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C*-algebras associated with textile
dynamical systems

Kengo Matsumoto

ABSTRACT. A C*-symbolic dynamical system (A, p, X) is a finite family
{pa}tacs of endomorphisms of a C*-algebra A with some conditions. It
yields a C*-algebra O, from an associated Hilbert C*-bimodule. In this
paper, we will extend the notion of C*-symbolic dynamical system to
C”*-textile dynamical system (A, p,n,X?, X" k) which consists of two
C*-symbolic dynamical systems (A, p, ) and (A,n,X") with certain
commutation relations x between their endomorphisms {pa}agzp and
{Na}taczn. C*-textile dynamical systems yield two-dimensional subshifts
and C™-algebras O ,. We will study their structure of the algebras Oy ,
and present its K-theory formulae.
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1. Introduction

In [24], the author has introduced a notion of A-graph system as presen-
tations of subshifts. The A-graph systems are labeled Bratteli diagram with
shift transformation. They yield C*-algebras so that its K-theory groups are
related to topological conjugacy invariants of the underlying symbolic dy-
namical systems. The class of these C*-algebras include the Cuntz—Krieger
algebras. He has extended the notion of A-graph system to C*-symbolic
dynamical system, which is a generalization of both a A-graph system and
an automorphism of a unital C*-algebra. It is a finite family {p,}aes of
endomorphisms of a unital C*-algebra A such that po(Z4) C Z4,a € ¥
and ) c5 pPa(l) > 1 where Z4 denotes the center of A. A finite labeled
graph G gives rise to a C*-symbolic dynamical system (Ag, pY, %) such that
A =CV for some N € N. A \-graph system £ is a generalization of a finite
labeled graph and yields a C*-symbolic dynamical system (Ag, p*, %) such
that Ag is C(Q¢) for some compact Hausdorff space Q¢ with dimQge = 0.
It also yields a C*-algebra Og. A C*-symbolic dynamical system (A4, p, )
provides a subshift A, over ¥ and a Hilbert C*-bimodule ’Hﬁt over A. The
C*-algebra O, for (A, p,%) may be realized as a Cuntz-Pimsner algebra
from the Hilbert C*-bimodule H"; ([27], cf. [15], [39]). We call the algebra
O, the C*-symbolic crossed product of A by the subshift A,. If A = C(X)
with dimX = 0, there exists a A-graph system £ such that the subshift A,
is the subshift A¢ presented by £ and the C*-algebra O, is the C*-algebra
Og¢ associated with £. If in particular, A = CV, the subshift A, is a sofic
shift and O, is a Cuntz—Krieger algebra. If ¥ = {a} an automorphism a of
a unital C*-algebra A, the C*-algebra O, is the ordinary crossed product
A X 7.

G. Robertson—T. Steger [43] have initiated a certain study of higher di-
mensional analogue of Cuntz—Krieger algebras from the view point of tiling
systems of 2-dimensional plane. After their work, A. Kumjian-D. Pask [19]
have generalized their construction to introduce the notion of higher rank
graphs and its C*-algebras. The C*-algebras constructed from higher rank
graphs are called the higher rank graph C*-algebras. Since then, there have
been many studies on these C*-algebras by many authors (cf. [1], [9], [10],
[11], [13], [16], [19], [36], [42], [43], etc.).

M. Nasu in [34] has introduced the notion of textile system which is use-
ful in analyzing automorphisms and endomorphisms of topological Markov
shifts. A textile system also gives rise to a two-dimensional tiling called
Wang tiling. Among textile systems, LR textile systems have specific prop-
erties that consist of two commuting symbolic matrices. In [28], the author
has extended the notion of textile systems to A-graph systems and has de-
fined a notion of textile systems on A-graph systems, which are called textile
A-graph systems for short. C*-algebras associated to textile systems have
been initiated by V. Deaconu ([9]).
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In this paper, we will extend the notion of C*-symbolic dynamical sys-
tem to C*-textile dynamical system which is a higher dimensional ana-
logue of C*-symbolic dynamical system. The C*-textile dynamical system
(A, p,n, P X" k) consists of two C*-symbolic dynamical systems (A, p, )
and (A,n,X") with the following commutation relations between p and n
through k. Set

71 = {(a,b) € £ x 27 | 0 pa # 03,
2 ={(a,B) € X" x X | pgona # 0}.
We require that there exists a bijection k : 37" — ¥"° which we fix and
call a specification. Then the required commutation relations are
(1.1) Mo pa=psona  if K(a,b) = (a,p).

A C*-textile dynamical system provides a two-dimensional subshifts and a
C*-algebra Of . The C*-algebra O, is defined to be the universal C*-
algebra C*(x, Sy, Ty; 2 € A, € ¥P,a € X") generated by z € A and two
families of partial isometries S, a € ¥, T,,a € X" subject to the following
relations called (p,n; K):

(1.2) > SsSE=1,  28uSh =S5,  SiwSa = pa(),
peXP

(1.3) N NIy =1,  oT.T; =TTz,  TjaTe=na(),
bexn

(1.4) SaTy = T458 if  k(a,b) = (a,p)

forallz € Aand o € ¥°,a € X7.

In Section 3, we will construct a tiling system in the plane from a C*-
textile dynamical system. The resulting tiling system is a two-dimensional
subshift. In Section 4, we will study some basic properties of the C*-
algebra Op,. In Section 5, we will introduce a condition called (I) on
(A, p,n, 3P X" k) which will be studied as a generalization of the condi-
tion (I) on C*-symbolic dynamical system [26] (cf. [8], [25]). In Section 6,
we will realize the C*-algebra Op , as a Cuntz-Pimsner algebra associated
with a certain Hilbert C*-bimodule in a concrete way. We will have the
following theorem.

Theorem 1.1. Let (A, p,n, X, 3" k) be a C*-textile dynamical system sat-
isfying condition (I). Then the C*-algebra Oy is a unique concrete C*-
algebra subject to the relations (p,m; k). If (A, p,n,XP, X" K) is irreducible,
05, is simple.

A C*-textile dynamical system (A, p,n, ¥°, X" k) is said to form square
if the C*-subalgebra of A generated by the projections p, (1), € ¥* and
the C*-subalgebra of A generated by the projections 7,(1),a € X" coincide.
It is said to have trivial K if K;(A) = {0}. In Section 7 and Section 8, we
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will restrict our interest to the C*-textile dynamical systems forming square
to prove the following K-theory formulae:

Theorem 1.2. Suppose that (A, p,n, X, X" k) forms square and has trivial
K. Then there exist short exact sequences for Ko(O}, ) and K1(Oy,) such
that

0 — Ko(A)/((id = Ap) Ko(A) + (id = A,) Ko(A))
— Ko(O,,)
— Ker(id — A\;)) N Ker(id — A,) in Ko(A) — 0

and

0 — (Ker(id — \;) in Ko(A))/(id — A,)(Ker(id — ;) in Ko(A))
— Kl((”);m)
— Ker(id — A,) in (Ko(A)/(id — A;) Ko(A)) — 0
where the endomorphisms X,, Ay : Ko(A) — Ko(A) are defined by

Aop]) = Y [pa(p)] € Ko(A) for [p] € Ko(A),

aEedr

Mi([p) = D na(p)] € Ko(A) for [p] € Ko(A)

aceX”n
and A, denotes an endomorphism on Ko(A)/(1 — X)) Ko(A) induced by A,.

Let A, B be mutually commuting N x N matrices with entries in non-
negative integers. Let G4 = (Va,E4),Gp = (Vp, Ep) be directed graphs
with common vertex set V4 = Vg, whose transition matrices are A, B re-
spectively. Let M 4, M p denote symbolic matrices for G4, Gp whose com-
ponents consist of formal sums of the directed edges of G4, G respectively.
Let 48 284 be the sets of the pairs of the concatenated directed edges
in Eq4 X Ep, Ep x E 4 respectively. By the condition AB = BA, one may
take a bijection k : X4 — B4 which gives rise to a specified equiva-

lence My Mp = MpM . We then have a C*-textile dynamical system
written as (A, p?, p?, 24, 8, k). The associated C*-algebra is denoted by
O% p- The C*-algebra O’ p is realized as a 2-graph C*-algebra constructed
by Kumjian-Pask ([19]). It is also seen in Deaconu’s paper [9]. We will see
the following proposition in Section 9.

Proposition 1.3. Keep the above situations. There exist short exact se-
quences for Ko(O% p) and K1(O% g) such that

0—ZV/((1-A)ZN + (1 - B)ZN)
— Ko(O%4 )

— Ker(1 — A)NKer(1 - B) in ZY — 0
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and
0 — (Ker(1 — B) in Z™)/(1 — A)(Ker(1 — B) in ZV)
— Kl(OfLB)
— Ker(1— A) in (ZV /(1 — B)ZY) — 0,

where A is an endomorphism on the abelian group ZN /(1 — B)Z"N induced
by the matriz A.

Throughout the paper, we will denote by Z the set of nonnegative inte-
gers and by N the set of positive integers.
This paper is a revised version of the paper: arXiv:1106.5092v1.

2. A-graph systems, C*-symbolic dynamical systems and
their C*-algebras

In this section, we will briefly review A-graph systems and C*-symbolic
dynamical systems. Throughout the section, ¥ denotes a finite set with its
discrete topology, that is called an alphabet. Each element of X is called
a symbol. Let % be the infinite product space [Licz X, where ¥; = 3,
endowed with the product topology. The transformation ¢ on %% given
by o((zi)icz) = (zit1)iez is called the full shift over ¥. Let A be a shift
invariant closed subset of ¥% i.e. o(A) = A. The topological dynamical
system (A, o|p) is called a two-sided subshift, written as A for brevity. A
word p = (p1,..., ;) of X is said to be admissible for A if there exists
(zi)icz € A such that pu; = x1,...,ur = x. Let us denote by |u| the
length k of u. Let Bi(A) be the set of admissible words of A with length k.
The union U2 By (A) is denoted by B, (A) where By(A) denotes the empty
word. For two words = (p1,..., k), v = (v1,...,V,), we write a new word
puy = (Mlv"'aukaylv"'vyn)'

There is a class of subshifts called sofic shifts, that are presented by finite
labeled graphs ([14], [17], [18]). A-graph systems are generalization of finite
labeled graphs. Any subshift is presented by a A-graph system. Let

L= (V,E, A1)

be a A-graph system over 3 with vertex set V' = Ujez, V; and edge set E =
Uiez, Eri41 that is labeled with symbols in X by a map A : £ — 3, and that
is supplied with surjective maps ¢(= ¢141) : Vi1 — V) for [ € Z,.. Here the
vertex sets Vi,l € Z and the edge sets Fj;11,l € Z are finite disjoint sets
for each | € Z. An edge e in Ej ;1 has its source vertex s(e) in V; and its
terminal vertex t(e) in Viy; respectively. Every vertex in V' has a successor
and every vertex in V; for [ € N has a predecessor. It is then required that
for vertices u € V;_1 and v € Vj;1, there exists a bijective correspondence
between the set of edges e € Ej ;41 such that t(e) = v, t(s(e)) = u and the set
of edges f € Ej_1,; such that s(f) = u,t(f) = t(v), preserving their labels
([24]). We assume that £ is left-resolving, which means that t(e) # t(f)
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whenever A(e) = \(f) for e, f € Ej 1. Let us denote by {v}, ... ,vfn(l)} the
vertex set Vj at level I. For i =1,2,... ,m(l), 7=1,2,...,m(l+1), a €X
we put

1 if s(e) = vl A(e) = a, t(e) = vé-“ for some e € Ej 41,

0 otherwise,

A (i, o, j) = {

1 g (05T) = 0]

1 1,§) = v

() {O otherwise.

