textile dynamical system written as $(\mathcal{A}, \rho^A, \rho^B, \Sigma^A, \Sigma^B, \kappa)$. The associated C^* -algebra is denoted by $\mathcal{O}_{A,B}^{\kappa}$. The C^* -algebra $\mathcal{O}_{A,B}^{\kappa}$ is realized as a 2-graph C^* -algebra constructed by Kumjian–Pask ([19]). It is also seen in Deaconu's paper [9]. We will see the following proposition in Section 9.

Proposition 1.3. Keep the above situations. There exist short exact sequences for $K_0(\mathcal{O}_{A,B}^{\kappa})$ and $K_1(\mathcal{O}_{A,B}^{\kappa})$ such that

$$0 \longrightarrow \mathbb{Z}^N / ((1 - A)\mathbb{Z}^N + (1 - B)\mathbb{Z}^N)$$
$$\longrightarrow K_0(\mathcal{O}_{A,B}^{\kappa})$$
$$\longrightarrow \operatorname{Ker}(1 - A) \cap \operatorname{Ker}(1 - B) \ in \ \mathbb{Z}^N \longrightarrow 0$$

and

$$0 \longrightarrow (\operatorname{Ker}(1-B) \ in \ \mathbb{Z}^N)/(1-A)(\operatorname{Ker}(1-B) \ in \ \mathbb{Z}^N)$$

$$\longrightarrow K_1(\mathcal{O}_{A,B}^{\kappa})$$

$$\longrightarrow \operatorname{Ker}(1-\bar{A}) \ in \ (\mathbb{Z}^N/(1-B)\mathbb{Z}^N) \longrightarrow 0,$$

where \bar{A} is an endomorphism on the abelian group $\mathbb{Z}^N/(1-B)\mathbb{Z}^N$ induced by the matrix A.

Throughout the paper, we will denote by \mathbb{Z}_+ the set of nonnegative integers and by \mathbb{N} the set of positive integers.

This paper is a revised version of the paper: arXiv:1106.5092v1.

2. λ -graph systems, C^* -symbolic dynamical systems and their C^* -algebras

In this section, we will briefly review λ -graph systems and C^* -symbolic dynamical systems. Throughout the section, Σ denotes a finite set with its discrete topology, that is called an alphabet. Each element of Σ is called a symbol. Let $\Sigma^{\mathbb{Z}}$ be the infinite product space $\prod_{i \in \mathbb{Z}} \Sigma_i$, where $\Sigma_i = \Sigma$, endowed with the product topology. The transformation σ on $\Sigma^{\mathbb{Z}}$ given by $\sigma((x_i)_{i \in \mathbb{Z}}) = (x_{i+1})_{i \in \mathbb{Z}}$ is called the full shift over Σ . Let Λ be a shift invariant closed subset of $\Sigma^{\mathbb{Z}}$ i.e. $\sigma(\Lambda) = \Lambda$. The topological dynamical system $(\Lambda, \sigma|_{\Lambda})$ is called a two-sided subshift, written as Λ for brevity. A word $\mu = (\mu_1, \dots, \mu_k)$ of Σ is said to be admissible for Λ if there exists $(x_i)_{i \in \mathbb{Z}} \in \Lambda$ such that $\mu_1 = x_1, \dots, \mu_k = x_k$. Let us denote by $|\mu|$ the length k of μ . Let $B_k(\Lambda)$ be the set of admissible words of Λ with length k. The union $\bigcup_{k=0}^{\infty} B_k(\Lambda)$ is denoted by $B_*(\Lambda)$ where $B_0(\Lambda)$ denotes the empty word. For two words $\mu = (\mu_1, \dots, \mu_k), \nu = (\nu_1, \dots, \nu_n)$, we write a new word $\mu \nu = (\mu_1, \dots, \mu_k, \nu_1, \dots, \nu_n)$.

There is a class of subshifts called sofic shifts, that are presented by finite labeled graphs ([14], [17], [18]). λ -graph systems are generalization of finite labeled graphs. Any subshift is presented by a λ -graph system. Let

$$\mathfrak{L} = (V, E, \lambda, \iota)$$

be a λ -graph system over Σ with vertex set $V = \bigcup_{l \in \mathbb{Z}_+} V_l$ and edge set $E = \bigcup_{l \in \mathbb{Z}_+} E_{l,l+1}$ that is labeled with symbols in Σ by a map $\lambda : E \to \Sigma$, and that is supplied with surjective maps $\iota(=\iota_{l,l+1}) : V_{l+1} \to V_l$ for $l \in \mathbb{Z}_+$. Here the vertex sets $V_l, l \in \mathbb{Z}_+$ and the edge sets $E_{l,l+1}, l \in \mathbb{Z}_+$ are finite disjoint sets for each $l \in \mathbb{Z}_+$. An edge e in $E_{l,l+1}$ has its source vertex e in e and its terminal vertex e in e i

whenever $\lambda(e) = \lambda(f)$ for $e, f \in E_{l,l+1}$. Let us denote by $\{v_1^l, \ldots, v_{m(l)}^l\}$ the vertex set V_l at level l. For $i = 1, 2, \ldots, m(l), \ j = 1, 2, \ldots, m(l+1), \ \alpha \in \Sigma$ we put

$$\begin{split} A_{l,l+1}(i,\alpha,j) &= \begin{cases} 1 & \text{if } s(e) = v_i^l, \lambda(e) = \alpha, t(e) = v_j^{l+1} \text{ for some } e \in E_{l,l+1}, \\ 0 & \text{otherwise}, \end{cases} \\ I_{l,l+1}(i,j) &= \begin{cases} 1 & \text{if } \iota_{l,l+1}(v_j^{l+1}) = v_i^l, \\ 0 & \text{otherwise}. \end{cases} \end{split}$$

The C^* -algebra $\mathcal{O}_{\mathfrak{L}}$ associated with \mathfrak{L} is the universal C^* -algebra generated by partial isometries S_{α} , $\alpha \in \Sigma$ and projections E_i^l , i = 1, 2, ..., m(l), $l \in \mathbb{Z}_+$ subject to the following operator relations called (\mathfrak{L}) :

(2.1)
$$\sum_{\beta \in \Sigma} S_{\beta} S_{\beta}^* = 1,$$

(2.2)
$$\sum_{i=1}^{m(l)} E_i^l = 1, \qquad E_i^l = \sum_{i=1}^{m(l+1)} I_{l,l+1}(i,j) E_j^{l+1},$$

$$(2.3) S_{\alpha}S_{\alpha}^*E_i^l = E_i^l S_{\alpha}S_{\alpha}^*,$$

(2.4)
$$S_{\alpha}^* E_i^l S_{\alpha} = \sum_{j=1}^{m(l+1)} A_{l,l+1}(i,\alpha,j) E_j^{l+1},$$

for $i = 1, 2, ..., m(l), l \in \mathbb{Z}_+, \alpha \in \Sigma$. If \mathfrak{L} satisfies λ -condition (I) and is λ -irreducible, the C^* -algebra $\mathcal{O}_{\mathfrak{L}}$ is simple and purely infinite ([25], [26]).

Let $\mathcal{A}_{\mathfrak{L},l}$ be the C^* -subalgebra of $\mathcal{O}_{\mathfrak{L}}$ generated by the projections $E_i^l, i = 1, \ldots, m(l)$. We denote by $\mathcal{A}_{\mathfrak{L}}$ the C^* -subalgebra of $\mathcal{O}_{\mathfrak{L}}$ generated by all the projections $E_i^l, i = 1, \ldots, m(l), l \in \mathbb{Z}_+$. As $\mathcal{A}_{\mathfrak{L},l} \subset \mathcal{A}_{\mathfrak{L},l+1}$ and $\bigcup_{l \in \mathbb{Z}_+} \mathcal{A}_{\mathfrak{L},l}$ is dense in \mathcal{A} , the algebra $\mathcal{A}_{\mathfrak{L}}$ is a commutative AF-algebra. For $\alpha \in \Sigma$, put

$$\rho_{\alpha}^{\mathfrak{L}}(X) = S_{\alpha}^* X S_{\alpha} \quad \text{for} \quad X \in \mathcal{A}_{\mathfrak{L}}.$$

Then $\{\rho_{\alpha}^{\mathfrak{L}}\}_{\alpha\in\Sigma}$ yields a family of *-endomorphisms of $\mathcal{A}_{\mathfrak{L}}$ such that $\rho_{\alpha}^{\mathfrak{L}}(1)\neq 0$, $\sum_{\alpha\in\Sigma}\rho_{\alpha}^{\mathfrak{L}}(1)\geq 1$ and for any nonzero $x\in\mathcal{A}_{\mathfrak{L}}$, $\rho_{\alpha}^{\mathfrak{L}}(x)\neq 0$ for some $\alpha\in\Sigma$.

The situations above are generalized to C^* -symbolic dynamical systems as follows. Let \mathcal{A} be a unital C^* -algebra. In what follows, an endomorphism of \mathcal{A} means a *-endomorphism of \mathcal{A} that does not necessarily preserve the unit $1_{\mathcal{A}}$ of \mathcal{A} . The unit $1_{\mathcal{A}}$ is denoted by 1 unless we specify. Denote by $Z_{\mathcal{A}}$ the center of \mathcal{A} . Let $\rho_{\alpha}, \alpha \in \Sigma$ be a finite family of endomorphisms of \mathcal{A} indexed by symbols of a finite set Σ . We assume that $\rho_{\alpha}(Z_{\mathcal{A}}) \subset Z_{\mathcal{A}}, \alpha \in \Sigma$. The family $\rho_{\alpha}, \alpha \in \Sigma$ of endomorphisms of \mathcal{A} is said to be essential if $\rho_{\alpha}(1) \neq 0$ for all $\alpha \in \Sigma$ and $\sum_{\alpha} \rho_{\alpha}(1) \geq 1$. It is said to be faithful if for any nonzero $x \in \mathcal{A}$ there exists a symbol $\alpha \in \Sigma$ such that $\rho_{\alpha}(x) \neq 0$.

Definition 2.1 (cf. [27]). A C^* -symbolic dynamical system is a triplet $(\mathcal{A}, \rho, \Sigma)$ consisting of a unital C^* -algebra \mathcal{A} and an essential and faithful finite family $\{\rho_{\alpha}\}_{{\alpha}\in\Sigma}$ of endomorphisms of \mathcal{A} .

As in the above discussion, we have a C^* -symbolic dynamical system $(\mathcal{A}_{\mathfrak{L}}, \rho^{\mathfrak{L}}, \Sigma)$ from a λ -graph system \mathfrak{L} . In [27], [29], [30], we have defined a C^* -symbolic dynamical system in a less restrictive way than the above definition. Instead of the above condition $\sum_{\alpha \in \Sigma} \rho_{\alpha}(1) \geq 1$ with $\rho_{\alpha}(Z_{\mathcal{A}}) \subset Z_{\mathcal{A}}, \alpha \in \Sigma$, we have used the condition in the papers that the closed ideal generated by $\rho_{\alpha}(1), \alpha \in \Sigma$ coincides with \mathcal{A} . All of the examples appeared in the papers [27], [29], [30] satisfy the condition $\sum_{\alpha \in \Sigma} \rho_{\alpha}(1) \geq 1$ with $\rho_{\alpha}(Z_{\mathcal{A}}) \subset Z_{\mathcal{A}}, \alpha \in \Sigma$, and all discussions in the papers well work under the above new definition.

A C^* -symbolic dynamical system $(\mathcal{A}, \rho, \Sigma)$ yields a subshift Λ_{ρ} over Σ such that a word $(\alpha_1, \ldots, \alpha_k)$ of Σ is admissible for Λ_{ρ} if and only if

$$(\rho_{\alpha_k} \circ \cdots \circ \rho_{\alpha_1})(1) \neq 0$$

([27, Proposition 2.1]). We say that a subshift Λ acts on a C^* -algebra \mathcal{A} if there exists a C^* -symbolic dynamical system $(\mathcal{A}, \rho, \Sigma)$ such that the associated subshift Λ_{ρ} is Λ .

The C^* -algebra \mathcal{O}_{ρ} associated with a C^* -symbolic dynamical system

$$(\mathcal{A}, \rho, \Sigma)$$

has been originally constructed in [27] as a C^* -algebra by using the Pimsner's general construction of C^* -algebras from Hilbert C^* -bimodules [39] (cf. [15] etc.). It is realized as the universal C^* -algebra $C^*(x, S_{\alpha}; x \in \mathcal{A}, \alpha \in \Sigma)$ generated by $x \in \mathcal{A}$ and partial isometries $S_{\alpha}, \alpha \in \Sigma$ subject to the following relations called (ρ) :

$$\sum_{\beta \in \Sigma} S_{\beta} S_{\beta}^* = 1, \qquad x S_{\alpha} S_{\alpha}^* = S_{\alpha} S_{\alpha}^* x, \qquad S_{\alpha}^* x S_{\alpha} = \rho_{\alpha}(x)$$

for all $x \in \mathcal{A}$ and $\alpha \in \Sigma$. The C^* -algebra \mathcal{O}_{ρ} is a generalization of the C^* -algebra $\mathcal{O}_{\mathfrak{L}}$ associated with the λ -graph system \mathfrak{L} .

A C^* -symbolic dynamical system $(\mathcal{A}, \rho, \Sigma)$ is said to be *free* if there exists a unital increasing sequence $\mathcal{A}_0 \subset \mathcal{A}_1 \subset \cdots \subset \mathcal{A}$ of C^* -subalgebras of \mathcal{A} such that:

- (1) $\rho_{\alpha}(\mathcal{A}_l) \subset \mathcal{A}_{l+1}$ for all $l \in \mathbb{Z}_+$ and $\alpha \in \Sigma$.
- (2) $\cup_{l \in \mathbb{Z}_+} \mathcal{A}_l$ is dense in \mathcal{A} .
- (3) For $j \leq l$ there exists a projection $q \in \mathcal{D}_{\rho} \cap \mathcal{A}_{l}'$ such that:
 - (i) $qx \neq 0$ for $0 \neq x \in \mathcal{A}_l$,
 - (ii) $\phi_{\rho}^{n}(q)q = 0$ for all n = 1, 2, ..., j,

where \mathcal{D}_{ρ} is the C^* -subalgebra of \mathcal{O}_{ρ} generated by elements

$$S_{\mu_1} \cdots S_{\mu_k} x S_{\mu_k}^* \cdots S_{\mu_1}^*$$

for $(\mu_1, \ldots, \mu_k) \in B_*(\Lambda_\rho)$ and $x \in \mathcal{A}$, and

$$\phi_{\rho}(X) = \sum_{\alpha \in \Sigma} S_{\alpha} X S_{\alpha}^*, \quad X \in \mathcal{D}_{\rho}.$$

The freeness has been called condition (I) in [30]. If in particular, one may take the above subalgebras $\mathcal{A}_l \subset \mathcal{A}, l = 0, 1, 2, \ldots$ to be of finite dimensional, then $(\mathcal{A}, \rho, \Sigma)$ is said to be AF-free. $(\mathcal{A}, \rho, \Sigma)$ is said to be irreducible if there is no nontrivial ideal of \mathcal{A} invariant under the positive operator λ_ρ on \mathcal{A} defined by $\lambda_\rho(x) = \sum_{\alpha \in \Sigma} \rho_\alpha(x), \ x \in \mathcal{A}$. It has been proved that if $(\mathcal{A}, \rho, \Sigma)$ is free and irreducible, then the C^* -algebra \mathcal{O}_ρ is simple ([30]).

3. C^* -textile dynamical systems and two-dimensional subshifts

Let Σ be a finite set. The two-dimensional full shift over Σ is defined to be

$$\Sigma^{\mathbb{Z}^2} = \{ (x_{i,j})_{(i,j) \in \mathbb{Z}^2} \mid x_{i,j} \in \Sigma \}.$$

An element $x \in \Sigma^{\mathbb{Z}^2}$ is regarded as a function $x : \mathbb{Z}^2 \longrightarrow \Sigma$ which is called a configuration on \mathbb{Z}^2 . For $x \in \Sigma^{\mathbb{Z}^2}$ and $F \subset \mathbb{Z}^2$, let x_F denote the restriction of x to F. For a vector $m = (m_1, m_2) \in \mathbb{Z}^2$, let $\sigma^m : \Sigma^{\mathbb{Z}^2} \longrightarrow \Sigma^{\mathbb{Z}^2}$ be the translation along vector m defined by

$$\sigma^m((x_{i,j})_{(i,j)\in\mathbb{Z}^2}) = (x_{i+m_1,j+m_2})_{(i,j)\in\mathbb{Z}^2}.$$

A subset $X \subset \Sigma^{\mathbb{Z}^2}$ is said to be translation invariant if $\sigma^m(X) = X$ for all $m \in \mathbb{Z}^2$. It is obvious to see that a subset $X \subset \Sigma^{\mathbb{Z}^2}$ is translation invariant if ond only if X is invariant only both horizontally and vertically, that is, $\sigma^{(1,0)}(X) = X$ and $\sigma^{(0,1)}(X) = X$. For $k \in \mathbb{Z}_+$, put

$$[-k,k]^2 = \{(i,j) \in \mathbb{Z}^2 \mid -k \le i, j \le k\} = [-k,k] \times [-k,k].$$

A metric d on $\Sigma^{\mathbb{Z}^2}$ is defined by for $x,y\in\Sigma^{\mathbb{Z}^2}$ with $x\neq y$

$$d(x,y) = \frac{1}{2^k}$$
 if $x_{(0,0)} = y_{(0,0)}$,

where $k = \max\{k \in \mathbb{Z}_+ \mid x_{[-k,k]^2} = y_{[-k,k]^2}\}$. If $x_{(0,0)} \neq y_{(0,0)}$, put k = -1 on the above definition. If x = y, we set d(x,y) = 0. A two-dimensional subshift X is defined to be a closed, translation invariant subset of $\Sigma^{\mathbb{Z}^2}$ (cf. [21, p.467]). A finite subset $F \subset \mathbb{Z}^2$ is said to be a shape. A pattern f on a shape F is a function $f: F \longrightarrow \Sigma$. For a list \mathfrak{F} of patterns, put

$$X_{\mathfrak{F}} = \{(x_{i,j})_{(i,j)\in\mathbb{Z}^2} \mid \sigma^m(x)|_F \notin \mathfrak{F} \text{ for all } m\in\mathbb{Z}^2 \text{ and } F\subset\mathbb{Z}^2\}.$$

It is well-known that a subset $X \subset \Sigma^{\mathbb{Z}^2}$ is a two-dimensional subshift if and only if there exists a list \mathfrak{F} of patterns such that $X = X_{\mathfrak{F}}$.

We will define a certain property of two-dimensional subshift as follows:

Definition 3.1. A two-dimensional subshift X is said to have the *diagonal* property if for $(x_{i,j})_{(i,j)\in\mathbb{Z}^2}, (y_{i,j})_{(i,j)\in\mathbb{Z}^2}\in X$, the conditions

$$x_{i,j} = y_{i,j},$$
 $x_{i+1,j-1} = y_{i+1,j-1}$

imply

$$x_{i,j-1} = y_{i,j-1},$$
 $x_{i+1,j} = y_{i+1,j}.$

A two-dimensional subshift having the diagonal property is called *a textile* dynamical system.

Lemma 3.2. If a two dimensional subshift X has the diagonal property, then for $x \in X$ and $(i,j) \in \mathbb{Z}^2$, the configuration x is determined by the diagonal line $(x_{i+n,j-n})_{n\in\mathbb{Z}}$ through (i,j).

Proof. By the diagonal property, the sequence $(x_{i+n,j-n})_{n\in\mathbb{Z}}$ determines both the sequences $(x_{i+1+n,j-n})_{n\in\mathbb{Z}}$ and $(x_{i-1+n,j-n})_{n\in\mathbb{Z}}$. Repeating this way, the sequence $(x_{i+n,j-n})_{n\in\mathbb{Z}}$ determines the whole configuration x. \square

Let $(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$ be a C^* -textile dynamical system. It consists of two C^* -symbolic dynamical systems $(\mathcal{A}, \rho, \Sigma^{\rho})$ and $(\mathcal{A}, \eta, \Sigma^{\eta})$ with common unital C^* -algebra \mathcal{A} and commutation relations between their endomorphisms $\rho_{\alpha}, \alpha \in \Sigma^{\rho}, \eta_{a}, a \in \Sigma^{\eta}$ through a bijection κ between the following sets $\Sigma^{\rho\eta}$ and $\Sigma^{\eta\rho}$, where

$$\Sigma^{\rho\eta} = \{ (\alpha, b) \in \Sigma^{\rho} \times \Sigma^{\eta} \mid \eta_b \circ \rho_{\alpha} \neq 0 \},$$

$$\Sigma^{\eta\rho} = \{ (a, \beta) \in \Sigma^{\eta} \times \Sigma^{\rho} \mid \rho_{\beta} \circ \eta_a \neq 0 \}.$$

The given bijection $\kappa: \Sigma^{\rho\eta} \longrightarrow \Sigma^{\eta\rho}$ is called a specification. The required commutation relations are

(3.1)
$$\eta_b \circ \rho_\alpha = \rho_\beta \circ \eta_a \quad \text{if } \kappa(\alpha, b) = (a, \beta).$$

A C^* -textile dynamical system will yield a two-dimensional subshift $X_{\rho,\eta}^{\kappa}$. We set

$$\Sigma_{\kappa} = \{ \omega = (\alpha, b, a, \beta) \in \Sigma^{\rho} \times \Sigma^{\eta} \times \Sigma^{\eta} \times \Sigma^{\rho} \mid \kappa(\alpha, b) = (a, \beta) \}.$$

For $\omega = (\alpha, b, a, \beta)$, since $\eta_b \circ \rho_\alpha = \rho_\beta \circ \eta_a$ as endomorphisms on \mathcal{A} , one may identify the quadruplet (α, b, a, β) with the endomorphism $\eta_b \circ \rho_\alpha (= \rho_\beta \circ \eta_a)$ on \mathcal{A} which we will denote by simply ω . Define maps t(=top), b(=bottom): $\Sigma_\kappa \longrightarrow \Sigma^\rho$ and $l(=left), r(=right) : \Sigma_\kappa \longrightarrow \Sigma^\rho$ by setting

$$t(\omega) = \alpha, \quad b(\omega) = \beta, \quad l(\omega) = a, \quad r(\omega) = b.$$

$$\vdots \xrightarrow{\alpha = t(\omega)} \vdots$$

$$a = l(\omega) \downarrow \qquad \qquad \downarrow b = r(\omega)$$

$$\vdots \xrightarrow{\beta = b(\omega)} \vdots$$

A configuration $(\omega_{i,j})_{(i,j)\in\mathbb{Z}^2}\in\Sigma_{\kappa}^{\mathbb{Z}^2}$ is said to be paved if the conditions

$$t(\omega_{i,j}) = b(\omega_{i,j+1}), \qquad r(\omega_{i,j}) = l(\omega_{i+1,j}),$$

$$l(\omega_{i,j}) = r(\omega_{i-1,j}), \qquad b(\omega_{i,j}) = t(\omega_{i,j-1})$$

hold for all $(i,j) \in \mathbb{Z}^2$. We set

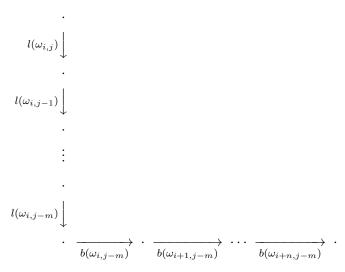
$$X_{\rho,\eta}^{\kappa} = \{ (\omega_{i,j})_{(i,j) \in \mathbb{Z}^2} \in \Sigma_{\kappa}^{\mathbb{Z}^2} \mid (\omega_{i,j})_{(i,j) \in \mathbb{Z}^2} \text{ is paved and}$$

$$\omega_{i+n,j-n} \circ \omega_{i+n-1,j-n+1} \circ \cdots \circ \omega_{i+1,j-1} \circ \omega_{i,j} \neq 0$$
for all $(i,j) \in \mathbb{Z}^2, n \in \mathbb{N}\},$

where $\omega_{i+n,j-n} \circ \omega_{i+n-1,j-n+1} \circ \cdots \circ \omega_{i+1,j-1} \circ \omega_{i,j}$ is the compositions as endomorphisms on \mathcal{A} .

Lemma 3.3. Suppose that a configuration $(\omega_{i,j})_{(i,j)\in\mathbb{Z}^2}\in\Sigma_{\kappa}^{\mathbb{Z}^2}$ is paved. Then $(\omega_{i,j})_{(i,j)\in\mathbb{Z}^2}\in X_{\rho,n}^{\kappa}$ if and only if

$$\rho_{b(\omega_{i+n,j-m})} \circ \cdots \circ \rho_{b(\omega_{i+1,j-m})} \circ \rho_{b(\omega_{i,j-m})} \circ \eta_{l(\omega_{i,j-m})} \circ \cdots \eta_{l(\omega_{i,j-1})} \circ \eta_{l(\omega_{i,j})} \neq 0$$
for all $(i,j) \in \mathbb{Z}^2$, $n,m \in \mathbb{Z}_+$.



Proof. Suppose that $(\omega_{i,j})_{(i,j)\in\mathbb{Z}^2}\in X_{\rho,\eta}^{\kappa}$. For $(i,j)\in\mathbb{Z}^2$, $n,m\in\mathbb{Z}_+$, we may assume that $m\geq n$. Since

$$0 \neq \omega_{i+m,j-m} \circ \cdots \circ \omega_{i+n+1,j-m} \circ \omega_{i+n,j-m} \circ \cdots \circ \omega_{i,j-m}$$

$$\circ \cdots \circ \omega_{i+1,j-1} \circ \omega_{i,j}$$

$$= \omega_{i+m,j-m} \circ \cdots \circ \omega_{i+n+1,j-m} \circ \rho_{b(\omega_{i+n,j-m})} \circ \cdots \circ \rho_{b(\omega_{i+1,j-m})} \circ \rho_{b(\omega_{i,j-m})}$$

$$\circ \eta_{l(\omega_{i,j-m})} \cdots \circ \eta_{l(\omega_{i,j-m})} \circ \cdots \circ \eta_{l(\omega_{i,j-1})} \circ \eta_{l(\omega_{i,j})},$$

one has

$$\rho_{b(\omega_{i+n,j-m})} \circ \cdots \circ \rho_{b(\omega_{i+1,j-m})} \circ \rho_{b(\omega_{i,j-m})} \circ \eta_{l(\omega_{i,j-m})} \circ \cdots \eta_{l(\omega_{i,j-1})} \circ \eta_{l(\omega_{i,j})} \neq 0.$$

The converse implication is clear by the equality:

$$\omega_{i+n,j-n} \circ \cdots \circ \omega_{i,j-n} \circ \cdots \circ \omega_{i,j-1} \circ \omega_{i,j}$$

$$= \rho_{b(\omega_{i+n,j-n})} \circ \cdots \circ \rho_{b(\omega_{i,j-n})} \circ \eta_{l(\omega_{i,j-n})} \cdots \circ \eta_{l(\omega_{i,j-1})} \circ \eta_{l(\omega_{i,j})}. \quad \Box$$

Proposition 3.4. $X_{\rho,\eta}^{\kappa}$ is a two-dimensional subshift having diagonal property, that is, $X_{\rho,\eta}^{\kappa}$ is a textile dynamical system.

Proof. It is easy to see that the set

$$E = \{(\omega_{i,j})_{(i,j) \in \mathbb{Z}^2} \in \Sigma_{\kappa}^{\mathbb{Z}^2} \mid (\omega_{i,j})_{(i,j) \in \mathbb{Z}^2} \text{ is paved} \}$$

is closed, because its complement is open in $\Sigma^{\mathbb{Z}^2}_{\kappa}$. The following set

$$U = \{ (\omega_{i,j})_{(i,j) \in \mathbb{Z}^2} \in \Sigma_{\kappa}^{\mathbb{Z}^2} \mid \omega_{k+n,l-n} \circ \omega_{k+n-1,l-n+1} \\ \circ \cdots \circ \omega_{k+1,l-1} \circ \omega_{k,l} = 0 \text{ for some } (k,l) \in \mathbb{Z}^2, n \in \mathbb{N} \}$$

is open in $\Sigma_{\kappa}^{\mathbb{Z}^2}$. As the equality $X_{\rho,\eta}^{\kappa}=E\cap U^c$ holds, the set $X_{\rho,\eta}^{\kappa}$ is closed. It is also obvious that $X_{\rho,\eta}^{\kappa}$ is translation invariant so that $X_{\rho,\eta}^{\kappa}$ is a two-dimensional subshift. It is easy to see that $X_{\rho,\eta}^{\kappa}$ has diagonal property. \square

We call $X_{\rho,\eta}^{\kappa}$ the textile dynamical system associated with

$$(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa).$$

Let us now define a (one-dimensional) subshift $X_{\delta^{\kappa}}$ over Σ_{κ} , which consists of diagonal sequences of $X_{\rho,\eta}^{\kappa}$ as follows:

$$X_{\delta^{\kappa}} = \{ (\omega_{n,-n})_{n \in \mathbb{Z}} \in \Sigma_{\kappa}^{\mathbb{Z}} \mid (\omega_{i,j})_{(i,j) \in \mathbb{Z}^2} \in X_{\rho,\eta}^{\kappa} \}.$$

By Lemma 3.2, an element $(\omega_{n,-n})_{n\in\mathbb{Z}}$ of $X_{\delta^{\kappa}}$ may be extended to

$$(\omega_{i,j})_{(i,j)\in\mathbb{Z}^2}\in X_{\rho,\eta}^{\kappa}$$

in a unique way. Hence the one-dimensional subshift $X_{\delta^{\kappa}}$ determines the two-dimensional subshift $X_{\rho,\eta}^{\kappa}$. Therefore we have:

Lemma 3.5. The two-dimensional subshift $X_{\rho,\eta}^{\kappa}$ is not empty if and only if the one-dimensional subshift $X_{\delta^{\kappa}}$ is not empty.

For $(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$, we will have a C^* -symbolic dynamical system $(\mathcal{A}, \delta^{\kappa}, \Sigma_{\kappa})$ in Section 4. It presents the subshift $X_{\delta^{\kappa}}$. Since a subshift presented by a C^* -symbolic dynamical system is always not empty, one sees

Proposition 3.6. The two-dimensional subshift $X_{\rho,n}^{\kappa}$ is not empty.

4. C^* -textile dynamical systems and their C^* -algebras

The C^* -algebra $\mathcal{O}_{\rho,\eta}^{\kappa}$ is defined to be the universal C^* -algebra

$$C^*(x, S_\alpha, T_a; x \in \mathcal{A}, \alpha \in \Sigma^\rho, a \in \Sigma^\eta)$$

generated by $x \in \mathcal{A}$ and partial isometries $S_{\alpha}, \alpha \in \Sigma^{\rho}, T_a, a \in \Sigma^{\eta}$ subject to the following relations called $(\rho, \eta; \kappa)$:

(4.1)
$$\sum_{\beta \in \Sigma^{\rho}} S_{\beta} S_{\beta}^* = 1, \qquad x S_{\alpha} S_{\alpha}^* = S_{\alpha} S_{\alpha}^* x, \qquad S_{\alpha}^* x S_{\alpha} = \rho_{\alpha}(x),$$

(4.2)
$$\sum_{b \in \Sigma^{\eta}} T_b T_b^* = 1, \qquad x T_a T_a^* = T_a T_a^* x, \qquad T_a^* x T_a = \eta_a(x),$$

(4.3)
$$S_{\alpha}T_{b} = T_{a}S_{\beta} \quad \text{if} \quad \kappa(\alpha, b) = (a, \beta)$$

for all $x \in \mathcal{A}$ and $\alpha \in \Sigma^{\rho}$, $a \in \Sigma^{\eta}$. We will study the algebra $\mathcal{O}_{\rho,\eta}^{\kappa}$. For $(\alpha, b, a, \beta) \in \Sigma^{\rho} \times \Sigma^{\eta} \times \Sigma^{\eta} \times \Sigma^{\rho}$, we set

$$RB(\alpha, a) = \{(b, \beta) \in \Sigma^{\eta} \times \Sigma^{\rho} \mid \kappa(\alpha, b) = (a, \beta)\},$$

$$R(\alpha, a, \beta) = \{b \in \Sigma^{\eta} \mid \kappa(\alpha, b) = (a, \beta)\},$$

$$R(\alpha, a) = \bigcup_{\beta \in \Sigma^{\rho}} R(\alpha, a, \beta).$$

Lemma 4.1. For $\alpha \in \Sigma^{\rho}$, $a \in \Sigma^{\eta}$, one has $T_a^*S_{\alpha} \neq 0$ if and only if $RB(\alpha, a) \neq \emptyset$.

Proof. Suppose that $T_a^*S_\alpha \neq 0$. As $T_a^*S_\alpha = \sum_{b' \in \Sigma^\eta} T_a^*S_\alpha T_{b'}T_{b'}^*$, there exists $b' \in \Sigma^\eta$ such that $T_a^*S_\alpha T_{b'} \neq 0$. Hence $\eta_{b'} \circ \rho_\alpha \neq 0$ so that $(\alpha, b') \in \Sigma^{\rho\eta}$. Then one may find $(a', \beta') \in \Sigma^\rho$ such that $\kappa(\alpha, b') = (a', \beta')$ and hence $S_\alpha T_{b'} = T_{a'}S_{\beta'}$. Since $0 \neq T_a^*S_\alpha T_{b'} = T_a^*T_{a'}S_{\beta'}$, one sees that a = a' so that $(b', \beta') \in RB(\alpha, a)$.

Suppose next that $\kappa(\alpha, b) = (a, \beta)$ for some $(b, \beta) \in \Sigma^{\eta} \times \Sigma^{\rho}$. Since $\eta_b \circ \rho_{\alpha} = \rho_{\beta} \circ \eta_a \neq 0$, one has $0 \neq S_{\alpha} T_b = T_a S_{\beta}$. It follows that

$$S_{\beta}^* T_a^* S_{\alpha} T_b = (T_a S_{\beta})^* T_a S_{\beta}$$

so that $T_a^* S_\alpha \neq 0$.

Lemma 4.2. For $\alpha \in \Sigma^{\rho}$, $a \in \Sigma^{\eta}$, we have

(4.4)
$$T_a^* S_\alpha = \sum_{(b,\beta) \in RB(\alpha,a)} S_\beta \eta_b(\rho_\alpha(1)) T_b^*$$

and hence

(4.5)
$$S_{\alpha}^* T_a = \sum_{(b,\beta) \in RB(\alpha,a)} T_b \rho_{\beta}(\eta_a(1)) S_{\beta}^*.$$

Proof. We may assume that $T_a^*S_\alpha \neq 0$. One has

$$T_a^* S_\alpha = \sum_{b' \in \Sigma^{\eta}} T_a^* S_\alpha T_{b'} T_{b'}^*.$$

1191

For $b' \in \Sigma^{\eta}$ with $(\alpha, b') \in \Sigma^{\rho\eta}$, take $(a', \beta') \in \Sigma^{\eta\rho}$ such that $\kappa(\alpha, b') = (a', \beta')$ so that

$$T_a^* S_{\alpha} T_{b'} T_{b'}^* = T_a^* T_{a'} S_{\beta'} T_{b'}^*.$$

Hence $T_a^* S_{\alpha} T_{b'} T_{b'}^* \neq 0$ implies a = a'. Since $T_a^* T_a = \eta_a(1)$ which commutes with $S_{\beta'} S_{\beta'}^*$, we have

$$T_a^*T_aS_{\beta'}T_{b'}^* = S_{\beta'}S_{\beta'}^*T_a^*T_aS_{\beta'}T_{b'}^* = S_{\beta'}\rho_{\beta'}(\eta_a(1))T_{b'}^* = S_{\beta'}\eta_{b'}(\rho_\alpha(1))T_{b'}^*.$$

It follows that

$$T_a^* S_{\alpha} = \sum_{(b', \beta') \in RB(\alpha, a)} T_a^* T_a S_{\beta'} T_{b'}^* = \sum_{(b', \beta') \in RB(\alpha, a)} S_{\beta'} \eta_{b'} (\rho_{\alpha}(1)) T_{b'}^*. \quad \Box$$

Hence we have:

Lemma 4.3. For $\alpha \in \Sigma^{\rho}$, $a \in \Sigma^{\eta}$, we have

$$T_a T_a^* S_{\alpha} S_{\alpha}^* = \sum_{b \in R(\alpha, a)} S_{\alpha} T_b T_b^* S_{\alpha}^*.$$

Hence $T_a T_a^*$ commutes with $S_{\alpha} S_{\alpha}^*$.