The C*-algebra Og¢ associated with £ is the universal C*-algebra generated
by partial isometries Sy, a € ¥ and projections E!,i = 1,2,...,m(l), | € Zy
subject to the following operator relations called (£):

(2.1) ZSQSE =1,

pex
m(l) m(l+1)
(2.2) S Ej=1, El= ) Iuulij)E,
i=1 j=1
(2.3) S.S!E! = E!S,S”,
m(l+1)
(2.4) SiESa = Y Aya(i,a, )BT,
7j=1

for i = 1,2,....m(l),l € Zy,a € X. If £ satisfies A\-condition (I) and is
A-irreducible, the C*-algebra Og is simple and purely infinite ([25], [26]).
Let Ag; be the C*-subalgebra of Og generated by the projections Eli=
1,...,m(l). We denote by Ag the C*-subalgebra of Og¢ generated by all the
projections EY,i = 1,...,m(l),l € Z4. As Ag; C Ag 41 and Uiez, Agy is
dense in A, the algebra Ag is a commutative AF-algebra. For o € ¥, put

po(X) = S:XS, for X € Ag.

Then {pS}aes vields a family of x-endomorphisms of Ag such that pS(1) #
0, > ,es pe(1) > 1 and for any nonzero = € Ag, ps(z) # 0 for some a € .

The situations above are generalized to C*-symbolic dynamical systems as
follows. Let A be a unital C*-algebra. In what follows, an endomorphism of
A means a *-endomorphism of A that does not necessarily preserve the unit
14 of A. The unit 14 is denoted by 1 unless we specify. Denote by Z 4 the
center of A. Let p,, @ € ¥ be a finite family of endomorphisms of .4 indexed
by symbols of a finite set 3. We assume that po(Z4) C Z4,a € 3. The
family p,,a € 3 of endomorphisms of A is said to be essential if po(1) # 0
for all @« € ¥ and Y pa(1) > 1. It is said to be faithful if for any nonzero
x € A there exists a symbol « € 3 such that p,(x) # 0.
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Definition 2.1 (cf. [27]). A C*-symbolic dynamical system is a triplet
(A, p,X) consisting of a unital C*-algebra A and an essential and faithful
finite family {pq }aes of endomorphisms of A.

As in the above discussion, we have a C*-symbolic dynamical system
(Ag, p%,¥) from a A\-graph system £. In [27], [29], [30], we have defined
a C"-symbolic dynamical system in a less restrictive way than the above
definition. Instead of the above condition ) s pa(1) > 1 with po(Z4) C
Z A, € X, we have used the condition in the papers that the closed ideal
generated by p,(1),a € ¥ coincides with A. All of the examples appeared
in the papers [27], [29], [30] satisfy the condition ) .5 pa(1) > 1 with
Pa(Z4A) C Za, a0 € 3, and all discussions in the papers well work under the
above new definition.

A C*-symbolic dynamical system (A, p,¥) yields a subshift A, over ¥
such that a word (aq, ..., ) of ¥ is admissible for A, if and only if

(pak O Oqu)(l) 7é 0

([27, Proposition 2.1]). We say that a subshift A acts on a C*-algebra A if
there exists a C*-symbolic dynamical system (A, p, ¥) such that the associ-
ated subshift A, is A.

The C*-algebra O, associated with a C*-symbolic dynamical system

(A, p, %)

has been originally constructed in [27] as a C*-algebra by using the Pimsner’s
general construction of C*-algebras from Hilbert C*-bimodules [39] (cf. [15]
etc.). It is realized as the universal C*-algebra C*(z, Sy € A,a € X)
generated by € A and partial isometries S,, a € X subject to the following
relations called (p):

D> SpS5=1,  2S.55 =S5,  SiwSa = pal(z)
BeX

for all z € A and a € ¥. The C*-algebra O, is a generalization of the
C*-algebra Og¢ associated with the A-graph system £.

A C*-symbolic dynamical system (A, p, ) is said to be free if there exists
a unital increasing sequence Ay C A; C --- C A of C*-subalgebras of A
such that:

(1) pal(A}) C Apyq foralll € Z, and a € 2.
(2) Uiez, A; is dense in A.
(3) For j <1 there exists a projection ¢ € D, N A;" such that:
(i) gz #0 for 0 £z € A,
(i) ¢p(q)g=0foralln =1,2,...,7,
where D, is the C*-subalgebra of O, generated by elements

Sur - S xSy, - Sk
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for (pu1,..., ux) € B«(A,) and z € A, and

$p(X) =Y SuXSi, X €D,
aEX
The freeness has been called condition (I) in [30]. If in particular, one may
take the above subalgebras A; C A, 1 =0,1,2,... to be of finite dimensional,
then (A, p, X)) is said to be AF-free. (A, p,¥) is said to be irreducible if there
is no nontrivial ideal of A invariant under the positive operator A\, on A
defined by A\p(z) = > cx pal(z), = € A. It has been proved that if (A, p, X)
is free and irreducible, then the C*-algebra O, is simple ([30]).

3. C*-textile dynamical systems and two-dimensional
subshifts

Let X be a finite set. The two-dimensional full shift over X is defined to
be

2
EZ = {(xi,j)(i,j)€Z2 ’ Tij € E}.

An element z € %° is regarded as a function x : Z2 — ¥ which is called a
configuration on Z2. For z € ¥2* and F C 72, let xr denote the restriction
of z to F. For a vector m = (my, ms) € Z2, let o™ : ¥2° — %% be the
translation along vector m defined by

" (i) ig)ez?) = (Titmy j+ma) (ij)ez2-

A subset X C £%° is said to be translation invariant if o™(X) = X for all

m € Z2. Tt is obvious to see that a subset X C ¥2° is translation invariant
if ond only if X is invariant only both horizontally and vertically, that is,
o10(X) = X and ¢(®Y(X) = X. For k € Z,, put

[~k k> = {(i,)) € Z* | =k < i,j <k} = [k, k] x [k, k].

A metric d on X2° is defined by for z,y € 2% with z Z*y

d(z,y) = 2% it 20,00 = Y(0,0)5
where k = max{k € Zy | 2[_pu2 = Y—r2} If 2(0,0) # Y(0,0), Put kb = —1
on the above definition. If x = y, we set d(z,y) = 0. A two-dimensional
subshift X is defined to be a closed, translation invariant subset of ©%° (cf.
[21, p.467]). A finite subset F' C Z? is said to be a shape. A pattern f on a
shape F'is a function f : FF — X. For a list § of patterns, put

Xz ={(%ij)ijyezz | o™ (x)|F € § for all m € 7? and F C 7%},
It is well-known that a subset X C %%” is a two-dimensional subshift if and

only if there exists a list § of patterns such that X = X5.
We will define a certain property of two-dimensional subshift as follows:
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Definition 3.1. A two-dimensional subshift X is said to have the diagonal
property if for (x; ;) jyez2, (Yij) @ )ezz € X, the conditions

Lij = Yig» Titl,j—1 = Yit1,5—1
imply

Tij—1 = Yij—1, Titlj = Yitl,4-
A two-dimensional subshift having the diagonal property is called a textile
dynamical system.

Lemma 3.2. If a two dimensional subshift X has the diagonal property,
then for x € X and (i,j) € Z?, the configuration x is determined by the
diagonal line (Tiyn j—n)nez through (i,7).

Proof. By the diagonal property, the sequence (Zjin j—n)ncz determines
both the sequences (Zit14n,j—n)nez and (Zi—i4n j—n)ncz. Repeating this
way, the sequence (Z;4n j—n)nez determines the whole configuration . [

Let (A, p,n,XP, 3" k) be a C*-textile dynamical system. It consists of two
C*-symbolic dynamical systems (A, p, £*) and (A, n, X") with common uni-
tal C*-algebra A and commutation relations between their endomorphisms
Pa, 0 € 2P g, a € X7 through a bijection x between the following sets 3"
and X", where

S = {(0,) € 2 x 57 | 3,0 pu £ 0},
Y = {(a,B) € " x X° | pgong # 0}.

The given bijection k : 37T — 3P is called a specification. The required
commutation relations are

(3.1) Mo pa=pgota  if K(a,b) = (a,p).

A C*-textile dynamical system will yield a two-dimensional subshift X7, .
We set

Yo ={w=(a,b,a,8) € L’ x X" x X" x ¥ | k(cr,b) = (a,B)}.

For w = (a, b, a, B), since n, 0 po = pgon, as endomorphisms on A, one may
identify the quadruplet (o, b, a, 8) with the endomorphism 7, 0 po (= pgona)
on A which we will denote by simply w. Define maps t(= top), b(= bottom) :
Y. — XP and I(= left), r(= right) : ¥, — XP by setting

tw)=a, bw)=p Ilw)=a, rw)=0

a=t(w)

a=iw)| [p=r
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A configuration (w; ;) jyez2 € >%* is said to be paved if the conditions
t(wij) = b(wijt1), r(wij) = lwit,),
Hwij) = r(wi-15), b(wij) = t(wij-1)
hold for all (i, ) € Z2. We set
2 .
X = {(wij)i ez € »Z | (wij)(i,j)ez? 1s paved and
Witn,j—n O Witn—1j-ntl1 0 OWit1j10w;; # 0
for all (i,7) € Z*,n € N},

where wjin j—n 0 Witn—1,j-n+1 0+ O Wit1,j—1 © w;j is the compositions as
endomorphisms on A.

Lemma 3.3. Suppose that a configuration (wij)gjezz € E? is paved.
Then (wij) i ez € X, if and only if

Pb(witn,j—m) © """ O Pb(witt,j—m) © Pb(wij—m) © M(wij—m) " M(wij—1) © N(wi,z) 70

for all (i,7) € Z%, n,m € Z.

l(wi,]’—m)l

S ...

b(wi,j—m) b(wit1,j—m) b(Witn,j—m)

Proof. Suppose that (wi ;)i jyezz € X,,. For (i,j) € 72, n,m € Zy, we
may assume that m > n. Since
0 #Witmj—m © " © Witntl,j—m O Witnj—m O " O Wijm
O+ 0Wjit],j—10Wij
=Witm,j—m © " O Witnt1j—m © Pb(witn,j—m) © " Po(wit1j—m) © Pb(wi,j—m)
OM(wijm) """ © M(wij—m) © " © M(wij-1) © M(wi4)>

one has

Pb(wisn,j—m) """ O Pb(wit1,j—m) © Pb(wij—m) M (wij—m) " M(wij—1) ° M(wi,z) # 0.
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The converse implication is clear by the equality:
Witn,j—n © " OWij—n O OWij 10Wij
= Polwitnon) © O Po(wiion) © Miwijmn) " © Mwiy—1) © M) O

Proposition 3.4. X[, is a two-dimensional subshift having diagonal prop-
erty, that is, X, is a textile dynamical system.

Proof. It is easy to see that the set
z? :
E = {(wij)ijez € Xy | (wij)ajyezz is paved}
is closed, because its complement is open in E%Q. The following set

2
U = {(wij)(ijyez2 € 5 | Wtnin © Wktn—1i—n+1

0+ 0wkt -1 0w,y = 0 for some (k,1) € 7% n € N}

. . 72 . o .
is open in X%°. As the equality X, n=ENU holds, the set X7, is closed.

It is also obvious that X ;”n is translation invariant so that X 5,77 is a two-

dimensional subshift. It is7easy to see that X7 has diagonal property. [

We call X7, the textile dynamical system associated with
(A, p,m, BP, X7 K).

Let us now define a (one-dimensional) subshift Xs~ over ¥, which consists
of diagonal sequences of X7 as follows:

Xsr = {(wn,—n)nez € E% | (wij)@ijyez2 € Xpp}-
By Lemma 3.2, an element (wp,—pn)nez of X5~ may be extended to
(wij)igeze € Xpy

in a unique way. Hence the one-dimensional subshift Xs« determines the
two-dimensional subshift X7 . Therefore we have:

Lemma 3.5. The two-dimensional subshift X7, is not empty if and only if
the one-dimensional subshift X5~ is not empty.

For (A, p,n, %P, X" k), we will have a C*-symbolic dynamical system
(A,0"%, %) in Section 4. It presents the subshift Xs~. Since a subshift
presented by a C*-symbolic dynamical system is always not empty, one sees

Proposition 3.6. The two-dimensional subshift X, is not empty.
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4. C*-textile dynamical systems and their C*-algebras
The C*-algebra Oy, is defined to be the universal C*-algebra
C*(2,S84, Ty € A,a € P a e X1

generated by = € A and partial isometries S,, a0 € 3, Ty, a € X7 subject to
the following relations called (p,n; k):

(4.1) > SpSh=1, 28,55 =S5,  SiwSa = pa(),
pesr

(4.2) N nIy =1, aTT; =TTz,  TjaT, =na(),
bexn

(4.3) SaTy = T558 if  k(a,b) = (a,p)

for all z € A and a € ¥f,a € ¥7. We will study the algebra Op . For
(a,b,a,p) € TP x X" x X1 x 3P we set

RB(a,a) = {(b, f) € " x X | k(e, b) = (a, B)},

R(a,a,8) = {b e X" | k(a,b) = (a, 5)},

R(eya) = | R(a,a,B).
pexr

Lemma 4.1. For a € ¥f,a € X", one has TS, # 0 if and only if
RB(a,a) # 0.

Proof. Suppose that TS, # 0. As T;Sa = Y yesim To SaTy Ty, there exists
b € X" such that T,S,Ty # 0. Hence ny o po # 0 so that («,b’) € X1,
Then one may find (a’,8’) € X° such that k(«a,b’) = (', ") and hence
SaTy = ToSpr. Since 0 # T So Ty = T, T, Sp, one sees that a = a’ so that
(t',B") € RB(w,a).

Suppose next that x(a,b) = (a,3) for some (b,5) € X" x XP. Since
My © P = P © Mg 7# 0, one has 0 # STy, = T,53. It follows that

SETLSaTy = (TuSp) TuSp

so that TS, # 0. O

Lemma 4.2. For a € ¥ ,a € X", we have

(4.4) TiSa= Y,  Semlpa(1)Ty
(b,8)ERB(a,a)

and hence

(4.5) ST= Y Tops(na(1)S5
(b,8)ERB(a,a)

Proof. We may assume that 77S, # 0. One has

ﬁ&:}Zﬁ%mﬁ.
bexn
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For b/ € 3" with («, ') € ¥, take (a’, 8) € X" such that k(a, V') = (d/, ')
so that

TS Ty Ty = T T STy

Hence T;;S,Ty Ty, # 0 implies a = a’. Since T T, = 1,(1) which commutes
with Sg5%,, we have

T, TaSp Ty = SpSp T, TaSe Ty = Sprpg (1a(1)) Ty = Sprmy (pa(1)) Ty
It follows that

T;Sa = Z T;TaSﬂ/TI; = Z Sﬁ’nb’(th(l))T};- ([l
(v',8")eERB(,a) (v',8")eRB(a,a)

Hence we have:

Lemma 4.3. For a € ¥ ,a € X", we have

T.T;SaSh= > SaTTyS:

beR(a,a)
Hence T, T commutes with S,S,.
Proof. By (4.4), we have
T.1;5aSh = Y. TuSem(pa(1)Ty S

(b,8)ERB(a,a)

= Y SaTym(pa(1)Ty S,
beR(w,a)

= Y Sapa()TVT} S

beR(a,a)

— Z SoTyTySe. O
beR(w,a)

Recall that Z 4 denotes the center of A which consists of elements of A
commuting with all elements of A.

Lemma 4.4. For a € ¥*,a € ¥" and x,y € Za, ToyT; commutes with
SaxSy,.
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Proof. By (4.4), we have

ToyTySaxSe=Tay >, Sgm(pa(1))TyzS}
(b,8)ERB(a,a)

= > TuSsSiySem(pa(1)TyaT, Ty S,

(b,8)ERB(a,a)

= D SaTepsW)m(pall))m(x)SET
(b,8)ERB(a,a)

= Y SaTin@mlpa(1)ps) ST

(b,8)eRB(w,a)

= Z Sarpa(1)TySEyYT,
(b,8)ERB(a,a)

= Y SaxSiS ST TuyT;
(b,8)eERB(a,a)

> Sax- SLSaTVTy SiTa - YTy
beR(aa)
Now if (o, ') ¢ XA, then S, Ty = 0. Hence
> SESa T Ty SiTa =Y | SuSaTyTySiTa = SiT,
beR(aa) bexn

Therefore we have
ToyTy SaxS) = SaxSETyTr.

For words pn = (p1,...,p5) € Bj(A,), ¢ = (G, -+, Ck) € Bi(Ay), we set

Su:‘sul"'sﬂjv Te=T¢ T,

O

For a subset F' of Oy, , denote by C*(F) the C*-subalgebra of O}, generated

by the elements of I'. We define C*-subalgebras D, ), Dj i, of Oy, by

Dy =C*(S,TeaTES% 1€ Bu(Ay), ¢ € Bu(Ay),x € A),

Djy =C*(S,TcxT; S, : p € Bj(Ay), ¢ € Bi(Ay),x € A)  for j, k € Zy.

By the commutation relation (4.3), one sees that

Dj,k = C*(TgS,,ggSﬁTﬁ* Ve Bj(Ap),§ S Bk(An),w S A)

The identities

SuTeaxTtS) = > SpTiana(@) TS,
aeXxn
TeSyaSpTE = Y TeSpapalz
aEXP
for x € A and p,v € B;j(A,),(, & € Bi(Ay) yield the embeddings
Djr = Djit1, Djr = Djp1k



C*-ALGEBRAS ASSOCIATED WITH TEXTILE DYNAMICAL SYSTEMS 1193

respectively such that U; xez, Djx is dense in D, .
Proposition 4.5. If A is commutative, so is Dp,.

Proof. The preceding lemma tells us that D ; is commutative. Suppose
that the algebra D;j is commutative for fixed j,k € N. We will show that
the both algebras D1 and D; 1 are commutative. The algebra Dj 1y
consists of the linear span of elements of the form:

SaxS} for x € Dj,a € X°.

For x,y € D, o, € ¥, we will show that S,xS; commutes with both
SgySE and y. If @ = 3, it is easy to see that S,x S}, commutes with S,yS},
because pa(1) € A C Djy. If a # B, both SaxS;SsysSh and SpySESaxSy
are zeros. Since SpySa € Dj_1 1 C Dji, one sees S;yS, commutes with .
One also sees that 5,5}, € D;; commutes with y. It follows that

SaxShy = SaxSiySaSs = SaSiySarSy = ySaxSy.

Hence the algebra Djiq ) is commutative, and similarly so is D;;41. By
induction, the algebras D;; are all commutative for all j,k € N. Since
UjkenDj i is dense in D, D), is commutative. O

Proposition 4.6. Let (’)gfﬁ be the dense x-subalgebra of Of, algebraically
generated by elements x € A, Sy, € 2P and T,,a € X". Then each element
of (’)gfﬁ is a finite linear combination of elements of the form:

(4.6) S TexTg S, forx e A p,v € Bi(Ay), (€ € By(Ay).

Proof. For o, 5 € ¥°, a,b € X7 and = € A, we have

S5 — pa(l) e A 1fa:‘/6’, T, = na(l) € A 1fa:‘b,
0 otherwise, 0 otherwise,
SoTa = Z Tops(na(1))Ss,  TgSa = Z Senw(pa(1))1y,
(b,8)ERB(a,a) (b,8)ERB(ax,a)
Srr = pa()Sa, Trx =ne(x)T,.

And also
o _ (T3S i (0,8) € 2 and (0, 5) = (o),
R if (a,3) ¢ X,
Therefore we conclude that any element of ngﬁ is a finite linear combination
of elements of the form of (4.6). O

Similarly we have:

Proposition 4.7. Each element of ngﬁ is a finite linear combination of
elements of the form:

(4.7) T SuxS;TE forx e A, p,v € Bi(A,),(, € € By(Ay).
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In the rest of this section, we will have a C*-symbolic dynamical system
(A, 67,5, from (A, p,n, 3P, X7, k), which presents the one-dimensional sub-
shift X~ described in the previous section. For (A, p,n, X°, X" k), define
an endomorphism 07 on A for w € ¥, by setting

5:3(90) = Wb(ﬂa(x))(: pﬁ(na(x)))v reEA w= (aa b?%ﬁ) € Xy
Lemma 4.8. (A, ", %) is a C*-symbolic dynamical system that presents
X

Proof. We will show that 6" is essential and faithful. Now both C*-symbolic
dynamical systems (A, n,¥7) and (A, p,¥"7) are essential. Since p,(Z4) C
Za and nq(Z4) C Za, it is clear that 05(Z4) C Z 4. By the inequalities

doarmy =" mpa(l) = > m(1) =1
WEY beXT aeXP bexn

{6"}uex,. is essential. For any nonzero = € A, there exists a € X such that
pa(z) # 0 and there exists b € X" such that n(pa(z)) # 0. Hence 6" is
faithful so that (A, 6%, 3,) is a C*-symbolic dynamical system. It is obvious
that the subshift presented by (A, 0", %) is Xgx. O

Put
o~ 2
X5 ={wi—j)upem € EN | Wig)ajezz € Xpn}t
and

Xsw = {(Wn,—n)nen € I} | (Wig)jenz € Xp 1}
The latter set )A((;n is the right one-sided subshift for Xg«.
Lemma 4.9. A configuration (wi,—j); jyenz € X;n extends to a whole con-
figuration (wi ;) jyeze € Xp,
Proof. For (wl _])(”)eNz € X oy PUb T = w; i, 7 € Nso that z = (24)ien €
X(;n Since X(;n is a one-sided subshift, there exists an extension T € X4« to
two-sided sequence such that z; = x; for i € N. By the diagonal property,
determines a whole configuration @ to Z? such that @ € X 5 and (@i —i)ien =
2. Hence w; _j = w; _; for all 4,5 € N. O
Let ©,, be the C*-subalgebra of D, ,, defined by
Dpn=C (S TTES), 1 € Bu(Ay), € € Bi(Ay))
= C*(T¢S) ST - v € Bi(Ap),§ € Bu(Ay))

which is a commutative C*-subalgebra of D, . Put for p = (p1,...,pun) €
Bi(Ap), ¢ = (C1,--+ ,Gn) € B«(Ay) the cylinder set

Upe = {(wi—j) ez € X5 |
t(wi,_l) = ui,i = 1, . ,n,r(wm_j) = Cj,j = 1, ce ,m}.
The following lemma is direct.
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Lemma 4.10. ©,, is isomorphic to C()?Zn) through the correspondence
such that S#TCTC*S; goes to xu, ., where xu, . is the characteristic function

for the cylinder set U, ¢ on )?;m

5. Condition (I) for C*-textile dynamical systems

The notion of condition (I) for finite square matrices with entries in {0,1}
has been introduced in [8]. The condition has been generalized by many
authors to corresponding conditions for generalizations of the Cuntz—Krieger
algebras (cf. [12], [15], [20], [41], etc.). The condition (I) for C*-symbolic
dynamical systems (including A-graph systems) has been also defined in [29]
(cf. [25], [26]). All of these conditions give rise to the uniqueness of the
associated C*-algebras subject to some operator relations among certain
generating elements.

In this section, we will introduce the notion of condition (I) for C*-textile
dynamical systems to prove the uniqueness of the C*-algebras O, under
the relation (p,n; k).