Proof. By (4.4), we have

$$T_a T_a^* S_{\alpha} S_{\alpha}^* = \sum_{(b,\beta) \in RB(\alpha,a)} T_a S_{\beta} \eta_b(\rho_{\alpha}(1)) T_b^* S_{\alpha}^*$$

$$= \sum_{b \in R(\alpha,a)} S_{\alpha} T_b \eta_b(\rho_{\alpha}(1)) T_b^* S_{\alpha}^*$$

$$= \sum_{b \in R(\alpha,a)} S_{\alpha} \rho_{\alpha}(1) T_b T_b^* S_{\alpha}^*$$

$$= \sum_{b \in R(\alpha,a)} S_{\alpha} T_b T_b^* S_{\alpha}^*.$$

Recall that $Z_{\mathcal{A}}$ denotes the center of \mathcal{A} which consists of elements of \mathcal{A} commuting with all elements of \mathcal{A} .

Lemma 4.4. For $\alpha \in \Sigma^{\rho}$, $a \in \Sigma^{\eta}$ and $x, y \in Z_{\mathcal{A}}$, $T_a y T_a^*$ commutes with $S_{\alpha} x S_{\alpha}^*$.

Proof. By (4.4), we have

$$\begin{split} T_{a}yT_{a}^{*}S_{\alpha}xS_{\alpha}^{*} &= T_{a}y \sum_{(b,\beta)\in RB(\alpha,a)} S_{\beta}\eta_{b}(\rho_{\alpha}(1))T_{b}^{*}xS_{\alpha}^{*} \\ &= \sum_{(b,\beta)\in RB(\alpha,a)} T_{a}S_{\beta}S_{\beta}^{*}yS_{\beta}\eta_{b}(\rho_{\alpha}(1))T_{b}^{*}xT_{b}T_{b}^{*}S_{\alpha}^{*} \\ &= \sum_{(b,\beta)\in RB(\alpha,a)} S_{\alpha}T_{b}\rho_{\beta}(y)\eta_{b}(\rho_{\alpha}(1))\eta_{b}(x)S_{\beta}^{*}T_{a}^{*} \\ &= \sum_{(b,\beta)\in RB(\alpha,a)} S_{\alpha}T_{b}\eta_{b}(x)\eta_{b}(\rho_{\alpha}(1))\rho_{\beta}(y)S_{\beta}^{*}T_{a}^{*} \\ &= \sum_{(b,\beta)\in RB(\alpha,a)} S_{\alpha}x\rho_{\alpha}(1)T_{b}S_{\beta}^{*}yT_{a}^{*} \\ &= \sum_{(b,\beta)\in RB(\alpha,a)} S_{\alpha}xS_{\alpha}^{*}S_{\alpha}T_{b}S_{\beta}^{*}T_{a}^{*}T_{a}yT_{a}^{*} \\ &= \sum_{b\in R(\alpha,a)} S_{\alpha}x\cdot S_{\alpha}^{*}S_{\alpha}T_{b}T_{b}^{*}S_{\alpha}^{*}T_{a}\cdot yT_{a}^{*}. \end{split}$$

Now if $(\alpha, b') \notin \Sigma^{\rho, \eta}$, then $S_{\alpha}T_{b'} = 0$. Hence

$$\sum_{b \in R(\alpha,a)} S_\alpha^* S_\alpha T_b T_b^* S_\alpha^* T_a = \sum_{b \in \Sigma^\eta} S_\alpha^* S_\alpha T_b T_b^* S_\alpha^* T_a = S_\alpha^* T_a.$$

Therefore we have

$$T_a y T_a^* S_\alpha x S_\alpha^* = S_\alpha x S_\alpha^* T_a y T_a^*.$$

For words
$$\mu = (\mu_1, \dots, \mu_j) \in B_j(\Lambda_\rho), \zeta = (\zeta_1, \dots, \zeta_k) \in B_k(\Lambda_\eta)$$
, we set
$$S_\mu = S_{\mu_1} \cdots S_{\mu_j}, \qquad T_\zeta = T_{\zeta_1} \cdots T_{\zeta_k}.$$

For a subset F of $\mathcal{O}_{\rho,\eta}^{\kappa}$, denote by $C^*(F)$ the C^* -subalgebra of $\mathcal{O}_{\rho,\eta}^{\kappa}$ generated by the elements of F. We define C^* -subalgebras $\mathcal{D}_{\rho,\eta}, \mathcal{D}_{j,k}$ of $\mathcal{O}_{\rho,\eta}^{\kappa}$ by

$$\mathcal{D}_{\rho,\eta} = C^*(S_{\mu}T_{\zeta}xT_{\zeta}^*S_{\mu}^* : \mu \in B_*(\Lambda_{\rho}), \zeta \in B_*(\Lambda_{\eta}), x \in \mathcal{A}),$$

$$\mathcal{D}_{j,k} = C^*(S_{\mu}T_{\zeta}xT_{\zeta}^*S_{\mu}^* : \mu \in B_j(\Lambda_{\rho}), \zeta \in B_k(\Lambda_{\eta}), x \in \mathcal{A}) \quad \text{for } j, k \in \mathbb{Z}_+.$$

By the commutation relation (4.3), one sees that

$$\mathcal{D}_{j,k} = C^*(T_{\xi}S_{\nu}xS_{\nu}^*T_{\xi}^* : \nu \in B_j(\Lambda_{\rho}), \xi \in B_k(\Lambda_{\eta}), x \in \mathcal{A}).$$

The identities

$$S_{\mu}T_{\zeta}xT_{\zeta}^{*}S_{\mu}^{*} = \sum_{a \in \Sigma^{\eta}} S_{\mu}T_{\zeta a}\eta_{a}(x)T_{\zeta a}^{*}S_{\mu}^{*},$$
$$T_{\xi}S_{\nu}xS_{\nu}^{*}T_{\xi}^{*} = \sum_{\alpha \in \Sigma^{\rho}} T_{\xi}S_{\nu\alpha}\rho_{\alpha}(x)S_{\nu\alpha}^{*}T_{\xi}^{*}$$

for $x \in \mathcal{A}$ and $\mu, \nu \in B_j(\Lambda_\rho), \zeta, \xi \in B_k(\Lambda_\eta)$ yield the embeddings

$$\mathcal{D}_{j,k} \hookrightarrow \mathcal{D}_{j,k+1}, \qquad \mathcal{D}_{j,k} \hookrightarrow \mathcal{D}_{j+1,k}$$

respectively such that $\bigcup_{j,k\in\mathbb{Z}_+}\mathcal{D}_{j,k}$ is dense in $\mathcal{D}_{\rho,\eta}$.

Proposition 4.5. If A is commutative, so is $\mathcal{D}_{\rho,\eta}$.

Proof. The preceding lemma tells us that $\mathcal{D}_{1,1}$ is commutative. Suppose that the algebra $\mathcal{D}_{j,k}$ is commutative for fixed $j,k \in \mathbb{N}$. We will show that the both algebras $\mathcal{D}_{j+1,k}$ and $\mathcal{D}_{j,k+1}$ are commutative. The algebra $\mathcal{D}_{j+1,k}$ consists of the linear span of elements of the form:

$$S_{\alpha}xS_{\alpha}^*$$
 for $x \in \mathcal{D}_{j,k}, \alpha \in \Sigma^{\rho}$.

For $x, y \in \mathcal{D}_{j,k}$, $\alpha, \beta \in \Sigma^{\rho}$, we will show that $S_{\alpha}xS_{\alpha}^{*}$ commutes with both $S_{\beta}yS_{\beta}^{*}$ and y. If $\alpha = \beta$, it is easy to see that $S_{\alpha}xS_{\alpha}^{*}$ commutes with $S_{\alpha}yS_{\alpha}^{*}$, because $\rho_{\alpha}(1) \in \mathcal{A} \subset \mathcal{D}_{j,k}$. If $\alpha \neq \beta$, both $S_{\alpha}xS_{\alpha}^{*}S_{\beta}yS_{\beta}^{*}$ and $S_{\beta}yS_{\beta}^{*}S_{\alpha}xS_{\alpha}^{*}$ are zeros. Since $S_{\alpha}^{*}yS_{\alpha} \in \mathcal{D}_{j-1,k} \subset \mathcal{D}_{j,k}$, one sees $S_{\alpha}^{*}yS_{\alpha}$ commutes with x. One also sees that $S_{\alpha}S_{\alpha}^{*} \in \mathcal{D}_{j,k}$ commutes with y. It follows that

$$S_{\alpha}xS_{\alpha}^{*}y = S_{\alpha}xS_{\alpha}^{*}yS_{\alpha}S_{\alpha}^{*} = S_{\alpha}S_{\alpha}^{*}yS_{\alpha}xS_{\alpha}^{*} = yS_{\alpha}xS_{\alpha}^{*}.$$

Hence the algebra $\mathcal{D}_{j+1,k}$ is commutative, and similarly so is $\mathcal{D}_{j,k+1}$. By induction, the algebras $\mathcal{D}_{j,k}$ are all commutative for all $j,k \in \mathbb{N}$. Since $\bigcup_{j,k\in\mathbb{N}}\mathcal{D}_{j,k}$ is dense in $\mathcal{D}_{\rho,\eta}$, $\mathcal{D}_{\rho,\eta}$ is commutative.

Proposition 4.6. Let $\mathcal{O}_{\rho,\eta}^{alg}$ be the dense *-subalgebra of $\mathcal{O}_{\rho,\eta}^{\kappa}$ algebraically generated by elements $x \in \mathcal{A}$, S_{α} , $\alpha \in \Sigma^{\rho}$ and T_{a} , $a \in \Sigma^{\eta}$. Then each element of $\mathcal{O}_{\rho,\eta}^{alg}$ is a finite linear combination of elements of the form:

$$(4.6) S_{\mu}T_{\zeta}xT_{\xi}^{*}S_{\nu}^{*} for x \in \mathcal{A}, \mu, \nu \in B_{*}(\Lambda_{\rho}), \zeta, \xi \in B_{*}(\Lambda_{\eta}).$$

Proof. For $\alpha, \beta \in \Sigma^{\rho}$, $a, b \in \Sigma^{\eta}$ and $x \in \mathcal{A}$, we have

$$\begin{split} S_{\alpha}^*S_{\beta} &= \begin{cases} \rho_{\alpha}(1) \in \mathcal{A} & \text{if } \alpha = \beta, \\ 0 & \text{otherwise,} \end{cases} & T_a^*T_b = \begin{cases} \eta_a(1) \in \mathcal{A} & \text{if } a = b, \\ 0 & \text{otherwise,} \end{cases} \\ S_{\alpha}^*T_a &= \sum_{(b,\beta) \in RB(\alpha,a)} T_b \rho_{\beta}(\eta_a(1)) S_{\beta}^*, & T_a^*S_{\alpha} = \sum_{(b,\beta) \in RB(\alpha,a)} S_{\beta}\eta_b(\rho_{\alpha}(1)) T_b^*, \\ S_{\alpha}^*x &= \rho_{\alpha}(x) S_{\alpha}, & T_a^*x &= \eta_a(x) T_a^*. \end{split}$$

And also

$$S_{\beta}^*T_a^* = \begin{cases} T_b^*S_{\alpha}^* & \text{if } (a,\beta) \in \Sigma^{\eta\rho} \text{ and } (a,\beta) = \kappa(\alpha,b), \\ 0 & \text{if } (a,\beta) \not\in \Sigma^{\eta\rho}. \end{cases}$$

Therefore we conclude that any element of $\mathcal{O}_{\rho,\eta}^{alg}$ is a finite linear combination of elements of the form of (4.6).

Similarly we have:

Proposition 4.7. Each element of $\mathcal{O}_{\rho,\eta}^{alg}$ is a finite linear combination of elements of the form:

$$(4.7) T_{\zeta}S_{\mu}xS_{\nu}^{*}T_{\xi}^{*} for x \in \mathcal{A}, \mu, \nu \in B_{*}(\Lambda_{\rho}), \zeta, \xi \in B_{*}(\Lambda_{\eta}).$$

In the rest of this section, we will have a C^* -symbolic dynamical system $(\mathcal{A}, \delta^{\kappa}, \Sigma_{\kappa})$ from $(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$, which presents the one-dimensional subshift $X_{\delta^{\kappa}}$ described in the previous section. For $(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$, define an endomorphism δ^{κ}_{ω} on \mathcal{A} for $\omega \in \Sigma_{\kappa}$ by setting

$$\delta_{\omega}^{\kappa}(x) = \eta_b(\rho_{\alpha}(x))(=\rho_{\beta}(\eta_a(x))), \qquad x \in \mathcal{A}, \quad \omega = (\alpha, b, a, \beta) \in \Sigma_{\kappa}.$$

Lemma 4.8. $(A, \delta^{\kappa}, \Sigma_{\kappa})$ is a C^* -symbolic dynamical system that presents $X_{\delta^{\kappa}}$.

Proof. We will show that δ^{κ} is essential and faithful. Now both C^* -symbolic dynamical systems $(\mathcal{A}, \eta, \Sigma^{\eta})$ and $(\mathcal{A}, \rho, \Sigma^{\eta})$ are essential. Since $\rho_{\alpha}(Z_{\mathcal{A}}) \subset Z_{\mathcal{A}}$ and $\eta_{\alpha}(Z_{\mathcal{A}}) \subset Z_{\mathcal{A}}$, it is clear that $\delta^{\kappa}_{\omega}(Z_{\mathcal{A}}) \subset Z_{\mathcal{A}}$. By the inequalities

$$\sum_{\omega \in \Sigma_{\kappa}} \delta_{\omega}^{\kappa}(1) = \sum_{b \in \Sigma^{\eta}} \sum_{\alpha \in \Sigma^{\rho}} \eta_{b}(\rho_{\alpha}(1)) \ge \sum_{b \in \Sigma^{\eta}} \eta_{b}(1) \ge 1$$

 $\{\delta^{\kappa}\}_{\omega\in\Sigma_{\kappa}}$ is essential. For any nonzero $x\in\mathcal{A}$, there exists $\alpha\in\Sigma^{\rho}$ such that $\rho_{\alpha}(x)\neq0$ and there exists $b\in\Sigma^{\eta}$ such that $\eta_{b}(\rho_{\alpha}(x))\neq0$. Hence δ^{κ} is faithful so that $(\mathcal{A},\delta^{\kappa},\Sigma_{\kappa})$ is a C^{*} -symbolic dynamical system. It is obvious that the subshift presented by $(\mathcal{A},\delta^{\kappa},\Sigma_{\kappa})$ is $X_{\delta^{\kappa}}$.

Put

$$\widehat{X}_{\rho,\eta}^{\kappa} = \{ (\omega_{i,-j})_{(i,j) \in \mathbb{N}^2} \in \Sigma_{\kappa}^{\mathbb{N}^2} \mid (\omega_{i,j})_{(i,j) \in \mathbb{Z}^2} \in X_{\rho,\eta}^{\kappa} \}$$

and

$$\widehat{X}_{\delta^{\kappa}} = \{ (\omega_{n,-n})_{n \in \mathbb{N}} \in \Sigma_{\kappa}^{\mathbb{N}} \mid (\omega_{i,j})_{(i,j) \in \mathbb{N}^2} \in \widehat{X}_{\rho,\eta}^{\kappa} \}.$$

The latter set $\widehat{X}_{\delta^{\kappa}}$ is the right one-sided subshift for $X_{\delta^{\kappa}}$.

Lemma 4.9. A configuration $(\omega_{i,-j})_{(i,j)\in\mathbb{N}^2} \in \widehat{X}_{\rho,\eta}^{\kappa}$ extends to a whole configuration $(\omega_{i,j})_{(i,j)\in\mathbb{Z}^2} \in X_{\rho,\eta}^{\kappa}$.

Proof. For $(\omega_{i,-j})_{(i,j)\in\mathbb{N}^2}\in\widehat{X}_{\rho,\eta}^{\kappa}$, put $x_i=\omega_{i,-i}, i\in\mathbb{N}$ so that $x=(x_i)_{i\in\mathbb{N}}\in\widehat{X}_{\delta^{\kappa}}$. Since $\widehat{X}_{\delta^{\kappa}}$ is a one-sided subshift, there exists an extension $\widetilde{x}\in X_{\delta^{\kappa}}$ to two-sided sequence such that $\widetilde{x}_i=x_i$ for $i\in\mathbb{N}$. By the diagonal property, \widetilde{x} determines a whole configuration $\widetilde{\omega}$ to \mathbb{Z}^2 such that $\widetilde{\omega}\in X_{\delta,\eta}^{\kappa}$ and $(\widetilde{\omega}_{i,-i})_{i\in\mathbb{N}}=\widetilde{x}$. Hence $\widetilde{\omega}_{i,-j}=\omega_{i,-j}$ for all $i,j\in\mathbb{N}$.

Let $\mathfrak{D}_{\rho,\eta}$ be the C^* -subalgebra of $\mathcal{D}_{\rho,\eta}$ defined by

$$\mathfrak{D}_{\rho,\eta} = C^*(S_{\mu}T_{\zeta}T_{\zeta}^*S_{\mu}^* : \mu \in B_*(\Lambda_{\rho}), \zeta \in B_*(\Lambda_{\eta}))$$

= $C^*(T_{\xi}S_{\nu}S_{\nu}^*T_{\xi}^* : \nu \in B_*(\Lambda_{\rho}), \xi \in B_*(\Lambda_{\eta}))$

which is a commutative C^* -subalgebra of $\mathcal{D}_{\rho,\eta}$. Put for $\mu = (\mu_1, \dots, \mu_n) \in B_*(\Lambda_\rho)$, $\zeta = (\zeta_1, \dots, \zeta_m) \in B_*(\Lambda_\eta)$ the cylinder set

$$U_{\mu,\zeta} = \{ (\omega_{i,-j})_{(i,j) \in \mathbb{N}^2} \in \widehat{X}_{\rho,\eta}^{\kappa} \mid t(\omega_{i,-1}) = \mu_i, i = 1, \dots, n, r(\omega_{n,-j}) = \zeta_j, j = 1, \dots, m \}.$$

The following lemma is direct.

Lemma 4.10. $\mathfrak{D}_{\rho,\eta}$ is isomorphic to $C(\widehat{X}_{\rho,\eta}^{\kappa})$ through the correspondence such that $S_{\mu}T_{\zeta}T_{\zeta}^{*}S_{\mu}^{*}$ goes to $\chi_{U_{\mu,\zeta}}$, where $\chi_{U_{\mu,\zeta}}$ is the characteristic function for the cylinder set $U_{\mu,\zeta}$ on $\widehat{X}_{\rho,n}^{\kappa}$.

5. Condition (I) for C^* -textile dynamical systems

The notion of condition (I) for finite square matrices with entries in $\{0,1\}$ has been introduced in [8]. The condition has been generalized by many authors to corresponding conditions for generalizations of the Cuntz–Krieger algebras (cf. [12], [15], [20], [41], etc.). The condition (I) for C^* -symbolic dynamical systems (including λ -graph systems) has been also defined in [29] (cf. [25], [26]). All of these conditions give rise to the uniqueness of the associated C^* -algebras subject to some operator relations among certain generating elements.

In this section, we will introduce the notion of condition (I) for C^* -textile dynamical systems to prove the uniqueness of the C^* -algebras $\mathcal{O}_{\rho,\eta}^{\kappa}$ under the relation $(\rho, \eta; \kappa)$.

Let $(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$ be a C^* -symbolic dynamical system over Σ and $X_{\rho,\eta}^{\kappa}$ the associated two-dimensional subshift. Denote by $\Lambda_{\rho}, \Lambda_{\eta}$ the associated subshifts to the C^* -symbolic dynamical systems $(\mathcal{A}, \rho, \Sigma^{\rho}), (\mathcal{A}, \eta, \Sigma^{\eta})$ respectively. For $\mu = (\mu_1, \dots, \mu_j) \in B_j(\Lambda_{\rho}), \zeta = (\zeta_1, \dots, \zeta_k) \in B_k(\Lambda_{\eta}),$ we put $\rho_{\mu} = \rho_{\mu_j} \circ \dots \circ \rho_{\mu_1}, \eta_{\zeta} = \eta_{\zeta_k} \circ \dots \circ \eta_{\zeta_1}$ respectively. Recall that $|\mu|, |\zeta|$ denotes the lengths j, k respectively. In the algebra $\mathcal{O}_{\rho,\eta}^{\kappa}$, we set the subalgebras

$$\mathcal{F}_{\rho,\eta} = C^*(S_{\mu}T_{\zeta}xT_{\xi}^*S_{\nu}^* : \mu, \nu \in B_*(\Lambda_{\rho}), \zeta, \xi \in B_*(\Lambda_{\eta}), |\mu| = |\nu|, |\zeta| = |\xi|, x \in \mathcal{A})$$
 and for $j, k \in \mathbb{Z}_+$,

$$\mathcal{F}_{j,k} = C^*(S_{\mu}T_{\zeta}xT_{\xi}^*S_{\nu}^* : \mu, \nu \in B_j(\Lambda_{\rho}), \zeta, \xi \in B_k(\Lambda_{\eta}), x \in \mathcal{A}).$$

We notice that

$$\mathcal{F}_{j,k} = C^*(T_{\zeta}S_{\mu}xS_{\nu}^*T_{\xi}^* : \mu, \nu \in B_j(\Lambda_{\rho}), \zeta, \xi \in B_k(\Lambda_{\eta}), x \in \mathcal{A}).$$

The identities

(5.1)
$$S_{\mu}T_{\zeta}xT_{\xi}^{*}S_{\nu}^{*} = \sum_{a \in \Sigma^{\eta}} S_{\mu}T_{\zeta a}\eta_{a}(x)T_{\xi a}^{*}S_{\nu}^{*},$$

(5.2)
$$T_{\zeta} S_{\mu} x S_{\nu}^* T_{\xi}^* = \sum_{\alpha \in \Sigma^{\rho}} T_{\zeta} S_{\mu\alpha} \rho_{\alpha}(x) S_{\nu\alpha}^* T_{\xi}^*$$

for $x \in \mathcal{A}$ and $\mu, \nu \in B_j(\Lambda_\rho), \zeta, \xi \in B_k(\Lambda_\eta)$ yield the embeddings

(5.3)
$$\iota_{*,+1}: \mathcal{F}_{j,k} \hookrightarrow \mathcal{F}_{j,k+1}, \qquad \iota_{+1,*}: \mathcal{F}_{j,k} \hookrightarrow \mathcal{F}_{j+1,k}$$

respectively, such that $\cup_{j,k\in\mathbb{Z}_+}\mathcal{F}_{j,k}$ is dense in $\mathcal{F}_{\rho,\eta}$.

By the universality of $\mathcal{O}_{\rho,\eta}^{\kappa}$ subject to the relations $(\rho,\eta;\kappa)$, we may define an action $\theta: \mathbb{T}^2 \longrightarrow \operatorname{Aut}(\mathcal{O}_{\rho,\eta}^{\kappa})$ of the two-dimensional torus group

$$\mathbb{T}^2 = \{ (z, w) \in \mathbb{C}^2 \mid |z| = |w| = 1 \}$$

to $\mathcal{O}_{\rho,n}^{\kappa}$ by setting

$$\theta_{z,w}(S_{\alpha}) = zS_{\alpha}, \quad \theta_{z,w}(T_a) = wT_a, \quad \theta_{z,w}(x) = x$$

for $\alpha \in \Sigma^{\rho}$, $a \in \Sigma^{\eta}$, $x \in \mathcal{A}$ and $z, w \in \mathbb{T}$. We call the action $\theta : \mathbb{T}^2 \longrightarrow$ $\operatorname{Aut}(\mathcal{O}_{\rho,\eta}^{\kappa})$ the gauge action of \mathbb{T}^2 on $\mathcal{O}_{\rho,\eta}^{\kappa}$. The fixed point algebra of $\mathcal{O}_{\rho,\eta}^{\kappa}$ under θ is denoted by $(\mathcal{O}_{\rho,\eta}^{\kappa})^{\theta}$. Let $\mathcal{E}_{\rho,\eta}: \mathcal{O}_{\rho,\eta}^{\kappa} \longrightarrow (\mathcal{O}_{\rho,\eta}^{\kappa})^{\theta}$ be the conditional expectation defined by

$$\mathcal{E}_{\rho,\eta}(X) = \int_{(z,w)\in\mathbb{T}^2} \theta_{z,w}(X) \, dz dw, \qquad X \in \mathcal{O}_{\rho,\eta}^{\kappa}$$

where dzdw means the normalized Haar measure on \mathbb{T}^2 . The following lemma is routine.

Lemma 5.1. $(\mathcal{O}_{\rho,\eta}^{\kappa})^{\theta} = \mathcal{F}_{\rho,\eta}$

Define homomorphisms $\phi_{\rho}, \phi_{\eta}: \mathcal{D}_{\rho,\eta} \longrightarrow \mathcal{D}_{\rho,\eta}$ by setting

$$\phi_{\rho}(X) = \sum_{\alpha \in \Sigma^{\rho}} S_{\alpha} X S_{\alpha}^{*}, \qquad \phi_{\eta}(X) = \sum_{a \in \Sigma^{\eta}} T_{a} X T_{a}^{*}, \qquad X \in \mathcal{D}_{\rho,\eta}.$$

It is easy to see that by (4.3)

$$\phi_{\rho} \circ \phi_{\eta} = \phi_{\eta} \circ \phi_{\rho} \quad \text{ on } \mathcal{D}_{\rho,\eta}.$$

Definition 5.2. A C^* -textile dynamical system $(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$ is said to satisfy *condition* (I) if there exists a unital increasing sequence

$$A_0 \subset A_1 \subset \cdots \subset A$$

of C^* -subalgebras of \mathcal{A} such that:

- (1) $\rho_{\alpha}(\mathcal{A}_l) \subset \mathcal{A}_{l+1}, \, \eta_a(\mathcal{A}_l) \subset \mathcal{A}_{l+1} \text{ for all } l \in \mathbb{Z}_+, \alpha \in \Sigma^{\rho}, a \in \Sigma^{\eta}.$
- (2) $\cup_{l \in \mathbb{Z}_+} \mathcal{A}_l$ is dense in \mathcal{A} .
- (3) For $\epsilon > 0$, $j, k, l \in \mathbb{N}$ with $j + k \leq l$ and

$$X_0 \in \mathcal{F}_{i,k}^l = C^*(S_\mu T_\zeta x T_\xi^* S_\nu^* : \mu, \nu \in B_j(\Lambda_\rho), \zeta, \xi \in B_k(\Lambda_\eta), x \in \mathcal{A}_l),$$

there exists an element

$$g \in \mathcal{D}_{\rho,\eta} \cap \mathcal{A}_l' (= \{ y \in \mathcal{D}_{\rho,\eta} \mid ya = ay \text{ for } a \in \mathcal{A}_l \})$$

with $0 \le g \le 1$ such that:

- (i) $||X_0\phi_{\rho}^j \circ \phi_{\eta}^k(g)|| \ge ||X_0|| \epsilon$, (ii) $\phi_{\rho}^n(g)\phi_{\eta}^m(g) = \phi_{\rho}^n(\phi_{\eta}^m(g))g = \phi_{\rho}^n(g)g = \phi_{\eta}^m(g)g = 0$ for all $n = 1, 2, \dots, j, m = 1, 2, \dots, k$.

If in particular, one may take the above subalgebras $A_l \subset A$, l = 0, 1, 2, ...to be of finite dimensional, then $(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$ is said to satisfy AFcondition (I). In this case, $A = \bigcup_{l=0}^{\infty} A_l$ is an AF-algebra.

As the element g above belongs to the diagonal subalgebra $\mathcal{D}_{\rho,\eta}$ of $\mathcal{F}_{\rho,\eta}$, the condition (I) of $(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$ is intrinsically determined by itself by virtue of Lemma 5.5 below.

We will also introduce the following condition called *free*, which will be stronger than condition (I) but easier to confirm than condition (I).

Definition 5.3. A C^* -textile dynamical system $(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$ is said to be free if there exists a unital increasing sequence $A_0 \subset A_1 \subset \cdots \subset A$ of C^* -subalgebras of \mathcal{A} such that:

- (1) $\rho_{\alpha}(\mathcal{A}_l) \subset \mathcal{A}_{l+1}, \, \eta_a(\mathcal{A}_l) \subset \mathcal{A}_{l+1} \text{ for all } l \in \mathbb{Z}_+, \alpha \in \Sigma^{\rho}, a \in \Sigma^{\eta}.$
- (2) $\cup_{l \in \mathbb{Z}_+} \mathcal{A}_l$ is dense in \mathcal{A} .
- (3) For $j, k, l \in \mathbb{N}$ with $j + k \leq l$ there exists a projection $q \in \mathcal{D}_{\rho,\eta} \cap \mathcal{A}_l$ such that:

 - (i) $qa \neq 0$ for $0 \neq a \in \mathcal{A}_l$. (ii) $\phi_{\rho}^n(q)\phi_{\eta}^m(q) = \phi_{\rho}^n(\phi_{\eta}^m(q))q = \phi_{\rho}^n(q)q = \phi_{\eta}^m(q)q = 0$ for all $n = 1, 2, \dots, j, \ m = 1, 2, \dots, k$.

If in particular, one may take the above subalgebras $A_l \subset A$, l = 0, 1, 2, ...to be of finite dimensional, then $(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$ is said to be AF-free.

Proposition 5.4. If a C^* -textile dynamical system $(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$ is free (resp. AF-free), then it satisfies condition (I) (resp. AF-condition (I)).

Proof. Assume that $(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$ is free. Take an increasing sequence $\mathcal{A}_l, l \in \mathbb{N}$ of C^* -subalgebras of \mathcal{A} satisfying the above conditions (1), (2), (3) of freeness. For $j, k, l \in \mathbb{N}$ with $j + k \leq l$ there exists a projection $q \in \mathcal{D}_{\rho,\eta} \cap \mathcal{A}_l$ satisfying the above two conditions (3i) and (3ii). Put

$$Q_{j,k}^l = \phi_\rho^j(\phi_\eta^k(q)).$$

For $x \in \mathcal{A}_l, \mu, \nu \in B_j(\Lambda_\rho), \xi, \zeta \in B_k(\Lambda_n)$, one has the equality

$$Q_{j,k}^{l} S_{\mu} T_{\zeta} x T_{\xi}^{*} S_{\nu}^{*} = S_{\mu} T_{\zeta} x T_{\xi}^{*} S_{\nu}^{*}$$

so that $Q_{j,k}^l$ commutes with all of elements of $\mathcal{F}_{j,k}^l$. By using the condition (3i) for q one directly sees that $S_{\mu}T_{\zeta}xT_{\xi}^{*}S_{\nu}^{*}\neq0$ if and only if

$$Q_{j,k}^l S_\mu T_\zeta x T_\xi^* S_\nu^* \neq 0.$$

Hence the map

$$X \in \mathcal{F}_{j,k}^l \longrightarrow XQ_{j,k}^l \in \mathcal{F}_{j,k}^l Q_{j,k}^l$$

defines a homomorphism, that is proved to be injective by a similar proof to the proof of [30, Proposition 3.7]. Hence we have $\|XQ_{j,k}^l\| = \|X\| \ge \|X\| - \epsilon$ for all $X \in \mathcal{F}_{i,k}^l$.

Let \mathcal{B} be a unital C^* -algebra. Suppose that there exist an injective *homomorphism $\pi: \mathcal{A} \longrightarrow \mathcal{B}$ preserving their units and two families

$$s_{\alpha} \in \mathcal{B}, \alpha \in \Sigma^{\rho}$$
 and $t_{a} \in \mathcal{B}, a \in \Sigma^{\eta}$

of partial isometries satisfying

$$\sum_{\beta \in \Sigma^{\rho}} s_{\beta} s_{\beta}^{*} = 1, \qquad \pi(x) s_{\alpha} s_{\alpha}^{*} = s_{\alpha} s_{\alpha}^{*} \pi(x), \qquad s_{\alpha}^{*} \pi(x) s_{\alpha} = \pi(\rho_{\alpha}(x)),$$

$$\sum_{b \in \Sigma^{\eta}} t_{b} t_{b}^{*} = 1, \qquad \pi(x) t_{a} t_{a}^{*} = t_{a} t_{a}^{*} \pi(x), \qquad t_{a}^{*} \pi(x) t_{a} = \pi(\eta_{a}(x)),$$

$$\sum_{b \in \Sigma^n} t_b t_b^* = 1, \qquad \pi(x) t_a t_a^* = t_a t_a^* \pi(x), \qquad t_a^* \pi(x) t_a = \pi(\eta_a(x)),$$

$$s_{\alpha}t_b = t_a s_{\beta}$$
 if $\kappa(\alpha, b) = (a, \beta)$

for all $x \in \mathcal{A}$ and $\alpha \in \Sigma^{\rho}$, $a \in \Sigma^{\eta}$. Put $\widetilde{\mathcal{A}} = \pi(\mathcal{A})$ and

$$\tilde{\rho}_{\alpha}(\pi(x)) = \pi(\rho_{\alpha}(x)), \quad \tilde{\eta}_{a}(\pi(x)) = \pi(\eta_{a}(x)), \quad x \in \mathcal{A}.$$

It is easy to see that $(\widetilde{\mathcal{A}}, \widetilde{\rho}, \widetilde{\eta}, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$ is a C^* -textile dynamical system such that the presented textile dynamical system $X_{\tilde{\rho},\tilde{\eta}}^{\kappa}$ is the same as the one $X_{\rho,\eta}^{\kappa}$ presented by $(\mathcal{A},\rho,\eta,\Sigma^{\rho},\Sigma^{\eta},\kappa)$. Let $\mathcal{O}_{\pi,s,t}$ be the C^* -subalgebra of \mathcal{B} generated by $\pi(x)$ and s_{α} , t_a for $x \in \mathcal{A}, \alpha \in \Sigma^{\rho}, a \in \Sigma^{\eta}$. Let $\mathcal{F}_{\pi,s,t}$ be the C^* -subalgebra of $\mathcal{O}_{\pi,s,t}$ generated by $s_{\mu}t_{\zeta}\pi(x)t_{\xi}^*s_{\nu}^*$ for $x \in \mathcal{A}$ and $\mu, \nu \in B_*(\Lambda_\rho), \zeta, \xi \in B_*(\Lambda_\eta)$ with $|\mu| = |\nu|, |\zeta| = |\xi|$. By the universality of the algebra $\mathcal{O}_{\rho,n}^{\kappa}$, the correspondence

$$x \in \mathcal{A} \longrightarrow \pi(x) \in \widetilde{A}, \qquad S_{\alpha} \longrightarrow s_{\alpha}, \quad \alpha \in \Sigma^{\rho}, \qquad T_{a} \longrightarrow t_{a}, \quad a \in \Sigma^{\eta}$$
 extends to a surjective *-homomorphism $\tilde{\pi} : \mathcal{O}_{\rho,\eta}^{\kappa} \longrightarrow \mathcal{O}_{\pi,s,t}$.

Lemma 5.5. The restriction of $\tilde{\pi}$ to the subalgebra $\mathcal{F}_{\rho,\eta}$ is a *-isomorphism from $\mathcal{F}_{\rho,\eta}$ to $\mathcal{F}_{\pi,s,t}$. Hence if $(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$ satisfies condition (I) (resp. is free), $(\mathcal{A}, \tilde{\rho}, \tilde{\eta}, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$ satisfies condition (I) (resp. is free).

Proof. It suffices to show that $\tilde{\pi}$ is injective on $\mathcal{F}_{j,k}$ for all $j,k\in\mathbb{Z}$. Suppose

$$\sum_{\mu,\nu \in B_j(\Lambda_\rho),\zeta,\xi \in B_k(\Lambda_\eta)} s_\mu t_\zeta \pi(x_{\mu,\zeta,\xi,\nu}) t_\xi^* s_\nu^* = 0$$

with $x_{\mu,\zeta,\xi,\nu} \in \mathcal{A}$. For $\mu',\nu' \in B_i(\Lambda_n), \zeta',\xi' \in B_k(\Lambda_n)$, one has

$$\pi(\eta_{\zeta'}(\rho_{\mu'}(1))x_{\mu',\zeta',\xi',\nu'}\eta_{\xi'}(\rho_{\nu'}(1)))$$

$$= t_{\zeta'}^* s_{\mu'}^* \left(\sum_{\mu,\nu \in B_j(\Lambda_\rho), \zeta, \xi \in B_k(\Lambda_\eta)} s_\mu t_\zeta \pi(x_{\mu,\zeta,\xi,\nu}) t_\xi^* s_\nu^* \right) s_{\nu'} t_{\xi'} = 0.$$

As $\pi: \mathcal{A} \longrightarrow \mathcal{B}$ is injective, one sees

$$\eta_{\zeta'}(\rho_{\mu'}(1))x_{\mu',\zeta',\xi',\nu'}\eta_{\xi'}(\rho_{\nu'}(1)) = 0$$

so that

$$S_{\mu'}T_{\zeta'}x_{\mu',\zeta',\xi',\nu'}T_{\xi'}^*S_{\nu'}^* = 0.$$

Hence we have

$$\sum_{\mu,\nu\in B_j(\Lambda_\rho),\zeta,\xi\in B_k(\Lambda_\eta)} S_\mu T_\zeta x_{\mu,\zeta,\xi,\nu} T_\xi^* S_\nu^* = 0.$$

Therefore $\tilde{\pi}$ is injective on $\mathcal{F}_{j,k}$.

We henceforth assume that $(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$ satisfies condition (I) defined above. Take a unital increasing sequence $\{\mathcal{A}_l\}_{l\in\mathbb{Z}_+}$ of C^* -subalgebras of \mathcal{A} as in the definition of condition (I). Recall that the algebra $\mathcal{F}_{j,k}^l$ for $j, k \leq l$ is defined by

$$\mathcal{F}_{j,k}^{l} = C^{*}(S_{\mu}T_{\zeta}xT_{\xi}^{*}S_{\nu}^{*}: \mu, \nu \in B_{j}(\Lambda_{\rho}), \zeta, \xi \in B_{k}(\Lambda_{\eta}), x \in \mathcal{A}_{l}).$$

There exists an inclusion relation $\mathcal{F}_{j,k}^l \subset \mathcal{F}_{j',k'}^{l'}$ for $j \leq j', k \leq k'$ and $l \leq l'$ through the identities (5.1), (5.2). Let $\mathcal{P}_{\pi,s,t}$ be the *-subalgebra of $\mathcal{O}_{\pi,s,t}$ algebraically generated by $\pi(x), s_{\alpha}, t_a$ for $x \in \mathcal{A}_l, l \in \mathbb{Z}_+$, $\alpha \in \Sigma^{\rho}, a \in \Sigma^{\eta}$.

Lemma 5.6. Any element $x \in \mathcal{P}_{\pi,s,t}$ can be expressed in a unique way as

$$\begin{split} x &= \sum_{|\nu|, |\xi| \geq 1} x_{-\xi, -\nu} t_{\xi}^* s_{\nu}^* + \sum_{|\zeta|, |\nu| \geq 1} t_{\zeta} x_{\zeta, -\nu} s_{\nu}^* + \sum_{|\mu|, |\xi| \geq 1} s_{\mu} x_{\mu, -\xi} t_{\xi}^* \\ &+ \sum_{|\mu|, \zeta| \geq 1} s_{\mu} t_{\zeta} x_{\mu, \zeta} + \sum_{|\xi| \geq 1} x_{-\xi} t_{\xi}^* + \sum_{|\nu| \geq 1} x_{-\nu} s_{\nu}^* \\ &+ \sum_{|\mu| > 1} s_{\mu} x_{\mu} + \sum_{|\zeta| > 1} t_{\zeta} x_{\zeta} + x_{0} \end{split}$$

where the above summations Σ are all finite sums and the elements

$$x_{-\xi,-\nu}, x_{\zeta,-\nu}, x_{\mu,-\xi}, x_{\mu,\zeta}, x_{-\xi}, x_{-\nu}, x_{\mu}, x_{\zeta}, x_{0}$$

for $\mu, \nu \in B_*(\Lambda_\rho), \zeta, \xi \in B_*(\Lambda_\eta)$ all belong to the dense subalgebra

$$\mathcal{P}_{\pi,s,t} \cap \mathcal{F}_{\pi,s,t}$$

which satisfy

$$\begin{split} x_{-\xi,-\nu} &= x_{-\xi,-\nu} \eta_{\xi}(\rho_{\nu}(1)), & x_{\zeta,-\nu} &= \eta_{\zeta}(1) x_{\zeta,-\nu} \rho_{\nu}(1), \\ x_{\mu,-\xi} &= \rho_{\mu}(1) x_{\mu,-\xi} \eta_{\xi}(1), & x_{\mu,\zeta} &= \eta_{\zeta}(\rho_{\mu}(1)) x_{\mu,\zeta}, \\ x_{-\xi} &= x_{-\xi} \eta_{\xi}(1), & x_{-\nu} &= x_{-\nu} \rho_{\nu}(1), \\ x_{\mu} &= \rho_{\mu}(1) x_{\mu}, & x_{\zeta} &= \eta_{\zeta}(1) x_{\zeta}. \end{split}$$

Proof. Put

$$x_{-\xi,-\nu} = \mathcal{E}_{\rho,\eta}(xs_{\nu}t_{\xi}), \qquad x_{\zeta,-\nu} = \mathcal{E}_{\rho,\eta}(t_{\zeta}^*xs_{\nu}),$$

$$x_{\mu,-\xi} = \mathcal{E}_{\rho,\eta}(s_{\mu}^*xt_{\xi}), \qquad x_{\mu,\zeta} = \mathcal{E}_{\rho,\eta}(t_{\zeta}^*s_{\mu}^*x),$$

$$x_{-\xi} = \mathcal{E}_{\rho,\eta}(xt_{\xi}), \qquad x_{-\nu} = \mathcal{E}_{\rho,\eta}(xs_{\nu}),$$

$$x_{\mu} = \mathcal{E}_{\rho,\eta}(s_{\mu}^*x), \qquad x_{\zeta} = \mathcal{E}_{\rho,\eta}(t_{\zeta}^*x),$$

$$x_{0} = \mathcal{E}_{\rho,\eta}(x).$$

Then we have the desired expression of x. The elements

$$x_{-\xi,-\nu}, x_{\zeta,-\nu}, x_{\mu,-\xi}, x_{\mu,\zeta}, x_{-\xi}, x_{-\nu}, x_{\mu}, x_{\zeta}, x_{0}$$

for $\mu, \nu \in B_*(\Lambda_\rho), \zeta, \xi \in B_*(\Lambda_\eta)$ are automatically determined by the above formulae so that the expression is unique.

Lemma 5.7. For $h \in \mathcal{D}_{\rho,\eta} \cap \mathcal{A}'_l$ and $j,k \in \mathbb{Z}$ with $j+k \leq l$, put $h^{j,k} = \phi^j_o \circ \phi^k_n(h)$.

Then we have

- (i) $h^{j,k}s_{\mu} = s_{\mu}h^{j-|\mu|,k}$ for $\mu \in B_*(\Lambda_{\rho})$ with $|\mu| \leq j$.
- (ii) $h^{j,k}t_{\zeta} = t_{\zeta}h^{j,k-|\zeta|}$ for $\zeta \in B_*(\Lambda_\eta)$ with $|\zeta| \leq k$.
- (iii) $h^{j,k}$ commutes with any element of $\mathcal{F}_{j,k}^l$.

Proof. (i) It follows that for $\mu \in B_*(\Lambda_\rho)$ with $|\mu| \leq j$

$$h^{j,k}s_{\mu} = \sum_{|\mu'| = |\mu|} s_{\mu'}\phi_{\rho}^{j-|\mu|}(\phi_{\eta}^{k}(h))s_{\mu'}^{*}s_{\mu} = s_{\mu}\phi_{\rho}^{j-|\mu|}(\phi_{\eta}^{k}(h))s_{\mu}^{*}s_{\mu}.$$

Since $h \in \mathcal{A}'_l$ and $\mathcal{A}_{j+k} \subset \mathcal{A}_l$, one has

$$\begin{split} \phi_{\rho}^{j-|\mu|}(\phi_{\eta}^{k}(h))s_{\mu}^{*}s_{\mu} &= \sum_{\nu \in B_{j-|\mu|}(\Lambda_{\rho})} \sum_{\xi \in B_{k}(\Lambda_{\eta})} s_{\nu}t_{\xi}ht_{\xi}^{*}s_{\nu}^{*}s_{\mu}^{*}s_{\mu} \\ &= \sum_{\nu \in B_{j-|\mu|}(\Lambda_{\rho})} \sum_{\xi \in B_{k}(\Lambda_{\eta})} s_{\nu}t_{\xi}ht_{\xi}^{*}s_{\nu}^{*}s_{\mu}s_{\mu}s_{\nu}t_{\xi}t_{\xi}^{*}s_{\nu}^{*} \\ &= \sum_{\nu \in B_{j-|\mu|}(\Lambda_{\rho})} \sum_{\xi \in B_{k}(\Lambda_{\eta})} s_{\nu}t_{\xi}\eta_{\xi}(\rho_{\mu\nu}(1))ht_{\xi}^{*}s_{\nu}^{*} \\ &= \sum_{\nu \in B_{j-|\mu|}(\Lambda_{\rho})} \sum_{\xi \in B_{k}(\Lambda_{\eta})} s_{\nu}\rho_{\mu\nu}(1)t_{\xi}ht_{\xi}^{*}s_{\nu}^{*} \\ &= s_{\mu}^{*}s_{\mu}\phi_{\rho}^{j-|\mu|}(\phi_{\eta}^{k}(h)) = s_{\mu}^{*}s_{\mu}h^{j-|\mu|,k} \end{split}$$

so that $h^{j,k}s_{\mu} = s_{\mu}h^{j-|\mu|,k}$

- (ii) Similarly we have $h^{j,k}t_{\zeta} = t_{\zeta}h^{j,k-|\zeta|}$ for $\zeta \in B_*(\Lambda_\eta)$ with $|\zeta| \leq k$.
- (iii) For $x \in \mathcal{A}_l, \mu, \nu \in B_j(\Lambda_\rho), \zeta, \xi \in B_k(\Lambda_\eta)$, we have

$$h^{j,k}s_{\mu}t_{\zeta} = s_{\mu}h^{0,k}t_{\zeta} = s_{\mu}t_{\zeta}h^{0,0} = s_{\mu}t_{\zeta}h.$$

It follows that

$$h^{j,k}s_{\mu}t_{\zeta}xt_{\varepsilon}^{*}s_{\nu}^{*} = s_{\mu}t_{\zeta}hxt_{\varepsilon}^{*}s_{\nu}^{*} = s_{\mu}t_{\zeta}xht_{\varepsilon}^{*}s_{\nu}^{*} = s_{\mu}t_{\zeta}xt_{\varepsilon}^{*}s_{\nu}^{*}h^{j,k}.$$

Hence $h^{j,k}$ commutes with any element of $\mathcal{F}_{i,k}^l$.

Lemma 5.8. Assume that $(A, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$ satisfies condition (I). For $x \in \mathcal{P}_{\pi,s,t}$, let $x_0 = \mathcal{E}_{\rho,\eta}(x)$ as in Lemma 5.6. Then we have

$$||x_0|| \le ||x||.$$

Proof. We may assume that the elements for $x \in \mathcal{P}_{\pi,s,t}$

$$x_{-\xi,-\nu}, x_{\zeta,-\nu}, x_{\mu,-\xi}, x_{\mu,\zeta}, x_{-\xi}, x_{-\nu}, x_{\mu}, x_{\zeta}, x_{0}$$

in Lemma 5.6 belong to $\tilde{\pi}(\mathcal{F}_{j_1,k_1}^{l_1})$ for some j_1,k_1,l_1 and $\mu,\nu\in \cup_{n=0}^{j_0}B_n(\Lambda_\rho)$, $\zeta,\xi\in \cup_{n=0}^{k_0}B_n(\Lambda_\eta)$ for some j_0,k_0 . Take $j,k,l\in\mathbb{Z}_+$ such as

$$j \ge j_0 + j_1, \qquad k \ge k_0 + k_1, \qquad l \ge \max\{j + k, l_1\}.$$

By Lemma 5.5, $(\mathcal{A}, \tilde{\rho}, \tilde{\eta}, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$ satisfies condition (I). For any $\epsilon > 0$, the numbers j, k, l, and the element $x_0 \in \tilde{\pi}(\mathcal{F}_{i_1, k_1}^{l_1})$, one may find

$$g \in \tilde{\pi}(\mathcal{D}_{\rho,\eta}) \cap \pi(\mathcal{A}_l)'$$

with $0 \le g \le 1$ such that:

(i)
$$||x_0\phi_{\rho}^j\circ\phi_{\eta}^k(g)|| \ge ||x_0|| - \epsilon$$
.
(ii) $\phi_{\rho}^n(g)\phi_{\eta}^m(g) = \phi_{\rho}^n(\phi_{\eta}^m(g))g = \phi_{\rho}^n(g)g = \phi_{\eta}^m(g)g = 0$ for all $n = 1, 2, \ldots, j, \ m = 1, 2, \ldots, k$.

Put $h=q^{\frac{1}{2}}$ and $h^{j,k}=\phi_0^j\circ\phi_n^k(h)$. It follows that $||x||>||h^{j,k}xh^{j,k}||$ and

$$||h^{j,k}xh^{j,k}|| = ||(1) + (2) + (3) + (4) + (5) + (6)||$$

where the summands are given by

(1)
$$\sum_{|\nu|,|\xi|\geq 1} h^{j,k} x_{-\xi,-\nu} t_{\xi}^* s_{\nu}^* h^{j,k}$$

(2)
$$\sum_{|\zeta|,|\nu| \ge 1} h^{j,k} t_{\zeta} x_{\zeta,-\nu} s_{\nu}^* h^{j,k}$$

(3)
$$\sum_{|\mu|,|\xi|\geq 1} h^{j,k} s_{\mu} x_{\mu,-\xi} t_{\xi}^* h^{j,k}$$

(4)
$$\sum_{|\mu|,\zeta|>1} h^{j,k} s_{\mu} t_{\zeta} x_{\mu,\zeta} h^{j,k}$$

(5)
$$\sum_{|\xi| \ge 1} h^{j,k} x_{-\xi} t_{\xi}^* h^{j,k} + \sum_{|\nu| \ge 1} h^{j,k} x_{-\nu} s_{\nu}^* h^{j,k} + \sum_{|\mu| \ge 1} h^{j,k} s_{\mu} x_{\mu} h^{j,k} + \sum_{|\zeta| > 1} h^{j,k} t_{\zeta} x_{\zeta} h^{j,k}$$

$$(6) h^{j,k} x_0 h^{j,k}.$$

For (1), as $x_{-\xi,-\nu} \in \tilde{\pi}(\mathcal{F}_{j_1,k_1}^{l_1}) \subset \tilde{\pi}(\mathcal{F}_{j,k}^{l})$, one sees that $x_{-\xi,-\nu}$ commutes with $h^{j,k}$. Hence we have

$$h^{j,k}x_{-\xi,-\nu}t_{\xi}^*s_{\nu}^*h^{j,k} = x_{-\xi,-\nu}h^{j,k}t_{\xi}^*s_{\nu}^*h^{j,k} = x_{-\xi,-\nu}h^{j,k}h^{j-|\nu|,k-|\xi|}t_{\xi}^*s_{\nu}^*$$

and

$$\begin{split} h^{j,k}h^{j-|\nu|,k-|\xi|}(h^{j,k}h^{j-|\nu|,k-|\xi|})^* = & \phi_\rho^j(\phi_\eta^k(g)) \cdot \phi_\rho^{j-|\nu|}(\phi_\eta^{k-|\xi|}(g)) \\ = & \phi_\rho^{j-|\nu|} \circ \phi_\eta^{k-|\xi|}(\phi_\eta^{|\xi|}(\phi_\rho^{|\nu|}(g)g)) = 0 \end{split}$$

so that

$$h^{j,k}x_{-\xi,-\nu}t_{\xi}^*s_{\nu}^*h^{j,k}=0.$$

For (2), as $x_{\xi,-\nu} \in \tilde{\pi}(\mathcal{F}^{l_1}_{j_1,k_1}) \subset \tilde{\pi}(\mathcal{F}^{l}_{j,k-|\xi|})$, one sees that $x_{\xi,-\nu}$ commutes with $h^{j,k-|\xi|}$. Hence we have

$$h^{j,k}t_{\xi}x_{\xi,-\nu}s_{\nu}^{*}h^{j,k}=t_{\xi}h^{j,k-|\xi|}x_{\xi,-\nu}h^{j-|\nu|,k}s_{\nu}^{*}=t_{\xi}x_{\xi,-\nu}h^{j,k-|\xi|}h^{j-|\nu|,k}s_{\nu}^{*}$$

and

$$\begin{split} h^{j,k-|\xi|}h^{j-|\nu|,k}(h^{j,k-|\xi|}h^{j-|\nu|,k})^* = & \phi_\rho^j(\phi_\eta^{k-|\zeta|}(g)) \cdot \phi_\rho^{j-|\nu|}(\phi_\eta^k(g)) \\ = & \phi_\rho^{j-|\nu|} \circ \phi_\eta^{k-|\zeta|}(\phi_\rho^{|\nu|}(g)\phi_\eta^{|\zeta|}(g)) = 0 \end{split}$$

so that

$$h^{j,k}t_{\xi}x_{\xi,-\nu}s_{\nu}^{*}h^{j,k}=0.$$

For (3), as $x_{\mu,-\xi} \in \tilde{\pi}(\mathcal{F}^{l_1}_{j_1,k_1}) \subset \tilde{\pi}(\mathcal{F}^{l}_{j-|\mu|,k})$, one sees that $x_{\mu,-\xi}$ commutes with $h^{j-|\mu|,k}$. Hence we have

$$h^{j,k}s_{\mu}x_{\mu,-\xi}t_{\xi}^{*}h^{j,k}=s_{\mu}h^{j-|\mu|,k}x_{\mu,-\xi}h^{j,k-|\xi|}t_{\xi}^{*}=s_{\mu}x_{\mu,-\xi}h^{j-|\mu|,k}h^{j,k-|\xi|}t_{\xi}^{*}$$

and

$$\begin{split} h^{j-|\mu|,k}h^{j,k-|\xi|}(h^{j-|\mu|,k}h^{j,k-|\xi|})^* = & \phi_{\rho}^{j-|\mu|}(\phi_{\eta}^k(g)) \cdot \phi_{\rho}^j(\phi_{\eta}^{k-|\xi|}(g)) \\ = & \phi_{\rho}^{j-|\mu|} \circ \phi_{\eta}^{k-|\xi|}(\phi_{\eta}^{|\xi|}(g)\phi_{\rho}^{|\mu|}(g)) = 0 \end{split}$$

so that

$$h^{j,k} s_{\mu} x_{\mu,-\xi} t_{\xi}^* h^{j,k} = 0.$$

For (4), as $x_{\mu,\zeta} \in \tilde{\pi}(\mathcal{F}^{l_1}_{j_1,k_1}) \subset \tilde{\pi}(\mathcal{F}^{l}_{j-|\mu|,k-|\zeta|})$, one sees that $x_{\mu,\zeta}$ commutes with $h^{j-|\mu|,k-|\zeta|}$. Hence we have

$$h^{j,k} s_{\mu} t_{\zeta} x_{\mu,\zeta} h^{j,k} = s_{\mu} t_{\zeta} h^{j-|\mu|,k-|\zeta|} x_{\mu,\zeta} h^{j,k} = s_{\mu} t_{\zeta} x_{\mu,\zeta} h^{j-|\mu|,k-|\zeta|} h^{j,k}$$

and

$$\begin{split} h^{j-|\mu|,k-|\zeta|}h^{j,k}(h^{j-|\mu|,k-|\zeta|}h^{j,k})^* = & \phi_{\rho}^{j-|\mu|}(\phi_{\eta}^{k-|\zeta|}(g)) \cdot \phi_{\rho}^{j}(\phi_{\eta}^{k}(g)) \\ = & \phi_{\rho}^{j-|\mu|} \circ \phi_{\eta}^{k-|\zeta|}(g\phi_{\rho}^{|\mu|}(\phi_{\eta}^{|\zeta|}(g))) = 0 \end{split}$$

so that

$$h^{j,k}s_{\mu}t_{\zeta}x_{\mu,\zeta}h^{j,k}=0.$$

For (5), as $x_{-\xi}$ commutes with $h^{j,k}$, we have

$$h^{j,k}x_{-\xi}t_{\xi}^*h^{j,k} = x_{-\xi}h^{j,k}h^{j,k-|\xi|}t_{\xi}^*$$

and

$$h^{j,k}h^{j,k-|\xi|}(h^{j,k}h^{j,k-|\xi|})^* = \phi_{\rho}^j(\phi_{\eta}^{k|}(g)) \cdot \phi_{\rho}^j(\phi_{\eta}^{k-|\xi|}(g))$$
$$= \phi_{\rho}^j \circ \phi_{\eta}^{k-|\xi|}(\phi_{\eta}^{|\xi|}(g)g) = 0$$

so that

$$h^{j,k} x_{-\xi} t_{\xi}^* h^{j,k} = 0$$

We similarly see that

$$h^{j,k}x_{-\nu}s_{\nu}^*h^{j,k} = h^{j,k}s_{\mu}x_{\mu}h^{j,k} = h^{j,k}t_{\zeta}x_{\zeta}h^{j,k} = 0.$$

Therefore we have

$$||x|| \ge ||h^{j,k}x_0h^{j,k}|| = ||x_0(h^{j,k})^2|| = ||x_0\phi_0^j \circ \phi_n^k(g)|| \ge ||x_0|| - \epsilon.$$

By a similar argument to [8, 2.8 Proposition], one sees:

Corollary 5.9. Assume $(A, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$ satisfies condition (I). There exists a conditional expectation $\mathcal{E}_{\pi,s,t}:\mathcal{O}_{\pi,s,t}\longrightarrow\mathcal{F}_{\pi,s,t}$ such that

$$\mathcal{E}_{\pi,s,t} \circ \tilde{\pi} = \tilde{\pi} \circ \mathcal{E}_{\rho,\eta}.$$

Therefore we have

Proposition 5.10. Assume that $(A, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$ satisfies condition (I). The *-homomorphism $\tilde{\pi}: \mathcal{O}_{\rho,\eta}^{\kappa} \longrightarrow \mathcal{O}_{\pi,s,t}$ defined by

$$\tilde{\pi}(x) = \pi(x), \quad x \in \mathcal{A}, \qquad \tilde{\pi}(S_{\alpha}) = s_{\alpha}, \quad \alpha \in \Sigma^{\rho}, \qquad \tilde{\pi}(T_a) = t_a, \quad a \in \Sigma^{\eta}$$

becomes a surjective *-isomorphism, and hence the C^* -algebras $\mathcal{O}_{\varrho,n}^{\kappa}$ and $\mathcal{O}_{\pi,s,t}$ are canonically *-isomorphic through $\tilde{\pi}$.

Proof. The map $\tilde{\pi}: \mathcal{F}_{\rho,\eta} \to \mathcal{F}_{\pi,s,t}$ is *-isomorphic and satisfies $\mathcal{E}_{\pi,s,t} \circ \tilde{\pi} =$ $\tilde{\pi} \circ \mathcal{E}_{\rho,\eta}$. Since $\mathcal{E}_{\rho,\eta} : \mathcal{O}_{\rho,\eta}^{\kappa} \longrightarrow \mathcal{F}_{\rho,\eta}$ is faithful, a routine argument shows that the *-homomorphism $\tilde{\pi} : \mathcal{O}_{\rho,\eta}^{\kappa} \longrightarrow \mathcal{O}_{\pi,s,t}$ is actually a *-isomorphism. \square

Hence the following uniqueness of the C^* -algebra $\mathcal{O}_{\rho,\eta}^{\kappa}$ holds.

Theorem 5.11. Assume that $(A, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$ satisfies condition (I). The C^* -algebra $\mathcal{O}_{\rho,\eta}^{\kappa}$ is the unique C^* -algebra subject to the relation $(\rho,\eta;\kappa)$. This means that if there exist a unital C^* -algebra \mathcal{B} , an injective *-homomorphism $\pi: \mathcal{A} \longrightarrow \mathcal{B}$ and two families of partial isometries $s_{\alpha}, \alpha \in \Sigma^{\rho}, t_{a}, a \in \Sigma^{\eta}$ satisfying the following relations:

$$\sum_{\beta \in \Sigma^{\rho}} s_{\beta} s_{\beta}^* = 1, \qquad \pi(x) s_{\alpha} s_{\alpha}^* = s_{\alpha} s_{\alpha}^* \pi(x), \qquad s_{\alpha}^* \pi(x) s_{\alpha} = \pi(\rho_{\alpha}(x)),$$

$$\sum_{b \in \Sigma^{\eta}} t_b t_b^* = 1, \qquad \pi(x) t_a t_a^* = t_a t_a^* \pi(x), \qquad t_a^* \pi(x) t_a = \pi(\eta_a(x))$$

$$\sum_{b \in \Sigma_a} t_b t_b^* = 1, \qquad \pi(x) t_a t_a^* = t_a t_a^* \pi(x), \qquad t_a^* \pi(x) t_a = \pi(\eta_a(x))$$

$$s_{\alpha}t_b = t_a s_{\beta}$$
 if $\kappa(\alpha, b) = (a, \beta)$

for $(\alpha, b) \in \Sigma^{\rho\eta}$, $(a, \beta) \in \Sigma^{\eta\rho}$ and $x \in \mathcal{A}$, $\alpha \in \Sigma^{\rho}$, $a \in \Sigma^{\eta}$, then the correspondence

$$x \in \mathcal{A} \longrightarrow \pi(x) \in \mathcal{B}, \quad S_{\alpha} \longrightarrow s_{\alpha} \in \mathcal{B}, \quad T_{\alpha} \longrightarrow t_{\alpha} \in \mathcal{B}$$

extends to a *-isomorphism $\tilde{\pi}$ from $\mathcal{O}_{\rho,\eta}^{\kappa}$ onto the C*-subalgebra $\mathcal{O}_{\pi,s,t}$ of \mathcal{B} generated by $\pi(x), x \in \mathcal{A}$ and $s_{\alpha}, \alpha \in \Sigma^{\eta}$, $t_{\alpha}, a \in \Sigma^{\eta}$.

For a C^* -textile dynamical system $(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$, let $\lambda_{\rho,\eta} : \mathcal{A} \to \mathcal{A}$ be the positive map on \mathcal{A} defined by

$$\lambda_{\rho,\eta}(x) = \sum_{\alpha \in \Sigma^{\rho}. a \in \Sigma^{\eta}} \eta_a \circ \rho_{\alpha}(x), \qquad x \in \mathcal{A}.$$

Then $(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$ is said to be *irreducible* if there exists no nontrivial ideal of \mathcal{A} invariant under $\lambda_{\rho,\eta}$.

Corollary 5.12. If $(A, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$ satisfies condition (I) and is irreducible, the C^* -algebra $\mathcal{O}_{\rho,\eta}^{\kappa}$ is simple.

Proof. Assume that there exists a nontrivial ideal \mathcal{I} of $\mathcal{O}_{\rho,\eta}^{\kappa}$. Now suppose that $\mathcal{I} \cap \mathcal{A} = \{0\}$. As $S_{\alpha}^* S_{\alpha} = \rho_{\alpha}(1), T_a^* T_a = \eta_a(1) \in \mathcal{A}$, one knows that $S_{\alpha}, T_a \notin \mathcal{I}$ for all $\alpha \in \Sigma^{\rho}, a \in \Sigma^{\eta}$. By the above theorem, the quotient map $q:\mathcal{O}_{\rho,\eta}^{\kappa}\longrightarrow\mathcal{O}_{\rho,\eta}^{\kappa}/\mathcal{I}$ must be injective so that \mathcal{I} is trivial. Hence one sees that $\mathcal{I} \cap \mathcal{A} \neq \{0\}$ and it is invariant under $\lambda_{\rho,\eta}$.

6. Concrete realization

In this section we will realize the C^* -algebra $\mathcal{O}_{\rho,\eta}^{\kappa}$ for $(\mathcal{A},\rho,\eta,\Sigma^{\rho},\Sigma^{\eta},\kappa)$ in a concrete way as a C^* -algebra constructed from a Hilbert C^* -bimodule. For $\gamma_i \in \Sigma^{\rho} \cup \Sigma^{\eta}$, put

$$\xi_{\gamma_i} = \begin{cases} \rho_{\gamma_i} & \text{if } \gamma_i \in \Sigma^{\rho}, \\ \eta_{\gamma_i} & \text{if } \gamma_i \in \Sigma^{\eta}. \end{cases}$$

A finite sequence of labels $(\gamma_1, \gamma_2, \dots, \gamma_k) \in (\Sigma^{\rho} \cup \Sigma^{\eta})^k$ is said to be concatenated labeled path if $\xi_{\gamma_k} \circ \cdots \circ \xi_{\gamma_2} \circ \xi_{\gamma_1}(1) \neq 0$. For $m, n \in \mathbb{Z}_+$, let $L_{(n,m)}$ be the set of concatenated labeled paths $(\gamma_1, \gamma_2, \dots, \gamma_{m+n})$ such that symbols in Σ^{ρ} appear in $(\gamma_1, \gamma_2, \dots, \gamma_{m+n})$ n-times and symbols in Σ^{η} appear in $(\gamma_1, \gamma_2, \dots, \gamma_{m+n})$ m-times. We define a relation in $L_{(n,m)}$ for i = $1, 2, \ldots, n + m - 1$. We write

$$(\gamma_1, \dots, \gamma_{i-1}, \gamma_i, \gamma_{i+1}, \gamma_{i+2}, \dots, \gamma_{m+n})$$

$$\underset{i}{\approx} (\gamma_1, \dots, \gamma_{i-1}, \gamma'_i, \gamma'_{i+1}, \gamma_{i+2}, \dots, \gamma_{m+n})$$

if one of the following two conditions holds:

- (1) $(\gamma_i, \gamma_{i+1}) \in \Sigma^{\rho\eta}, (\gamma_i', \gamma_{i+1}') \in \Sigma^{\eta\rho} \text{ and } \kappa(\gamma_i, \gamma_{i+1}) = (\gamma_i', \gamma_{i+1}'),$

(2) $(\gamma_i, \gamma_{i+1}) \in \Sigma^{\eta \rho}, (\gamma_i', \gamma_{i+1}') \in \Sigma^{\rho \eta}$ and $\kappa(\gamma_i', \gamma_{i+1}') = (\gamma_i, \gamma_{i+1})$. Denote by \approx the equivalence relation in $L_{(n,m)}$ generated by the relations \approx , $i=1,2,\ldots,n+m-1$. Let $\mathfrak{T}_{(n,m)}=L_{(n,m)}/\approx$ be the set of equivalence classes of $L_{(n,m)}$ under \approx . Denote by $[\gamma] \in \mathfrak{T}_{(n,m)}$ the equivalence class of $\gamma \in L_{(n,m)}$. Put the vectors e = (1,0), f = (0,-1) in \mathbb{R}^2 . Consider the set of all paths consisting of sequences of vectors e, f starting at the point $(-n,m) \in \mathbb{R}^2$ for $n,m \in \mathbb{Z}_+$ and ending at the origin. Such a path consists of n e-vectors and m f-vectors. Let $\mathfrak{P}_{(n,m)}$ be the set of all such paths from (-n, m) to the origin. We consider the correspondence

$$\rho_{\alpha} \longrightarrow e \quad (\alpha \in \Sigma^{\rho}), \qquad \eta_a \longrightarrow f \quad (a \in \Sigma^{\eta}),$$

denoted by π . It extends a surjective map from $L_{(n,m)}$ to $\mathfrak{P}_{(n,m)}$ in a natural way. For a concatenated labeled path $\gamma = (\gamma_1, \gamma_2, \dots, \gamma_{n+m}) \in L_{(n,m)}$, put the projection in \mathcal{A}

$$P_{\gamma} = (\xi_{\gamma_{n+m}} \circ \cdots \circ \xi_{\gamma_2} \circ \xi_{\gamma_1})(1).$$

We note that $P_{\gamma} \neq 0$ for all $\gamma \in L_{(n,m)}$.

Lemma 6.1. For $\gamma, \gamma' \in L_{(n,m)}$, if $\gamma \approx \gamma'$, we have $P_{\gamma} = P_{\gamma'}$. Hence the projection $P_{[\gamma]}$ for $[\gamma] \in \mathfrak{T}_{(n,m)}$ is well-defined.

Proof. If $\kappa(\alpha, b) = (a, \beta)$, one has $\eta_b \circ \rho_\alpha(1) = \rho_\beta \circ \eta_a(1) \neq 0$. Hence the assertion is obvious.

Denote by $|\mathfrak{T}_{(n,m)}|$ the cardinal number of the finite set $\mathfrak{T}_{(n,m)}$. Let $e_t, t \in \mathfrak{T}_{(n,m)}$ be the standard complete orthonormal basis of $\mathbb{C}^{|\mathfrak{T}_{(n,m)}|}$. Define

$$H_{(n,m)} = \sum_{t \in \mathfrak{T}_{(n,m)}} {}^{\oplus}\mathbb{C}e_t \otimes P_t \mathcal{A}$$

$$\left(= \sum_{t \in \mathfrak{T}_{(n,m)}} {}^{\oplus}\mathrm{Span}\{ce_t \otimes P_t x \mid c \in \mathbb{C}, x \in \mathcal{A}\} \right)$$

the direct sum of $\mathbb{C}e_t \otimes P_t \mathcal{A}$ over $t \in \mathfrak{T}_{(n,m)}$. $H_{(n,m)}$ has a structure of C^* -bimodule over \mathcal{A} by setting

$$(e_t \otimes P_t x)y := e_t \otimes P_t xy,$$

$$\phi(y)(e_t \otimes P_t x) := e_t \otimes \xi_{\gamma}(y)x (= e_t \otimes P_t \xi_{\gamma}(y)x) \quad \text{for } x, y \in \mathcal{A}$$

where $t = [\gamma]$ for $\gamma = (\gamma_1, \dots, \gamma_{n+m})$ and $\xi_{\gamma}(y) = (\xi_{\gamma_{n+m}} \circ \dots \circ \xi_{\gamma_2} \circ \xi_{\gamma_1})(y)$. Define an \mathcal{A} -valued inner product on $H_{(n,m)}$ by setting

$$\langle e_t \otimes P_t x \mid e_s \otimes P_s y \rangle := \begin{cases} x^* P_t y & \text{if } t = s, \\ 0 & \text{otherwise} \end{cases}$$

for $t, s \in \mathfrak{T}_{(n,m)}$ and $x, y \in \mathcal{A}$. Then $H_{(n,m)}$ becomes a Hilbert C^* -bimodule over \mathcal{A} . Put $H_{(0,0)} = \mathcal{A}$. Denote by F_{κ} the Hilbert C^* -bimodule over \mathcal{A} defined by the direct sum:

$$F_{\kappa} = \sum_{(n,m)\in\mathbb{Z}_{+}^{2}} {}^{\oplus}H_{(n,m)}.$$

For $\alpha \in \Sigma^{\rho}$, $a \in \Sigma^{\eta}$, the creation operators s_{α} , t_{a} on F_{κ} :

$$s_{\alpha}: H_{(n,m)} \longrightarrow H_{(n+1,m)}, \qquad t_a: H_{(n,m)} \longrightarrow H_{(n,m+1)}$$

are defined by

$$s_{\alpha}x = e_{[\alpha]} \otimes P_{[\alpha]}x, \quad \text{for } x \in H_{(0,0)}(=\mathcal{A}),$$

$$s_{\alpha}(e_{[\gamma]} \otimes P_{[\gamma]}x) = \begin{cases} e_{[\alpha\gamma]} \otimes P_{[\alpha\gamma]}x & \text{if } \alpha\gamma \in L_{(n+1,m)}, \\ 0 & \text{otherwise}, \end{cases}$$

$$t_{a}x = e_{[a]} \otimes P_{[a]}x, \quad \text{for } x \in H_{(0,0)}(=\mathcal{A}),$$

$$t_{a}(e_{[\gamma]} \otimes P_{[\gamma]}x) = \begin{cases} e_{[a\gamma]} \otimes P_{[a\gamma]}x & \text{if } a\gamma \in L_{(n,m+1)}, \\ 0 & \text{otherwise}. \end{cases}$$

For $y \in \mathcal{A}$ an operator $i_{F_{\kappa}}(y)$ on F_{κ} :

$$i_{F_{\kappa}}(y): H_{(n,m)} \longrightarrow H_{(n,m)}$$

is defined by

$$i_{F_{\kappa}}(y)x = yx$$
 for $x \in H_{(0,0)}(= \mathcal{A})$,
 $i_{F_{\kappa}}(y)(e_{[\gamma]} \otimes P_{[\gamma]}x) = \phi(y)(e_{[\gamma]} \otimes P_{[\gamma]}x)(=e_{[\gamma]} \otimes \xi_{\gamma}(y)x)$.