Let (A, p,n,%X°, 3" k) be a C*-symbolic dynamical system over ¥ and
X7, the associated two-dimensional subshift. Denote by A,, A, the associ-
ated subshifts to the C*-symbolic dynamical systems (A, p, ¥°), (A, n, X7)
respectively. For ,u = (p1,...,p5) € Bj(Ap),¢ = (Ciy---,Ck) € Br(Ay),
We put P, = Pu; O r O Puy,Tc = T¢, © -+ © ¢ respectively. Recall that
|, || denotes the lengths j, k respectively. In the algebra Of . we set the
subalgebras

]}m
= C*(SHTC:UT;S: Ve B*(Ap)agag € B*(AT])> |N’| = |l/|7 |C| = |£’,$ € A)

and for j, k € Z,

Fik = C (S TcaT{ Sy pyv € Bi(Ay), (€ € Be(Ay),z € A).
We notice that

Fik = C(TeSuwS)TE « pyv € Bi(Ay), ¢, € € Bp(Ay),r € A).
The identities

(5.1) SUTCaTESy = 3 Sulcana(®)TES;,
aeXn

(5,2) TgS .CCS*Tg Z TCS;wcpa( )S:QTE*
aeXr

for x € A and p,v € Bj(A,),(, & € Bi(Ay) yield the embeddings
(5.3) o1t Fik = ikt tpiss Fik = Fipik

respectively, such that U; pcz. Fi is dense in F, .
Y. G k€Zy Y, P



1196 KENGO MATSUMOTO

By the universality of Of , subject to the relations (p,7; k), we may define
an action 6 : T? — Aut(Oy ) of the two-dimensional torus group
T? = {(2,w) € C* | |z] = Jw| = 1}
to Oy, by setting
0.w(Sa) =250, O.0(T,) =wl,, O,w(x)=c

for o« € ¥,a € ¥, z € A and z,w € T. We call the action 6 : T?> —
Aut(0j5,)) the gauge action of T? on O5,- The fixed point algebra of OF

under 6 is denoted by ((’);n)o. Let &y : Of ) — ((’)Zm)a be the conditional
expectation defined by

£,0(X) = / 0.w(X)dzdw, X €O,
(z,w)€T? '

where dzdw means the normalized Haar measure on T?. The following
lemma is routine.

Lemma 5.1. ((’)’;MG = Fon-

Define homomorphisms ¢, ¢, : D, — D, by setting
$p(X) =D SuXSi,  ¢y(X) =) T.XT;, XDy,
acXr acxn
It is easy to see that by (4.3)
Ppody=¢nod, onDpy,.
Definition 5.2. A C*-textile dynamical system (A, p,n, X°, 3" k) is said
to satisfy condition (I) if there exists a unital increasing sequence
AcACc---CcA
of C*-subalgebras of A such that:
(1) pa(A)) C A1, na(A)) C Appq foralll € Zy o € XP a € X0,
(2) Uiz, A; is dense in A.
(3) For e >0, j,k,l € N with j + k <[ and
Xo € Fly = C*(SuTeaTy Sy pov € Bj(A,), ¢, € € Be(Ay),x € Ay),
there exists an element
g€D,yNA'(={y €D,y | ya=ay forac A})
with 0 < g<1 such that:
() [1X05 0 65 (9)ll = [1Xoll — e,
(il) ¢p(9)en'(9) = 9p(¢5'(9))g = d5(9)g = ¢} (9)g = 0 for all n =
1,2,...,5,m=1,2,...,k
If in particular, one may take the above subalgebras A; C A, 1 =0,1,2,...

to be of finite dimensional, then (A, p,n, X°, 37 k) is said to satisfy AF-
condition (I). In this case, A = U° .A; is an AF-algebra.
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As the element g above belongs to the diagonal subalgebra D, ,, of F, ,,
the condition (I) of (A, p,n, ¥, X7, k) is intrinsically determined by itself by
virtue of Lemma 5.5 below.

We will also introduce the following condition called free, which will be
stronger than condition (I) but easier to confirm than condition (I).

Definition 5.3. A C*-textile dynamical system (A, p,n, X°, 3" k) is said
to be free if there exists a unital increasing sequence Ay C A; C --- C A of
C*-subalgebras of A such that:

(1) pa(A)) C App1, na(A)) C Appq foralll € Zy o € ¥P a € X7,

(2) Uiz, A; is dense in A.

(3) For j,k,l € N with j + k <[ there exists a projection g € D,, N A/

such that:
(i) ga # 0 for 0 £ a € A;.

(i) op(a)on'(a) = ¢, (9 (0)a = dp(a)g = ¢5'(g)g = 0 for all n =
1,2,..,5,m=1,2,... k.

If in particular, one may take the above subalgebras A; C A, 1=0,1,2,...
to be of finite dimensional, then (A, p,n, X°, 3", k) is said to be AF-free.

Proposition 5.4. If a C*-textile dynamical system (A, p,n, 3P, X", k) is free
(resp. AF-free), then it satisfies condition (I) (resp. AF-condition (I)).

Proof. Assume that (A, p,n, ¥°, X" k) is free. Take an increasing sequence
Ayl € N of C*-subalgebras of A satisfying the above conditions (1), (2),
(3) of freeness. For j, k,l € N with 7 + k < [ there exists a projection
q € D, N A/ satisfying the above two conditions (3i) and (3ii). Put

Qe = Bp(93(a))-

For x € A, u,v € Bj(A,), &, ¢ € Bi(A;), one has the equality

Qb 1S TeaTE Sy = S, TeaTE S
so that Qé- i commutes with all of elements of F Jl - By using the condition
(31) for ¢ one directly sees that S, TexT¢ S}, # 0 if and only if

QxS TeaTE Sy # 0.

Hence the map

X € Fju — XQjy, € Fj Qi

defines a homomorphism, that is proved to be injective by a similar proof to
the proof of [30, Proposition 3.7]. Hence we have ||XQ§1¢|| = || X > | X||—e€

for all X € F/ . O

Let B be a unital C*-algebra. Suppose that there exist an injective x-
homomorphism 7 : A — B preserving their units and two families

sa €B,ae ¥’ and t,e€B,aecX”
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of partial isometries satisfying

Z spsp = 1, (x)SaSh = Sasnm(x), sam(x)sq = m(pa(x)),
Bexer

g tyty =1, m(x)taty = totam(x), trm(x)te = m(na(x)),
bex
Saty =tqsg if k(b)) = (a,B)

forallz € Aand a € £, a € . Put A = 7(A) and

pa(m(2)) = 7(pa(x)), 7a(m(z)) = 7(Na(2)), =€ A
It is easy to see that (.,1,,5, n, 2P, X" k) is a C*-textile dynamical system
such that the presented textile dynamical system X i 18 the same as the
one X7, presented by (A, p,n, ¥, 3" k). Let Or 51 be the C*-subalgebra
of B generated by 7(z) and s,, t, for x € A,a € ¥°,a € ¥". Let Fr
be the C*-subalgebra of O generated by sytcm(z)tgs; for z € A and
p,v € By(Ay),(, & € Bi(Ay) with |u| = |v],|¢| = |£|. By the universality of
the algebra Op . the correspondence

.CCE.A—)T('(%‘)E%T, Sq — Sa, a € XP, T, — ty, acX"
extends to a surjective x-homomorphism 7 : Ogm — Or st
Lemma 5.5. The restriction of 7 to the subalgebra F,,, is a *-isomorphism
from Fpp to Frer. Hence if (A, p,n,XP, X" k) satisfies condition (I) (resp.
is free), (A, p,n,XP, X" k) satisfies condition (1) (resp. is free).
Proof. It suffices to show that 7 is injective on Fj for all j, k € Z. Suppose
) Sul¢m (T e )tes, =0
M?VEBj (AP)=C7§€Bk (A’!])

with x, ¢ ¢, € A. For p/, v/ € B;j(A,), (', & € Bi(Ay), one has

m(ne (P (1)) ¢ ervme (o (1)))

=108, Z sutcm(Tpcenltes, | spte = 0.
wvE€B;(Ap),¢,E€BK(Ay)
As 7 : A — B is injective, one sees
ne (P ()T 6 0me (o (1)) = 0

so that

STy w TSy =
Hence we have

Z SMTC'%'N,C@VTES; =0.

m,vEBj(Ap),C,E€BL(Ay)

Therefore 7 is injective on Fj . O
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We henceforth assume that (A, p,n, X7, X", k) satisfies condition (I) de-
fined above. Take a unital increasing sequence {A;};cz, of C*-subalgebras
of A as in the definition of condition (I). Recall that the algebra .Fl i for
j,k <l is defined by

Fip = C* (S TaTESy - pv € Bj(A,), 6, € € Bu(Ay), € Ay).

There exists an inclusion relation }'jlk C ]-'j,’k, for j <j k<K andl <Vl
through the identities (5.1), (5.2). Let Pr s be the x-subalgebra of Oy s+
algebraically generated by 7(x), sq,t, for x € Al € Z4, o € ¥ a € X7,

Lemma 5.6. Any element x € Pr s can be expressed in a unique way as

Z x,&,,/tzsi-i- Z thC,fVS;"" Z S#l'u’,gtz

v],1€1>1 I<],[v[=1 |l €121
+ D suleruct > wogli+ Y woys)
lul,¢1=1 1€1>1 lv|>1
+ Z SuTy + Z tcxe + o
lu[>1 [¢1>1

where the above summations 3 are all finite sums and the elements

x—é‘,—l/j xC7_V7 w/jﬁ_g’ a’:u7<7 :'U_g’ :L‘il/’ x)u” -’L‘C’ .%'(]

for p,v € By(A,),(, & € Bi(Ay) all belong to the dense subalgebra

Prsit N Frsit
which satisfy
Ty =2 ¢ uMe(pu(1)), z¢,—v = nc(Dag,—vpu(1),
T~ = pu(1)x—ene(1), Ty,c = e (Pu(1)) Ty
z_¢ =x_¢ne(1), Ty =2_ypu(1),
T = pu(l)zy, xe =nc(1)zc.
Proof. Put
T_g_y = Epnlasyte), Te_y = €p,n(t<xs,,)
Lp,—¢ = 5p,n(szxt€)7 xu( 5p,77(75 ST
rg = Epylate), = pm(msu)
Ty = 50777(3;37)7 = p,n(t x),
z0 = Ep ().

Then we have the desired expression of z. The elements

T—g,—vy T¢—vy Tp—& Tuls T—gr Tovs Tuy T¢y D0

for p,v € By(A,),(, € € Bi(A,) are automatically determined by the above
formulae so that the expression is unique. O
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Lemma 5.7. For h € D,, N A} and j, k € Z with j +k <1, put
Wik = ¢ 0 ¢k (h).

Then we have

(i) hiks, = s,hI =K for 1€ Bu(A,) with |u| < j.

(i) Pkt = teRRICL for ¢ € Bi(Ay,) with [¢] < k.

(iii) hPF commutes with any element of }']47k.
Proof. (i) It follows that for p € B,(A,) with |u| < j

Wrsu=3 " sudh M (@h(h)ssy = sudh (k(h))srs,.
1=l

Since h € Aj and A1 C A, one has

e CHOET I > sutehtisyshs,

vEB; | (Ap) £€BK(Ay)

- ¥ > sutehtisyshsusutetisy
vEB;_ |, (Ap) E€BK(Ay)

= > X stenlpw(D)his)

VEB;_ |, (Ap) €€Bi(Ay)

= Z Z supu (1)tehts),

VGBJ-_M(Ap)féBk(An)
= 55,0 M@k () = 57,5, kI M1
so that hi¥s, = s,hI "MLk,

(i) Similarly we have hi*t; = t h?*=I¢l for ¢ € B.(A,) with |¢| < k.
(ili) For « € A, i, v € B;j(Ap),¢, & € Bi(Ay), we have

hj’ksutg = s#ho’ktg = Sutgho’o = sutch.
It follows that
hj’ksutcaztzsi = sutchates, = sutcwhtss;, = sutcxtgszhj’k.
Hence h/* commutes with any element of .7-"} e O

Lemma 5.8. Assume that (A, p,n,%°, X" k) satisfies condition (I). For
x € Prsyt, let 1o = E,y(x) as in Lemma 5.6. Then we have

[zoll < ]
Proof. We may assume that the elements for x € Pr s
Ttv TGmvs Tpms TpCr Tty Tovy Tpy T¢y L0
in Lemma 5.6 belong to ﬁ(}';ikl) for some j1, k1,01 and p,v € UiLOZOBn(Ap),
(, &€ Uff:an(An) for some jo, kg. Take j,k,l € Zy such as
J = Jo+J1, k > ko + k1, I > max{j +k,I1}.
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By Lemma 5.5, (.Zl, p, 1, 2P, X" k) satisfies condition (I). For any € > 0, the

numbers j, k, [, and the element xy € 7?(.7-";; ke

g € 7(Dyy) N(A)

), one may find

with 0 < g < 1 such that:

(i) [lwog) o &E(g)I| > [lzoll — .
(i) ¢7p‘(g)¢g1(g) = ¢Z(¢Zl(9))9 = ¢Z(9)g = QSZl(g)g = 0 for all n =
1,2,....5,m=1,2,... k.