Define the Cuntz-Toeplitz C^* -algebra for $(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$ by

$$\mathcal{T}_{\rho,\eta}^{\kappa} = C^*(s_{\alpha}, t_a, i_{F_{\kappa}}(y) \mid \alpha \in \Sigma^{\rho}, a \in \Sigma^{\eta}, y \in \mathcal{A})$$

as the C^* -algebra on F_{κ} generated by $s_{\alpha}, t_a, i_{F_{\kappa}}(y)$ for $\alpha \in \Sigma^{\rho}, a \in \Sigma^{\eta}, y \in \mathcal{A}$.

Lemma 6.2. For $\alpha \in \Sigma^{\rho}$, $a \in \Sigma^{\eta}$, we have

$$\begin{aligned} &\text{(i)} \ \ s_{\alpha}^{*}(e_{[\gamma]}\otimes P_{[\gamma]}x) = \begin{cases} \phi(\rho_{\alpha}(1))(e_{[\gamma']}\otimes P_{[\gamma']}x) & \textit{if } \gamma\approx\alpha\gamma',\\ 0 & \textit{otherwise}. \end{cases} \\ &\text{(ii)} \ \ t_{a}^{*}(e_{[\gamma]}\otimes P_{[\gamma]}x) = \begin{cases} \phi(\eta_{a}(1))(e_{[\gamma']}\otimes P_{[\gamma']}x) & \textit{if } \gamma\approx\alpha\gamma',\\ 0 & \textit{otherwise}. \end{cases} \\ \end{aligned}$$

Proof. (i) For $\gamma \in L_{(n,m)}, \gamma' \in L_{(n-1,m)}$ and $\alpha \in \Sigma^{\rho}$, we have

$$\langle s_{\alpha}^{*}(e_{[\gamma]} \otimes P_{[\gamma]}x) \mid e_{[\gamma']} \otimes P_{[\gamma']}x' \rangle = \langle e_{[\gamma]} \otimes P_{[\gamma]}x \mid e_{[\alpha\gamma']} \otimes P_{[\alpha\gamma']}x' \rangle$$

$$= \begin{cases} x^{*}P_{[\alpha\gamma']}x & \text{if } \gamma \approx \alpha\gamma', \\ 0 & \text{otherwise.} \end{cases}$$

On the other hand,

$$\phi(\rho_{\alpha}(1))(e_{[\gamma']} \otimes P_{[\gamma']}x) = e_{[\gamma']} \otimes P_{[\alpha\gamma']}P_{\gamma'}x = e_{[\gamma']} \otimes P_{[\alpha\gamma']}x$$

so that

$$\langle \phi(\rho_{\alpha}(1))(e_{[\gamma']} \otimes P_{[\gamma']}x) \mid e_{[\gamma']} \otimes P_{[\gamma']}x' \rangle = x^* P_{[\alpha\gamma']}x'.$$

Hence we obtain the desired equality. Similarly we see (ii).

The following lemma is straightforward.

Lemma 6.3. For $\alpha \in \Sigma^{\rho}$, $a \in \Sigma^{\eta}$ and $\gamma \in L_{(n,m)}$, $x \in \mathcal{A}$, we have: (i)

$$s_{\alpha}s_{\alpha}^{*}(e_{[\gamma]}\otimes P_{[\gamma]}x) = \begin{cases} e_{[\gamma]}\otimes P_{[\gamma]}x) & \text{if } \gamma\approx\alpha\gamma' \text{ for some } \gamma'\in L_{(n-1,m)}, \\ 0 & \text{otherwise.} \end{cases}$$

(ii)

$$t_a t_a^*(e_{[\gamma]} \otimes P_{[\gamma]} x) = \begin{cases} e_{[\gamma]} \otimes P_{[\gamma]} x) & \text{if } \gamma \approx a \gamma' \text{ for some } \gamma' \in L_{(n,m-1)}, \\ 0 & \text{otherwise.} \end{cases}$$

Hence we see:

Lemma 6.4.

(i) $1 - \sum_{\alpha \in \Sigma^{\rho}} s_{\alpha} s_{\alpha}^{*} = \text{the projection onto the subspace spanned by the vectors } e_{[\gamma]} \otimes P_{[\gamma]} x \text{ for } \gamma \in \bigcup_{m=0}^{\infty} L_{(0,m)}, x \in \mathcal{A}.$

(ii) $1 - \sum_{a \in \Sigma^{\eta}} t_a t_a^* = the projection onto the subspace spanned by the$ vectors $e_{[\gamma]} \otimes P_{[\gamma]} x$ for $\gamma \in \bigcup_{n=0}^{\infty} L_{(n,0)}, x \in \mathcal{A}$.

Lemma 6.5. For $\alpha \in \Sigma^{\rho}$, $a \in \Sigma^{\eta}$ and $x \in \mathcal{A}$, we have:

- (i) $s_{\alpha}^* x s_{\alpha} = \phi(\rho_{\alpha}(x))$ and in particular $s_{\alpha}^* s_{\alpha} = \phi(\rho_{\alpha}(1))$.
- (ii) $t_a^*xt_a = \phi(\eta_a(x))$ and in particular $t_a^*t_a = \phi(\eta_a(1))$.

Proof. (i) It follows that for $\gamma \in L(n,m)$ with $\alpha \gamma \in L(n+1,m)$ and $y \in \mathcal{A}$,

$$\begin{split} s_{\alpha}^* x s_{\alpha}(e_{[\gamma]} \otimes P_{[\gamma]} y) &= s_{\alpha}^*(e_{[\alpha\gamma]} \otimes P_{[\alpha\gamma]} y \xi_{\alpha\gamma}(x)) \\ &= e_{[\gamma]} \otimes P_{[\gamma]} y \xi_{\gamma}(\rho_{\alpha}(x)) \\ &= \phi(\rho_{\alpha}(x))(e_{[\gamma]} \otimes P_{[\gamma]} y). \end{split}$$

If $\alpha \gamma \notin L(n+1,m)$, we have

$$s_{\alpha}(e_{[\gamma]} \otimes P_{[\gamma]}y) = 0, \qquad \phi(\rho_{\alpha}(x))(e_{[\gamma]} \otimes P_{[\gamma]}y) = 0.$$

Hence we see that $s_{\alpha}^* x s_{\alpha} = \phi(\rho_{\alpha}(x))$. Similarly we see (ii).

Lemma 6.6. For $\alpha, \beta \in \Sigma^{\rho}$, $a, b \in \Sigma^{\eta}$ we have:

(6.1)
$$s_{\alpha}t_{b} = t_{a}s_{\beta} \quad \text{if } \kappa(\alpha, b) = (a, \beta).$$

Proof. For $\gamma \in L_{(n,m)}$ with $\alpha b \gamma, \alpha \beta \gamma \in L_{(n+1,m+1)}$ and $x \in \mathcal{A}$, we have

$$s_{\alpha}t_{b}(e_{[\gamma]} \otimes P_{[\gamma]}x) = e_{[\alpha b\gamma]} \otimes P_{[\alpha b\gamma]}y),$$

$$t_{a}s_{\beta}(e_{[\gamma]} \otimes P_{[\gamma]}x) = (e_{[a\beta\gamma]} \otimes P_{[a\beta\gamma]}x).$$

Since $\kappa(\alpha, b) = (a, \beta)$, the condition $\alpha b \gamma \in L_{(n+1,m+1)}$ is equivalent to the condition $a\beta\gamma\in L_{(n+1,m+1)}$. We then have $[\alpha b\gamma]=[a\beta\gamma]$ and $P_{[\alpha b\gamma]}=[a\beta\gamma]$ $P_{[a\beta\gamma]}$.

Let $\mathcal{I}_{\rho,\eta}^{\kappa}$ be the ideal of $\mathcal{T}_{\rho,\eta}^{\kappa}$ generated by the two projections:

$$1 - \sum_{\alpha \in \Sigma^{\rho}} s_{\alpha} s_{\alpha}^{*}$$
 and $1 - \sum_{a \in \Sigma^{\eta}} t_{a} t_{a}^{*}$.

Let $\widehat{\mathcal{O}}_{\rho,\eta}^{\kappa}$ be the quotient C^* -algebra

$$\widehat{\mathcal{O}}_{
ho,\eta}^{\kappa} = \mathcal{T}_{
ho,\eta}^{\kappa}/\mathcal{I}_{
ho,\eta}^{\kappa}.$$

Let $\pi_{\rho,\eta}: \mathcal{T}_{q,\eta}^{\kappa} \longrightarrow \widehat{\mathcal{O}}_{q,\eta}^{\kappa}$ be the quotient map. Put

$$\widehat{S}_{\alpha} = \pi_{\rho,\eta}(s_{\alpha}), \quad \widehat{T}_{a} = \pi_{\rho,\eta}(t_{a}), \quad \widehat{i}(x) = \pi_{\rho,\eta}(i_{(F_{\kappa})}(x))$$

for $\alpha \in \Sigma^{\rho}$, $a \in \Sigma^{\eta}$ and $x \in \mathcal{A}$. By the above discussions, the following relations hold:

$$\sum_{\beta \in \Sigma^{\rho}} \widehat{S}_{\beta} \widehat{S}_{\beta}^{*} = 1, \qquad \hat{i}(x) \widehat{S}_{\alpha} \widehat{S}_{\alpha}^{*} = \widehat{S}_{\alpha} \widehat{S}_{\alpha}^{*} \hat{i}(x), \qquad \widehat{S}_{\alpha}^{*} \hat{i}(x) \widehat{S}_{\alpha} = \hat{i}(\rho_{\alpha}(x)),$$

$$\sum_{b \in \Sigma^{\eta}} \widehat{T}_{b} \widehat{T}_{b}^{*} = 1, \qquad \hat{i}(x) \widehat{T}_{a} \widehat{T}_{a}^{*} = \widehat{T}_{a} \widehat{T}_{a}^{*} \hat{i}(x), \qquad \widehat{T}_{a}^{*} \hat{i}(x) \widehat{T}_{a} = \hat{i}(\eta_{a}(x)),$$

$$\sum_{b \in \Sigma_n} \widehat{T}_b \widehat{T}_b^* = 1, \qquad \hat{i}(x) \widehat{T}_a \widehat{T}_a^* = \widehat{T}_a \widehat{T}_a^* \hat{i}(x), \qquad \widehat{T}_a^* \hat{i}(x) \widehat{T}_a = \hat{i}(\eta_a(x)),$$

$$\widehat{S}_{\alpha}\widehat{T}_{b} = \widehat{T}_{a}\widehat{S}_{\beta}$$
 if $\kappa(\alpha, b) = (a, \beta)$

for all $x \in \mathcal{A}$ and $\alpha \in \Sigma^{\rho}$, $a \in \Sigma^{\eta}$.

For $(z, w) \in \mathbb{T}^2$, the correspondence

$$e_{[\gamma]} \otimes P_{[\gamma]} x \in H_{(n,m)} \longrightarrow z^n w^m e_{[\gamma]} \otimes P_{[\gamma]} x \in H_{(n,m)}$$

yields a unitary representation of \mathbb{T}^2 on $H_{(n,m)}$, which extends to F_{κ} , denoted by $u_{(z,w)}$. Since

$$u_{(z,w)}\mathcal{T}^\kappa_{\rho,\eta}u^*_{(z,w)}=\mathcal{T}^\kappa_{\rho,\eta}, \qquad u_{(z,w)}\mathcal{I}^\kappa_{\rho,\eta}u^*_{(z,w)}=\mathcal{I}^\kappa_{\rho,\eta},$$

The map

$$X \in \mathcal{T}^{\kappa}_{\rho,\eta} \longrightarrow u_{(z,w)} X u^*_{(z,w)} \in \mathcal{T}^{\kappa}_{\rho,\eta}$$

yields an action of \mathbb{T}^2 on the C^* -algebra $\widehat{\mathcal{O}}_{\rho,\eta}^{\kappa}$, which we denote by $\widehat{\theta}$. Similarly to the action θ on $\mathcal{O}_{\rho,\eta}^{\kappa}$, we may define the conditional expectation $\widehat{\mathcal{E}}_{\rho,\eta}$ from $\widehat{\mathcal{O}}_{\rho,\eta}^{\kappa}$ to the fixed point algebra $(\widehat{\mathcal{O}}_{\rho,\eta}^{\kappa})^{\widehat{\theta}}$ by taking the integration of the function $\widehat{\theta}_{(z,w)}(X)$ over $(z,w) \in \mathbb{T}^2$ for $X \in \widehat{\mathcal{O}}_{\rho,\eta}^{\kappa}$. Then as in the proof of Proposition 5.10, one may prove the following theorem.

Theorem 6.7. The algebra $\widehat{\mathcal{O}}_{\rho,\eta}^{\kappa}$ is canonically *-isomorphic to the C*-algebra $\mathcal{O}_{\rho,\eta}^{\kappa}$ through the correspondences:

$$S_{\alpha} \longrightarrow \widehat{S}_{\alpha}, \qquad T_a \longrightarrow \widehat{T}_a, \qquad x \longrightarrow \widehat{i}(x)$$

for $\alpha \in \Sigma^{\rho}$, $a \in \Sigma^{\eta}$ and $x \in \mathcal{A}$.

7. K-Theory machinery

Let us denote by K the C^* -algebra of compact operators on a separable infinite dimensional Hilbert space. For a C^* -algebra \mathcal{B} , we denote by $M(\mathcal{B})$ its multiplier algebra. In this section, we will study K-theory groups $K_*(\mathcal{O}_{\rho,\eta}^{\kappa})$ for the C^* -algebra $\mathcal{O}_{\rho,\eta}^{\kappa}$. We fix a C^* -textile dynamical system $(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$. We define two actions

$$\hat{\rho}: \mathbb{T} \longrightarrow \operatorname{Aut}(\mathcal{O}_{\rho,\eta}^{\kappa}), \quad \hat{\eta}: \mathbb{T} \longrightarrow \operatorname{Aut}(\mathcal{O}_{\rho,\eta}^{\kappa})$$

of the circle group $\mathbb{T}=\{z\in\mathbb{C}\mid |z|=1\}$ to $\mathcal{O}_{\rho,\eta}^{\kappa}$ by setting

$$\hat{\rho}_z = \theta_{(z,1)}, \qquad \hat{\eta}_w = \theta_{(1,w)}, \qquad z, w \in \mathbb{T}.$$

They satisfy

$$\hat{\rho}_z \circ \hat{\eta}_w = \hat{\eta}_w \circ \hat{\rho}_z = \theta_{(z,w)}, \qquad z, w \in \mathbb{T}.$$

Set the fixed point algebras

$$(\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}} = \{ x \in \mathcal{O}_{\rho,\eta}^{\kappa} \mid \hat{\rho}_z(x) = x \text{ for all } z \in \mathbb{T} \},$$

$$(\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\eta}} = \{ x \in \mathcal{O}_{\rho,\eta}^{\kappa} \mid \hat{\eta}_w(x) = x \text{ for all } w \in \mathbb{T} \}.$$

For $x \in (\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}}$, define the $\mathcal{O}_{\rho,\eta}^{\kappa}$ -valued constant function

$$\widehat{x} \in L^1(\mathbb{T}, \mathcal{O}_{\rho, \eta}^{\kappa}) \subset \mathcal{O}_{\rho, \eta}^{\kappa} \times_{\widehat{\rho}} \mathbb{T}$$

from \mathbb{T} by setting $\widehat{x}(z) = x, z \in \mathbb{T}$. Put $p_0 = \widehat{1}$. By [45], the algebra $(\mathcal{O}_{\rho,\eta}^{\kappa})^{\widehat{\rho}}$ is canonically isomorphic to $p_0(\mathcal{O}_{\rho,\eta}^{\kappa} \times_{\widehat{\rho}} \mathbb{T})p_0$ through the map

$$j_{\rho}: x \in (\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}} \longrightarrow \widehat{x} \in p_0(\mathcal{O}_{\rho,\eta}^{\kappa} \times_{\hat{\rho}} \mathbb{T}) p_0$$

which induces an isomorphism

$$(7.1) j_{\rho_*}: K_i((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}}) \longrightarrow K_i(p_0(\mathcal{O}_{\rho,\eta}^{\kappa} \times_{\hat{\rho}} \mathbb{T})p_0), i = 0, 1$$

on their K-groups. By a similar manner to the proofs given in [23, Section 4], one may prove the following lemma.

Lemma 7.1.

(i) There exists an isometry

$$v \in M((\mathcal{O}_{\rho,\eta}^{\kappa} \times_{\hat{\rho}} \mathbb{T}) \otimes \mathcal{K})$$

such that $vv^* = p_0 \otimes 1, v^*v = 1$.

- (ii) $\mathcal{O}_{\rho,\eta}^{\kappa} \times_{\hat{\rho}} \mathbb{T}$ is stably isomorphic to $(\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}}$, and similarly $\mathcal{O}_{\rho,\eta}^{\kappa} \times_{\hat{\eta}} \mathbb{T}$ is stably isomorphic to $(\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\eta}}$.
- (iii) The inclusion $\iota_{\hat{\rho}}: p_0(\mathcal{O}_{\rho,\eta}^{\kappa,\nu} \times_{\hat{\rho}} \mathbb{T}) p_0 \hookrightarrow \mathcal{O}_{\rho,\eta}^{\kappa} \times_{\hat{\rho}} \mathbb{T}$ induces an isomorphism

$$\iota_{\hat{\rho}*}: K_i(p_0(\mathcal{O}_{\rho,\eta}^{\kappa} \times_{\hat{\rho}} \mathbb{T})p_0) \cong K_i(\mathcal{O}_{\rho,\eta}^{\kappa} \times_{\hat{\rho}} \mathbb{T}), \qquad i = 0, 1$$

on their K-groups.

Thanks to the lemma above, the isomorphism

$$\mathrm{Ad}(v^*): x \in p_0(\mathcal{O}_{\varrho,n}^{\kappa} \times_{\hat{\rho}} \mathbb{T}) p_0 \otimes \mathcal{K} \longrightarrow v^* x v \in (\mathcal{O}_{\varrho,n}^{\kappa} \times_{\hat{\rho}} \mathbb{T}) \otimes \mathcal{K}$$

induces isomorphisms

$$(7.2) \qquad \operatorname{Ad}(v^*)_* : K_i(p_0(\mathcal{O}_{\rho,\eta}^{\kappa} \times_{\hat{\rho}} \mathbb{T})p_0) \longrightarrow K_i(\mathcal{O}_{\rho,\eta}^{\kappa} \times_{\hat{\rho}} \mathbb{T}), \qquad i = 0, 1.$$

Let $\hat{\rho}$ be the automorphism on $\mathcal{O}_{\rho,\eta}^{\kappa} \times_{\hat{\rho}} \mathbb{T}$ for the positive generator of \mathbb{Z} for the dual action of $\hat{\rho}$. By (7.1) and (7.2), we may define an isomorphism

$$\beta_{\rho,i} = j_{\rho*}^{-1} \circ \operatorname{Ad}(v^*)_*^{-1} \circ \hat{\hat{\rho}}_* \circ \operatorname{Ad}(v^*)_* \circ j_{\rho*} : K_i((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}}) \longrightarrow K_i((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}})$$

for i = 0, 1, so that the diagram is commutative:

$$K_{i}(\mathcal{O}_{\rho,\eta}^{\kappa} \times_{\hat{\rho}} \mathbb{T}) \xrightarrow{\hat{\rho}_{*}} K_{i}(\mathcal{O}_{\rho,\eta}^{\kappa} \times_{\hat{\rho}} \mathbb{T})$$

$$\uparrow^{\mathrm{Ad}(v^{*})_{*}} \qquad \uparrow^{\mathrm{Ad}(v^{*})_{*}}$$

$$K_{i}(p_{0}(\mathcal{O}_{\rho,\eta}^{\kappa} \times_{\hat{\rho}} \mathbb{T})p_{0}) \qquad K_{i}(p_{0}(\mathcal{O}_{\rho,\eta}^{\kappa} \times_{\hat{\rho}} \mathbb{T})p_{0})$$

$$\uparrow^{j_{\rho *}} \qquad \uparrow^{j_{\rho *}}$$

$$K_{i}((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}}) \xrightarrow{\beta_{\rho,i}} K_{i}((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}}).$$

By [39] (cf. [15]), one has the six term exact sequence of K-theory:

$$K_{0}(\mathcal{O}_{\rho,\eta}^{\kappa} \times_{\hat{\rho}} \mathbb{T}) \xrightarrow{\operatorname{id}-\hat{\hat{\rho}}_{*}} K_{0}(\mathcal{O}_{\rho,\eta}^{\kappa} \times_{\hat{\rho}} \mathbb{T}) \xrightarrow{\iota_{*}} K_{0}((\mathcal{O}_{\rho,\eta}^{\kappa} \times_{\hat{\rho}} \mathbb{T}) \times_{\hat{\hat{\rho}}} \mathbb{Z})$$

$$\delta \uparrow \qquad \qquad \exp \downarrow$$

$$K_{1}((\mathcal{O}_{\rho,\eta}^{\kappa} \times_{\hat{\rho}} \mathbb{T}) \times_{\hat{\rho}} \mathbb{Z}) \xleftarrow{\iota_{*}} K_{1}(\mathcal{O}_{\rho,\eta}^{\kappa} \times_{\hat{\rho}} \mathbb{T}) \xleftarrow{\operatorname{id}-\hat{\hat{\rho}}_{*}} K_{1}(\mathcal{O}_{\rho,\eta}^{\kappa} \times_{\hat{\rho}} \mathbb{T}).$$

$$K_1((\mathcal{O}_{\rho,\eta}^{\kappa} \times_{\hat{\rho}} \mathbb{T}) \times_{\hat{\rho}} \mathbb{Z}) \xleftarrow{\iota_*} K_1(\mathcal{O}_{\rho,\eta}^{\kappa} \times_{\hat{\rho}} \mathbb{T}) \xleftarrow{\mathrm{id}-\hat{\rho}_*} K_1(\mathcal{O}_{\rho,\eta}^{\kappa} \times_{\hat{\rho}} \mathbb{T}).$$

Since $(\mathcal{O}_{\rho,\eta}^{\kappa} \times_{\hat{\rho}} \mathbb{T}) \times_{\hat{\hat{\rho}}} \mathbb{Z} \cong \mathcal{O}_{\rho,\eta}^{\kappa} \otimes \mathcal{K}$ and $K_i(\mathcal{O}_{\rho,\eta}^{\kappa} \times_{\hat{\rho}} \mathbb{T}) \cong K_i((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}})$, one has:

Lemma 7.2. The following six term exact sequence of K-theory holds:

Hence there exist short exact sequences for i = 0, 1:

$$0 \longrightarrow \operatorname{Coker}(\operatorname{id} - \beta_{\rho,i}) \text{ in } K_i((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}})$$

$$\longrightarrow K_i(\mathcal{O}_{\rho,\eta}^{\kappa})$$

$$\longrightarrow \operatorname{Ker}(\operatorname{id} - \beta_{\rho,i+1}) \text{ in } K_{i+1}((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}})$$

$$\longrightarrow 0.$$

In the rest of this section, we will study the groups

$$\operatorname{Coker}(\operatorname{id} - \beta_{\rho,i}) \text{ in } K_i((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}}), \qquad \operatorname{Ker}(\operatorname{id} - \beta_{\rho,i+1}) \text{ in } K_{i+1}((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}}).$$

The action $\hat{\eta}$ acts on the subalgebra $(\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}}$, which we still denote by $\hat{\eta}$. Then the fixed point algebra $((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}})^{\hat{\eta}}$ of $(\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}}$ under $\hat{\eta}$ coincides with $\mathcal{F}_{\rho,\eta}$. The above discussions for the action $\hat{\rho}: \mathbb{T} \longrightarrow \mathcal{O}_{\rho,\eta}^{\kappa}$ works for the action $\hat{\eta}: \mathbb{T} \longrightarrow (\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}}$ as in the following way. For $y \in ((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}})^{\hat{\eta}}$, define the constant function $\widehat{y} \in L^1(\mathbb{T}, (\mathcal{O}_{\rho,\eta}^{\kappa})^{\widehat{\rho}}) \subset (\mathcal{O}_{\rho,\eta}^{\kappa})^{\widehat{\rho}} \times_{\widehat{\eta}} \mathbb{T}$ by setting $\widehat{y}(w) =$ $y, w \in \mathbb{T}$. Putting $q_0 = \hat{1}$, the algebra $((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}})^{\hat{\eta}}$ is canonically isomorphic to $q_0((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}} \times_{\hat{\eta}} \mathbb{T})q_0$ through the map

$$j_{\eta}^{\rho}: y \in ((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}})^{\hat{\eta}} \longrightarrow \hat{y} \in q_0((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}} \times_{\hat{\eta}} \mathbb{T})q_0$$

which induces an isomorphism

$$j_{\eta*}^{\rho}: K_i(((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}})^{\hat{\eta}}) \longrightarrow K_i(q_0((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}} \times_{\hat{\eta}} \mathbb{T})q_0), \qquad i = 0, 1$$

on their K-groups. Similarly to Lemma 7.1, we have:

Lemma 7.3.

(i) There exists an isometry

$$u \in M(((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}} \times_{\hat{\eta}} \mathbb{T}) \otimes \mathcal{K})$$
 such that $uu^* = q_0 \otimes 1, u^*u = 1.$

- (ii) $(\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}} \times_{\hat{\eta}} \mathbb{T}$ is stably isomorphic to $((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}})^{\hat{\eta}}$.
- (iii) The inclusion

$$\iota_{\hat{\eta}}^{\hat{\rho}}: q_0((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}} \times_{\hat{\eta}} \mathbb{T}) q_0(=((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}})^{\hat{\eta}} = \mathcal{F}_{\rho,\eta}) \hookrightarrow (\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}} \times_{\hat{\eta}} \mathbb{T}$$
induces an isomorphism

$$\iota_{\hat{\eta}*}^{\hat{\rho}}: K_i(q_0((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}} \times_{\hat{\eta}} \mathbb{T})q_0) \cong K_i((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}} \times_{\hat{\eta}} \mathbb{T}), \qquad i = 0, 1$$

on their K-groups.

The isomorphism

$$\operatorname{Ad}(u^*): y \in q_0((\mathcal{O}_{\varrho,n}^{\kappa})^{\hat{\rho}} \times_{\hat{\eta}} \mathbb{T}) q_0 \longrightarrow u^* y u \in (\mathcal{O}_{\varrho,n}^{\kappa})^{\hat{\rho}} \times_{\hat{\eta}} \mathbb{T}$$

induces isomorphisms

$$\operatorname{Ad}(u^*)_*: K_i(q_0((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}} \times_{\hat{\eta}} \mathbb{T})q_0) \cong K_i((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}} \times_{\hat{\eta}} \mathbb{T}), \qquad i = 0, 1.$$

Let $\hat{\eta}_{\rho}$ be the automorphism on $(\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}} \times_{\hat{\eta}} \mathbb{T}$ for the positive generator of \mathbb{Z} for the dual action of $\hat{\eta}$. Define an isomorphism

$$\gamma_{\eta,i} = j_{\eta*}^{\rho-1} \circ \operatorname{Ad}(u^*)_*^{-1} \circ \hat{\eta}_{\rho*} \circ \operatorname{Ad}(u^*)_* \circ j_{\eta*}^{\rho} : K_i(\mathcal{F}_{\rho,\eta}) \longrightarrow K_i(\mathcal{F}_{\rho,\eta}), \qquad i = 0, 1$$
 such that the diagram is commutative for $i = 0, 1$:

$$K_{i}((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}} \times_{\hat{\eta}} \mathbb{T}) \xrightarrow{\hat{\eta}_{\rho*}} K_{i}((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}} \times_{\hat{\eta}} \mathbb{T})$$

$$\uparrow^{\mathrm{Ad}(u^{*})_{*}} \qquad \uparrow^{\mathrm{Ad}(u^{*})_{*}}$$

$$K_{i}(q_{0}((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}} \times_{\hat{\eta}} \mathbb{T})q_{0}) \qquad K_{i}(q_{0}((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}} \times_{\hat{\eta}} \mathbb{T})q_{0})$$

$$\uparrow^{j_{\eta*}} \qquad \qquad \uparrow^{j_{\eta*}^{\rho}}$$

$$K_{i}(((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}})^{\hat{\eta}}) \qquad \qquad K_{i}(((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}})^{\hat{\eta}})$$

$$\parallel \qquad \qquad \parallel$$

$$K_{i}(\mathcal{F}_{\rho,\eta}) \qquad \xrightarrow{\gamma_{\eta,i}} \qquad K_{i}(\mathcal{F}_{\rho,\eta}).$$

We similarly define an endomorphism $\gamma_{\rho,i}: K_i(\mathcal{F}_{\rho,\eta}) \longrightarrow K_i(\mathcal{F}_{\rho,\eta})$ by exchanging the rôles of ρ and η .

Under the equality $((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}})^{\hat{\eta}} = \mathcal{F}_{\rho,\eta}$, we have the following lemma which is similar to Lemma 7.2

Lemma 7.4. The following six term exact sequence of K-theory holds:

$$K_{0}(\mathcal{F}_{\rho,\eta}) \xrightarrow{\operatorname{id}-\gamma_{\eta,0}} K_{0}(\mathcal{F}_{\rho,\eta}) \xrightarrow{\iota_{*}} K_{0}((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}})$$

$$\delta \upharpoonright \qquad \qquad \exp \downarrow$$

$$K_{1}((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}}) \xleftarrow{\iota_{*}} K_{1}(\mathcal{F}_{\rho,\eta}) \xleftarrow{\operatorname{id}-\gamma_{\eta,1}} K_{1}(\mathcal{F}_{\rho,\eta}).$$

In particular, if $K_1(\mathcal{F}_{\rho,\eta}) = 0$, we have

$$K_0((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}}) = \operatorname{Coker}(\operatorname{id} - \gamma_{\eta,0}) \quad \text{in } K_0(\mathcal{F}_{\rho,\eta}),$$

$$K_1((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}}) = \operatorname{Ker}(\operatorname{id} - \gamma_{\eta,0}) \quad \text{in } K_0(\mathcal{F}_{\rho,\eta}).$$

Denote by $M_n(\mathcal{B})$ the $n \times n$ matrix algebra over a C^* -algebra \mathcal{B} , which is identified with the tensor product $\mathcal{B} \otimes M_n(\mathbb{C})$. The following lemmas hold.

Lemma 7.5. For a projection $q \in M_n((\mathcal{O}_{\rho,\eta}^{\kappa})^{\rho})$ and a partial isometry $S \in \mathcal{O}_{\rho,\eta}^{\kappa}$ such that

$$\hat{\rho}_z(S) = zS \quad \text{for } z \in \mathbb{T}, \qquad q(SS^* \otimes 1_n) = (SS^* \otimes 1_n)q,$$

we have

$$\beta_{\rho,0}^{-1}([(SS^* \otimes 1_n)q]) = [(S^* \otimes 1_n)q(S \otimes 1_n)] \quad \text{in } K_0((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}}).$$

Proof. As q commutes with $SS^* \otimes 1_n$, $p = (S^* \otimes 1_n)q(S \otimes 1_n)$ is a projection in $(\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}}$. Since $p \leq S^*S \otimes 1_n$, By a similar argument to the proof of [23, Lemma 4.5], one sees that $\beta_{\rho,0}([p]) = [(S \otimes 1_n)p(S^* \otimes 1_n)]$ in $K_0((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}})$. \square

Lemma 7.6.

(i) For a projection $q \in M_n(\mathcal{F}_{\rho,\eta})$ and a partial isometry $T \in (\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}}$ such that

$$\hat{\eta}_w(T) = wT$$
 for $w \in \mathbb{T}$, $q(TT^* \otimes 1_n) = (TT^* \otimes 1_n)q$.

we have

$$\gamma_{\eta,0}^{-1}([(TT^* \otimes 1_n)q]) = [(T^* \otimes 1_n)q(T \otimes 1_n)] \quad \text{in } K_0(\mathcal{F}_{\rho,\eta}).$$

(ii) For a projection $q \in M_n(\mathcal{F}_{\rho,\eta})$ and a partial isometry $S \in (\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\eta}}$ such that

$$\hat{\rho}_z(S) = zS \quad \text{for } z \in \mathbb{T}, \qquad q(SS^* \otimes 1_n) = (SS^* \otimes 1_n)q,$$

we have

$$\gamma_{\rho,0}^{-1}([(SS^* \otimes 1_n)q]) = [(S^* \otimes 1_n)q(S \otimes 1_n)] \quad \text{in } K_0(\mathcal{F}_{\rho,\eta}).$$

Hence we have

Lemma 7.7. The diagram

$$K_0(\mathcal{F}_{\rho,\eta}) \xrightarrow{\operatorname{id}-\gamma_{\rho,0}} K_0(\mathcal{F}_{\rho,\eta})$$

$$\downarrow \iota_* \qquad \qquad \downarrow \iota_*$$

$$K_0((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}}) \xrightarrow{\operatorname{id}-\beta_{\rho,0}} K_0((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}})$$

is commutative.

Proof. By [35, Proposition 3.3], the map $\iota_*: K_0(\mathcal{F}_{\rho,\eta}) \longrightarrow K_0((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}})$ is induced by the natural inclusion $\mathcal{F}_{\rho,\eta}(=((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}})^{\eta}) \hookrightarrow (\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}}$. For an element $[q] \in K_0(\mathcal{F}_{\rho,\eta})$ one may assume that $q \in M_n(\mathcal{F}_{\rho,\eta})$ for some $n \in \mathbb{N}$ so that one has

$$\begin{split} \gamma_{\rho,0}^{-1}([q]) &= \sum_{\alpha \in \Sigma^{\rho}} [(S_{\alpha}S_{\alpha}^* \otimes 1_n)q] \\ &= \sum_{\alpha \in \Sigma^{\rho}} [(S_{\alpha}^* \otimes 1_n)q(S_{\alpha} \otimes 1_n)] \\ &= \sum_{\alpha \in \Sigma^{\rho}} \beta_{\rho,0}^{-1}([q(S_{\alpha}S_{\alpha}^* \otimes 1_n)]) = \beta_{\rho,0}^{-1}([q]) \end{split}$$

so that $\beta_{\rho,0}|_{K_0(\mathcal{F}_{\rho,\eta})} = \gamma_{\rho,0}$.

In the rest of this section, we assume that $K_1(\mathcal{F}_{\rho,\eta}) = 0$. The following lemma is crucial in our further discussions.

Lemma 7.8. In the six term exact sequence in Lemma 7.4 with $K_1(\mathcal{F}_{\rho,\eta}) = 0$, we have the following commutative diagrams:

Proof. It is well-known that δ -map is functorial (see [48, Theorem 7.2.5], [4, p.266 (LX)]). Hence the diagram of the upper square

$$K_{1}((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}}) \xrightarrow{\mathrm{id}-\beta_{\rho,1}} K_{1}((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad K_{0}(\mathcal{F}_{\rho,\eta}) \qquad \xrightarrow{\mathrm{id}-\gamma_{\rho,0}} \qquad K_{0}(\mathcal{F}_{\rho,\eta})$$

is commutative. Since $\gamma_{\rho,0} \circ \gamma_{\eta,0} = \gamma_{\eta,0} \circ \gamma_{\rho,0}$, the diagram of the middle square

(7.4)
$$K_{0}(\mathcal{F}_{\rho,\eta}) \xrightarrow{\mathrm{id}-\gamma_{\rho,0}} K_{0}(\mathcal{F}_{\rho,\eta})$$

$$\downarrow_{\mathrm{id}-\gamma_{\eta,0}} \qquad \downarrow_{\mathrm{id}-\gamma_{\eta,0}}$$

$$K_{0}(\mathcal{F}_{\rho,\eta}) \xrightarrow{\mathrm{id}-\gamma_{\rho,0}} K_{0}(\mathcal{F}_{\rho,\eta})$$

is commutative. The commutativity of the lower square comes from the preceding lemma. $\hfill\Box$

We will describe the K-groups $K_*(\mathcal{O}_{\rho,\eta}^{\kappa})$ in terms of the kernels and cokernels of the homomorphisms id $-\gamma_{\rho,0}$ and id $-\gamma_{\eta,0}$ on $K_0(\mathcal{F}_{\rho,\eta})$. Recall that there exist two short exact sequences by Lemma 7.2:

$$0 \longrightarrow \operatorname{Coker}(\operatorname{id} - \beta_{\rho,0}) \text{ in } K_0((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}})$$

$$\longrightarrow K_0(\mathcal{O}_{\rho,\eta}^{\kappa})$$

$$\longrightarrow \operatorname{Ker}(\operatorname{id} - \beta_{\rho,1}) \text{ in } K_1((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}})$$

$$\longrightarrow 0$$

and

$$0 \longrightarrow \operatorname{Coker}(\operatorname{id} - \beta_{\rho,1}) \text{ in } K_1((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}})$$

$$\longrightarrow K_1(\mathcal{O}_{\rho,\eta}^{\kappa})$$

$$\longrightarrow \operatorname{Ker}(\operatorname{id} - \beta_{\rho,0}) \text{ in } K_0((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}})$$

$$\longrightarrow 0.$$

As $\gamma_{\eta,0} \circ \gamma_{\rho,0} = \gamma_{\rho,0} \circ \gamma_{\eta,0}$ on $K_0(\mathcal{F}_{\rho,\eta})$, the homomorphisms $\gamma_{\rho,0}$ and $\gamma_{\eta,0}$ naturally act on Coker(id $-\gamma_{\eta,0}$) = $K_0(\mathcal{F}_{\rho,\eta})/(\text{id} - \gamma_{\eta,0})K_0(\mathcal{F}_{\rho,\eta})$ and Coker(id $-\gamma_{\rho,0}$) = $K_0(\mathcal{F}_{\rho,\eta})/(\text{id} - \gamma_{\rho,0})K_0(\mathcal{F}_{\rho,\eta})$ as endomorphisms respectively, which we denote by $\bar{\gamma}_{\rho,0}$ and $\bar{\gamma}_{\eta,0}$ respectively.

Lemma 7.9.

(i) For $K_0(\mathcal{O}_{\rho,\eta}^{\kappa})$, we have

$$\operatorname{Coker}(\operatorname{id} - \beta_{\rho,0}) \ in \ K_0((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}})$$

$$\cong \operatorname{Coker}(\operatorname{id} - \bar{\gamma}_{\rho,0}) \ in \ K_0(\mathcal{F}_{\rho,\eta})/(\operatorname{id} - \gamma_{\eta,0})K_0(\mathcal{F}_{\rho,\eta})$$

$$\cong K_0(\mathcal{F}_{\rho,\eta})/((\operatorname{id} - \gamma_{\rho,0})K_0(\mathcal{F}_{\rho,\eta}) + (\operatorname{id} - \gamma_{\eta,0})K_0(\mathcal{F}_{\rho,\eta}))$$

and

$$\operatorname{Ker}(\operatorname{id} - \beta_{\rho,1}) \ in \ K_1((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}})$$

$$\cong \operatorname{Ker}(\operatorname{id} - \gamma_{\rho,0}) \ in \ (\operatorname{Ker}(\operatorname{id} - \gamma_{\eta,0}) \ in \ K_0(\mathcal{F}_{\rho,\eta}))$$

$$\cong \operatorname{Ker}(\operatorname{id} - \gamma_{\rho,0}) \cap \operatorname{Ker}(\operatorname{id} - \gamma_{\eta,0}) \ in \ K_0(\mathcal{F}_{\rho,\eta}).$$

(ii) For
$$K_1(\mathcal{O}_{\rho,\eta}^{\kappa})$$
, we have

$$\operatorname{Coker}(\operatorname{id} - \beta_{\rho,1}) \text{ in } K_1((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}})$$

$$\cong (\operatorname{Ker}(\operatorname{id} - \gamma_{\eta,0}) \text{ in } K_0(\mathcal{F}_{\rho,\eta}))/(\operatorname{id} - \gamma_{\rho,0})(\operatorname{Ker}(\operatorname{id} - \gamma_{\eta,0}) \text{ in } K_0(\mathcal{F}_{\rho,\eta}))$$
and

$$\operatorname{Ker}(\operatorname{id} - \beta_{\rho,0}) \ in \ K_0((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}})$$

$$\cong \operatorname{Ker}(\operatorname{id} - \bar{\gamma}_{\rho,0}) \ in \ (K_0(\mathcal{F}_{\rho,\eta})/(\operatorname{id} - \gamma_{\eta,0})K_0(\mathcal{F}_{\rho,\eta})).$$

Proof. (i) We will first prove the assertions for the group

Coker(id
$$-\beta_{\rho,0}$$
) in $K_0((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}})$.

In the diagram (7.3), the exactness of the vertical arrows implies that ι_* is surjective so that

$$K_0((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}}) \cong \iota_*(K_0(\mathcal{F}_{\rho,\eta})) \cong K_0(\mathcal{F}_{\rho,\eta})/\mathrm{Ker}(\mathrm{id} - \gamma_{\eta,0}) \text{ in } K_0(\mathcal{F}_{\rho,\eta}).$$

By the commutativity in the lower square in the diagram (7.3), one has

Coker(id
$$-\beta_{\rho,0}$$
) in $K_0((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}})$
 \cong Coker(id $-\bar{\gamma}_{\rho,0}$) in (Coker(id $-\gamma_{\eta,0}$) in $K_0(\mathcal{F}_{\rho,\eta})$.)

The latter group will be proved to be isomorphic to the group

$$K_0(\mathcal{F}_{\rho,\eta})/((\mathrm{id}-\gamma_{\eta,0})K_0(\mathcal{F}_{\rho,\eta}))+(\mathrm{id}-\gamma_{\rho,0})K_0(\mathcal{F}_{\rho,\eta})).$$

Put $H_{\rho,\eta} = (\mathrm{id} - \gamma_{\eta,0}) K_0(\mathcal{F}_{\rho,\eta}) + (\mathrm{id} - \gamma_{\rho,0}) K_0(\mathcal{F}_{\rho,\eta})$ the subgroup of $K_0(\mathcal{F}_{\rho,\eta})$ generated by $(\mathrm{id} - \gamma_{\eta,0}) K_0(\mathcal{F}_{\rho,\eta})$ and $(\mathrm{id} - \gamma_{\rho,0}) K_0(\mathcal{F}_{\rho,\eta})$. Set the quotient maps

$$K_0(\mathcal{F}_{\rho,\eta}) \xrightarrow{q_{\eta}} K_0(\mathcal{F}_{\rho,\eta})/(\mathrm{id} - \gamma_{\eta,0})K_0(\mathcal{F}_{\rho,\eta})$$

$$\xrightarrow{q_{(\mathrm{id}-\gamma_{\rho},0)}} \mathrm{Coker}(\mathrm{id} - \bar{\gamma}_{\rho,0}) \text{ in } K_0(\mathcal{F}_{\rho,\eta})/(\mathrm{id} - \gamma_{\eta,0})K_0(\mathcal{F}_{\rho,\eta})$$

and

$$\Phi = q_{(\mathrm{id}-\gamma_{\rho,0})} \circ q_{\eta} : K_0(\mathcal{F}_{\rho,\eta})
\longrightarrow \operatorname{Coker}(\mathrm{id} - \bar{\gamma}_{\rho,0}) \text{ in } K_0(\mathcal{F}_{\rho,\eta})/(\mathrm{id} - \gamma_{\eta,0}) K_0(\mathcal{F}_{\rho,\eta}).$$

It suffices to show the equality $\operatorname{Ker}(\Phi) = H_{\rho,\eta}$. As $(\operatorname{id} - \gamma_{\rho,0})$ commutes with $(\operatorname{id} - \gamma_{\eta,0})$, one has

$$(\mathrm{id} - \gamma_{\eta,0}) K_0(\mathcal{F}_{\rho,\eta}) \subset \mathrm{Ker}(\Phi), \qquad (\mathrm{id} - \gamma_{\rho,0}) K_0(\mathcal{F}_{\rho,\eta}) \subset \mathrm{Ker}(\Phi).$$

Hence we have $H_{\rho,\eta} \subset \text{Ker}(\Phi)$. On the other hand, for $g \in \text{Ker}(\Phi)$, we have $g \in (\text{id} - \bar{\gamma}_{\rho,0})(K_0(\mathcal{F}_{\rho,\eta})/(\text{id} - \gamma_{\eta,0})K_0(\mathcal{F}_{\rho,\eta}))$ so that $g = (\text{id} - \gamma_{\rho,0})[h]$ for some $[h] \in K_0(\mathcal{F}_{\rho,\eta})/(\text{id} - \gamma_{\eta,0})K_0(\mathcal{F}_{\rho,\eta})$. Hence

$$g = (\mathrm{id} - \gamma_{\rho,0})h + (\mathrm{id} - \gamma_{\rho,0})(\mathrm{id} - \gamma_{\eta,0})K_0(\mathcal{F}_{\rho,\eta})$$

so that $g \in H_{\rho,\eta}$. Hence we have $\operatorname{Ker}(\Phi) \subset H_{\rho,\eta}$ and $\operatorname{Ker}(\Phi) = H_{\rho,\eta}$.

We will second prove the assertions for the group

$$\operatorname{Ker}(\operatorname{id} - \beta_{\rho,1}) \text{ in } K_1((\mathcal{O}_{\rho,n}^{\kappa})^{\hat{\rho}}).$$

In the diagram (7.3), the exactness of the vertical arrows implies that δ is injective and $\text{Im}(\delta) = \text{Ker}(\text{id} - \gamma_{\eta,0})$ so that we have

(7.5)
$$K_1((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}}) \cong \operatorname{Ker}(\operatorname{id} - \gamma_{\eta,0}) \text{ in } K_0(\mathcal{F}_{\rho,\eta}).$$

By the commutativity in the upper square in the diagram (7.3), one has

$$\operatorname{Ker}(\operatorname{id}-\beta_{\rho,1})$$
 in $K_1((\mathcal{O}_{\rho,\eta}^{\kappa})^{\hat{\rho}}) \cong \operatorname{Ker}(\operatorname{id}-\gamma_{\rho,0})$ in $(\operatorname{Ker}(\operatorname{id}-\gamma_{\eta,0}))$ in $K_0(\mathcal{F}_{\rho,\eta})$.

Since $\gamma_{\eta,0}$ commutes with $\gamma_{\rho,0}$ in $K_0(\mathcal{F}_{\rho,\eta})$, we have

$$\operatorname{Ker}(\operatorname{id} - \gamma_{\rho,0})$$
 in $(\operatorname{Ker}(\operatorname{id} - \gamma_{\eta,0})$ in $K_0(\mathcal{F}_{\rho,\eta}))$
 $\cong \operatorname{Ker}(\operatorname{id} - \gamma_{\rho,0}) \cap \operatorname{Ker}(\operatorname{id} - \gamma_{\eta,0})$ in $K_0(\mathcal{F}_{\rho,\eta})$.

(ii) The assertions are similarly shown as in (i).

Therefore we have:

Theorem 7.10. Assume that $K_1(\mathcal{F}_{\rho,\eta}) = 0$. There exist short exact sequences:

$$0 \longrightarrow K_0(\mathcal{F}_{\rho,\eta})/((\mathrm{id} - \gamma_{\rho,0})K_0(\mathcal{F}_{\rho,\eta}) + (\mathrm{id} - \gamma_{\eta,0})K_0(\mathcal{F}_{\rho,\eta}))$$

$$\longrightarrow K_0(\mathcal{O}_{\rho,\eta}^{\kappa})$$

$$\longrightarrow \mathrm{Ker}(\mathrm{id} - \gamma_{\rho,0}) \cap \mathrm{Ker}(\mathrm{id} - \gamma_{\eta,0}) \ in \ K_0(\mathcal{F}_{\rho,\eta})$$

$$\longrightarrow 0$$

and

$$0 \longrightarrow (\operatorname{Ker}(\operatorname{id} - \gamma_{\eta,0}) \ in \ K_0(\mathcal{F}_{\rho,\eta}))/(\operatorname{id} - \gamma_{\rho,0})(\operatorname{Ker}(\operatorname{id} - \gamma_{\eta,0}) \ in \ K_0(\mathcal{F}_{\rho,\eta}))$$

$$\longrightarrow K_1(\mathcal{O}_{\rho,\eta}^{\kappa})$$

$$\longrightarrow \operatorname{Ker}(\operatorname{id} - \bar{\gamma}_{\rho,0}) \ in \ (K_0(\mathcal{F}_{\rho,\eta})/(\operatorname{id} - \gamma_{\eta,0})K_0(\mathcal{F}_{\rho,\eta}))$$

$$\longrightarrow 0.$$

We may describe the above formulae as follows.

Corollary 7.11. Suppose $K_1(\mathcal{F}_{\rho,\eta}) = 0$. There exist short exact sequences:

$$0 \longrightarrow \operatorname{Coker}(\operatorname{id} - \bar{\gamma}_{\rho,0}) \ in \ (\operatorname{Coker}(\operatorname{id} - \gamma_{\eta,0}) \ in \ K_0(\mathcal{F}_{\rho,\eta}))$$

$$\longrightarrow K_0(\mathcal{O}_{\rho,\eta}^{\kappa})$$

$$\longrightarrow \operatorname{Ker}(\operatorname{id} - \gamma_{\rho,0}) \ in \ (\operatorname{Ker}(\operatorname{id} - \gamma_{\eta,0}) \ in \ K_0(\mathcal{F}_{\rho,\eta}))$$

$$\longrightarrow 0$$

and

$$0 \longrightarrow \operatorname{Coker}(\operatorname{id} - \gamma_{\rho,0}) \ in \ ((\operatorname{Ker}(\operatorname{id} - \gamma_{\eta,0}) \ in \ K_0(\mathcal{F}_{\rho,\eta}))$$

$$\longrightarrow K_1(\mathcal{O}_{\rho,\eta}^{\kappa})$$

$$\longrightarrow \operatorname{Ker}(\operatorname{id} - \bar{\gamma}_{\rho,0}) \ in \ (\operatorname{Coker}(\operatorname{id} - \gamma_{\eta,0}) \ in \ K_0(\mathcal{F}_{\rho,\eta}))$$

$$\longrightarrow 0.$$

8. K-Theory formulae

In this section, we will present more useful formulae to compute the K-groups $K_i(\mathcal{O}_{\rho,\eta}^{\kappa})$ under a certain additional assumption on $(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$. The additional condition on $(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$ is the following:

Definition 8.1. A C^* -textile dynamical system $(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$ is said to form square if the C^* -subalgebra $C^*(\rho_{\alpha}(1) : \alpha \in \Sigma^{\rho})$ of \mathcal{A} generated by the projections $\rho_{\alpha}(1), \alpha \in \Sigma^{\rho}$ coincides with the C^* -subalgebra $C^*(\eta_a(1) : a \in \Sigma^{\eta})$ of \mathcal{A} generated by the projections $\eta_a(1), a \in \Sigma^{\eta}$.

Lemma 8.2. Assume that $(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$ forms square. Put for $l \in \mathbb{Z}_+$ $\mathcal{A}_{l}^{\rho} = C^*(\rho_{\mu}(1) : \mu \in B_{l}(\Lambda_{\rho})), \qquad \mathcal{A}_{l}^{\eta} = C^*(\eta_{\xi}(1) : \xi \in B_{l}(\Lambda_{\eta})).$ Then $\mathcal{A}_{l}^{\rho} = \mathcal{A}_{l}^{\eta}$.

Proof. By the assumption, we have $\mathcal{A}_1^{\rho} = \mathcal{A}_1^{\eta}$. Hence the desired equality for l=1 holds. Suppose that the equalities hold for all $l \leq k$ for some $k \in \mathbb{N}$. For $\mu = (\mu_1, \mu_2, \dots, \mu_k, \mu_{k+1}) \in B_{k+1}(\Lambda_{\rho})$ we have $\rho_{\mu}(1) = \rho_{\mu_{k+1}}(\rho_{\mu_1\mu_2\cdots\mu_k}(1))$ so that $\rho_{\mu}(1) \in \rho_{\mu_{k+1}}(\mathcal{A}_k^{\rho})$. By the commutation relation (3.1), one sees that

$$\rho_{\mu_{k+1}}(\mathcal{A}_k^{\rho}) \subset C^*(\eta_{\xi}(\rho_{\alpha}(1)) : \xi \in B_k(\Lambda_{\eta}), \alpha \in \Sigma^{\rho}).$$

Since $C^*(\rho_{\alpha}(1): \alpha \in \Sigma^{\rho}) = C^*(\eta_a(1): a \in \Sigma^{\eta})$, the algebra $C^*(\eta_{\xi}(\rho_{\alpha}(1)): \xi \in B_k(\Lambda_{\eta}), \alpha \in \Sigma^{\rho})$ is contained in \mathcal{A}^{η}_{k+1} so that $\rho_{\mu_{k+1}}(\mathcal{A}^{\eta}_k) \subset \mathcal{A}^{\eta}_{k+1}$. This implies $\rho_{\mu}(1) \in \mathcal{A}^{\eta}_{k+1}$ so that $\mathcal{A}^{\rho}_{k+1} \subset \mathcal{A}^{\eta}_{k+1}$ and hence $\mathcal{A}^{\rho}_{k+1} = \mathcal{A}^{\eta}_{k+1}$. \square

Therefore we have

Lemma 8.3. Assume that $(A, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$ forms square. Put for $j, k \in \mathbb{Z}_+$

$$\mathcal{A}_{j,k} = C^*(\rho_{\mu}(\eta_{\zeta}(1)) : \mu \in B_j(\Lambda_{\rho}), \zeta \in B_k(\Lambda_{\eta}))$$

$$(= C^*(\eta_{\xi}(\rho_{\nu}(1)) : \xi \in B_k(\Lambda_{\eta}), \nu \in B_j(\Lambda_{\rho}))).$$

Then $A_{j,k}$ is commutative and of finite dimensional such that

$$\mathcal{A}_{j,k} = \mathcal{A}_{j+k}^{\rho} (= \mathcal{A}_{j+k}^{\eta}).$$

Hence $A_{j,k} = A_{j',k'}$ if j + k = j' + k'.

Proof. Since $\eta_{\zeta}(1) \in Z_{\mathcal{A}}$ and $\rho_{\mu}(Z_{\mathcal{A}}) \subset Z_{\mathcal{A}}$, the algebra $\mathcal{A}_{j,k}$ belongs to the center $Z_{\mathcal{A}}$ of \mathcal{A} . By the preceding lemma, we have

$$\mathcal{A}_{j,k} = C^*(\rho_{\mu}(\rho_{\nu}(1))) : \mu \in B_j(\Lambda_{\rho}), \nu \in B_k(\Lambda_{\rho})) = \mathcal{A}_{j+k}^{\rho}. \qquad \Box$$

For $j, k \in \mathbb{Z}_+$, put l = j + k. We denote by \mathcal{A}_l the commutative finite dimensional algebra $\mathcal{A}_{j,k}$. Put $m(l) = \dim \mathcal{A}_l$. Take the finite sequence of minimal projections $E_i^l, i = 1, 2, ..., m(l)$ in \mathcal{A}_l such that $\sum_{i=1}^{m(l)} E_i^l = 1$ and hence $\mathcal{A}_{l} = \bigoplus_{i=1}^{m(l)} \mathbb{C}E_{i}^{l}$. Since $\rho_{\alpha}(\mathcal{A}_{l}) \subset \mathcal{A}_{l+1}$, there exists $A_{l,l+1}^{\rho}(i,\alpha,n)$, which takes 0 or 1, such that

$$\rho_{\alpha}(E_i^l) = \sum_{n=1}^{m(l+1)} A_{l,l+1}^{\rho}(i,\alpha,n) E_n^{l+1}, \qquad \alpha \in \Sigma^{\rho}, \ i = 1, \dots, m(l).$$

Similarly, there exists $A_{l,l+1}^{\eta}(i,a,n)$, which takes 0 or 1, such that

$$\eta_a(E_i^l) = \sum_{n=1}^{m(l+1)} A_{l,l+1}^{\eta}(i,a,n) E_n^{l+1}, \qquad a \in \Sigma^{\eta}, \ i = 1, \dots, m(l).$$

Set for $i = 1, \ldots, m(l)$

$$\mathcal{F}_{j,k}(i) = C^*(S_{\mu}T_{\zeta}E_i^lxE_i^lT_{\xi}^*S_{\nu}^* \mid \mu, \nu \in B_j(\Lambda_{\rho}), \zeta, \xi \in B_k(\Lambda_{\eta}), x \in \mathcal{A}),$$

= $C^*(T_{\zeta}S_{\mu}E_i^lxE_i^lS_{\nu}^*T_{\xi}^* \mid \mu, \nu \in B_j(\Lambda_{\rho}), \zeta, \xi \in B_k(\Lambda_{\eta}), x \in \mathcal{A}).$

Let $N_{i,k}(i)$ be the cardinal number of the finite set

$$\{(\mu,\zeta)\in B_j(\Lambda_\rho)\times B_k(\Lambda_\eta)\mid \rho_\mu(\eta_\zeta(1))\geq E_i^l\}.$$

Since E_i^l is a central projection in \mathcal{A} , we have

Lemma 8.4. For $j, k \in \mathbb{Z}_+$, put l = j + k. Then we have:

(i) $\mathcal{F}_{i,k}(i)$ is isomorphic to the matrix algebra

$$M_{N_{j,k}(i)}(E_i^l \mathcal{A} E_i^l) (= M_{N_{j,k}(i)}(\mathbb{C}) \otimes E_i^l \mathcal{A} E_i^l)$$

over
$$E_i^l \mathcal{A} E_i^l$$
 for $i = 1, \dots, m(l)$.
(ii) $\mathcal{F}_{j,k} = \mathcal{F}_{j,k}(1) \oplus \cdots \oplus \mathcal{F}_{j,k}(m(l))$.

Proof. (i) For $(\mu, \zeta) \in B_j(\Lambda_\rho) \times B_k(\Lambda_\eta)$ with $S_\mu T_\zeta E_i^l \neq 0$, one has

$$\eta_{\zeta}(\rho_{\mu}(1))E_i^l \neq 0$$

so that $\eta_{\zeta}(\rho_{\mu}(1)) \geq E_i^l$. Hence $(S_{\mu}T_{\zeta}E_i^l)^*S_{\mu}T_{\zeta}E_i^l = E_i^l$. One sees that the set

$$\{S_{\mu}T_{\zeta}E_i^l \mid (\mu,\zeta) \in B_j(\Lambda_{\rho}) \times B_k(\Lambda_{\eta}); S_{\mu}T_{\zeta}E_i^l \neq 0\}$$

consist of partial isometries which give rise to matrix units of $\mathcal{F}_{i,k}(i)$ such

that
$$\mathcal{F}_{j,k}(i)$$
 is isomorphic to $M_{N_{j,k}(i)}(E_i^l \mathcal{A} E_i^l)$.
(ii) Since $\mathcal{A} = E_1^l \mathcal{A} E_1^l \oplus \cdots \oplus E_{m(l)}^l \mathcal{A} E_{m(l)}^l$, the assertion is easy.

Define homomorphisms $\lambda_{\rho}, \lambda_{\eta}: K_0(\mathcal{A}) \longrightarrow K_0(\mathcal{A})$ by setting

$$\lambda_{\rho}([p]) = \sum_{\alpha \in \Sigma^{\rho}} [(\rho_{\alpha} \otimes 1_n)(p)], \qquad \lambda_{\eta}([p]) = \sum_{\alpha \in \Sigma^{\eta}} [(\eta_{\alpha} \otimes 1_n)(p)]$$

for a projection $p \in M_n(\mathcal{A})$ for some $n \in \mathbb{N}$. Recall that the identities (5.1), (5.2) give rise to the embeddings (5.3), which induce homomorphisms

$$K_0(\mathcal{F}_{j,k}) \longrightarrow K_0(\mathcal{F}_{j,k+1}), \qquad K_0(\mathcal{F}_{j,k}) \longrightarrow K_0(\mathcal{F}_{j+1,k}).$$

We still denote them by $\iota_{*,+1}, \iota_{+1,*}$ respectively.

Lemma 8.5. Assume that $(A, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$ forms square. There exists an isomorphism

$$\Phi_{j,k}: K_0(\mathcal{F}_{j,k}) \longrightarrow K_0(\mathcal{A})$$

such that the following diagrams are commutative:

(i)

$$K_{0}(\mathcal{F}_{j,k}) \xrightarrow{\iota_{+1,*}} K_{0}(\mathcal{F}_{j+1,k})$$

$$\Phi_{j,k} \downarrow \qquad \Phi_{j+1,k} \downarrow$$

$$K_{0}(\mathcal{A}) \xrightarrow{\lambda_{\rho}} K_{0}(\mathcal{A})$$
(ii)
$$K_{0}(\mathcal{F}_{j,k}) \xrightarrow{\iota_{*,+1}} K_{0}(\mathcal{F}_{j,k+1})$$

$$\Phi_{j,k} \downarrow \qquad \Phi_{j,k+1} \downarrow$$

$$K_{0}(\mathcal{A}) \xrightarrow{\lambda_{\eta}} K_{0}(\mathcal{A}).$$

Proof. Put for $i = 1, 2, \dots, m(l)$

$$P_i = \sum_{\mu \in B_j(\Lambda_\rho), \zeta \in B_k(\Lambda_\eta)} S_\mu T_\zeta E_i^l T_\zeta^* S_\mu^*.$$

Then P_i is a central projection in $\mathcal{F}_{j,k}$ such that $\sum_{i=1}^{m(l)} P_i = 1$. For $X \in \mathcal{F}_{j,k}$, one has $P_i X P_i \in \mathcal{F}_{j,k}(i)$ such that

$$X = \sum_{i=1}^{m(l)} P_i X P_i \in \bigoplus_{i=1}^{m(l)} \mathcal{F}_{j,k}(i).$$

Define an isomorphism

$$\varphi_{j,k}: X \in \mathcal{F}_{j,k} \longrightarrow \sum_{i=1}^{m(l)} P_i X P_i \in \bigoplus_{i=1}^{m(l)} \mathcal{F}_{j,k}(i)$$

which induces an isomorphism on their K-groups

$$\varphi_{j,k*}: K_0(\mathcal{F}_{j,k}) \longrightarrow \bigoplus_{i=1}^{m(l)} K_0(\mathcal{F}_{j,k}(i)).$$

Take and fix $\nu(i), \mu(i) \in B_i(\Lambda_\rho)$ and $\zeta(i), \xi(i) \in B_k(\Lambda_\eta)$ such that

(8.1)
$$T_{\xi(i)}S_{\nu(i)} = S_{\mu(i)}T_{\zeta(i)}$$
 and $T_{\xi(i)}S_{\nu(i)}E_i^l \neq 0$.

Hence $S_{\nu(i)}^* T_{\xi(i)}^* T_{\xi(i)} S_{\nu(i)} \geq E_i^l$. Since $\mathcal{F}_{j,k}(i)$ is isomorphic to $M_{N_{i,k(i)}}(\mathbb{C}) \otimes E_i^l \mathcal{A} E_i^l$,

the embedding

$$\iota_{j,k}(i): x \in E_i^l \mathcal{A} E_i^l \longrightarrow T_{\xi(i)} S_{\nu(i)} x S_{\nu(i)}^* T_{\xi(i)}^* \in \mathcal{F}_{j,k}(i)$$

induces an isomorphism on their K-groups

$$\iota_{j,k}(i)_*: K_0(E_i^l \mathcal{A} E_i^l) \longrightarrow K_0(\mathcal{F}_{j,k}(i)).$$

Put

$$\psi_{j,k} = \bigoplus_{i=1}^{m(l)} \iota_{j,k}(i) : \bigoplus_{i=1}^{m(l)} E_i^l \mathcal{A} E_i^l \longrightarrow \bigoplus_{i=1}^{m(l)} \mathcal{F}_{j,k}(i)$$

and hence we have an isomorphism

$$\psi_{j,k*} = \bigoplus_{i=1}^{m(l)} \iota_{j,k}(i)_* : \bigoplus_{i=1}^{m(l)} K_0(E_i^l \mathcal{A} E_i^l) \longrightarrow \bigoplus_{i=1}^{m(l)} K_0(\mathcal{F}_{j,k}(i)).$$

Since $K_0(\mathcal{A}) = \bigoplus_{i=1}^{m(l)} K_0(E_i^l \mathcal{A} E_i^l)$, we have an isomorphism

$$\Phi_{j,k} = \psi_{j,k*}^{-1} \circ \varphi_{j,k*} : K_0(\mathcal{F}_{j,k}) \xrightarrow{\varphi_{j,k*}} \bigoplus_{i=1}^{m(l)} K_0(\mathcal{F}_{j,k}(i)) \xrightarrow{\psi_{j,k*}^{-1}} K_0(\mathcal{A}).$$

(i) It suffices to show the following diagram

$$K_{0}(\mathcal{F}_{j,k}) \xrightarrow{\iota_{+1,*}} K_{0}(\mathcal{F}_{j+1,k})$$

$$\varphi_{j,k*} \downarrow \qquad \qquad \varphi_{j+1,k*} \downarrow$$

$$\bigoplus_{i=1}^{m(l)} K_{0}(\mathcal{F}_{j,k}(i)) \qquad \qquad \bigoplus_{i=1}^{m(l)} K_{0}(\mathcal{F}_{j+1,k}(i))$$

$$\psi_{j,k*} \uparrow \qquad \qquad \psi_{j+1,k*} \uparrow$$

$$K_{0}(\mathcal{A}) \xrightarrow{\lambda_{\rho}} K_{0}(\mathcal{A})$$

is commutative. For $x = \sum_{i=1}^{m(l)} E_i^l x E_i^l \in \mathcal{A}$, we have

$$\psi_{j,k}(x) = \sum_{i=1}^{m(l)} T_{\xi(i)} S_{\nu(i)} E_i^l x E_i^l S_{\nu(i)}^* T_{\xi(i)}^* = \sum_{i=1}^{m(l)} S_{\mu(i)} T_{\zeta(i)} E_i^l x E_i^l T_{\zeta(i)}^* S_{\mu(i)}^*.$$

Since $P_i T_{\xi(i)} S_{\nu(i)} E_i^l x E_i^l S_{\nu(i)}^* T_{\xi(i)}^* P_i = T_{\xi(i)} S_{\nu(i)} E_i^l x E_i^l S_{\nu(i)}^* T_{\xi(i)}^*$, we have

$$\varphi_{j,k}^{-1} \circ \psi_{j,k}(x) = \sum_{i=1}^{m(l)} T_{\xi(i)} S_{\nu(i)} E_i^l x E_i^l S_{\nu(i)}^* T_{\xi(i)}^*$$

so that

$$\iota_{+1,*} \circ \varphi_{j,k}^{-1} \circ \psi_{j,k}(x) = \sum_{\alpha \in \Sigma^{\rho}} \sum_{i=1}^{m(l)} T_{\xi(i)} S_{\nu(i)\alpha} \rho_{\alpha}(E_i^l x E_i^l) S_{\nu(i)\alpha}^* T_{\xi(i)}^*.$$

Since

$$S_{\nu(i)\alpha}\rho_{\alpha}(E_{i}^{l}xE_{i}^{l})S_{\nu(i)\alpha}^{*} = \sum_{n=1}^{m(l+1)} A_{l,l+1}^{\rho}(i,\alpha,n)S_{\nu(i)\alpha}E_{n}^{l+1}\rho_{\alpha}(x)E_{n}^{l+1}S_{\nu(i)\alpha}^{*}$$

and $A_{l,l+1}^{\rho}(i,\alpha,n)S_{\nu(i)\alpha}E_n^{l+1}=S_{\nu(i)\alpha}E_n^{l+1}$, we have

$$\sum_{\alpha \in \Sigma^{\rho}} S_{\nu(i)\alpha} \rho_{\alpha}(E_i^l x E_i^l) S_{\nu(i)\alpha}^* = \sum_{n=1}^{m(l+1)} \sum_{\alpha \in \Sigma^{\rho}} S_{\nu(i)\alpha} E_n^{l+1} \rho_{\alpha}(x) E_n^{l+1} S_{\nu(i)\alpha}^*$$

so that

$$\iota_{+1,*} \circ \varphi_{j,k}^{-1} \circ \psi_{j,k}(x) = \sum_{\alpha \in \Sigma^{\rho}} \sum_{i=1}^{m(l)} \sum_{n=1}^{m(l+1)} T_{\xi(i)} S_{\nu(i)\alpha} E_n^{l+1} \rho_{\alpha}(x) E_n^{l+1} S_{\nu(i)\alpha}^* T_{\xi(i)}^*.$$

On the other hand,

$$\psi_{j,k}(\lambda_{\rho}(x)) = \psi_{j,k} \left(\sum_{n=1}^{m(l+1)} \sum_{\alpha \in \Sigma^{\rho}} E_n^{l+1} \rho_{\alpha}(x) E_n^{l+1} \right)$$

$$= \sum_{\alpha \in \Sigma^{\rho}} \sum_{i=1}^{m(l)} \sum_{n=1}^{m(l+1)} T_{\xi(i)} S_{\nu(i)\alpha} E_n^{l+1} \rho_{\alpha}(x) E_n^{l+1} S_{\nu(i)\alpha}^* T_{\xi(i)}^*.$$

Therefore we have

$$\iota_{+1,*} \circ \varphi_{j,k}^{-1} \circ \psi_{j,k}(x) = \psi_{j,k}(\lambda_{\rho}(x)).$$

Define the abelian groups of the inductive limits:

$$G_{\rho} = \lim \{ \lambda_{\rho} : K_0(\mathcal{A}) \longrightarrow K_0(\mathcal{A}) \}, \qquad G_{\eta} = \lim \{ \lambda_{\eta} : K_0(\mathcal{A}) \longrightarrow K_0(\mathcal{A}) \}.$$

Put the subalgebras of $\mathcal{F}_{\rho,n}$ for $j,k\in\mathbb{Z}_+$

$$\mathcal{F}_{\rho,k} = C^*(T_{\zeta}S_{\mu}xS_{\nu}^*T_{\xi}^* \mid \mu, \nu \in B_*(\Lambda_{\rho}), |\mu| = |\nu|, \zeta, \xi \in B_k(\Lambda_{\eta}), x \in \mathcal{A})$$

$$= C^*(T_{\zeta}yT_{\xi}^* \mid \zeta, \xi \in B_k(\Lambda_{\eta}), y \in \mathcal{F}_{\rho}),$$

$$\mathcal{F}_{j,\eta} = C^*(S_{\mu}T_{\zeta}xT_{\xi}^*S_{\nu}^* \mid \mu, \nu \in B_j(\Lambda_{\rho}), \zeta, \xi \in B_*(\Lambda_{\eta}), |\zeta| = |\xi|, x \in \mathcal{A})$$

$$= C^*(S_{\mu}yS_{\nu}^* \mid \mu, \nu \in B_j(\Lambda_{\rho}), y \in \mathcal{F}_{\eta}).$$

By the preceding lemma, we have:

Lemma 8.6. For $j, k \in \mathbb{Z}_+$, there exist isomorphisms

$$\Phi_{\rho,k}: K_0(\mathcal{F}_{\rho,k}) \longrightarrow G_{\rho}, \qquad \Phi_{j,\eta}: K_0(\mathcal{F}_{j,\eta}) \longrightarrow G_{\eta}$$

such that the following diagrams are commutative:

(i)
$$K_{0}(\mathcal{F}_{j,k}) \xrightarrow{\iota_{+1,*}} K_{0}(\mathcal{F}_{j+1,k}) \xrightarrow{\iota_{+1,*}} \cdots \xrightarrow{\iota_{+1,*}} K_{0}(\mathcal{F}_{\rho,k})$$

$$\Phi_{j,k} \downarrow \qquad \Phi_{j+1,k} \downarrow \qquad \qquad \Phi_{\rho,k} \downarrow$$

$$K_{0}(\mathcal{A}) \xrightarrow{\lambda_{\rho}} K_{0}(\mathcal{A}) \xrightarrow{\lambda_{\rho}} \cdots \xrightarrow{\lambda_{\rho}} G_{\rho}$$
(ii)
$$K_{0}(\mathcal{F}_{j,k}) \xrightarrow{\iota_{*,+1}} K_{0}(\mathcal{F}_{j,k+1}) \xrightarrow{\iota_{*,+1}} \cdots \xrightarrow{\iota_{*,+1}} K_{0}(\mathcal{F}_{j,\eta})$$

$$\Phi_{j,k} \downarrow \qquad \Phi_{j,k+1} \downarrow \qquad \qquad \Phi_{j,\eta} \downarrow$$

$$K_{0}(\mathcal{A}) \xrightarrow{\lambda_{\eta}} K_{0}(\mathcal{A}) \xrightarrow{\lambda_{\eta}} \cdots \xrightarrow{\lambda_{\eta}} G_{\eta}.$$

Lemma 8.7. If $\xi = (\xi_1, \dots, \xi_k) \in B_k(\Lambda_\eta), \nu = (\nu_1, \dots, \nu_j) \in B_j(\Lambda_\rho)$ satisfy the condition $\rho_{\nu}(\eta_{\xi}(1)) \geq E_i^l$ for some $i = 1, \dots, m(l)$ with l = j + k, then $T_{\xi_1}^* T_{\xi} S_{\nu} E_i^l = T_{\bar{\xi}} S_{\nu} E_i^l$ where $\bar{\xi} = (\xi_2, \dots, \xi_k)$.