Put h = g2 and ¥ = ¢ 0 o (h). Tt follows that ||z]| > ||hFFzhi*
IR Fh?F || = [1(1) + (2) + (3) + (4) + (5) + (6)]]

where the summands are given by

and

(1) > Wha_e _tsihit
lv],l¢1>1
(2) Z hj’ktcxcﬁysihj’k
Il lvI>1
i,k *1 7,k
(3) Z h?F sy, etgh?
lul €11
i,k i,k
(4) Z h? Sutcxmchj’
|l ,¢1>1
(5) > Wka et 4 N W Fa sk YRR, h
l>1 v|>1 lul>1
+ Z hj’kt<$<hj’k
I¢|>1

(6) R o hI*

For (1), as z_¢_, € #(F!

) C 7~T(]:Jl- ), one sees that x_¢ _, commutes

with h?. Hence we have
hj’k:n_&_ytzszhj’k — m_&_l,hj’ktzs;hj’k — :E_&_th,khj—IV\7k—|€\t28;
and
k1 i—v|,k— i,k 7—v|,k—|&]\* j ( 1k j— k—
pik g~ k=LA ) (68 () - 63 (6 g)
- .
=05 "o ¢y ¥l (01 (6,(9)9)) = 0
so that
hJ’kx,&,ytEs;h]’k =0.
For (2), as z¢,_, € fr(F]l;’kl) C fr(FJlA’k_m), one sees that x¢ _, commutes
with h7F~¢l. Hence we have

hj’ktgxg’,,,s;hj’k — tghj’k_|£|J:§,,,,hj_|'j"ks; = tgx&,l,hj’k_l&‘hj_|""ks;
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and
hj,kf\élhjf\VI,k(hj,kf\élhﬁll/lk)* :%(ﬁfld(g)) . ¢Jp'f\l/|(¢§(g))
=¢5 Mo k1l (6 (9)0(9) = 0

so that ‘ ‘
hj’kt§$§7_VSZhJ’k = 0.
For (3), as x,,—¢ € 7?(.7:;.1 r) C 7?(.7:;_|M| %), one sees that x, _¢ commutes
with A/~ I+ Hence we have
and
R~ ik g k=18l (=l k=1« :%—Iul(qsf](g)) . ¢{)(¢7’;—|§\(g))
=g, Mo ¢ (@5 (9)0 (9)) = 0
so that ‘ '
hj’ksux%_thhJ’k =0.
For (4), as x,¢ € ﬁ(fjl; k) C fr(]—";_m' k—l(l)’ one sees that z, . commutes
with hJ~IH+=ICl Hence we have
hj’ksutéxu,émk — Sutghj_l“l’k_m:vmghj’k — sutga?mghj_‘”"k_mhj’k
and
Il k=G bk (=il k=1l ok + :%—Iul(qbf]—\d(g)) . ¢{)(¢§(g))
=g Mo gl (gap! (1 (9)) = 0
so that 4 '
hj’ksutgx“,ch]’k =0.
For (5), as x_¢ commutes with h%*, we have
and
Rk pI kIl (i k ik lely :qu( ﬁl(g))'%( f]—\il(g))
=g}, 0 ¢y (51 (9)9) = 0
so that
i,k x5k
hJ $75t5h] =0.
We similarly see that
hoke_,sthih = hiks a0, Wik = Bkt aohIF = 0.
Therefore we have

]| > [[A7Fzoh?*

= [lzo(B*)?|| = llzog) 0 ds(9)ll = lzol —e. O

By a similar argument to [8, 2.8 Proposition], one sees:
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Corollary 5.9. Assume (A, p,n, 3P, X", k) satisfies condition (I). There ex-
ists a conditional expectation Ex st : Or st — Fr st Such that

Erspom=m0Ey,.
Therefore we have
Proposition 5.10. Assume that (A, p,n, %P, X" k) satisfies condition (I).
The #-homomorphism 7 : Op . — Or s defined by
7(x) =n(x), x€A, 7(Sa) = Sa, «a€XP, T(Ty) =tg, aeX”
becomes a surjective x-isomorphism, and hence the C*-algebras Oy and

Ors,t are canonically x-isomorphic through 7.

Proof. The map 7 : F,, — Frs: is *-isomorphic and satisfies & 54 07 =

7oy Since &y : Of, —> Fpy is faithful, a routine argument shows that

the x-homomorphism 7 : (’)'/i77 — Or st is actually a x-isomorphism. O
Hence the following uniqueness of the C*-algebra O, holds.

Theorem 5.11. Assume that (A, p,n, XP, 3", k) satisfies condition (1). The
C*-algebra OF ,, is the unique C*-algebra subject to the relation (p,m; k). This
means that if there exist a unital C*-algebra B, an injective x-homomorphism
m: A — B and two families of partial isometries sqo, 0 € 3P, ty,a € X"
satisfying the following relations :

> spsh=1,  w(@)sash = sasim(z),  shm(2)sa = 7(pa(z)),
pexr

>ty =1, T(x)taty = tatam (), tam(z)ta = m(na(z))
bexn
Saty = taS,B if H(a7 b) = (CL, 6)
for (a,b) € P (a,B) € X" and x € A, a € ¥P,a € X", then the corre-
spondence
reA—m7(x)€EB, So— sq€D, T, — t, €B
extends to a x-isomorphism 7 from Op . onto the C*-subalgebra Ox s of B

generated by m(z),x € A and o, 0 € X, tg,a € 3.

For a C*-textile dynamical system (A, p,n, X7, X" k), let A, : A = A
be the positive map on A defined by

Ao () = Z Na © pa(), z e A
QEXP aeEXN
Then (A, p,n, ¥, 3" k) is said to be irreducible if there exists no nontrivial

ideal of A invariant under A, .

Corollary 5.12. If (A, p,n,X°, X" k) satisfies condition (1) and is irre-
ducible, the C*-algebra OF, is simple.
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Proof. Assume that there exists a nontrivial ideal Z of Oy, . Now suppose
that ZNA = {0}. As S:So = pa(1),T)T, = na(1) € A, one knows that
Sa, Ty € T for all a € ¥P,a € ¥. By the above theorem, the quotient map
q: 05, — (’)’;,n/I must be injective so that Z is trivial. Hence one sees
that ZN A # {0} and it is invariant under X, . O

6. Concrete realization

In this section we will realize the C*-algebra O, for (A, p,n,¥°, %7 k)
in a concrete way as a C*-algebra constructed from a Hilbert C*-bimodule.
For ~v; € XU X", put

pry iy € 3P,
f%- = . n
Ny, if vy € X7

A finite sequence of labels (y1,72,...,7%) € (X° U X7 is said to be con-
catenated labeled path if &, o --- o0&, o0&, (1) # 0. For m,n € Z, let
L, m) be the set of concatenated labeled paths (y1,72; - ., ¥m+n) such that
symbols in ¥* appear in (1,72, ..., Ym+n) n-times and symbols in 37 ap-
pear in (1,72, -, Ym+n) m-times. We define a relation in L, for i =
1,2,...,n+m — 1. We write

(Vi e oy Wil Yi> Vit 1s Vit 25 - - - s Ymetn)

~ . / / .
’Z\/ (’717 s Yi=1 Vo Vi1 Vit 2y - - ,’Ym—i—n)

if one of the following two conditions holds:

(1) (vivi+1) € 7, (5 Yigq) € B and K(vi, Yit1) = (> Viz)s

(2) (iyvit1) € 7, (v vi41) € TP and (v, vi41) = (i Yit1)-

Denote by =~ the equivalence relation in L, ,,) generated by the relations
7,1’ =12...,n+m—1 Let T(, ) = L(n,m)/ ~ be the set of equivalence
classes of Ly ;) under ~. Denote by [y] € T(, ) the equivalence class of
¥ € L(nm)- Put the vectors e = (1,0), f = (0,—1) in R2. Consider the
set of all paths consisting of sequences of vectors e, f starting at the point
(—n,m) € R? for n,m € Z, and ending at the origin. Such a path consists
of n e-vectors and m f-vectors. Let B, ,,,) be the set of all such paths from
(—n,m) to the origin. We consider the correspondence

po — e (€ XP), Ne — [ (a€X7),

denoted by 7. It extends a surjective map from L, ;) t0 B(p,m) in a natural
way. For a concatenated labeled path v = (v1,72, .., Y+m) € L(n,m), put
the projection in A

Py = (§ypm 0 0 &y 085) (D).
We note that P, # 0 for all v € L, ).
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Lemma 6.1. For v, € L(n,m)s if v = ', we have P, = P,,. Hence the
projection Py for [y] € ‘Z(mm) is well-defined.

Proof. If k(a,b) = (a, ), one has n, 0 pa(1) = pg o ne(1) # 0. Hence the
assertion is obvious. O

Denote by |Z(;, )| the cardinal number of the finite set T, ). Let e, t €
% (n,m) be the standard complete orthonormal basis of CI%em!, Define

H(n,m) = Z @(Cet X PtA
tET(nym)

( — Z ®Span{ce; ® Pyx | c € C,x € .A})

tE‘I(n’m)

the direct sum of Ce; ® A over t € Ty, ). Hey ) has a structure of
C*-bimodule over A by setting

(e ® Px)y := e; @ Py,
(y)(er @ Prx) == et @ &y (y)z(= et @ P&y (y)x) forz,y € A

where t = [y] for v = (71, ..., Yngm) and & (y) = (§ypm © -0 &0 0 &4,) ().
Define an A-valued inner product on H, ,,) by setting

x* P, ift =s,
(et ®@ Pyx | e ® Pyy) = i )
0 otherwise

for t,s € T(,,;m) and x,y € A. Then H(, ) becomes a Hilbert C*-bimodule
over A. Put Hgg) = A. Denote by F; the Hilbert C*-bimodule over A
defined by the direct sum:

2
(n,m)eZy

For a € ¥P,a € ¥, the creation operators sq,t, on Fj :

Sa t H(n,m) — H(n—i—l,m)a ty: H(n,m) — H(n,m—H)
are defined by
Sal = €q) ® Py, for z € Hgp)(= A),
€lay] @ Playjz  if @y € Lyy1,m)s
sa(em ®me> {0 ! ! otherwise
ta = €q ® Py, for z € H(O,O)(: A),
€lay] @ P[a E if ay € L(n7m+1),
ta(em © Ph]x) {0 ! ! otherwise.
For y € A an operator if,_ (y) on Fj:

(@)
IR, (y> H(n,m) — H(n,m)
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is defined by
ir. (y)r =yz for x € Hg ) (= A),
ir, (y)(ep @ Pyz) = 0(y)(efy @ Pyw)(= ey @ & (y)z).
Define the Cuntz—Toeplitz C*-algebra for (A, p,n, P, X", k) by
Ty =C"(sastayir,(y) | € EF,a € ¥y € A)
as the C*-algebra on F; generated by su,ta, 15, (y) fora € ¥ a € X7y € A.

Lemma 6.2. For a € ¥, a € X", we have

_ P(pa(1))(efy) ® Prynz) if v = o/,
* P — v v
(i) Sa(e[’Y] ® Mx) {0 otherwise.

N ¢(na(1))(e}yy @ Pynz)  if v = a?/,
t* P — Y Y
(i) faley) ® Foe) {O otherwise.
Proof. (i) For v € Ly m);7 € Ln—1,m) and a € ¥, we have
(sa(ep) ® Plye) | efy) ® Fryja’) = (ep) ® Ppj@ | €fay) ® Play)z')

_J@* Py ify = ay,
~]o otherwise.

On the other hand,

$(Pa(1))(efy) ® Py2) = €3] ® Play | Py = €[] ® Play)
so that
($(Pa(1)(efy) ® Py)z) | efy) ® Pyja’) = 2" P2
Hence we obtain the desired equality. Similarly we see (ii). U

The following lemma is straightforward.

Lemma 6.3. For a € ¥¥,a € X" and v € L, 1), v € A, we have:

(i)

Sasa(€y) @ Pyjz) = {
(i)

tath (e @ Pyjx) = {SM ®Poyw) i 1~ oy’ for some 7 € L),

ey @ Pyyx) if y = o for some ' € Lip_1 ),
0 otherwise.

otherwise.
Hence we see:

Lemma 6.4.

(i) 1= csp 5ass, = the projection onto the subspace spanned by the
vectors e[y ® Pz for v € UX_oLom), T € A.
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(i) 1 =3 esmtaty = the projection onto the subspace spanned by the
vectors ef,) @ Piyx for v € UpZgLn o), € A.
Lemma 6.5. For a € ¥°,a € X" and x € A, we have:

(i) stzsq = ¢(pa(x)) and in particular sisq = ¢(pa(1)).
(i) trxty, = ¢(na(z)) and in particular tit, = ¢(n.(1)).
Proof. (i) It follows that for v € L(n,m) with ay € L(n+1,m) and y € A,
SatSa(€y] © Priy) = sa(efaq) © Play)y€ary (2))
= epy] ® Pryjyéy(palr))
= d(pa(®))(efy) ® Pyjy)-

If ay & L(n+ 1,m), we have
salep @ Plyy) =0, ¢(palz))(ep) @ Pyy) = 0.

Hence we see that s} xsq = ¢(pa(z)). Similarly we see (ii). O
Lemma 6.6. For o, € ¥°, a,b € X" we have:
(6.1) Saty = tasg if k(a,b) = (a,B).

Proof. For v € L, ) with aby, a8y € L(,11,m+1) and x € A, we have
saty(€ly) ® Ppy) = efaby) © Paby),
tasp(ery) ® Phyjx) = (€lagy) ® Plag)®)-
Since x(a,b) = (a,3), the condition aby € L(,41,m+1) is equivalent to the
condition afBy € Li,41,ms1)- We then have [aby] = [aBy] and Py, =
Plag- -

Let Zj7, be the ideal of 7, generated by the two projections:

1-— Z SaSh and 1 -— Z tat).

aEXP aexn

Let @Z,n be the quotient C*-algebra
Opn = Toml Ton:

Let mpp : 7,5 — (7)\;777 be the quotient map. Put

~ ~

Sa = 71'p,n(sa)a T, = Wp,n(ta)a %(53) = 7T,o,n(i(Fﬁ)(fU)
for « € ¥P,a € ¥" and x € A. By the above discussions, the following
relations hold:



1208 KENGO MATSUMOTO

forall z € Aand a € X, a € X",
For (z,w) € T2, the correspondence

€] @ Pz € Hpmy — 2"w™epy) @ Pryjw € Hip )

yields a unitary representation of T2 on H, (n,m)» Which extends to F;, denoted
by ;). Since

U(ZJU)ITF€ u* = 7%

P (zw) P’ u(sz)lﬁnuf w) =1,

P’
The map
X € TH —>U(Zw)XUEK w) S 7;’?77

yields an action of T? on the C*-algebra O% _ which we denote by 9. Simi-

Py
larly to the action 6 on O, we may deﬁne the conditional expectation Ep n
from (9"‘ to the fixed point algebra ((’)” ) by taking the integration of the

functlon H(Z w)(X) over (z,w) € T? for X € (’)” . Then as in the proof of
Proposition 5.10, one may prove the following theorem

Theorem 6.7. The algebra (9;7,7 18 canonically x-isomorphic to the C*-
algebra O, through the correspondences:

Sa — §a, Ta — T\aa r— i(l’)

forae ¥ ae ¥ and x € A.

7. K-Theory machinery

Let us denote by K the C*-algebra of compact operators on a separa-
ble infinite dimensional Hilbert space. For a C*-algebra B, we denote by
M (B) its multiplier algebra. In this section, we will study K-theory groups
K.(0},) for the C*-algebra O ,. We fix a C*-textile dynamical system
(A, p,n, P, X" k). We define two actions

p:T— Aut(O;,), 7:T— Aut(O,)
of the circle group T = {2 € C | |2| = 1} to O}, by setting
D2 = 9(271), Nw = 9(1,w)7 z,w e T.
They satisfy
ﬁzoﬁw:ﬁwoﬁ,z:e(z7w)a Z,’U]ET.
Set the fixed point algebras

(05, ={z € OF, | p(z) =z for all z € T},
(0,,)" =1z € Oy, | fjw(z) =z for all w € T}.
For z € (Oﬁ,n)ﬁ , define the O§7n—valued constant function

zeLY(T,05,)C O, x;T
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from T by setting Z(z) = z,z € T. Put pg = 1. By [45], the algebra ((9’;,77)’3
is canonically isomorphic to po((’) x5 T)po through the map

Jp:T € (O’;m)p — 72 € po(0,,, %, T)po
which induces an isomorphism
(71) jP* : Kl((og,n)ﬁ) — Kz(Z)O(O;n X5 T)po), 1= O,].

on their K-groups. By a similar manner to the proofs given in [23, Section
4], one may prove the following lemma.

Lemma 7.1.

(i) There exists an isometry
ve M((0;, x;T)®K)

such that vv* = py @ 1,v*v = 1.

(ii) Oy, x; T is stably isomorphic to ((’)’;n)ﬁ, and similarly Oy, , x4 T is
stably isomorphic to (O} ).

(iii) The inclusion vj : po(Op, X5 T)po = O, X, T induces an isomor-
phism

o Ki(po(Op,, x5 T)po) = Ki(Op,, x, T),  i=0,1
on their K-groups.
Thanks to the lemma above, the isomorphism
Ad(v*) s 2 € po(O5,, %, T)po @ K — v*zv € (O, x; T) @ K
induces isomorphisms

(7.2)  Adw"). : Ki(po(O%, x5 T)po) — Ki(O5, x,T),  i=0,1.

Let p be the automorphism on Op X, T for the positive generator of Z
for the dual action of p. By (7.1) and (7. 2) we may define an isomorphism

Boi = Jpe 0 Ad(v*); ! 0 py 0 Ad(v*)s 0 s 1 Ki((OF,)7) — Ki((OF,)P)

for i =0, 1, so that the diagram is commutative:

Ki(O%5, x,T) L K05, x;T)

TAd(v*)* TAd(v*)*
Ki(po(Oy,, <, T)po) Ki(po(Oy,, x5 T)po)
K059 5 K((05,)9).
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By [39] (cf. [15]), one has the six term exact sequence of K-theory:

id—p. Lx .
Ko(O5, xpT) = Ko(O5, %, T) —“— Ko((Of,, x5 T) x;2)

] |
Kl(((’);n XﬁT) XﬁZ) <L— Kl((’)’;’n XﬁT) T K1((’)’;7n XﬁT).
* id—pa

Since (O}, %, T) X5 L =05, @K and Ki(Op, x; T) = Ki((O’;’n)ﬁ), one
has:

Lemma 7.2. The following siz term exact sequence of K-theory holds:

ko) 9P, K \p bx K
KO(<Op,n)p) —PO> KO((Op,n)p) — KO(Op,n)

] o
Kl (O;,n) <L— Kl((oz,n)ﬁ) ﬁ Kl((og,n)ﬁ)
* 1d=Pp,

Hence there exist short exact sequences for i =0,1:
0 — Coker(id — B,;) in K;((O},)?)

— KZ(O;,})

—s Ker(id = Bpi41) in Ki1((OF,)7)

— 0.

In the rest of this section, we will study the groups
Coker(id — f,,) in Ki((O},)"),  Ker(id = Bpis1) in Kis1((0},)°).
The action 7 acts on the subalgebra (OZyn)pA, which we still denote by 1.
Then the fixed point algebra ((O§7n)ﬁ)ﬁ of ((9’;777)’3 under 7 coincides with
Fpn- The above discussions for the action p : T — Oy works for the
action 7 : T — (O%,)? as in the following way. For y € ((O%,)?), define
the constant function @Ae LY(T,(05,)") € (O;"Z)p x5 T by setting y(w) =
y,w € T. Putting go = 1, the algebra ((O5,)?)" is canonically isomorphic
to qo(((OZW)/3 x5 T)qo through the map
gy € ((05,)°)" — 5 € o((0},)” % T)ao
which induces an isomorphism
on their K-groups. Similarly to Lemma 7.1, we have:
Lemma 7.3.
(i) There exists an isometry
ue M(((05,) x; T)®@K)

such that vu® = ¢ ® 1,u*u = 1.
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(i) ((’)’;W)f’ x5 T is stably isomorphic to ((O'pﬁn)ﬁ)ﬁ.
(iii) The inclusion
v 2 a0((O5,)" % T)ao(= ((05,)")" = Foy) = (O5,)7 x5 T
induces an isomorphism
vt Ki(ao((05,)” x5 T)ao) = Ki((O05,)" x5 T),  i=0,1
on their K-groups.
The isomorphism
Ad(u*) 1y e qo((O'gm)’3 X5 T)go — u*yu € ((’)'Z’n)ﬁ x5 T
induces isomorphisms

Ad(u"). 1 Ki(go((05,)? x5 T)ao) = K;((05,)° x,3 T),  i=0,1.

Let ﬁp be the automorphism on (Ogm)ﬁ x5 T for the positive generator of Z
for the dual action of 7. Define an isomorphism

Vi = jf;*_loAd(u*);loﬁp*oAd(u*)*ojg*  Ki(Fpn) — Ki(Fon), i=0,1

such that the diagram is commutative for ¢ = 0, 1:

K05, x; T)  —"=  K;((05,)? x; T)

TAd(u*)* TAd(u*)*
Ki(qo((O5,)? x5 T)qo) Ki(qo((O%,)? x5 T)qo)
Tjﬁ* TJ»’?*
Ki(((05,)7)M) Ki(((05,)7)")
Kz‘(]:p,n) L) Ki(}—pm>'

We similarly define an endomorphism ~,; : K;(F,,) — Ki(F,,) by ex-
changing the roles of p and 7.

Under the equality (((’)’;n)f’ )1 = F,,, we have the following lemma which
is similar to Lemma 7.2

Lemma 7.4. The following siz term exact sequence of K-theory holds:

id—’yn,()
e

KO(]:p,n) KO(]:p,n) — K0(<O;,n)ﬁ)

s x|

Kl((og,n)ﬁ> A K1(Fpp) ﬁ K1 (Fpp)-
* 1d—"n,
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In particular, if K1(F,,) =0, we have
Ko((05,)°) = Coker(id — vy0)  in Ko(Fpn),
K1((05,)°) = Ker(id — v50)  in Ko(Fp).

Denote by M, (B) the n x n matrix algebra over a C*-algebra B, which is
identified with the tensor product B ® M,,(C). The following lemmas hold.

Lemma 7.5. For a projection ¢ € My, ((O};,)°) and a partial isometry S €
0Oy, such that

p2(S) =25 forzeT, q(SS*®1,) = (55" ® 1,)q,
we have
Bro([(5S* @ 1n)q]) = [(S* @ 1n)g(S @ 1,)]  in Ko((Of,)).