Proof. Since
$$T_{\xi_1}^* T_{\xi} = T_{\xi_1}^* T_{\xi_1} T_{\bar{\xi}} T_{\bar{\xi}}^* T_{\bar{\xi}} = T_{\bar{\xi}} T_{\xi_1}^* T_{\xi_1} T_{\bar{\xi}} = T_{\bar{\xi}} T_{\xi}^* T_{\xi}$$
, we have
$$T_{\xi_1}^* T_{\xi} S_{\nu} E_i^l = T_{\bar{\xi}} S_{\nu} S_{\nu}^* T_{\xi}^* T_{\xi} S_{\nu} E_i^l = T_{\bar{\xi}} S_{\nu} \rho_{\nu} (\eta_{\xi}(1)) E_i^l = T_{\bar{\xi}} S_{\nu} E_i^l. \qquad \Box$$

Let us denote by γ_{ρ} , γ_{η} the endomorphisms $\gamma_{\rho,0}$, $\gamma_{\eta,0}$ on $K_0(\mathcal{F}_{\rho,\eta})$ appeared in Lemma 7.6, respectively.

Lemma 8.8. For $k, j \in \mathbb{Z}_+$, we have:

(i) The restriction of γ_{η}^{-1} to $K_0(\mathcal{F}_{j,k})$ makes the following diagram commutative:

$$K_{0}(\mathcal{F}_{j,k}) \xrightarrow{\gamma_{\eta}^{-1}} K_{0}(\mathcal{F}_{j,k-1}) \xrightarrow{\iota_{*,+1}} K_{0}(\mathcal{F}_{j,k})$$

$$\Phi_{j,k} \downarrow \qquad \qquad \Phi_{j,k} \downarrow$$

$$K_{0}(\mathcal{A}) \xrightarrow{\lambda_{\eta}} K_{0}(\mathcal{A}).$$

(ii) The restriction of γ_{ρ}^{-1} to $K_0(\mathcal{F}_{j,k})$ makes the following diagram commutative:

$$K_{0}(\mathcal{F}_{j,k}) \xrightarrow{\gamma_{\rho}^{-1}} K_{0}(\mathcal{F}_{j-1,k}) \xrightarrow{\iota_{+1,*}} K_{0}(\mathcal{F}_{j,k})$$

$$\Phi_{j,k} \downarrow \qquad \qquad \Phi_{j,k} \downarrow$$

$$K_{0}(\mathcal{A}) \xrightarrow{\lambda_{\rho}} K_{0}(\mathcal{A}).$$

Proof. (i) Put l = j + k. Take a projection $p \in M_n(\mathcal{A})$ for some $n \in \mathbb{N}$. Since $\mathcal{A} \otimes M_n(\mathbb{C}) = \sum_{i=1}^{m(l)} {}^{\oplus}(E_i^l \otimes 1)(\mathcal{A} \otimes M_n)(E_i^l \otimes 1)$, by putting $p_i^l = (E_i^l \otimes 1)p(E_i^l \otimes 1) \in M_n(E_i^l \mathcal{A} E_i^l)$,

$$p_i = (E_i \otimes 1)p(E_i \otimes 1) \in M_n($$
 we have $p = \sum_{i=1}^{m(l)} p_i^l$. Take

we have $P=\sum_{i=1}^n P_i$. Take $\xi(i)=(\xi_1(i),\ldots,\xi_k(i))\in B_k(\Lambda_n),\quad \nu(i)=(\nu_1(i),\ldots,\nu_i(i))\in B_i(\Lambda_n)$

as in (8.1) so that $\rho_{\nu(i)}(\eta_{\xi(i)}(1)) \geq E_i^l$ and put $\bar{\xi}(i) = (\xi_2(i), \dots, \xi_k(i))$ so that $\xi(i) = \xi_1(i)\bar{\xi}(i)$. We have

$$\psi_{j,k*}([p]) = \sum_{i=1}^{m(l)} \oplus [(T_{\xi(i)}S_{\nu(i)} \otimes 1_n)p_i^l(S_{\nu(i)}^*T_{\xi(i)}^* \otimes 1_n)] \in \bigoplus_{i=1}^{m(l)} K_0(\mathcal{F}_{j,k}(i)).$$

As

$$(T_{\xi(i)}S_{\nu(i)}\otimes 1_n)p_i^l(S_{\nu(i)}^*T_{\xi(i)}^*\otimes 1_n)\leq T_{\xi_1(i)}T_{\xi_1(i)}^*\otimes 1_n,$$

by the preceding lemma we have

$$T_{\xi_1(i)}^* T_{\xi(i)} S_{\nu(i)} E_i^l = T_{\bar{\xi}(i)} S_{\nu(i)} E_i^l$$

so that by Lemma 7.6

$$\gamma_{\eta}^{-1}([(T_{\xi(i)}S_{\nu(i)}\otimes 1_n)p_i^l(S_{\nu(i)}^*T_{\xi(i)}^*\otimes 1_n)] = [(T_{\bar{\xi}(i)}S_{\nu(i)}\otimes 1_n)p_i^l(S_{\nu(i)}^*T_{\bar{\xi}(i)}^*\otimes 1_n)].$$

Hence $K_0(\mathcal{F}_{j,k})$ goes to $K_0(\mathcal{F}_{j,k-1})$ by the homomorphism γ_{η}^{-1} . Take $\mu(i) \in B_j(\Lambda_{\rho}), \bar{\zeta}(i) \in B_{k-1}(\Lambda_{\eta})$ such that $T_{\bar{\xi}(i)}S_{\nu(i)} = S_{\mu(i)}T_{\bar{\zeta}(i)}$ for $i = 1, \ldots, m(l)$. The element

$$\sum_{i=1}^{m(l)} [(T_{\bar{\xi}(i)} S_{\nu(i)} \otimes 1_n) p_i^l (S_{\nu(i)}^* T_{\bar{\xi}(i)}^* \otimes 1_n)]$$

$$= \sum_{i=1}^{m(l)} [(S_{\mu(i)} T_{\bar{\zeta}(i)} \otimes 1_n) p_i^l (T_{\bar{\zeta}(i)}^* S_{\mu(i)}^* \otimes 1_n)] \in K_0(\mathcal{F}_{j,k-1})$$

goes to

$$\sum_{i=1}^{m(l)} \sum_{a \in \Sigma^{\eta}} [(S_{\mu(i)} T_{\bar{\zeta}(i)a} \otimes 1_n) (T_a^* \otimes 1_n) p_i^l (T_a \otimes 1_n) (T_{\bar{\zeta}(i)a}^* S_{\mu(i)}^* \otimes 1_n)] \in K_0(\mathcal{F}_{j,k})$$

by $\iota_{*,+1}$. The latter one is expressed as (8.2)

$$\sum_{h=1}^{m(l)} \oplus \sum_{i=1}^{m(l)} \sum_{a \in \Sigma^{\eta}} \left[(S_{\mu(i)} T_{\bar{\zeta}(i)a} \otimes 1_n) E_h^l(T_a^* \otimes 1_n) p_i^l(T_a \otimes 1_n) E_h^l(T_{\bar{\zeta}(i)a}^* S_{\mu(i)}^* \otimes 1_n) \right]$$

in $\bigoplus_{h=1}^{m(l)} K_0(\mathcal{F}_{j,k}(h))$. On the other hand, we have

$$\lambda_{\eta}([p]) = \sum_{a \in \Sigma^{\eta}} [(T_a^* \otimes 1_n) p(T_a \otimes 1_n)]$$

$$= \sum_{h=1}^{m(l)} \bigoplus_{a \in \Sigma^{\eta}} [E_h^l(T_a^* \otimes 1_n) p(T_a \otimes 1_n) E_h^l] \in \bigoplus_{h=1}^{m(l)} K_0(E_h^l \mathcal{A} E_h^l),$$

which is expressed as

$$\sum_{h=1}^{m(l)} \bigoplus_{a \in \Sigma^{\eta}} [(T_{\xi(h)} S_{\nu(h)} E_h^l \otimes 1_n) (T_a^* \otimes 1_n) p(T_a \otimes 1_n) (E_h^l S_{\nu(h)}^* T_{\xi(h)}^* \otimes 1_n)]$$

$$= \sum_{h=1}^{m(l)} \bigoplus_{a \in \Sigma^{\eta}} \sum_{i=1}^{m(l)} [(T_{\xi(h)} S_{\nu(h)} E_h^l \otimes 1_n) (T_a^* \otimes 1_n)$$

$$\cdot p_i^l (T_a \otimes 1_n) (E_h^l S_{\nu(h)}^* T_{\xi(h)}^* \otimes 1_n)]$$

in $\bigoplus_{h=1}^{m(l)} K_0(\mathcal{F}_{j,k}(h))$. Take $\mu'(h) \in B_j(\Lambda_\rho), \zeta'(h) \in B_k(\Lambda_\eta)$ such that $T_{\xi(h)}S_{\nu(h)} = S_{\mu'(h)}T_{\zeta'(h)}$ so that the above element is (8.3)

$$\sum_{h=1}^{m(l)} \oplus \sum_{i=1}^{m(l)} \sum_{a \in \Sigma^{\eta}} \left[(S_{\mu'(h)} T_{\zeta'(h)} E_h^l \otimes 1_n) (T_a^* \otimes 1_n) p_i^l (T_a \otimes 1_n) (E_h^l T_{\zeta'(h)}^* S_{\nu'(h)}^* \otimes 1_n) \right]$$

in $\bigoplus_{h=1}^{m(l)} K_0(\mathcal{F}_{j,k}(h))$. Since for $h, i = 1, \ldots, m(l), a \in \Sigma^{\eta}$ their classes of the K-groups coincide such as

$$[(S_{\mu(i)}T_{\bar{\zeta}(i)a} \otimes 1_n)E_h^l(T_a^* \otimes 1_n)p_i^l(T_a \otimes 1_n)E_h^l(T_{\bar{\zeta}(i)a}^*S_{\mu(i)}^* \otimes 1_n)]$$

$$= [(S_{\mu'(h)}T_{\zeta'(h)}E_h^l \otimes 1_n)(T_a^* \otimes 1_n)p_i^l(T_a \otimes 1_n)(E_h^lT_{\zeta'(h)}^*S_{\nu'(h)}^* \otimes 1_n)]$$

$$\in K_0(\mathcal{F}_{i,k}(h)),$$

the element of (8.2) is equal to the element of (8.3) in $K_0(\mathcal{F}_{j,k})$. Thus (i) holds.

(ii) is similar to (i).
$$\Box$$

We note that for $j, k \in \mathbb{Z}_+$,

$$K_0(\mathcal{F}_{\rho,k}) = \lim_{j} \{ \iota_{+1,*} : K_0(\mathcal{F}_{j,k}) \longrightarrow K_0(\mathcal{F}_{j+1,k}) \},$$

$$K_0(\mathcal{F}_{j,\eta}) = \lim_{k} \{ \iota_{*,+1} : K_0(\mathcal{F}_{j,k}) \longrightarrow K_0(\mathcal{F}_{j,k+1}) \}.$$

The following lemma is direct.

Lemma 8.9. For $k, j \in \mathbb{Z}_+$, the following diagrams are commutative:

(i)
$$K_0(\mathcal{F}_{j,k}) \xrightarrow{\gamma_{\eta}^{-1}} K_0(\mathcal{F}_{j,k-1})$$

$$\iota_{+1,*} \downarrow \qquad \qquad \iota_{+1,*} \downarrow$$

$$K_0(\mathcal{F}_{j+1,k}) \xrightarrow{-\gamma_{\eta}^{-1}} K_0(\mathcal{F}_{j+1,k-1}).$$

Hence γ_{η}^{-1} yields a homomorphism from $K_0(\mathcal{F}_{\rho,k})$ to $K_0(\mathcal{F}_{\rho,k-1})$.

(ii)
$$K_0(\mathcal{F}_{j,k}) \xrightarrow{\gamma_{\rho}^{-1}} K_0(\mathcal{F}_{j-1,k})$$

$$\iota_{*,+1} \downarrow \qquad \qquad \iota_{*,+1} \downarrow$$

$$K_0(\mathcal{F}_{j,k+1}) \xrightarrow{\gamma_{\rho}^{-1}} K_0(\mathcal{F}_{j-1,k+1}).$$

Hence γ_{ρ}^{-1} yields a homomorphism from $K_0(\mathcal{F}_{j,\eta})$ to $K_0(\mathcal{F}_{j-1,\eta})$.

The homomorphisms

$$\iota_{+1,*}: K_0(\mathcal{F}_{i,k}) \longrightarrow K_0(\mathcal{F}_{i+1,k}), \qquad \iota_{*,+1}: K_0(\mathcal{F}_{i,k}) \longrightarrow K_0(\mathcal{F}_{i,k+1})$$

are naturally induce homomorphisms

$$K_0(\mathcal{F}_{j,\eta}) \longrightarrow K_0(\mathcal{F}_{j+1,\eta}), \qquad \iota_{*,+1} : K_0(\mathcal{F}_{\rho,k}) \longrightarrow K_0(\mathcal{F}_{\rho,k+1})$$

which we denote by $\iota_{+1,\eta}$, $\iota_{\rho,+1}$ respectively. They are also induced by the identities (5.1), (5.2) respectively.

Lemma 8.10. For $k, j \in \mathbb{Z}_+$, the following diagrams are commutative:

(i)

$$K_{0}(\mathcal{F}_{\rho,k}) \xrightarrow{\gamma_{\eta}^{-1}} K_{0}(\mathcal{F}_{\rho,k-1})$$

$$\iota_{\rho,+1} \downarrow \qquad \qquad \iota_{\rho,+1} \downarrow$$

$$K_{0}(\mathcal{F}_{\rho,k+1}) \xrightarrow{\gamma_{\eta}^{-1}} K_{0}(\mathcal{F}_{\rho,k}).$$
(ii)
$$K_{0}(\mathcal{F}_{j,\eta}) \xrightarrow{\gamma_{\rho}^{-1}} K_{0}(\mathcal{F}_{j-1,\eta})$$

$$\iota_{+1,\eta} \downarrow \qquad \qquad \iota_{+1,\eta} \downarrow$$

$$K_{0}(\mathcal{F}_{j+1,\eta}) \xrightarrow{\gamma_{\rho}^{-1}} K_{0}(\mathcal{F}_{j,\eta}).$$

Proof. (i) As in the proof of Lemma 8.9, one may take an element of $K_0(\mathcal{F}_{\rho,k})$ as in the following form:

$$\sum_{i=1}^{m(l)} {}^{\oplus}[(T_{\xi(i)}S_{\nu(i)} \otimes 1_n)p_i^l(S_{\nu(i)}^*T_{\xi(i)}^* \otimes 1_n)] \in \bigoplus_{i=1}^{m(l)} K_0(\mathcal{F}_{j,k}(i))$$

for some projection $p \in M_n(\mathcal{A})$ and j, l with l = j + k, where

$$p_i^l = (E_i^l \otimes 1)p(E_i^l \otimes 1) \in M_n(E_i^l \mathcal{A} E_i^l).$$

Let $\xi(i) = \xi_1(i)\bar{\xi}(i)$ with $\xi_1(i) \in \Sigma^{\eta}$, $\bar{\xi}(i) \in B_{k-1}(\Lambda_{\eta})$. One may assume that $T_{\xi(i)}S_{\nu(i)} \neq 0$ so that $T_{\bar{\xi}(i)}S_{\nu(i)} = S_{\nu(i)'}T_{\bar{\xi}(i)'}$ for some $\nu(i)' \in B_j(\Lambda_{\rho})$, $\bar{\xi}(i)' \in B_j(\Lambda_{\rho})$

 $B_{k-1}(\Lambda_{\eta})$. As in the proof of Lemma 8.9, one has

$$\gamma_{\eta}^{-1}([(T_{\xi(i)}S_{\nu(i)}\otimes 1_{n})p_{i}^{l}(S_{\nu(i)}^{*}T_{\xi(i)}^{*}\otimes 1_{n})]
= [(T_{\bar{\xi}(i)}S_{\nu(i)}\otimes 1_{n})p_{i}^{l}(S_{\nu(i)}^{*}T_{\bar{\xi}(i)}^{*}\otimes 1_{n})]
= [(S_{\nu(i)'}T_{\bar{\xi}(i)'}\otimes 1_{n})p_{i}^{l}(S_{\nu(i)'}^{*}T_{\bar{\xi}(i)'}^{*}\otimes 1_{n})].$$

Hence we have

$$\iota_{*,+1} \circ \gamma_{\eta}^{-1}([(T_{\xi(i)}S_{\nu(i)} \otimes 1_{n})p_{i}^{l}(S_{\nu(i)}^{*}T_{\xi(i)}^{*} \otimes 1_{n})]$$

$$= \iota_{*,+1}([S_{\nu(i)'}T_{\bar{\xi}(i)'} \otimes 1_{n})p_{i}^{l}(T_{\bar{\xi}(i)'}^{*}S_{\nu(i)'}^{*} \otimes 1_{n}])$$

$$= \sum_{b \in \Sigma^{\eta}} [(S_{\nu(i)'}T_{\bar{\xi}(i)'b} \otimes 1_{n})(T_{b}^{*} \otimes 1_{n})p_{i}^{l}(T_{b} \otimes 1_{n})(T_{\bar{\xi}(i)'b}^{*}S_{\nu(i)'}^{*} \otimes 1_{n})].$$

On the other hand, the equality $T_{\xi(i)}S_{\nu(i)} = T_{\xi(i)}S_{\nu(i)'}T_{\bar{\xi}(i)'}$ implies

$$\iota_{*,+1}([(T_{\xi(i)}S_{\nu(i)}\otimes 1_n)p_i^l(S_{\nu(i)}^*T_{\xi(i)}^*\otimes 1_n)]$$

$$= \sum_{b\in\Sigma^{\eta}} [(T_{\xi(i)_1}S_{\nu(i)'}T_{\bar{\xi}(i)'b}\otimes 1_n)(T_b^*\otimes 1_n)p_i^l(T_b\otimes 1_n)(T_{\bar{\xi}(i)'b}^*S_{\nu(i)'}^*T_{\xi(i)_1}^*\otimes 1_n)]$$

and hence

$$\gamma_{\eta}^{-1} \circ \iota_{*,+1}([(T_{\xi(i)}S_{\nu(i)} \otimes 1_{n})p_{i}^{l}(S_{\nu(i)}^{*}T_{\xi(i)}^{*} \otimes 1_{n})]
= \sum_{b \in \Sigma^{\eta}} \gamma_{\eta}^{-1} \Big([(T_{\xi(i)_{1}}S_{\nu(i)'}T_{\bar{\xi}(i)'b} \otimes 1_{n})(T_{b}^{*} \otimes 1_{n}) \\
\cdot p_{i}^{l}(T_{b} \otimes 1_{n})(T_{\bar{\xi}(i)'b}^{*}S_{\nu(i)'}^{*}T_{\xi(i)_{1}}^{*} \otimes 1_{n})] \Big)
= \sum_{b \in \Sigma^{\eta}} [(S_{\nu(i)'}T_{\bar{\xi}(i)'b} \otimes 1_{n})(T_{b}^{*} \otimes 1_{n})p_{i}^{l}(T_{b} \otimes 1_{n})(T_{\bar{\xi}(i)'b}^{*}S_{\nu(i)'}^{*} \otimes 1_{n})].$$

(ii) The proof is completely symmetric to the above proof. \Box

Since the homomorphisms λ_{ρ} , $\lambda_{\eta}: K_0(\mathcal{A}) \longrightarrow K_0(\mathcal{A})$ are mutually commutative, the map λ_{η} induces a homomorphism on the inductive limit $G_{\rho} = \lim \{\lambda_{\rho}: K_0(\mathcal{A}) \longrightarrow K_0(\mathcal{A})\}$ and similarly λ_{ρ} does on the inductive limit G_{η} . They are still denoted by λ_{ρ} , λ_{η} respectively.

Lemma 8.11. For $k, j \in \mathbb{Z}_+$, the following diagrams are commutative:

(i)
$$K_0(\mathcal{F}_{\rho,k}) \xrightarrow{\gamma_{\eta}^{-1}} K_0(\mathcal{F}_{\rho,k-1}) \xrightarrow{\iota_{\rho,+1}} K_0(\mathcal{F}_{\rho,k})$$

$$\Phi_{\rho,k} \downarrow \qquad \qquad \Phi_{\rho,k} \downarrow$$

$$G_{\rho} \xrightarrow{\lambda_{\eta}} G_{\rho}.$$

(ii)
$$K_{0}(\mathcal{F}_{j,\eta}) \xrightarrow{\gamma_{\rho}^{-1}} K_{0}(\mathcal{F}_{j-1,\eta}) \xrightarrow{\iota_{+1,\eta}} K_{0}(\mathcal{F}_{j,\eta})$$

$$\Phi_{j,\eta} \downarrow \qquad \qquad \Phi_{j,\eta} \downarrow$$

$$G_{\eta} \xrightarrow{\lambda_{\rho}} G_{\eta}.$$

Proof. (i) As in the proof of Lemma 8.8 and Lemma 8.10 one may take an element of $K_0(\mathcal{F}_{\rho,k})$ as in the following form:

$$\sum_{i=1}^{m(l)} {}^{\oplus}[(T_{\xi(i)}S_{\nu(i)} \otimes 1_n)p_i^l(S_{\nu(i)}^*T_{\xi(i)}^* \otimes 1_n)] \in \bigoplus_{i=1}^{m(l)} K_0(\mathcal{F}_{j,k}(i))$$

for some projection $p \in M_n(\mathcal{A})$ and j, l with l = j + k, where

$$p_i^l = (E_i^l \otimes 1)p(E_i^l \otimes 1).$$

Keep the notations as in the proof of Lemma 8.8, we have

$$\iota_{*,+1} \circ \gamma_{\eta}^{-1}([(T_{\xi(i)}S_{\nu(i)} \otimes 1_n)p_i^l(S_{\nu(i)}^*T_{\xi(i)}^* \otimes 1_n)])$$

$$= \sum_{b \in \Sigma^{\eta}} [(S_{\nu(i)'}T_{\bar{\xi}(i)'b} \otimes 1_n)(T_b^* \otimes 1_n)p_i^l(T_b \otimes 1_n)(T_{\bar{\xi}(i)'b}^*S_{\nu(i)'}^* \otimes 1_n)]$$

so that

$$\begin{split} &\Phi_{\rho,k} \circ \iota_{*,+1} \circ \gamma_{\eta}^{-1}([(T_{\xi(i)}S_{\nu(i)} \otimes 1_n)p_i^l(S_{\nu(i)}^*T_{\xi(i)}^* \otimes 1_n)] \\ &= \sum_{b \in \Sigma^{\eta}} \Phi_{\rho,k}([S_{\nu(i)'}T_{\bar{\xi}(i)'b} \otimes 1_n)(T_b^* \otimes 1_n)p_i^l(T_b \otimes 1_n)(T_{\bar{\xi}(i)'b}^*S_{\nu(i)'}^* \otimes 1_n)]) \\ &= \sum_{b \in \Sigma^{\eta}} [(T_b^* \otimes 1_n)p_i^l(T_b \otimes 1_n)] \\ &= \lambda_{\eta}([p_i^l]) = (\lambda_{\eta} \circ \Phi_{\rho,k})([(T_{\xi(i)}S_{\nu(i)} \otimes 1_n)p_i^l(S_{\nu(i)}^*T_{\xi(i)}^* \otimes 1_n)]). \end{split}$$

Therefore we have $\Phi_{\rho,k} \circ \iota_{\rho,+1} \circ \gamma_{\eta}^{-1} = \lambda_{\eta} \circ \Phi_{\rho,k}$.

(ii) The proof is completely symmetric to the above proof.

Put for $j, k \in \mathbb{Z}_+$

$$G_{\rho,k} = K_0(\mathcal{F}_{\rho,k}) (\cong G_\rho = \lim \{ \lambda_\rho : K_0(\mathcal{A}) \longrightarrow K_0(\mathcal{A}) \}),$$

$$G_{j,\eta} = K_0(\mathcal{F}_{j,\eta}) (\cong G_\eta = \lim \{ \lambda_\eta : K_0(\mathcal{A}) \longrightarrow K_0(\mathcal{A}) \}).$$

The map $\lambda_{\eta}: K_0(\mathcal{A}) \longrightarrow K_0(\mathcal{A})$ naturally gives rise to a homomorphism from $G_{\rho,k}$ to $G_{\rho,k+1}$ which we will still denote by λ_{η} . Similarly we have a homomorphism λ_{ρ} from $G_{j,\eta}$ to $G_{j+1,\eta}$.

Lemma 8.12. For $k, j \in \mathbb{Z}_+$, the following diagrams are commutative:

(i)
$$K_{0}(\mathcal{F}_{\rho,k}) \xrightarrow{\iota_{\rho,+1}} K_{0}(\mathcal{F}_{\rho,k+1})$$

$$\parallel \qquad \qquad \parallel$$

$$G_{\rho,k} \xrightarrow{\lambda_{\eta}} G_{\rho,k+1}.$$
(ii)
$$K_{0}(\mathcal{F}_{j,\eta}) \xrightarrow{\iota_{+1,\eta}} K_{0}(\mathcal{F}_{j+1,\eta})$$

$$\parallel \qquad \qquad \parallel$$

$$G_{j,\eta} \xrightarrow{\lambda_{\rho}} G_{j+1,\eta}.$$

We denote the abelian group $K_0(\mathcal{F}_{\rho,\eta})$ by $G_{\rho,\eta}$. Since

$$K_0(\mathcal{F}_{\rho,\eta}) = \lim_{k} \{ \iota_{\rho,+1} : K_0(\mathcal{F}_{\rho,k}) \longrightarrow K_0(\mathcal{F}_{\rho,k+1}) \}$$

=
$$\lim_{i} \{ \iota_{+1,\eta} : K_0(\mathcal{F}_{j,\eta}) \longrightarrow K_0(\mathcal{F}_{j+1,\eta}) \},$$

one has

$$G_{\rho,\eta} = \lim_{k} \{ \lambda_{\eta} : G_{\rho,k} \longrightarrow G_{\rho,k+1} \} = \lim_{j} \{ \lambda_{\rho} : G_{j,\eta} \longrightarrow G_{j+1,\eta} \}.$$

Define two endomorphisms

$$\sigma_{\eta}$$
 on $G_{\rho,\eta} = \lim_{k} \{\lambda_{\eta} : G_{\rho,k} \longrightarrow G_{\rho,k+1}\}$ and σ_{ρ} on $G_{\rho,\eta} = \lim_{j} \{\lambda_{\rho} : G_{j,\eta} \longrightarrow G_{j+1,\eta}\}$

by setting

$$\sigma_{\rho}:[g,k]\in G_{\rho,k}\longrightarrow [g,k-1]\in G_{\rho,k-1} \text{ for } g\in G_{\rho} \text{ and } \sigma_{\eta}:[h,j]\in G_{j,\eta}\longrightarrow [h,j-1]\in G_{j-1,\eta} \text{ for } h\in G_{\eta}.$$

Therefore we have:

Lemma 8.13.

(i) There exists an isomorphism $\Phi_{\rho,\infty}: K_0(\mathcal{F}_{\rho,\eta}) \longrightarrow G_{\rho,\eta}$ such that the following diagrams are commutative:

$$K_0(\mathcal{F}_{\rho,\eta}) \xrightarrow{\gamma_{\eta}^{-1}} K_0(\mathcal{F}_{\rho,\eta})$$

$$\Phi_{\rho,\infty} \downarrow \qquad \qquad \Phi_{\rho,\infty} \downarrow$$

$$G_{\rho,\eta} \xrightarrow{\sigma_{\eta}} G_{\rho,\eta}$$

and hence

$$K_0(\mathcal{F}_{\rho,\eta}) \xrightarrow{id-\gamma_{\eta}^{-1}} K_0(\mathcal{F}_{\rho,\eta})$$

$$\Phi_{\rho,\infty} \downarrow \qquad \qquad \Phi_{\rho,\infty} \downarrow$$

$$G_{\rho,\eta} \xrightarrow{id-\sigma_{\eta}} G_{\rho,\eta}.$$

(ii) There exists an isomorphism $\Phi_{\infty,\eta}: K_0(\mathcal{F}_{\rho,\eta}) \longrightarrow G_{\rho,\eta}$ such that the following diagrams are commutative:

$$K_0(\mathcal{F}_{\rho,\eta}) \xrightarrow{\gamma_{\rho}^{-1}} K_0(\mathcal{F}_{\rho,\eta})$$

$$\Phi_{\infty,\eta} \downarrow \qquad \qquad \Phi_{\infty,\eta} \downarrow$$

$$G_{\rho,\eta} \xrightarrow{\sigma_{\rho}} G_{\rho,\eta}$$

and hence

$$K_0(\mathcal{F}_{\rho,\eta}) \xrightarrow{id-\gamma_\rho^{-1}} K_0(\mathcal{F}_{\rho,\eta})$$

$$\Phi_{\infty,\eta} \downarrow \qquad \qquad \Phi_{\infty,\eta} \downarrow$$

$$G_{\rho,\eta} \xrightarrow{id-\sigma_\rho} G_{\rho,\eta}.$$

Let us denote by $J_{\mathcal{A}}$ the natural embedding $\mathcal{A} = \mathcal{F}_{0,0} \hookrightarrow \mathcal{F}_{\rho,\eta}$, which induces a homomorphism $J_{\mathcal{A}*}: K_0(\mathcal{A}) \longrightarrow K_0(\mathcal{F}_{\rho,\eta})$.

Lemma 8.14. The homomorphism $J_{\mathcal{A}*}: K_0(\mathcal{A}) \longrightarrow K_0(\mathcal{F}_{\rho,\eta})$ is injective such that

$$J_{\mathcal{A}*} \circ \lambda_{\rho} = \gamma_{\rho}^{-1} \circ J_{\mathcal{A}*} \quad and \quad J_{\mathcal{A}*} \circ \lambda_{\eta} = \gamma_{\eta}^{-1} \circ J_{\mathcal{A}*}.$$

Proof. We will first show that the endomorphisms λ_{ρ} , λ_{η} on $K_0(\mathcal{A})$ are both injective. Put a projection $Q_{\alpha} = S_{\alpha}S_{\alpha}^*$ and a subalgebra $\mathcal{A}_{\alpha} = \rho_{\alpha}(\mathcal{A})$ of \mathcal{A} for $\alpha \in \Sigma^{\rho}$. Then the endomorphism ρ_{α} on \mathcal{A} extends to an isomorphism from $\mathcal{A}Q_{\alpha}$ onto \mathcal{A}_{α} by setting $\rho_{\alpha}(x) = S_{\alpha}^*xS_{\alpha}, x \in \mathcal{A}Q_{\alpha}$ whose inverse is $\phi_{\alpha}: \mathcal{A}_{\alpha} \longrightarrow \mathcal{A}Q_{\alpha}$ defined by $\phi_{\alpha}(y) = S_{\alpha}yS_{\alpha}^*, y \in \mathcal{A}_{\alpha}$. Hence the induced homomorphism $\rho_{\alpha*}: K_0(\mathcal{A}Q_{\alpha}) \longrightarrow K_0(\mathcal{A}_{\alpha})$ is an isomorphism. Since $\mathcal{A} = \bigoplus_{\alpha \in \Sigma^{\rho}} Q_{\alpha}\mathcal{A}$, the homomorphism

$$\sum_{\alpha \in \Sigma^{\rho}} \phi_{\alpha *} \circ \rho_{\alpha *} : K_0(\mathcal{A}) \longrightarrow \bigoplus_{\alpha \in \Sigma^{\rho}} K_0(Q_{\alpha} \mathcal{A})$$

is an isomorphism, one may identify $K_0(\mathcal{A}) = \bigoplus_{\alpha \in \Sigma^{\rho}} K_0(Q_{\alpha}\mathcal{A})$. Let $g \in K_0(\mathcal{A})$ satisfy $\lambda_{\rho}(g) = 0$. Put $g_{\alpha} = \phi_{\alpha*} \circ \rho_{\alpha*}(g) \in K_0(Q_{\alpha}\mathcal{A})$ for $\alpha \in \Sigma^{\rho}$ so that $g = \sum_{\alpha \in \Sigma^{\rho}} g_{\alpha}$. As $\rho_{\beta*} \circ \phi_{\alpha*} = 0$ for $\beta \neq \alpha$, one sees $\rho_{\beta*}(g_{\alpha}) = 0$ for $\beta \neq \alpha$. Hence

$$0 = \lambda_{\rho}(g) = \sum_{\beta \in \Sigma^{\rho}} \sum_{\alpha \in \Sigma^{\rho}} \rho_{\beta *}(g_{\alpha}) = \sum_{\alpha \in \Sigma^{\rho}} \rho_{\alpha *}(g_{\alpha}) \in \bigoplus_{\alpha \in \Sigma^{\rho}} K_{0}(\mathcal{A}_{\alpha}).$$

It follows that $\rho_{\alpha*}(g_{\alpha}) = 0$ in $K_0(\mathcal{A}_{\alpha})$. Since $\rho_{\alpha*} : K_0(Q_{\alpha}\mathcal{A}) \longrightarrow K_0(\mathcal{A}_{\alpha})$ is isomorphic, one sees that $g_{\alpha} = 0$ in $K_0(\mathcal{A}Q_{\alpha})$ for all $\alpha \in \Sigma^{\rho}$. This implies that $g = \sum_{\alpha \in \Sigma^{\rho}} g_{\alpha} = 0$ in $K_0(\mathcal{A})$. Therefore the endomorphism λ_{ρ} on $K_0(\mathcal{A})$ is injective, and similarly so is λ_{η} .

By the previous lemma, there exists an isomorphism $\Phi_{j,k}: K_0(\mathcal{F}_{j,k}) \longrightarrow K_0(\mathcal{A})$ such that the diagram

$$K_0(\mathcal{F}_{j,k}) \xrightarrow{\iota_{+1,*}} K_0(\mathcal{F}_{j+1,k})$$

$$\Phi_{j,k} \downarrow \qquad \qquad \Phi_{j+1,k} \downarrow$$

$$K_0(\mathcal{A}) \xrightarrow{\lambda_{\rho}} K_0(\mathcal{A})$$

is commutative so that the embedding $\iota_{+1,*}: K_0(\mathcal{F}_{j,k}) \longrightarrow K_0(\mathcal{F}_{j+1,k})$ is injective, and similarly $\iota_{*,+1}: K_0(\mathcal{F}_{j,k}) \longrightarrow K_0(\mathcal{F}_{j,k+1})$ is injective. Hence for $n, m \in \mathbb{N}$, the homomorphism

$$\iota_{n,m}: K_0(\mathcal{A}) = K_0(\mathcal{F}_{0,0}) \longrightarrow K_0(\mathcal{F}_{n,m})$$

defined by the compositions of $\iota_{+1,*}$ and $\iota_{*,+1}$ is injective. By [44, Theorem 6.3.2 (iii)], one knows $\operatorname{Ker}(J_{\mathcal{A}*}) = \bigcup_{n,m \in \mathbb{N}} \operatorname{Ker}(\iota_{n,m})$, so that $\operatorname{Ker}(J_{\mathcal{A}*}) = 0$.

We henceforth identify the group $K_0(\mathcal{A})$ with its image $J_{\mathcal{A}*}(K_0(\mathcal{A}))$ in $K_0(\mathcal{F}_{\rho,\eta})$. As in the above proof, not only $K_0(\mathcal{A})(=K_0(\mathcal{F}_{0,0}))$ but also the groups $K_0(\mathcal{F}_{j,k})$ for j,k are identified with subgroups of $K_0(\mathcal{F}_{\rho,\eta})$ via injective homomorphisms from $K_0(\mathcal{F}_{j,k})$ to $K_0(\mathcal{F}_{\rho,\eta})$ induced by the embeddings of $\mathcal{F}_{j,k}$ into $\mathcal{F}_{\rho,\eta}$. We note that

$$(\mathrm{id} - \gamma_{\eta}) K_0(\mathcal{F}_{\rho,\eta}) = (\mathrm{id} - \gamma_{\eta}^{-1}) K_0(\mathcal{F}_{\rho,\eta}),$$

$$(\mathrm{id} - \gamma_{\rho}) K_0(\mathcal{F}_{\rho,\eta}) = (\mathrm{id} - \gamma_{\rho}^{-1}) K_0(\mathcal{F}_{\rho,\eta})$$

and

$$\operatorname{Ker}(\operatorname{id} - \gamma_{\rho}) \cap \operatorname{Ker}(\operatorname{id} - \gamma_{\eta}) \text{ in } K_{0}(\mathcal{F}_{\rho,\eta})$$
$$= \operatorname{Ker}(\operatorname{id} - \gamma_{\rho}^{-1}) \cap \operatorname{Ker}(\operatorname{id} - \gamma_{\eta}^{-1}) \text{ in } K_{0}(\mathcal{F}_{\rho,\eta}).$$

Denote by $(\mathrm{id} - \gamma_{\rho})K_0(\mathcal{F}_{\rho,\eta}) + (\mathrm{id} - \gamma_{\eta})K_0(\mathcal{F}_{\rho,\eta})$ the subgroup of $K_0(\mathcal{F}_{\rho,\eta})$ generated by $(\mathrm{id} - \gamma_{\rho})K_0(\mathcal{F}_{\rho,\eta})$ and $(\mathrm{id} - \gamma_{\eta})K_0(\mathcal{F}_{\rho,\eta})$.

Lemma 8.15. Any element in $K_0(\mathcal{F}_{\rho,\eta})$ is equivalent to some element of $K_0(\mathcal{A})$ modulo the subgroup $(\mathrm{id} - \gamma_\rho)K_0(\mathcal{F}_{\rho,\eta}) + (\mathrm{id} - \gamma_\eta)K_0(\mathcal{F}_{\rho,\eta})$.

Proof. For $g \in K_0(\mathcal{F}_{\rho,\eta})$, we may assume that $g \in K_0(\mathcal{F}_{j,k})$ for some $j, k \in \mathbb{Z}_+$. As γ_{ρ}^{-1} commutes with γ_{η}^{-1} , one sees that $(\gamma_{\rho}^{-1})^j \circ (\gamma_{\eta}^{-1})^k(g) \in K_0(\mathcal{A})$. Put $g_1 = \gamma_{\rho}^{-1}(g)$ so that

$$g - (\gamma_{\rho}^{-1})^{j} \circ (\gamma_{\eta}^{-1})^{k}(g) = g - \gamma_{\rho}^{-1}(g) + g_{1} - (\gamma_{\rho}^{-1})^{j-1} \circ (\gamma_{\eta}^{-1})^{k}(g_{1}).$$

We inductively see that $g - (\gamma_{\rho}^{-1})^{j} \circ (\gamma_{\eta}^{-1})^{k}(g)$ belongs to the subgroup

$$(\mathrm{id} - \gamma_{\rho})K_0(\mathcal{F}_{\rho,\eta}) + (\mathrm{id} - \gamma_{\eta})K_0(\mathcal{F}_{\rho,\eta}).$$

Denote by $(\mathrm{id} - \lambda_{\rho})K_0(\mathcal{A}) + (\mathrm{id} - \lambda_{\eta})K_0(\mathcal{A})$ the subgroup of $K_0(\mathcal{A})$ generated by $(\mathrm{id} - \lambda_{\rho})K_0(\mathcal{A})$ and $(\mathrm{id} - \lambda_{\eta})K_0(\mathcal{A})$.

Lemma 8.16. If $g \in K_0(A)$ belongs to

$$(\mathrm{id} - \gamma_{\rho}^{-1})K_0(\mathcal{F}_{\rho,\eta}) + (\mathrm{id} - \gamma_{\eta}^{-1})K_0(\mathcal{F}_{\rho,\eta}),$$

then g belongs to $(id - \lambda_{\rho})K_0(A) + (id - \lambda_{\eta})K_0(A)$.

Proof. By the assumption that $g \in (\mathrm{id} - \gamma_\rho^{-1}) K_0(\mathcal{F}_{\rho,\eta}) + (\mathrm{id} - \gamma_\eta^{-1}) K_0(\mathcal{F}_{\rho,\eta})$, there exist $h_1, h_2 \in K_0(\mathcal{F}_{\rho,\eta})$ such that $g = (\mathrm{id} - \gamma_\rho^{-1})(h_1) + (\mathrm{id} - \gamma_\eta^{-1})(h_2)$. We may assume that $h_1, h_2 \in K_0(\mathcal{F}_{j,k})$ for large enough $j, k \in \mathbb{Z}_+$. Put $e_i = (\gamma_\rho^{-1})^j \circ (\gamma_\eta^{-1})^k(h_i)$ which belongs to $K_0(\mathcal{F}_{0,0})(=K_0(\mathcal{A}))$ for i = 0, 1. It follows that

$$\lambda_{\rho}^{j} \circ \lambda_{\eta}^{k}(g) = (\mathrm{id} - \lambda_{\eta})(e_{1}) + (\mathrm{id} - \lambda_{\rho})(e_{2}).$$

Since $g \in K_0(\mathcal{A})$ and $\lambda_{\rho}^j \circ \lambda_{\eta}^k(g) \in (\mathrm{id} - \lambda_{\eta}) K_0(\mathcal{A}) + (\mathrm{id} - \lambda_{\rho}) K_0(\mathcal{A})$, as in the proof of Lemma 8.15, by putting $g^{(n)} = \lambda_{\rho}^n(g), g^{(n,m)} = \lambda_{\eta}^m(g^{(n)}) \in K_0(\mathcal{A})$ we have

$$g - \lambda_{\rho}^{j} \circ \lambda_{\eta}^{k}(g)$$

$$= g - \lambda_{\rho}(g) + g^{(1)} - \lambda_{\rho}(g^{(1)}) + g^{(2)} - \lambda_{\rho}(g^{(2)}) + \dots + g^{(j-1)} - \lambda_{\rho}(g^{(j-1)})$$

$$+ g^{(j)} - \lambda_{\eta}(g^{(j)}) + g^{(j,1)} - \lambda_{\eta}(g^{(j,1)}) + g^{(j,2)} - \lambda_{\eta}(g^{(j,2)}) + \dots$$

$$+ g^{(j,k-1)} - \lambda_{\eta}(g^{(j,k-1)})$$

$$= (\mathrm{id} - \lambda_{\rho})(g + g^{(1)} + \dots + g^{(j-1)}) + (\mathrm{id} - \lambda_{\eta})(g^{(j)} + g^{(j,1)} + \dots + g^{(j,k-1)})$$
so that g belongs to the subgroup $(\mathrm{id} - \lambda_{\eta})K_{0}(\mathcal{A}) + (\mathrm{id} - \lambda_{\rho})K_{0}(\mathcal{A})$.

Hence we obtain the following lemma for the cokernel.

Lemma 8.17. The quotient group

$$K_0(\mathcal{F}_{\rho,\eta})/((\mathrm{id}-\gamma_\eta^{-1})K_0(\mathcal{F}_{\rho,\eta})+(\mathrm{id}-\gamma_\rho^{-1})K_0(\mathcal{F}_{\rho,\eta}))$$

is isomorphic to the quotient group

$$K_0(\mathcal{A})/((\mathrm{id}-\lambda_n)K_0(\mathcal{A})+(\mathrm{id}-\lambda_\rho)K_0(\mathcal{A})).$$

Proof. Surjectivity of the quotient map

$$K_0(\mathcal{A}) \longrightarrow K_0(\mathcal{F}_{\rho,\eta})/((\mathrm{id} - \gamma_\eta^{-1})K_0(\mathcal{F}_{\rho,\eta}) + (\mathrm{id} - \gamma_\rho^{-1})K_0(\mathcal{F}_{\rho,\eta}))$$

comes from Lemma 8.15. Its kernel coincides with

$$(\mathrm{id} - \lambda_{\eta})K_0(\mathcal{A}) + (\mathrm{id} - \lambda_{\rho})K_0(\mathcal{A})$$

by the preceding lemma.

For the kernel, we have:

Lemma 8.18. The subgroup

$$\operatorname{Ker}(\operatorname{id} - \gamma_{\eta}^{-1}) \cap \operatorname{Ker}(\operatorname{id} - \gamma_{\rho}^{-1}) \text{ in } K_0(\mathcal{F}_{\rho,\eta})$$

is isomorphic to the subgroup

$$\operatorname{Ker}(\operatorname{id} - \lambda_{\eta}) \cap \operatorname{Ker}(\operatorname{id} - \lambda_{\rho}) \text{ in } K_0(\mathcal{A})$$

through J_{A*} .

Proof. For $g \in \text{Ker}(\text{id} - \gamma_{\eta}^{-1}) \cap \text{Ker}(\text{id} - \gamma_{\rho}^{-1})$ in $K_0(\mathcal{F}_{\rho,\eta})$, one may assume that $g \in K_0(\mathcal{F}_{j,k})$ for some $j,k \in \mathbb{Z}_+$ so that $g = (\gamma_{\rho}^{-1})^j \circ (\gamma_{\eta}^{-1})^k(g) \in K_0(\mathcal{A})$. Since $\lambda_{\eta} = \gamma_{\eta}^{-1}$ and $\lambda_{\rho} = \gamma_{\rho}^{-1}$ on $K_0(\mathcal{A})$ under the identification between $J_{\mathcal{A}*}(K_0(\mathcal{A}))$ and $K_0(\mathcal{A})$ via $J_{\mathcal{A}*}$, one has that $g \in \text{Ker}(\text{id} - \lambda_{\eta}) \cap \text{Ker}(\text{id} - \lambda_{\rho})$ in $K_0(\mathcal{A})$. The converse inclusion relation

$$\operatorname{Ker}(\operatorname{id} - \lambda_{\eta}) \cap \operatorname{Ker}(\operatorname{id} - \lambda_{\rho}) \subset \operatorname{Ker}(\operatorname{id} - \gamma_{\eta}^{-1}) \cap \operatorname{Ker}(\operatorname{id} - \gamma_{\rho}^{-1})$$

is clear through the above identification.

Therefore the short exact sequence for $K_0(\mathcal{O}_{\rho,\eta}^{\kappa})$ in Theorem 7.10 is restated as the following proposition.

Proposition 8.19. Assume that $(A, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$ forms square and

$$K_1(\mathcal{F}_{\rho,\eta}) = \{0\}.$$

Then there exists a short exact sequence:

$$0 \longrightarrow K_0(\mathcal{A})/((\mathrm{id} - \lambda_{\eta})K_0(\mathcal{A}) + (\mathrm{id} - \lambda_{\rho})K_0(\mathcal{A}))$$

$$\longrightarrow K_0(\mathcal{O}_{\rho,\eta}^{\kappa})$$

$$\longrightarrow \mathrm{Ker}(\mathrm{id} - \lambda_{\eta}) \cap \mathrm{Ker}(\mathrm{id} - \lambda_{\rho}) \ in \ K_0(\mathcal{A})$$

$$\longrightarrow 0.$$

Let \mathcal{F}_{ρ} be the fixed point algebra $(\mathcal{O}_{\rho})^{\hat{\rho}}$ of the C^* -algebra \mathcal{O}_{ρ} by the gauge action $\hat{\rho}$ for the C^* -symbolic dynamical system $(\mathcal{A}, \rho, \Sigma^{\rho})$. The algebra \mathcal{F}_{ρ} is isomorphic to the subalgebra $\mathcal{F}_{\rho,0}$ of $\mathcal{F}_{\rho,\eta}$ in a natural way. As in the proof of Lemma 8.15, the group $K_0(\mathcal{F}_{\rho,0})$ is regarded as a subgroup of $K_0(\mathcal{F}_{\rho,\eta})$ and the restriction of γ_{η}^{-1} to $K_0(\mathcal{F}_{\rho,0})$ satisfies $\gamma_{\eta}^{-1}(K_0(\mathcal{F}_{\rho,0})) \subset K_0(\mathcal{F}_{\rho,0})$ so that γ_{η}^{-1} yields an endomorphism on $K_0(\mathcal{F}_{\rho})$, which we still denote by γ_{η}^{-1} .

For the group $K_1(\mathcal{O}_{\rho,\eta}^{\kappa})$, we provide several lemmas.

Lemma 8.20.

- (i) Any element in $K_0(\mathcal{F}_{\rho,\eta})$ is equivalent to some element of $K_0(\mathcal{F}_{\rho,0}) (= K_0(\mathcal{F}_{\rho}))$ modulo the subgroup $(\mathrm{id} \gamma_{\eta}) K_0(\mathcal{F}_{\rho,\eta})$.
- (ii) If $g \in K_0(\mathcal{F}_{\rho,0}) (= K_0(\mathcal{F}_{\rho}))$ belongs to $(\mathrm{id} \gamma_{\eta}) K_0(\mathcal{F}_{\rho,\eta})$, then g belongs to $(\mathrm{id} \gamma_{\eta}) K_0(\mathcal{F}_{\rho})$.

As γ_{ρ} commutes with γ_{η} on $K_0(\mathcal{F}_{\rho,\eta})$, it naturally acts on the quotient group $K_0(\mathcal{F}_{\rho,\eta})/(\mathrm{id}-\gamma_{\eta}^{-1})K_0(\mathcal{F}_{\rho,\eta})$. We denote it by $\bar{\gamma}_{\rho}$. Similarly λ_{ρ} naturally induces an endomorphism on $K_0(\mathcal{A})/(\mathrm{id}-\lambda_{\eta})K_0(\mathcal{A})$. We denote it by $\bar{\lambda}_{\rho}$.

Lemma 8.21.

(i) The quotient group $K_0(\mathcal{F}_{\rho,\eta})/(\mathrm{id}-\gamma_\eta^{-1})K_0(\mathcal{F}_{\rho,\eta})$ is isomorphic to the quotient group $K_0(\mathcal{F}_\rho)/(\mathrm{id}-\gamma_\eta^{-1})K_0(\mathcal{F}_\rho)$, that is also isomorphic to the quotient group $K_0(\mathcal{A})/(\mathrm{id}-\lambda_\eta)K_0(\mathcal{A})$.

(ii) The kernel of id $-\bar{\gamma}_{\rho}$ in $K_0(\mathcal{F}_{\rho,\eta})/(\mathrm{id}-\gamma_{\eta}^{-1})K_0(\mathcal{F}_{\rho,\eta})$ is isomorphic to the kernel of id $-\bar{\lambda}_{\rho}$ in $K_0(\mathcal{A})/(\mathrm{id}-\lambda_{\eta})K_0(\mathcal{A})$.

Proof. (i) The fact that the three quotient groups

$$K_0(\mathcal{F}_{\rho,\eta})/(\mathrm{id} - \gamma_{\eta}^{-1})K_0(\mathcal{F}_{\rho,\eta}),$$

$$K_0(\mathcal{F}_{\rho})/(\mathrm{id} - \gamma_{\eta}^{-1})K_0(\mathcal{F}_{\rho}),$$

$$K_0(\mathcal{A})/(\mathrm{id} - \lambda_{\eta})K_0(\mathcal{A}),$$

are naturally isomorphic is similarly proved to the previous discussions.

(ii) The kernel $\operatorname{Ker}(\operatorname{id} - \bar{\gamma}_{\rho})$ in $K_0(\mathcal{F}_{\rho,\eta})/(\operatorname{id} - \gamma_{\eta}^{-1})K_0(\mathcal{F}_{\rho,\eta})$ is isomorphic to the kernel $\operatorname{Ker}(\operatorname{id} - \bar{\gamma}_{\rho})$ in $K_0(\mathcal{F}_{\rho})/(\operatorname{id} - \gamma_{\eta}^{-1})K_0(\mathcal{F}_{\rho})$ which is isomorphic to the kernel $\operatorname{Ker}(\operatorname{id} - \bar{\lambda}_{\rho})$ in $K_0(\mathcal{A})/(\operatorname{id} - \lambda_{\eta})K_0(\mathcal{A})$.

Lemma 8.22. The kernel of $\operatorname{id} - \gamma_{\rho}$ in $K_0(\mathcal{F}_{\rho,\eta})$ is isomorphic to the kernel of $\operatorname{id} - \gamma_{\rho}$ in $K_0(\mathcal{F}_{\rho})$ that is also isomorphic to the kernel of $\operatorname{id} - \lambda_{\eta}$ in $K_0(\mathcal{A})$ such that the quotient group

$$(\operatorname{Ker}(\operatorname{id} - \gamma_{\eta}) \operatorname{in} K_0(\mathcal{F}_{\rho,\eta}))/(\operatorname{id} - \gamma_{\rho})(\operatorname{Ker}(\operatorname{id} - \gamma_{\eta}) \operatorname{in} K_0(\mathcal{F}_{\rho,\eta}))$$

is isomorphic to the quotient group

$$(\operatorname{Ker}(\operatorname{id} - \lambda_{\eta}) \operatorname{in} K_0(\mathcal{A}))/(\operatorname{id} - \lambda_{\rho})(\operatorname{Ker}(\operatorname{id} - \lambda_{\eta}) \operatorname{in} K_0(\mathcal{A})).$$

Proof. The proofs are similar to the previous discussions. \Box

Therefore the short exact sequence for $K_1(\mathcal{O}_{\rho,\eta}^{\kappa})$ in Theorem 7.10 is restated as the following proposition.

Proposition 8.23. Assume that $(A, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$ forms square and

$$K_1(\mathcal{F}_{\rho,\eta}) = \{0\}.$$

Then there exists a short exact sequence:

$$0 \longrightarrow (\operatorname{Ker}(\operatorname{id} - \lambda_{\eta}) \ in \ K_{0}(\mathcal{A}))/(\operatorname{id} - \lambda_{\rho})(\operatorname{Ker}(\operatorname{id} - \lambda_{\eta}) \ in \ K_{0}(\mathcal{A}))$$

$$\longrightarrow K_{1}(\mathcal{O}_{\rho,\eta}^{\kappa})$$

$$\longrightarrow \operatorname{Ker}(\operatorname{id} - \bar{\lambda}_{\rho}) \ in \ (K_{0}(\mathcal{A})/(\operatorname{id} - \lambda_{\eta})K_{0}(\mathcal{A}))$$

$$\longrightarrow 0.$$

We give a condition on $(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$ which makes $K_1(\mathcal{F}_{\rho,\eta}) = \{0\}$.

Lemma 8.24. Suppose that a C^* -textile dynamical system

$$(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$$

forms square and satisfies $K_1(A) = \{0\}$. Then $K_1(\mathcal{F}_{\rho,\eta}) = \{0\}$.

Proof. The algebra $\mathcal{F}_{\rho,\eta}$ is an inductive limit C^* -algebra of subalgebras $\mathcal{F}_{j,k}$ with inclusion maps (5.3). Let E_i^l , $i=1,\ldots,m(l)$ be the minimal projections

in \mathcal{A}_l as in Lemma 8.4, which are central in \mathcal{A} such that $\sum_{i=1}^{m(l)} E_i^l = 1$. By Lemma 8.4, we have

$$K_1(\mathcal{F}_{j,k}) = \bigoplus_{i=1}^{m(l)} K_1(\mathcal{F}_{j,k}(i)) = \bigoplus_{i=1}^{m(l)} K_1(E_i^l \mathcal{A} E_i^l) = K_1(\mathcal{A})$$

so that the condition $K_1(\mathcal{A}) = \{0\}$ implies $K_1(\mathcal{F}_{\varrho,n}) = \{0\}$.

A a C^* -textile dynamical system $(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$ is said to have trivial K_1 if $K_1(\mathcal{A}) = \{0\}$.

Consequently we reach the following K-theory formulae for the C^* -algebra $\mathcal{O}_{\rho,\eta}^{\kappa}$ by Proposition 8.19 and Proposition 8.23.

Theorem 8.25. Suppose that a C^* -textile dynamical system

$$(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$$

forms square having trivial K_1 . Then there exist short exact sequences for their K-groups as in the following way:

$$0 \longrightarrow K_0(\mathcal{A})/((\mathrm{id} - \lambda_{\eta})K_0(\mathcal{A}) + (\mathrm{id} - \lambda_{\rho})K_0(\mathcal{A}))$$

$$\longrightarrow K_0(\mathcal{O}_{\rho,\eta}^{\kappa})$$

$$\longrightarrow \mathrm{Ker}(\mathrm{id} - \lambda_{\eta}) \cap \mathrm{Ker}(\mathrm{id} - \lambda_{\rho}) \ in \ K_0(\mathcal{A})$$

$$\longrightarrow 0$$

and

$$0 \longrightarrow (\operatorname{Ker}(\operatorname{id} - \lambda_{\eta}) \ in \ K_{0}(\mathcal{A}))/(\operatorname{id} - \lambda_{\rho})(\operatorname{Ker}(\operatorname{id} - \lambda_{\eta}) \ in \ K_{0}(\mathcal{A}))$$

$$\longrightarrow K_{1}(\mathcal{O}_{\rho,\eta}^{\kappa})$$

$$\longrightarrow \operatorname{Ker}(\operatorname{id} - \bar{\lambda}_{\rho}) \ in \ (K_{0}(\mathcal{A})/(\operatorname{id} - \lambda_{\eta})K_{0}(\mathcal{A}))$$

$$\longrightarrow 0$$

where the endomorphisms $\lambda_{\rho}, \lambda_{\eta}: K_0(\mathcal{A}) \longrightarrow K_0(\mathcal{A})$ are defined by

$$\lambda_{\rho}([p]) = \sum_{\alpha \in \Sigma^{\rho}} [\rho_{\alpha}(p)] \in K_0(\mathcal{A}) \text{ for } [p] \in K_0(\mathcal{A}),$$
$$\lambda_{\eta}([p]) = \sum_{\alpha \in \Sigma^{\eta}} [\eta_{\alpha}(p)] \in K_0(\mathcal{A}) \text{ for } [p] \in K_0(\mathcal{A}).$$

9. Examples

9.1. LR-textile λ -graph systems. A symbolic matrix

$$\mathcal{M} = [\mathcal{M}(i,j)]_{i,j=1}^{N}$$

is a matrix whose components consist of formal sums of elements of an alphabet Σ , such as

$$\mathcal{M} = \begin{bmatrix} a & a+c \\ c & 0 \end{bmatrix}$$
 where $\Sigma = \{a, b, c\}$.

 \mathcal{M} is said to be essential if there is no zero column or zero row. \mathcal{M} is said to be left-resolving if for each column a symbol does not appear in two different rows. For example, $\begin{bmatrix} a & a+b \\ c & 0 \end{bmatrix}$ is left-resolving, but $\begin{bmatrix} a & a+b \\ c & b \end{bmatrix}$ is not left-resolving because of b at the second column. We assume that symbolic matrices are always essential and left-resolving. We denote by $\Sigma^{\mathcal{M}}$ the alphabet Σ of the symbolic matrix \mathcal{M} .

Let $\mathcal{M} = [\mathcal{M}(i,j)]_{i,j=1}^N$ and $\mathcal{M}' = [\mathcal{M}'(i,j)]_{i,j=1}^N$ be $N \times N$ symbolic matrices over $\Sigma^{\mathcal{M}}$ and $\Sigma^{\mathcal{M}'}$ respectively. Suppose that there is a bijection $\kappa: \Sigma^{\mathcal{M}} \longrightarrow \Sigma^{\mathcal{M}'}$. Following Nasu's terminology [34] we say that \mathcal{M} and \mathcal{M}' are equivalent under specification κ , or simply, specified equivalent if \mathcal{M}' can be obtained from \mathcal{M} by replacing every symbol $\alpha \in \Sigma^{\mathcal{M}}$ by $\kappa(\alpha) \in \Sigma^{\mathcal{M}'}$. That is if $\mathcal{M}(i,j) = \alpha_1 + \cdots + \alpha_n$, then $\mathcal{M}'(i,j) = \kappa(\alpha_1) + \cdots + \kappa(\alpha_n)$. We write this situation as $\mathcal{M} \stackrel{\kappa}{\cong} \mathcal{M}'$ (see [34]).

For a symbolic matrix $\mathcal{M} = [\mathcal{M}(i,j)]_{i,j=1}^N$ over $\Sigma^{\mathcal{M}}$, we set for $\alpha \in$ $\Sigma^{\mathcal{M}}, i, j = 1, \dots, N$

$$A^{\mathcal{M}}(i, \alpha, j) = \begin{cases} 1 & \text{if } \alpha \text{ appears in } \mathcal{M}(i, j), \\ 0 & \text{otherwise.} \end{cases}$$

Put an $N \times N$ nonnegative matrix $A^{\mathcal{M}} = [A^{\mathcal{M}}(i,j)]_{i,j=1}^{N}$ by setting

$$A^{\mathcal{M}}(i,j) = \sum_{\alpha \in \Sigma^{\mathcal{M}}} A^{\mathcal{M}}(i,\alpha,j).$$

Let $\mathcal A$ be an N-dimensional commutative C^* -algebra $\mathbb C^N$ with minimal projections E_1, \ldots, E_N such that

$$\mathcal{A} = \mathbb{C}E_1 \oplus \cdots \oplus \mathbb{C}E_N$$
.

We set for $\alpha \in \Sigma^{\mathcal{M}}$:

$$\rho_{\alpha}^{\mathcal{M}}(E_i) = \sum_{j=1}^{N} A^{\mathcal{M}}(i, \alpha, j) E_j, \qquad i = 1, \dots, N.$$

Then we have a C^* -symbolic dynamical system $(\mathcal{A}, \rho^{\mathcal{M}}, \Sigma^{\mathcal{M}})$. Let $\mathcal{M} = [\mathcal{M}(i,j)]_{i,j=1}^N$ and $\mathcal{N} = [\mathcal{N}(i,j)]_{i,j=1}^N$ be $N \times N$ symbolic matrices over $\Sigma^{\mathcal{M}}$ and $\Sigma^{\mathcal{N}}$ respectively. We have two C^* -symbolic dynamical systems $(\mathcal{A}, \rho^{\mathcal{M}}, \Sigma^{\mathcal{M}})$ and $(\mathcal{A}, \rho^{\mathcal{N}}, \Sigma^{\mathcal{N}})$. Put

$$\Sigma^{\mathcal{MN}} = \{ (\alpha, b) \in \Sigma^{\mathcal{M}} \times \Sigma^{\mathcal{N}} \mid \rho_b^{\mathcal{N}} \circ \rho_\alpha^{\mathcal{M}} \neq 0 \},$$

$$\Sigma^{\mathcal{NM}} = \{ (a, \beta) \in \Sigma^{\mathcal{N}} \times \Sigma^{\mathcal{M}} \mid \rho_\beta^{\mathcal{M}} \circ \rho_a^{\mathcal{N}} \neq 0 \}.$$

Suppose that there is a bijection κ from $\Sigma^{\mathcal{MN}}$ to $\Sigma^{\mathcal{NM}}$ such that κ yields a specified equivalence

$$(9.1) \mathcal{M}\mathcal{N} \stackrel{\kappa}{\cong} \mathcal{N}\mathcal{M}$$

and fix it.

Proposition 9.1. Keep the above situations. The specified equivalence (9.1) induces a specification $\kappa: \Sigma^{\mathcal{MN}} \longrightarrow \Sigma^{\mathcal{NM}}$ such that

(9.2)
$$\rho_b^{\mathcal{N}} \circ \rho_\alpha^{\mathcal{M}} = \rho_\beta^{\mathcal{M}} \circ \rho_a^{\mathcal{N}} \quad if \quad \kappa(\alpha, b) = (a, \beta).$$

Hence $(\mathcal{A}, \rho^{\mathcal{M}}, \rho^{\mathcal{N}}, \Sigma^{\mathcal{M}}, \Sigma^{\mathcal{N}}, \kappa)$ gives rise to a C^* -textile dynamical system which forms square having trivial K_1 .

Proof. Since $\mathcal{MN} \stackrel{\kappa}{\cong} \mathcal{NM}$, one sees that for i, j = 1, 2, ..., N,

$$\kappa(\mathcal{MN}(i,j)) = \mathcal{NM}(i,j).$$

For $(\alpha, b) \in \Sigma^{\mathcal{MN}}$, there exists $i, k = 1, 2, \dots, N$ such that

$$\rho_b^{\mathcal{N}} \circ \rho_\alpha^{\mathcal{M}}(E_i) \ge E_k.$$

As $\kappa(\alpha, b)$ appears in $\mathcal{NM}(i, k)$, by putting $(a, \beta) = \kappa(\alpha, b)$, we have

$$\rho_{\beta}^{\mathcal{M}} \circ \rho_{a}^{\mathcal{N}}(E_{i}) \geq E_{k}.$$

Hence $\kappa(\alpha, b) \in \Sigma^{\mathcal{NM}}$. One indeed sees that $\rho_b^{\mathcal{N}} \circ \rho_\alpha^{\mathcal{M}} = \rho_\beta^{\mathcal{M}} \circ \rho_a^{\mathcal{N}}$ by the relation $\mathcal{MN} \stackrel{\kappa}{\cong} \mathcal{NM}$.

Two symbolic matrices satisfying (9.1) give rise to an LR textile system that has been introduced by Nasu (see [34]). Textile systems introduced by Nasu give a strong tool to analyze automorphisms and endomorphisms of topological Markov shifts. The author has generalized LR-textile systems to LR-textile λ -graph systems which consist of two pairs of sequences $(\mathcal{M}, I) = (\mathcal{M}_{l,l+1}, I_{l,l+1})_{l \in \mathbb{Z}_+}$ and $(\mathcal{N}, I) = (\mathcal{N}_{l,l+1}, I_{l,l+1})_{l \in \mathbb{Z}_+}$ such that

(9.3)
$$\mathcal{M}_{l,l+1}\mathcal{N}_{l+1,l+2} \stackrel{\kappa}{\cong} \mathcal{N}_{l,l+1}\mathcal{M}_{l+1,l+2}, \qquad l \in \mathbb{Z}_+$$

through a specification κ ([28]). We denote the LR-textile λ -graph system by $\mathcal{T}_{\mathcal{K}_{\mathcal{N}}^{\mathcal{M}}}$. Denote by $\mathfrak{L}^{\mathcal{M}}$ and $\mathfrak{L}^{\mathcal{N}}$ the associated λ -graph systems respectively. Since $\mathfrak{L}^{\mathcal{M}}$ and $\mathfrak{L}^{\mathcal{N}}$ have common sequences $V_l^{\mathcal{M}} = V_l^{\mathcal{N}}, l \in \mathbb{Z}_+$ of vertices which denoted by $V_l, l \in \mathbb{Z}_+$, and its common inclusion matrices $I_{l,l+1}, l \in \mathbb{Z}_+$. Hence $\mathfrak{L}^{\mathcal{M}}$ and $\mathfrak{L}^{\mathcal{N}}$ form square in the sense of [28, p.170]. Let $(\mathcal{A}_{\mathcal{M}}, \rho^{\mathcal{M}}, \Sigma^{\mathcal{M}})$ and $(\mathcal{A}_{\mathcal{N}}, \rho^{\mathcal{N}}, \Sigma^{\mathcal{N}})$ be the associated C^* -symbolic dynamical systems with the λ -graph systems $\mathfrak{L}^{\mathcal{M}}$ and $\mathfrak{L}^{\mathcal{N}}$ respectively. Since both the algebras $\mathcal{A}_{\mathcal{M}}$ and $\mathcal{A}_{\mathcal{N}}$ are the C^* -algebras of inductive limit of the system $I_{l,l+1}^*: C(V_l) \to C(V_{l+1}), l \in \mathbb{Z}_+$, they are identical, which is denoted by \mathcal{A} . It is easy to see that the relation (9.3) implies

(9.4)
$$\rho_{\alpha}^{\mathcal{M}} \circ \rho_{b}^{\mathcal{N}} = \rho_{a}^{\mathcal{N}} \circ \rho_{\beta}^{\mathcal{M}} \quad \text{if} \quad \kappa(\alpha, b) = (a, \beta).$$

Proposition 9.2. An LR-textile λ -graph system $\mathcal{T}_{\mathcal{K}_{\mathcal{N}}^{\mathcal{M}}}$ yields a C^* -textile dynamical system $(\mathcal{A}, \rho^{\mathcal{M}}, \rho^{\mathcal{N}}, \Sigma^{\mathcal{M}}, \Sigma^{\mathcal{N}}, \kappa)$ which forms square. Conversely, a C^* -textile dynamical system $(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$ which forms square yields

an LR-textile λ -graph system $\mathcal{T}_{\mathcal{K}_{\mathcal{M}_{\rho}}^{\mathcal{M}_{\rho}}}$ such that the associated C^* -textile dynamical system written $(\mathcal{A}_{\rho,\eta},\rho^{\mathcal{M}_{\rho}},\rho^{\mathcal{M}_{\rho}},\Sigma^{\mathcal{M}_{\rho}},\Sigma^{\mathcal{M}_{\rho}},\kappa)$ is a subsystem of $(\mathcal{A},\rho,\eta,\Sigma^{\rho},\Sigma^{\eta},\kappa)$ in the sense that the relations:

$$\mathcal{A}_{\rho,\eta} \subset \mathcal{A}, \qquad \rho|_{\mathcal{A}_{\rho,\eta}} = \rho^{\mathcal{M}^{\rho}}, \qquad \eta|_{\mathcal{A}_{\rho,\eta}} = \rho^{\mathcal{M}^{\eta}}$$

hold.