Proof. As ¢ commutes with SS*®1,,, p = (S*®1,)q(S®1,) is a projection
in (O} ,)P. Since p < §*S ® 1,, By a similar argument to the proof of [23,
Lemma 4.5], one sees that 8,0([p]) = [(S®1,)p(5*®1,)] in Ko((O%,)?). O

Lemma 7.6.

(i) For a projection q € M, (F,,) and a partial isometry T € ((’);777)'[’
such that

Nw(T) = wT  forw €T, qTT " ®1,) = (TT " ® 1,)q,
we have

Yoo ((TT* @ 1,)q)) = (T* @ 1a)g(T @ 1)) in Ko(Fpp)-

(ii) For a projection q € My (F,y) and a partial isometry S € ((’)gm)ﬁ
such that

p2(S) =258 forzeT, q(S8S*®1,) = (SS* ® 1,)q,
we have
T (SS* @ 1)q)) = [(S* © L)a(S © 1)) in Ko(Fp):
Hence we have

Lemma 7.7. The diagram

id—
KO(}—p,n) o KO(]:p,n)
w5y 1d—Bp, . 5
KO((Op,n)p) - KO((Op,n)p)

18 commutative.
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Proof. By [35, Proposition 3.3], the map ¢, : Ko(F,,) — Ko(((’)’;m)f’)
is induced by the natural inclusion F, ,(= ((Og7n)ﬁ)”) — (O;’n)ﬁ. For an
element [q] € Ko(F,,;) one may assume that ¢ € M,(F,,) for some n € N
so that one has

Yo0(ld) = D [(SaSs ® 1n)d]

aeXr

= (85 @ 1n)q(Sa ® 1p)]

aEeXr

=3 Bo([a(SaSs ® 1)) = B, 4(a])

aeXr
so that 8,0l x(F,.) = V0 O

In the rest of this section, we assume that K;(F,,) = 0. The following
lemma is crucial in our further discussions.

Lemma 7.8. In the siz term exact sequence in Lemma 7.4 with K(F,,) =
0, we have the following commutative diagrams:

0 0
N kP
}{i((cjmn) ) E— ]{i((cjmn) )
1) 19
id—
KO(]:p,n) & KO(]:pm)
(7.3) id—n,0 id—y,0
id—
KO(]:pm) ——’Y&O‘) KO(]:p,n)
K K \p id—pB,,0 K \p
0(<ngn) ) — lzb((C)gn) )
0 0

Proof. It is well-known that d-map is functorial (see [48, Theorem 7.2.5],
[4, p.266 (LX)]). Hence the diagram of the upper square

id—Bp1

K1((05,)") K1((05,))
d |
Ko (]:pm) e Ko (Fp,n)
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is commutative. Since 7,0 © Y50 = V5,0 © Vp,0, the diagram of the middle
square

o
Ko(Fpn) —2% Ko(Fpu)
(7~4) lid—%,o lid—%,o
id—vp,0

Ko(Fpp) — Ko(Fpp)
is commutative. The commutativity of the lower square comes from the

preceding lemma. ([

We will describe the K-groups K.(Oj5 ) in terms of the kernels and cok-
ernels of the homomorphisms id —, o and id —,0 on Ko(F, ). Recall that
there exist two short exact sequences by Lemma 7.2:

0 — Coker(id — f,0) in Ko((OZ,n)’})

— KO(O;,n)
— Ker(id — 3,,1) in Kl(((’);n)ﬁ)
—0

and

0 — Coker(id — B,,1) in K;1((O} )?)

]
— K1(0g,)

— Ker(id — f,0) in Ko((O5,)?)
— 0.

AS Y50 © Y90 = Yp,0 © Yoo on Ko(F,y), the homomorphisms 7,0 and
Yp,0 naturally act on Coker(id — vy0) = Ko(F,5)/(1d — v4,0) Ko(Fp,y) and
Coker(id — 7v,,0) = Ko(Fpy)/(id — vp,0)Ko(F,,,) as endomorphisms respec-
tively, which we denote by 7,0 and 7, o respectively.

Lemma 7.9.
(i) For Ko(Oy,), we have
Coker(id — ,0) in KO((OZ,n)ﬁ)
= Coker(id — ¥p,0) in Ko(Fpy)/(1d = v,0) Ko(Fpn)
= Ko(Fpn)/((id = 95.0) Ko(Fpp) + (id = 7,0) Ko(Fp,p)

and
Ker(id — B,,1) in K1((O%,)?)
= Ker(id — v,,0) in (Ker(id — v,,0) in Ko(Fpy))
= Ker(id — v,,0) N Ker(id — vy,0) in Ko(F,y)-
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(ii) For K1(Oy,), we have

Coker(id — B,1) in Kl(((’);n)ﬁ)

= (Ker(id — yy0) in Ko(Fpp))/(id = p0) (Ker(id — yp0) in Ko(Fpn))

and
Ker(id — B,,0) in Ko((O},)”)
= Ker(id = 7p,0) in (Ko(Fpy)/(id = m,0) Ko(Fpp))-
Proof. (i) We will first prove the assertions for the group

Coker(id — B,,0) in Ko((O%,)").

In the diagram (7.3), the exactness of the vertical arrows implies that ¢, is
surjective so that

KO((O;J;)’S) = 1 (Ko(Fpm)) = Ko(Fpn)/Ker(id — y0) in Ko(Fpp)-
By the commutativity in the lower square in the diagram (7.3), one has
Coker(id — f,) in KO((OZﬂ?)ﬁ)
= Coker(id — 4,,0) in (Coker(id — 75,,0) in Ko(F,5).)

The latter group will be proved to be isomorphic to the group

Ko(Fpn)/((d = 73,0) Ko(Fpp)) + (id = 75,0) Ko(Fpp))-

Put H,, = (id—y,0)Ko(Fpn)+(id—=7,,0)Ko(Fp,y) the subgroup of Ko(F,,)
generated by (id — v,,0)Ko(Fpy) and (id — v,,0)Ko(F,y). Set the quotient
maps

q )
KO(]:pm) — KO(]:p,n)/(ld - 77770)K0(]:pﬂ7)

d(id—~

,0) . _ . .
—$" Coker(id — ,,0) in Ko(Fp,,)/(id — 7,0) Ko (Fp)
and
Q= q(id—y,0) °n : Ko(Fp)
— Coker(id — ’_yp70) in Ko(fpm)/(id — 777,0>K0<‘FP:77)'

It suffices to show the equality Ker(®) = H, . As (id—,,0) commutes with
(id — v5,0), one has

(id — ")/n,O)KO(fp,n) C Ker(CID), (id — ’yp70)K0(./."p777) C Ker(cb).
Hence we have H,, C Ker(®). On the other hand, for g € Ker(®), we have

g € (id = ,0) (Ko(Fpn)/(id — v3,0) Ko(Fpp)) so that g = (id — yp0)[h] for
some [h] € Ko(F,y)/(id = vy,0)Ko(Fp,y). Hence

g9 = (id = vp,0)h + (id = 7,,0)(id = 7,0) Ko(Fp,5)
so that g € H,,. Hence we have Ker(®) C H,, and Ker(®) = H,,,.
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We will second prove the assertions for the group
Ker(id — f,,1) in Kl((O;n)ﬁ).

In the diagram (7.3), the exactness of the vertical arrows implies that § is
injective and Im(6) = Ker(id — 7;,0) so that we have

(7.5) K1((05,)P) = Ker(id — v5,0) in Ko(Fpp).
By the commutativity in the upper square in the diagram (7.3), one has
Ker(id—fp,1) in Kl(((’);n)ﬁ) = Ker(id—~,,0) in (Ker(id—vy,,0) in Ko(Fp,))-
Since 7,0 commutes with 7,0 in Ko(F,,), we have
Ker(id — v,,0) in (Ker(id — vy,0) in Ko(Fpy))
= Ker(id — v,,0) N Ker(id — y;,0) in Ko(F,).
(ii) The assertions are similarly shown as in (i). O

Therefore we have:

Theorem 7.10. Assume that Ki(F,,) = 0. There exist short exact se-
quences:

0 — Ko(Fpp)/((id = 7p,0) Ko(Fpn) + (id — 75,00 Ko(Fp.n))
— Ko(O5,)
— Ker(id — v,,0) N Ker(id — vy,,0) in Ko(Fpp)
—0

and

0 — (Ker(id — v5,0) in Ko(Fpy))/(Ad = vp,0) Ker(id — v5,0) in Ko(Fpy))
— K1(05,)
— Kel‘(ld — '?p,O) m (Kg(‘/—"pm)/(ld — 77770)K0(]:P7T]))
— 0.

We may describe the above formulae as follows.
Corollary 7.11. Suppose K1(F,,) = 0. There exist short exact sequences:

0 — Coker(id — ¥,,0) in (Coker(id — vy,0) in Ko(Fp,y))
— Ko(Op,)
— Ker(id — v,,0) in (Ker(id — v,,0) in Ko(Fpy))
—0
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and

0 — Coker(id — v,,0) in ((Ker(id — v5,0) in Ko(Fpy))
— K1(05,)
— Ker(id — 7,,0) in (Coker(id — v,,0) in Ko(Fpy))
— 0.

8. K-Theory formulae

In this section, we will present more useful formulae to compute the K-
groups K;(Of ) under a certain additional assumption on (A, p, 1, ¥, 37, k).
The additional condition on (A, p,n, 2, X" k) is the following:

Definition 8.1. A C*-textile dynamical system (A, p,n, X°, 3" k) is said
to form square if the C*-subalgebra C*(ps(1) : o € ¥P) of A generated by
the projections p, (1), € ¥ coincides with the C*-subalgebra C*(n4(1) :
a € ¥) of A generated by the projections 7,(1),a € X".

Lemma 8.2. Assume that (A, p,n, %P, X" k) forms square. Put forl € Z,
Al =C"(pu(1) s p € Bi(Ap)), Al =C"(ne(1) : € € Bi(Ay)).
Then A} = Al

Proof. By the assumption, we have A} = A7]. Hence the desired equality for
[ = 1 holds. Suppose that the equalities hold for all [ < k for some k € N. For

po= (1, ph2y - oy Py Hig1) € Bk-l-l(Ap) we have Pu(l) = puk+1(pu1u2---uk(1))
so that p, (1) € py,,, (A). By the commutation relation (3.1), one sees that

Prrsr (AR) € C*(ne(pa(1)) : € € Bi(Ay),a € XF).
Since C*(pa(l) : o € 37) = C*(ng(1) : @ € X"), the algebra C*(n¢(pa(1)) :
¢ € Bi(Ay), o € ¥°) is contained in A}, so that p,, ., (A]) C A/, ;. This
implies p, (1) € A}, so that Ay , C A}, and hence A}, = A/, . O

Therefore we have

Lemma 8.3. Assume that (A, p,n,X°, 3" k) forms square. Put for j, k €
Ly

Aje = C"(punc(1)) : p € Bj(Ap), ¢ € Br(Ay))

(= C*(ne(pu(1)) = € € Br(Ay),v € Bj(Ap))).