Proof. Let $\mathcal{T}_{\mathcal{K}_{\mathcal{N}}^{\mathcal{M}}}$ be an LR-textile λ -graph system. As in the above discussions, we have a C^* -textile dynamical system $(\mathcal{A}, \rho^{\mathcal{M}}, \rho^{\mathcal{N}}, \Sigma^{\mathcal{M}}, \Sigma^{\mathcal{N}}, \kappa)$. Conversely, let $(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$ be a C^* -textile dynamical system which forms square. Put for $l \in \mathbb{N}$

$$\mathcal{A}_l^{\rho} = C^*(\rho_{\mu}(1) : \mu \in B_l(\Lambda_{\rho})), \qquad \mathcal{A}_l^{\eta} = C^*(\eta_{\xi}(1) : \xi \in B_l(\Lambda_{\eta})).$$

Since $\mathcal{A}_l^{\rho}=\mathcal{A}_l^{\eta}$ and they are commutative and of finite dimensional, the algebra

$$\mathcal{A}_{\rho,\eta} = \overline{\cup_{l \in \mathbb{Z}_+} \mathcal{A}_l^{\rho}} = \overline{\cup_{l \in \mathbb{Z}_+} \mathcal{A}_l^{\eta}}$$

is a commutative AF-subalgebra of \mathcal{A} . It is easy to see that both $(\mathcal{A}_{\rho,\eta}, \rho, \Sigma^{\rho})$ and $(\mathcal{A}_{\rho,\eta}, \eta, \Sigma^{\eta})$ are C^* -symbolic dynamical systems such that

(9.5)
$$\eta_b \circ \rho_\alpha = \rho_\beta \circ \eta_a \quad \text{if} \quad \kappa(\alpha, b) = (a, \beta)$$

By [27], there exist λ -graph systems \mathfrak{L}^{ρ} and \mathfrak{L}^{η} whose C^* -symbolic dynamical systems are $(\mathcal{A}_{\rho,\eta}, \rho, \Sigma^{\rho})$ and $(\mathcal{A}_{\rho,\eta}, \eta, \Sigma^{\eta})$ respectively. Let $(\mathcal{M}^{\rho}, I^{\rho})$ and $(\mathcal{M}^{\eta}, I^{\eta})$ be the associated symbolic matrix systems. It is easy to see that the relation (9.5) implies

$$\mathcal{M}_{l,l+1}^{\rho}\mathcal{M}_{l+1,l+2}^{\eta} \stackrel{\kappa}{\cong} \mathcal{M}_{l,l+1}^{\eta}\mathcal{M}_{l+1,l+2}^{\rho}, \qquad l \in \mathbb{Z}_{+}.$$

Hence we have an LR-textile λ -graph system $\mathcal{T}_{\mathcal{K}_{\mathcal{M}^{\eta}}^{\mathcal{M}^{\rho}}}$. It is direct to see that the associated C^* -textile dynamical system is $(\mathcal{A}_{\rho,\eta}, \rho|_{\mathcal{A}_{\rho,\eta}}, \eta|_{\mathcal{A}_{\rho,\eta}}, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$. \square

Let A be an $N \times N$ matrix with entries in nonnegative integers. We may consider a directed graph $G_A = (V_A, E_A)$ with vertex set V_A and edge set E_A . The vertex set V_A consists of N vertices which we denote by $\{v_1, \ldots, v_N\}$. We equip A(i,j) edges from the vertex v_i to the vertex v_j . Denote by E_A the set of the edges. Let $\Sigma^A = E_A$ and the labeling map $\lambda_A : E_A \longrightarrow \Sigma^A$ be defined as the identity map. Then we have a labeled directed graph denoted by G_A as well as a symbolic matrix $\mathcal{M}_A = [\mathcal{M}_A(i,j)]_{i,j=1}^N$ by setting

$$\mathcal{M}_A(i,j) = \begin{cases} e_1 + \dots + e_n & \text{if } e_1, \dots, e_n \text{ are edges from } v_i \text{ to } v_j, \\ 0 & \text{if there is no edge from } v_i \text{ to } v_j. \end{cases}$$

Let B be an $N \times N$ matrix with entries in nonnegative integers such that

$$(9.6) AB = BA.$$

The equality (9.6) implies that the cardinal numbers of the sets of the pairs of directed edges

$$\Sigma^{AB}(i,j) = \{(e,f) \in E_A \times E_B \mid s(e) = v_i, t(e) = s(f), t(f) = v_j\} \text{ and }$$

$$\Sigma^{BA}(i,j) = \{(f,e) \in E_B \times E_A \mid s(f) = v_i, t(f) = s(e), t(e) = v_j\}$$

coincide with each other for each v_i and v_j . We put $\Sigma^{AB} = \bigcup_{i,j=1}^N \Sigma^{AB}(i,j)$ and $\Sigma^{BA} = \bigcup_{i,j=1}^N \Sigma^{BA}(i,j)$ so that one may take a bijection $\kappa : \Sigma^{AB} \longrightarrow \Sigma^{BA}$ which gives rise to a specified equivalence $\mathcal{M}_A \mathcal{M}_B \stackrel{\kappa}{\cong} \mathcal{M}_B \mathcal{M}_A$. We then have a C^* -textile dynamical system

$$(\mathcal{A}, \rho^{\mathcal{M}_A}, \rho^{\mathcal{M}_B}, \Sigma^A, \Sigma^B, \kappa)$$

which we denote by

$$(\mathcal{A}, \rho^A, \rho^B, \Sigma^A, \Sigma^B, \kappa).$$

The associated C^* -algebra is denoted by $\mathcal{O}_{A,B}^{\kappa}$. The algebra $\mathcal{O}_{A,B}^{\kappa}$ depends on the choice of a specification $\kappa: \Sigma^{AB} \longrightarrow \Sigma^{BA}$. The algebras are 2-graph algebras of Kumjian and Pask [19]. They are also C^* -algebras associated to textile systems studied by V. Deaconu [9]. By Theorem 8.25, we have:

Proposition 9.3. Keep the above situations. There exist short exact sequences:

$$0 \longrightarrow \mathbb{Z}^N / ((1 - A)\mathbb{Z}^N + (1 - B)\mathbb{Z}^N)$$
$$\longrightarrow K_0(\mathcal{O}_{A,B}^{\kappa})$$
$$\longrightarrow \operatorname{Ker}(1 - A) \cap \operatorname{Ker}(1 - B) \ in \ \mathbb{Z}^N \longrightarrow 0$$

and

$$0 \longrightarrow (\operatorname{Ker}(1-B) \ in \ \mathbb{Z}^N)/(1-A)(\operatorname{Ker}(1-B) \ in \ \mathbb{Z}^N)$$

$$\longrightarrow K_1(\mathcal{O}_{A,B}^{\kappa})$$

$$\longrightarrow \operatorname{Ker}(1-A) \ in \ \mathbb{Z}^N/(1-B)\mathbb{Z}^N \longrightarrow 0.$$

We consider 1×1 matrices [N] and [M] with its entries N and M respectively for $1 < N, M \in \mathbb{N}$. Let G_N be a directed graph with one vertex and N directed self-loops. Similarly we consider a directed graph G_M with M directed self-loops at the vertex. The self-loops are denoted by $\Sigma^N = \{e_1, \ldots, e_N\}$ and $\Sigma^M = \{f_1, \ldots, f_M\}$ respectively. As a specification κ , we take the exchanging map $(e, f) \in \Sigma^N \times \Sigma^M \longrightarrow (f, e) \in \Sigma^M \times \Sigma^N$ which we will fix. Put

$$\rho_{e_i}^N(1) = 1, \qquad \rho_{f_j}^M(1) = 1 \qquad \text{for } i = 1, \dots, N, \ j = 1, \dots, M.$$

Then we have a C^* -textile dynamical system

$$(\mathbb{C}, \rho^N, \rho^M, \Sigma^N, \Sigma^M, \kappa).$$

The associated C^* -algebra is denoted by $\mathcal{O}_{N,M}^{\kappa}$.

Lemma 9.4. $\mathcal{O}_{N,M}^{\kappa} = \mathcal{O}_N \otimes \mathcal{O}_M$.

Proof. Let $s_i, i = 1, ..., N$ and $t_j, i = 1, ..., M$ be the generating isometries of the Cuntz algebra \mathcal{O}_N and those of \mathcal{O}_M respectively which satisfy

$$\sum_{i=1}^{N} s_i s_i^* = 1, \qquad \sum_{j=1}^{M} t_j t_j^* = 1.$$

Let $S_i, i = 1, ..., N$ and $T_j, i = 1, ..., M$ be the generating isometries of $\mathcal{O}_{N,M}^{\kappa}$ satisfying

$$\sum_{i=1}^{N} S_i S_i^* = 1, \qquad \sum_{j=1}^{M} T_j T_j^* = 1$$

and

$$S_i T_j = T_j S_i, i = 1, ..., N, j = 1, ..., M.$$

The universality of $\mathcal{O}_{N,M}^{\kappa}$ subject to the relations and that of the tensor product $\mathcal{O}_N \otimes \mathcal{O}_M$ ensure us that the correspondence $\Phi : \mathcal{O}_{N,M} \longrightarrow \mathcal{O}_N \otimes \mathcal{O}_M$ given by $\Phi(S_i) = s_i \otimes 1$, $\Phi(T_j) = 1 \otimes t_j$ yields an isomorphism.

Although we may easily compute the K-groups $K_*(\mathcal{O}_{M,N}^{\kappa})$ by using the Künneth formula for $K_i(\mathcal{O}_N \otimes \mathcal{O}_M)$ ([46]), we will compute them by Proposition 9.3 as in the following way.

Proposition 9.5 (cf. [19]). For $1 < N, M \in \mathbb{N}$, the C^* -algebra $\mathcal{O}_{N,M}^{\kappa}$ is simple, purely infinite, such that

$$K_0(\mathcal{O}_{N,M}^{\kappa}) \cong K_1(\mathcal{O}_{N,M}^{\kappa}) \cong \mathbb{Z}/d\mathbb{Z}$$

where $d = \gcd(N-1, M-1)$ the greatest common divisor of N-1, M-1.

Proof. It is easy to see that the group $\mathbb{Z}/((N-1)\mathbb{Z}+(N-1)\mathbb{Z})$ is isomorphic to $\mathbb{Z}/d\mathbb{Z}$. As $\operatorname{Ker}(N-1)=\operatorname{Ker}(M-1)=0$ in \mathbb{Z} , we see that

$$K_0(\mathcal{O}_{N,M}^{\kappa}) \cong \mathbb{Z}/d\mathbb{Z}.$$

It is elementary to see that the subgroup

$$\{[k] \in \mathbb{Z}/(M-1)\mathbb{Z} \mid (N-1)k \in (M-1)\mathbb{Z}\}\$$

of $\mathbb{Z}/(M-1)\mathbb{Z}$ is isomorphic to $\mathbb{Z}/d\mathbb{Z}$. Hence we have

$$K_1(\mathcal{O}_{N,M}^{\kappa}) \cong \mathbb{Z}/d\mathbb{Z}.$$

We will generalize the above examples from the view point of tensor products.

9.2. Tensor products. Let $(A^{\rho}, \rho, \Sigma^{\rho})$ and $(A^{\eta}, \eta, \Sigma^{\eta})$ be C^* -symbolic dynamical systems. We will construct a C^* -textile dynamical system by taking tensor product. Put

$$\bar{\mathcal{A}} = \mathcal{A}^{\rho} \otimes \mathcal{A}^{\eta}, \qquad \bar{\rho}_{\alpha} = \rho_{\alpha} \otimes \mathrm{id}, \qquad \bar{\eta}_{a} = \mathrm{id} \otimes \eta_{a}, \qquad \Sigma^{\bar{\rho}} = \Sigma^{\rho}, \qquad \Sigma^{\bar{\eta}} = \Sigma^{\eta}$$

for $\alpha \in \Sigma^{\rho}$, $a \in \Sigma^{\eta}$, where \otimes means the minimal C^* -tensor product \otimes_{\min} . For $(\alpha, a) \in \Sigma^{\rho} \times \Sigma^{\eta}$, we see $\eta_b \circ \rho_{\alpha}(1) \neq 0$ if and only if $\eta_b(1) \neq 0$, $\rho_{\alpha}(1) \neq 0$, so that

$$\Sigma^{\bar{\rho}\bar{\eta}} = \Sigma^{\rho} \times \Sigma^{\eta}$$
 and similarly $\Sigma^{\bar{\eta}\bar{\rho}} = \Sigma^{\eta} \times \Sigma^{\rho}$.

Define $\bar{\kappa}: \Sigma^{\bar{\rho}\bar{\eta}} \longrightarrow \Sigma^{\bar{\eta}\bar{\rho}}$ by setting $\bar{\kappa}(\alpha, b) = (b, \alpha)$.

Lemma 9.6. $(\bar{\mathcal{A}}, \bar{\rho}, \bar{\eta}, \Sigma^{\bar{\rho}}, \Sigma^{\bar{\eta}}, \bar{\kappa})$ is a C^* -textile dynamical system.

Proof. By [2], we have $Z_{\bar{A}} = Z_{A^{\rho}} \otimes Z_{A^{\eta}}$ so that

$$\bar{\rho}_{\alpha}(Z_{\bar{\mathcal{A}}}) \subset Z_{\bar{\mathcal{A}}}, \quad \alpha \in \Sigma^{\bar{\rho}} \quad \text{ and } \quad \bar{\rho}_{a}(Z_{\bar{\mathcal{A}}}) \subset Z_{\bar{\mathcal{A}}}, \quad a \in \Sigma^{\bar{\eta}}.$$

We also have $\sum_{\alpha \in \Sigma^{\bar{\rho}}} \bar{\rho}_{\alpha}(1) = \sum_{\alpha \in \Sigma^{\rho}} \rho_{\alpha}(1) \otimes 1 \geq 1$, and similarly

$$\sum_{q \in \Sigma^{\bar{\eta}}} \bar{\eta}_{(1)} \ge 1$$

so that both families $\{\bar{\rho}_{\alpha}\}_{{\alpha}\in\Sigma^{\bar{\rho}}}$ and $\{\bar{\eta}_{a}\}_{{\alpha}\in\Sigma^{\bar{\eta}}}$ of endomorphisms are essential. Since $\{\rho_{\alpha}\}_{{\alpha}\in\Sigma^{\rho}}$ is faithful on \mathcal{A}^{ρ} , the homomorphism

$$x \in \mathcal{A}^{\rho} \longrightarrow \sum_{\alpha \in \Sigma^{\rho}} {}^{\oplus} \rho_{\alpha}(x) \in \sum_{\alpha \in \Sigma^{\rho}} {}^{\oplus} \mathcal{A}^{\rho}$$

is injective so that the homomorphism

$$x \otimes y \in \mathcal{A}^{\rho} \otimes \mathcal{A}^{\eta} \longrightarrow \sum_{\alpha \in \Sigma^{\rho}} {}^{\oplus} \rho_{\alpha}(x) \otimes y \in \sum_{\alpha \in \Sigma^{\rho}} {}^{\oplus} \mathcal{A}^{\rho} \otimes \mathcal{A}^{\eta}$$

is injective. This implies that $\{\bar{\rho}_{\alpha}\}_{\alpha\in\Sigma^{\bar{\rho}}}$ is faithful. Similarly, so is $\{\bar{\eta}_{a}\}_{a\in\Sigma^{\bar{\eta}}}$. Hence $(\bar{\mathcal{A}}, \bar{\rho}, \Sigma^{\bar{\rho}})$ and $(\bar{\mathcal{A}}, \bar{\eta}, \Sigma^{\bar{\eta}})$ are both C^* -symbolic dynamical systems. It is direct to see that $\bar{\eta}_{b} \circ \bar{\rho}_{\alpha} = \bar{\rho}_{\alpha} \circ \bar{\eta}_{b}$ for $(\alpha, b) \in \Sigma^{\bar{\rho}\bar{\eta}}$. Therefore $(\bar{\mathcal{A}}, \bar{\rho}, \bar{\eta}, \Sigma^{\bar{\rho}}, \Sigma^{\bar{\eta}}, \bar{\kappa})$ is a C^* -textile dynamical system.

We call $(\bar{\mathcal{A}}, \bar{\rho}, \bar{\eta}, \Sigma^{\bar{\rho}}, \Sigma^{\bar{\eta}}, \bar{\kappa})$ the tensor product between $(\mathcal{A}^{\rho}, \rho, \Sigma^{\rho})$ and $(\mathcal{A}^{\eta}, \eta, \Sigma^{\eta})$. Denote by $S_{\alpha}, \alpha \in \Sigma^{\bar{\rho}}, T_{a}, a \in \Sigma^{\bar{\eta}}$ the generating partial isometries of the C^* -algebra $\mathcal{O}_{\bar{\rho},\bar{\eta}}^{\bar{\kappa}}$ for the C^* -textile dynamical system

$$(\bar{\mathcal{A}},\bar{\rho},\bar{\eta},\Sigma^{\bar{\rho}},\Sigma^{\bar{\eta}},\bar{\kappa}).$$

By the universality for the algebra $\mathcal{O}_{\bar{\rho},\bar{\eta}}^{\bar{\kappa}}$ subject to the relations $(\bar{\rho},\bar{\eta};\bar{\kappa})$, the algebra $\mathcal{D}_{\bar{\rho},\bar{\eta}}$ is isomorphic to the tensor product $\mathcal{D}_{\rho}\otimes\mathcal{D}_{\eta}$ through the correspondence

$$S_{\mu}T_{\xi}(x\otimes y)T_{\xi}^{*}S_{\mu}^{*}\longleftrightarrow S_{\mu}xS_{\mu}^{*}\otimes T_{\xi}yT_{\xi}^{*}$$

for $\mu \in B_*(\Lambda_\rho), \xi \in B_*(\Lambda_\eta), \ x \in A^\rho, y \in \mathcal{A}^\eta$.

Lemma 9.7. Suppose that $(A^{\rho}, \rho, \Sigma^{\rho})$ and $(A^{\eta}, \eta, \Sigma^{\eta})$ are both free (resp. AF-free). Then the tensor product $(\bar{A}, \bar{\rho}, \bar{\eta}, \Sigma^{\bar{\rho}}, \Sigma^{\bar{\eta}}, \bar{\kappa})$ is free (resp. AF-free).

Proof. Suppose that $(\mathcal{A}^{\rho}, \rho, \Sigma^{\rho})$ and $(\mathcal{A}^{\eta}, \eta, \Sigma^{\eta})$ are both free. There exist increasing sequences $\mathcal{A}^{\rho}_{l}, l \in \mathbb{Z}_{+}$ and $\mathcal{A}^{\eta}_{l}, l \in \mathbb{Z}_{+}$ of C^{*} -subalgebras of \mathcal{A}^{ρ} and \mathcal{A}^{η} satisfying the conditions of their freeness respectively. Put

$$\bar{\mathcal{A}}_l = \mathcal{A}_l^{\rho} \otimes \mathcal{A}_l^{\eta}, \quad l \in \mathbb{Z}_+.$$

It is clear that:

- (1) $\bar{\rho}_{\alpha}(\bar{A}_l) \subset \bar{\mathcal{A}}_{l+1}, \alpha \in \Sigma^{\bar{\rho}} \text{ and } \bar{\eta}_a(\bar{A}_l) \subset \bar{\mathcal{A}}_{l+1}, a \in \Sigma^{\bar{\eta}} \text{ for } l \in \mathbb{Z}_+.$
- (2) $\cup_{l\in\mathbb{Z}_+}\bar{\mathcal{A}}_l$ is dense in $\bar{\mathcal{A}}$.

We will show that the condition (3) for $\bar{\mathcal{A}}$ in Definition 5.3 holds. Take and fix arbitrary $j, k, l \in \mathbb{N}$ with $j + k \leq l$. For $j \leq l$, one may take a projection $q_{\rho} \in \mathcal{D}_{\rho} \cap \mathcal{A}_{l}^{\rho'}$ satisfying the condition (3) of the freeness of $(\mathcal{A}^{\rho}, \rho, \Sigma^{\rho})$, and similarly for $k \leq l$, one may take a projection $q_{\eta} \in \mathcal{D}_{\eta} \cap \mathcal{A}_{l}^{\eta'}$. Put $q = q_{\rho} \otimes q_{\eta} \in \mathcal{D}_{\rho} \otimes \mathcal{D}_{\eta} (= \mathcal{D}_{\bar{\rho},\bar{\eta}})$ so that $q \in \mathcal{D}_{\bar{\rho},\bar{\eta}} \cap \bar{\mathcal{A}}_{l}^{\ell}$. As the maps $\Phi_{l}^{\rho}: x \in \mathcal{A}_{l}^{\rho} \longrightarrow q_{\rho}x \in q_{\rho}\mathcal{A}_{l}^{\rho}$ and $\Phi_{l}^{\eta}: y \in \mathcal{A}_{l}^{\eta} \longrightarrow q_{\eta}x \in q_{\eta}\mathcal{A}_{l}^{\eta}$ are both isomorphisms, the tensor product

$$\Phi_l^{\rho} \otimes \Phi_l^{\eta} : x \otimes y \in \mathcal{A}_l^{\rho} \otimes \mathcal{A}_l^{\eta} \longrightarrow (q_{\rho} \otimes q_{\eta})(x \otimes y) \in (q_{\rho} \otimes q_{\eta})(\mathcal{A}_l^{\rho} \otimes \mathcal{A}_l^{\eta})$$

is isomorphic. Hence $qa \neq 0$ for $0 \neq a \in \bar{\mathcal{A}}_l$. It is straightforward to see that q satisfies the condition (3) (ii) of Definition 5.3. Therefore the tensor product $(\bar{\mathcal{A}}, \bar{\rho}, \bar{\eta}, \Sigma^{\bar{\rho}}, \Sigma^{\bar{\eta}}, \bar{\kappa})$ is free. It is obvious to see that if both $(\mathcal{A}^{\rho}, \rho, \Sigma^{\rho})$ and $(\mathcal{A}^{\eta}, \eta, \Sigma^{\eta})$ are AF-free, then $(\bar{\mathcal{A}}, \bar{\rho}, \bar{\eta}, \Sigma^{\bar{\rho}}, \Sigma^{\bar{\eta}}, \bar{\kappa})$ is AF-free.

Proposition 9.8. Suppose that $(A^{\rho}, \rho, \Sigma^{\rho})$ and $(A^{\eta}, \eta, \Sigma^{\eta})$ are both free. Then the C^* -algebra $\mathcal{O}_{\bar{\rho},\bar{\eta}}^{\bar{\kappa}}$ for the tensor product C^* -textile dynamical system $(\bar{A}, \bar{\rho}, \bar{\eta}, \Sigma^{\bar{\rho}}, \Sigma^{\bar{\eta}}, \bar{\kappa})$ is isomorphic to the minimal tensor product $\mathcal{O}_{\rho} \otimes \mathcal{O}_{\eta}$ of the C^* -algebras between \mathcal{O}_{ρ} and \mathcal{O}_{η} . If in particular, $(A^{\rho}, \rho, \Sigma^{\rho})$ and $(A^{\eta}, \eta, \Sigma^{\eta})$ are both irreducible, the C^* -algebra $\mathcal{O}_{\bar{\rho},\bar{\eta}}^{\bar{\kappa}}$ is simple.

Proof. Suppose that $(\mathcal{A}^{\rho}, \rho, \Sigma^{\rho})$ and $(\mathcal{A}^{\eta}, \eta, \Sigma^{\eta})$ are both free. By the preceding lemma, the tensor product $(\bar{\mathcal{A}}, \bar{\rho}, \bar{\eta}, \Sigma^{\bar{\rho}}, \Sigma^{\bar{\eta}}, \bar{\kappa})$ is free and hence satisfies condition (I). Let $s_{\alpha}, \alpha \in \Sigma^{\rho}$ and $t_{a}, a \in \Sigma^{\eta}$ be the generating partial isometries of the C^* -algebras \mathcal{O}_{ρ} and \mathcal{O}_{η} respectively. Let $S_{\alpha}, \alpha \in \Sigma^{\bar{\rho}}$ and $T_{a}, a \in \Sigma^{\bar{\eta}}$ be the generating partial isometries of the C^* -algebra $\mathcal{O}_{\bar{\rho},\bar{\eta}}^{\bar{\kappa}}$. By the uniqueness of the algebra $\mathcal{O}_{\bar{\rho},\bar{\eta}}^{\bar{\kappa}}$ with respect to the relations $(\bar{\rho}, \bar{\eta}; \bar{\kappa})$, the correspondence

$$S_{\alpha} \longrightarrow s_{\alpha} \otimes 1 \in \mathcal{O}_{\rho} \otimes \mathcal{O}_{\eta}, \qquad T_{a} \longrightarrow 1 \otimes t_{a} \in \mathcal{O}_{\rho} \otimes \mathcal{O}_{\eta}$$

naturally gives rise to an isomorphism from $\mathcal{O}_{\bar{\rho},\bar{\eta}}^{\bar{\kappa}}$ onto the tensor product $\mathcal{O}_{\rho}\otimes\mathcal{O}_{\eta}$.

If in particular, $(\mathcal{A}^{\rho}, \rho, \Sigma^{\rho})$ and $(\mathcal{A}^{\eta}, \eta, \Sigma^{\eta})$ are both irreducible, the C^* -algebras \mathcal{O}_{ρ} and \mathcal{O}_{η} are both simple so that $\mathcal{O}_{\bar{\rho},\bar{\eta}}^{\bar{\kappa}}$ is simple.

We remark that the tensor product $(\bar{\mathcal{A}}, \bar{\rho}, \bar{\eta}, \Sigma^{\bar{\rho}}, \Sigma^{\bar{\eta}}, \bar{\kappa})$ does not necessarily form square. The K-theory groups $K_*(\mathcal{O}_{\bar{\rho},\bar{\eta}}^{\bar{\kappa}})$ are computed from the Künneth formulae for $K_*(\mathcal{O}_{\rho} \otimes \mathcal{O}_{\eta})$ [46].

10. Concluding remark

In [31], a different construction of C^* -algebra written $\mathcal{O}_{\mathcal{H}_{\kappa}}$ from C^* -textile dynamical system $(\mathcal{A}, \rho, \eta, \Sigma^{\rho}, \Sigma^{\eta}, \kappa)$ is studied by using a 2-dimensional analogue of Hilbert C^* -bimodule. The C^* -algebra $\mathcal{O}_{\mathcal{H}_{\kappa}}$ is different from the C^* -algebra $\mathcal{O}_{\rho,\eta}^{\kappa}$ in the present paper (see also [33], [32]).

References

- Aranda Pino, Gonzalo; Clark, John; an Huef, Astrid; Raeburn, Iain. Kumjian-Pask algebras of higher-rank graphs. Trans. Amer. Math. Soc. 365 (2013), no. 7, 3613-3641. MR3042597, Zbl 1282.16006, doi:10.1090/S0002-9947-2013-05717-0.
- [2] ARCHBOLD, R. J. On the centre of a tensor product of C^* -algebras. J. London Math. Soc. (2) **10** (1975), 257–262. MR0402512 (53 # 6331), Zbl 0303.46057, doi: 10.1112/jlms/s2-10.3.257.
- [3] BATES, TERESA; PASK, DAVID. C*-algebras of labelled graphs. J. Operator Theory 57 (2007), no. 1, 207–226. MR2304922 (2008c:46079), Zbl 1113.46049, arXiv:math/0503374.
- [4] BLACKADAR, BRUCE. K-theory for operator algebras. Second edition. Mathematical Sciences Research Institute Publications, 5. Cambridge University Press, Cambridge, 1998. xx+300 pp. ISBN: 0-521-63532-2. MR1656031 (99g:46104), Zbl 0913.46054.
- [5] BRATTELI, OLA. Inductive limits of finite-dimensional C*-algebras. Trans. Amer. Math. Soc. 171 (1972), 195–234. MR0312282 (47 #844), Zbl 0264.46057, doi:10.2307/1996380.
- [6] Brown, Lawrence G. Stable isomorphism of hereditary subalgebras of C^* -algebras. Pacific. J. Math. **71** (1977), no. 2, 335–348. MR0454645 (56 #12894), Zbl 0362.46042, doi: 10.2140/pjm.1977.71.335.
- [7] Cuntz, Joachim. Simple C^* -algebras generated by isometries. Comm. Math. Phys. **57** (1977), no. 2, 173–185. MR0467330 (57 7189), Zbl 0399.46045, doi: 10.1007/BF01625776.
- [8] Cuntz, Joachim; Krieger, Wolfgang. A class of C^* -algebras and topological Markov chains. *Invent. Math.* **56** (1980), no. 3, 251–268. MR561974 (82f:46073a), Zbl 0434.46045, doi:10.1007/BF01390048.
- [9] Deaconu, Valentin. C^* -algebras and Fell bundles associated to a textile system. J. Math. Anal. Appl. **372** (2010), no. 2, 515–524. MR2678879 (2012a:46092), Zbl 1205.37020, arXiv:1001.0037, doi:10.1016/j.jmaa.2010.07.034.
- [10] EVANS, D. GWION. On the K-theory of higher rank graph C^* -algebras. New York J. Math. 14 (2008), 1–31. MR2383584 (2009e:46065), Zbl 1146.46048, arXiv:math/0406458.
- [11] EXEL, RUY; GONÇALVES, DANIEL; STARLING, CHARLES. The tiling C^* -algebra viewed as a tight inverse semigroup algebra. Semigroup Forum 84 (2012), no. 2, 229–240. MR2898758 (2000i:46064), Zbl 1256.46034, arXiv:1106.4535, doi:10.1007/s00233-011-9359-x.
- [12] EXEL, RUY; LACA, MARCELO. Cuntz-Krieger algebras for infinite matrices. J. Reine Angew. Math. 512 (1999), 119–172. MR1703078 (2000i:46064), Zbl 0932.47053, arXiv:funct-an/9712008, doi:10.1515/crll.1999.051.
- [13] Farthing, Cynthia; Muhly, Paul S.; Yeend, Trent. Higher-rank graph C^* -algebras: an inverse semigroup and groupoid approach. Semigroup Forum **71** (2005), no. 2, 159–187. MR2184052 (2006h:46052), Zbl 1099.46036, arXiv:math/0409505, doi:10.1007/s00233-005-0512-2.

- [14] FISCHER, ROLAND. Sofic systems and graphs. Monatsh. Math. 80 (1975), no. 3, 179-186. MR0407235 (53 #11018), Zbl 0314.54043, doi:10.1007/BF01319913.
- [15] KAJIWARA, TSUYOSHI; PINZARI, CLAUDIA; WATATANI, YASUO. Ideal structure and simplicity of the C^* -algebras generated by Hilbert bimodules. J. Funct. Anal. 159 (1998), no. 2, 295-322. MR1658088 (2000a:46094), Zbl 0942.46035, doi: 10.1006/jfan.1998.3306.
- [16] KANG, SOORAN; PASK, DAVID; WEBSTER, SAMUEL B. G. Textile systems, coloured graphs and their applications to higher-rank graphs. Preprint, 2013. arXiv:1310.7651.
- [17] Krieger, Wolfgang. On sofic systems. I. Israel J. Math. 48 (1984), no. 4, 305–330. MR0776312 (86j:54074), Zbl 0573.54032, doi:10.1007/BF02760631.
- [18] Krieger, W. On sofic systems II. Israel J. Math. 60 (1987), 167–176. MR0931874 (89k:54098), Zbl 0638.54034, doi:10.1007/BF02790789.
- [19] KUMJIAN, ALEX; PASK, DAVID. Higher rank graph C*-algebras. New York J. Math. 6 (2000), 1–20. MR1745529 (2001b:46102), Zbl 0946.46044, arXiv:math/0007029.
- [20] KUMJIAN, ALEX; PASK, DAVID; RAEBURN, IAIN; RENAULT, JEAN. Graphs, groupoids and Cuntz-Krieger algebras. J. Funct. Anal. 144 (1997), no. 2, 505-541. MR1432596 (98g:46083), Zbl 0929.46055, doi:10.1006/jfan.1996.3001.
- [21] LIND, DOUGLAS; MARCUS, BRIAN. An introduction to symbolic dynamics and coding. Cambridge University Press, Cambridge, 1995. xvi+495 pp. ISBN: 0-521-55124-2; 0-521-55900-6. MR1369092 (97a:58050), Zbl 1106.37301, doi: 10.1017/CBO9780511626302.
- [22] MARKLEY, NELSON G.; PAUL, MICHAEL E. Matrix subshifts for \mathbb{Z}^{ν} symbolic dynamics. Proc. London Math. Soc. (3) 43 (1981), no. 2, 251–272. MR0628277 (82i:54073), Zbl 0479.54022, doi:10.1112/plms/s3-43.2.251.
- [23] MATSUMOTO, KENGO. K-theory for C^* -algebras associated with subshifts. Math. Scand. 82 (1998), no. 2, 237–255. MR1646513 (2000e:46087), Zbl 0921.46078.
- [24] MATSUMOTO, KENGO. Presentations of subshifts and their topological conjugacy invariants. Doc. Math. 4 (1999), 285–340. MR1710375 (2000h:37013), Zbl 0926.37002.
- Matsumoto, Kengo. C^* -algebras associated with presentations of subshifts. Doc. Math. 7 (2002), 1–30. MR1911208 (2004j:46083), Zbl 1007.46051.
- [26] MATSUMOTO, KENGO. Construction and pure infiniteness of C^* -algebras associated with lambda-graph systems. Math. Scand. 97 (2005), no. 1, 73–88. MR2179590 (2006e:46063), Zbl 1094.46041.
- [27] MATSUMOTO, KENGO. Actions of symbolic dynamical systems on C^* -algebras. J. Reine Angew. Math. 605 (2007), 23-49. MR2338126 (2009g:46131), Zbl 1123.46050, doi: 10.1515/CRELLE.2007.026.
- [28] Matsumoto, Kengo. Textile systems on lambda-graph systems. Yokohama Math. J. 54 (2008), no. 2, 121–206. MR2488282 (2010e:37011), Zbl 1175.37017, arXiv:math/0607520.
- [29] MATSUMOTO, KENGO. Orbit equivalence in C^* -algebras defined by actions of symbolic dynamical systems. Operator structures and dynamical systems, 121–140, Contemporary Math., 503. Amer. Math. Soc., Providence, RI, 2009. MR2590619 (2012d:46166), Zbl 1194.46093,
- [30] MATSUMOTO, KENGO. Actions of symbolic dynamical systems on C^* -algebras. II. Simplicity of C^* -symbolic crossed products and some examples. Math. Z. 265 (2010), no. 4, 735–760. MR2652533 (2011g:46123), Zbl 1208.46057, arXiv:0705.3283, doi: 10.1007/s00209-009-0538-3.
- [31] MATSUMOTO, KENGO. C^* -algebras associated with Hilbert C^* -quad modules of C^* textile dynamical systems. Preprint, 2011. arXiv:1111.3091v1.
- [32] Matsumoto, Kengo. Cuntz–Krieger algebras associated with Hilbert C^* -quad modules of commuting matrices. Math. Scand. 117 (2015), no. 1, 126-149. arXiv:1201.1056v1.

- [33] MATSUMOTO, KENGO. C^* -algebras associated with Hilbert C^* -quad modules of finite type. Int. J. Math. Math. Sci. **2014** Art. ID 952068, 21 pp. MR3166746, Zbl 1286.46060, arXiv:1309.7704, doi:10.1155/2014/952068.
- [34] NASU, MASAKAZU. Textile systems for endomorphisms and automorphisms of the shift. *Mem. Amer. Math. Soc.* **114** (1995), no. 546, viii+215 pp. MR1234883 (95i:54051), Zbl 0845.54031, doi:10.1090/memo/0546.
- [35] PASCHKE, W. L. K-theory for actions of the circle group on C*-algebras. J. Operator Theory 6 (1981), no. 1, 125–133. MR0637006 (82m:46074), Zbl 0478.46057.
- [36] PASK, DAVID; RAEBURN, IAIN; WEAVER, NATASHA A. A family of 2-graphs arising from two-dimensional subshifts. *Ergodic Theory Dynam. Sytems* 29 (2009), no. 5, 1613–1639. MR2545020 (2010g:46115), Zbl 1187.46040. arXiv:0804.3447, doi:10.1017/S0143385708000795.
- [37] PASK, DAVID; RAEBURN, IAIN; WEAVER, NATASHA A. Periodic 2-graphs arising from subshifts. Bull. Aust. Math. Soc. 82 (2010), no. 1, 120–138. MR2669150 (2011f:46083), Zbl 1200.46060, arXiv:0911.0730, doi:10.1017/S0004972709001269.
- [38] PATERSON, ALAN L. T. Groupoids, inverse semigroups, and their operator algebras. Progress in Mathematics 170. *Birkhäuser Boston Inc.*, *Boston*, *MA*, 1999. xvi+274 pp. ISBN: 0-8176-4051-7. MR1724106 (2001a:22003), Zbl 0913.22001, doi:10.1007/978-1-4612-1774-9.
- [39] PIMSNER, MICHAEL V. A class of C*-algebras generalizing both Cuntz-Krieger algebras and crossed product by Z. Free probability theory (Waterloo, ON, 1995), 189–212, Fields Inst. Commun., 12. Amer. Math. Soc., Providence, RI, 1997. MR1426840 (97k:46069), Zbl 0871.46028.
- [40] PIMSNER, M.; VOICULESCU, D. Exact sequences for K-groups and Ext-groups of certain cross-product C^* -algebras. J. Operator Theory 4 (1980), no. 1, 93–118. MR0587369 (82c:46074), Zbl 0474.46059.
- [41] Renault, Jean. A groupoid approach to C^* -algebras. Lecture Notes in Mathematics, 793. Springer, Berlin, 1980. ii+160 pp. ISBN: 3-540-09977-8. MR0584266 (82h:46075), Zbl 0433.46049, doi: 10.1007/BFb0091072.
- [42] ROBERTSON, DAVID I.; SIMS, AIDAN. Simplicity of C*-algebras associated to higher-rank graphs. Bull. Lond. Math. Soc. 39 (2007), no. 2, 337–344. MR2323468 (2008g:46099), Zbl 1125.46045, arXiv:math/0602120, doi:10.1112/blms/bdm006.
- [43] ROBERTSON, GUYAN; STEGER, TIM. Affine buildings, tiling systems and higher rank Cuntz-Krieger algebras. J. Reine Angew. Math. 513 (1999), 115–144. MR1713322 (2000j:46109), Zbl 1064.46504, arXiv:1302.5593, doi:10.1515/crll.1999.057.
- [44] RØRDAM, M.; LARSEN, F.; LAUSTSEN, N. An introduction to K-theory for C*-algebras. London Mathematical Society Student Texts, 49. Cambridge University Press, Cambridge, 2000. xii+242 pp. ISBN: 0-521-78334-8; 0-521-78944-3. MR1783408 (2001g:46001), Zbl 0967.19001.
- [45] ROSENBERG, JONATHAN. Appendix to: "Crossed products of UHF algebras by product type actions" by O. Bratteli. *Duke Math. J.* 46 (1979), no. 1, 25–26. MR0523599 (82a:46064), Zbl 0395.46049, doi: 10.1215/S0012-7094-79-04602-7.
- [46] ROSENBERG, JONATHAN; SCHOCHET, CLAUDE. The Künneth theorem and the universal coefficient theorem for Kasparov's generalized K-functor. Duke Math. J. 55 (1987), no. 2, 431–474. MR0894590 (88i:46091), Zbl 0644.46051, doi:10.1215/S0012-7094-87-05524-4.
- [47] SCHMIDT, KLAUS. Dynamical systems of algebraic origin. Progress in Mathematics, 128. Birkhäuser, Verlag, Basel, 1995. xviii+310 pp. ISBN: 3-7643-5174-8. MR1345152 (97c:28041), Zbl 0833.28001, doi: 10.1007/978-3-0348-0277-2.
- [48] WEGGE-OLSEN, N. E. K-theory and C*-algebras. A friendly approach. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1993. xii+370 pp. ISBN: 0-19-859694-4. MR1222415 (95c:46116), Zbl 0780.46038.

C^* -ALGEBRAS ASSOCIATED WITH TEXTILE DYNAMICAL SYSTEMS 1245

(Kengo Matsumoto) Department of Mathematics, Joetsu University of Education, Joetsu 943-8512, Japan kengo@juen.ac.jp

This paper is available via http://nyjm.albany.edu/j/2015/21-54.html.