Then A;, is commutative and of finite dimensional such that

Ajk = Ap’+k(: A;?+k)'

j
Hence Ajp, = Ajp if j+k=j+Fk.
Proof. Since 1¢(1) € Z4 and p,(Z4) C Z 4, the algebra Ajj belongs to the
center Z 4 of A. By the preceding lemma, we have

Ajr = C(pupv(1)) - e € Bj(Ap),v € Br(Ay)) = A7 m
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For j,k € Z4, put | = j + k. We denote by A; the commutative finite
dimensional algebra A; ;. Put m(l) = dimA;. Take the finite sequence of

minimal projections E!,i = 1,2,...,m(l) in A; such that Z?;(f) E!'=1 and

1

hence A; = EB;Z({)(CEf. Since pq(A;) C A1, there exists AZH_l(i,a,n),

which takes 0 or 1, such that

m(l+1)
pa(B) = D AL Gan)E,  aexi=1,...,m().
n=1

Similarly, there exists A}, +1(4,a,m), which takes 0 or 1, such that

m(l+1)
na(ED) = Y Al GanEM,  aei=1,... m().
n=1

Set for i =1,...,m(l)
Finl(i) = C (ST B BiTE S | v € Bj(A), ¢, € € Br(Ay),z € A),
= C*(T SuElxE[S;TE | v € Bj(A,), ¢, € € Be(Ay),z € A).
Let N, (i) be the cardinal number of the finite set
{(1:€) € Bj(Ay) x Br(Ay) | pulne(1)) > Ei}.
Since E! is a central projection in A, we have

Lemma 8.4. For j,k € Z, putl = j + k. Then we have:
(i) Fjk(i) is isomorphic to the matriz algebra
My, o (BLAE) (= My, ,(C) ® ELAE])
over BLAE! fori=1,...,m(l).
(i) Fip = Fir(1) © - - @ Fix(m(l)).
Proof. (i) For (u,¢) € Bj(A,) x By(A,) with S, T E! # 0, one has

n¢(pu(1)E; # 0
so that n¢(p,(1)) > EL Hence (S,T;E!)*S,T-E! = E!. One sees that the
set
{SuTcEL | (11,€) € Bj(Ay) % Bi(Ag); ST B # 0}
consist of partial isometries which give rise to matrix units of Fj (i) such
that F (i) is isomorphic to My, ;) (ELAEY).
(ii) Since A = ELAE @ --- @ Eﬁn(l)AEin(l), the assertion is easy. O

Define homomorphisms A, A, : Ko(A) — Ko(A) by setting
M) =D [pa®@ L)@, Ay = D [ ® 1) ()]

aeXr aexn
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for a projection p € M, (.A) for some n € N. Recall that the identities (5.1),
(5.2) give rise to the embeddings (5.3), which induce homomorphisms
Ko(Fjk) — Ko(Fjks1),  Ko(Fix) — Ko(Fji1r)-
We still denote them by ¢4 11,141+ respectively.

Lemma 8.5. Assume that (A, p,n, %P, X" k) forms square. There exists an
isomorphism
(I)ij : KO(]:j,k) — Ko(.A)

such that the following diagrams are commutative:

(i)
Ko(Fjp) —5 Ko(Fjix)
Qj,kl (DHl’kl
Ko(Ad) ——  Ko(A)
(ii)

Lx, 41

Ko(Fjr) —— Ko(Fjr+1)

@j,kl q)j,k+1J/
A
Ko(A) ——  Ko(A).
Proof. Put for i =1,2,...,m(l)
P, = > ST BT} S
Nij(Ap)vceBk(An)
Then P; is a central projection in .} such that Z?i({) P;=1. For X € Fj,
one has P X P; € Fj (i) such that
m(l) m(l)
X =) PXP e Fili)
i=1 i=1
Define an isomorphism
m(l) m(l)
ik X € Fj — Y _ PXP € @ Fnli)
i=1 i=1
which induces an isomorphism on their K-groups
m(l)

@jks + Ko(Fjk) — @Ko(fj,k(i))'
=1

Take and fix v (i), u(i) € B;(A,) and ((4),£(i) € Bi(A,) such that
(81) TewSut) = SpTewy  and Ty Suioy B # 0.
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Hence S*( ) ( )Tg(z)S,,(Z) > E Since Fj (i) is isomorphic to
My, , ., (C) ® E}AE],
the embedding
Lk(i) 1 @ € BLAE, — Ty Sy @S Tey € Fir(i)
induces an isomorphism on their K-groups
bk (i)s : Ko(ELAE]) — Ko(Fj(i).

Put
m(l)

m(l) m(l)
ik = @ vik(i) : @D BLAE, — @5 Fjx(i)
=1 =1

and hence we have an 1somorphlsm

m(l) m(l) m(l)
¢j,k* @ L]’ @ KO EZ.AEI —) @ K() G,k (2 ))
=1 =1

Since Ko(A) = ®i:(1) Ko(ELAEY), we have an isomorphism

m(l)
* T/J * -1
= P 0 e Ko(Fin) 25 P Ko(Fjn(i) ™ Ko(A).
=1
(i) It suffices to show the following diagram
Ko(Fjik) R Ko(Fjt1k)
@j,k*l ‘Pj+1,k*l
m(l .
DL Ko(Fju(i)) S Ko(Fj1a(i))
wj,k*T "L’j+l,k*T
Ko(d) =2 Ko(A)
is commutative. For x = Z?i({) ElzE! € A, we have
m(l) m(l)
I o* * *
bin(@) = TewySuay Bix B Sy Tewy = O Sue Te) B EIT 0y Shiy-
=1 =1

Since Png(z)SV(Z)EwafS*()T*()PZ = Tg(i)Sy( )E I‘Els*( ) £(z) we have

m(l)
I q* *
i 0 Uikl Z Tet Sut) Biw iS5 ) e

so that
m(1)

v o @ o Vik(®) = D Y TeySuara BiwE)) S} Tiw -

aeXr i=1
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Since
m(l+1)
Su(iyaba( EiwE;)S; Z AP (5 0,m) Sy e B pa() ELTLS

and Ail+1(i,a,n)Sy(i)aEfl+1 = Sy(i)a BLTt, we have

m(l+1)
I\ o* I+1 I+1 ox*
> Suyapal EiwE}) Sy, Z > SuwaBn pal@) L S) )0
aEXP n=1 «a€eXxr
so that
m(l+1)

EERTRLNOEDY Z > TetySutra B pa(@) By S50 Ty

ae¥r =1 n=1
On the other hand,

m(l+1)

Vik(Ao()) = Yjk Z ZEala JEL!

n=1 aeXr
m(l+1)

= Z Z Te(o)Sutiraln' pa(@) BT S50 o T)-

aeYr i=1 n=1

Therefore we have
Lt 0 05 0 P k() = 1y k(Ao())-
(ii) is symmetric to (i). O
Define the abelian groups of the inductive limits:
G, =lim{\, : Ko(A) — Ko(A)}, G, = lim{\, : Ko(A) — Ko(A)}.
Put the subalgebras of F,,, for j, k € Z

Fop = C (T SuaSyTE | v € Bo(Ap), || = [v], ¢, € € Bi(Ay), x € A)
= C*(TeyTy | ¢, € € Be(Ay),y € Fp),

Fim = C (SuTeaTe Sy | v € Bj(Ay), ¢, € € Bu(Ay), [¢] = [¢],x € A)
= C*(SuysS,, | v € Bj(Ay),y € Fy).

By the preceding lemma, we have:
Lemma 8.6. For j,k € Z,, there exist isomorphisms
@,k Ko(Fpr) — G, iy Ko(Fjp) — Gy

such that the following diagrams are commutative:
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(i)
Ko(Fje) — Ko(Fjn) —= - =5 Ko(Fpr)
ol ] o
Ko(d) —2=  Ko(d) 2. s G,
(i)
Ko(Fj) =5 Ko(Fjpen) —5 o0 =5 Ko(Fiy)

q)j,kl ‘1>j,k+1l q’j,nl

Ko(A) —  Ko(A) —2y ...

Lemma 8.7. If £ = (&1,...,&) € Bp(Ay),v = (v1,...,v5) € Bj(A,) satisfy
the condition p,(ne(1)) > E! for some i =1,...,m(l) with | = j + k, then
T; TeS, B} = TeS, E} where £ = (&, ..., &x).

Proof. Since T{ Tz =T Tngng T: = Tng T T, Ty = TFI{ T, we have

T} TeS, Bl = TgS,SyTi Te S, Bl = TeSypy(ne(1)) Bl = TS, E}. O

Let us denote by 7,, v, the endomorphisms 7, 0, v,,0 on Ko(F,,,) appeared
in Lemma 7.6, respectively.

Lemma 8.8. For k,j € Z,, we have:

(i) The restriction 0f7771 to Ko(Fjx) makes the following diagram com-
mutative:

-1
Ko(Fip) —— Ko(Fjp-1) — Ko(Fjx)

0 0|

A
Ko(A) — Ko(A).
(ii) The restriction Of’)/;I to Ko(Fj k) makes the following diagram com-
mautative:

1
Ko(Fip) —— Ko(Fjo1p) —5 Ko(Fjp)

o o
Ko(A) SN Ko(A).
Proof. (i) Put [ = j + k. Take a projection p € M,(A) for some n € N.
Since A® M, (C) = Y7V ®(E!l @ 1)(A® M,)(E! ® 1), by putting
pi = (Bj ® )p(E} ® 1) € My(ELAE)),
we have p = Z;’;(f) pk. Take
§(i) = (&2(4), -+, & (4)) € Br(Ay), (i) = (i), ..., v;(i)) € Bj(Ap)
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as in (8.1) so that p,(nei) (1)) > E! and put £(i) = (&a(i), ..., &k(i)) so
that £(i) = £1(7)€(i). We have

m(l)
wj}k*([p]) = Z 69[(T§(2')Sz/(i) ® 1n)pé( (i) Tg(l ® 1) @Kg ik
i=1

As
(Te(s)Sviiy © La)Pi (S5 T © 1n) < Tey (T3 iy © Lns
by the preceding lemma we have
* Il
Te, ) Tew Svty Bi = Ty Sui) Ei
so that by Lemma 7.6
Yo ([(Te(iySuiiy © 1n)pé(S§(i)Tg(i) ®1n)] = [(Tgu) Svy ® 1n)P§(Sz(i)T§(i) ®1n)].

Hence Ko(Fjx) goes to Ko(Fj—1) by the homomorphism ~; . Take u(z) €
Bj(A,),((i) € Br_1(A,) such that TeySu(iy = Sy ).
The element

m(l)

Z[(Tg(i)su(i) ® 1n)pﬁ(SZ(i)T§(i) ® 1n)]

i=1

m(l)
= Z[(Su(i)Tg(i) ® 1n)pz(T G )S*(l) ® 1,)] € Ko(Fjk-1)

@ T¢ fori=1,...,m(l

i=1
goes to
m(l)
> D[S0 Teya @ 1) (L5 @ n)pi(Ta @ 1n)(TE(),Spisy © 1n)) € Ko(Fjk)
i=1 a€xn

by 4 +1. The latter one is expressed as
(8 2)

Z Z Y [(Su Ty © 1n) Bh(Ty @ 1a)ph(Ta © 1) Eq(TE 30 Sy © 1n)]
h=1 =1 a€X"

in @Zn:(ll) Ko(Fjk(h)). On the other hand, we have

Alp]) = D (T © 1)p(Te © 1))

aexn
m(l) m(l)

=5 % N ENT © 1)p(Tu © 1,)E}] € @D Ko(ELAE)),

h=1 a€cXxn h=1
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which is expressed as

m(l)

Z Z Tf h)S Eh ® 1) (Ty @ 1,)p(Te @ 1n>(E;LS:(h)Tg(h) ® 1,)]
h=1 a€X”

=>.%> [(Ts(mSu(h)Ek ® 1n)(T; @ 1n)
‘ :
Pi( Lo ® 1n)(BL Sy Ten) © 1n)

in @MY Ko(F;x(h)). Take 1/(h) € B;j(A,),¢'(h) € By(A,) such that
Te(nySun) = S (h)Tgf( n) so that the above element is

yoe ZZ Sy Ty B 1) (T2 © 1 )P (T © L) (EL T Sy © 1)

h=1 i=1 a€X"

in @zn:(ll) Ko(Fjx(h)). Since for h,i =1,...,m(l),a € X" their classes of the
K-groups coincide such as

[(S,u(z’)Tf(i)a ® 1n)E;z(Tc>: ® 1n)pé(Ta ® 1n)E}lL(Tg(i)aS:(i) ® 1n)]

= [(Sum T Bl @ 1) (T @ 1,)ph(T ® 1n)(E2T¢*/(h) o) © 1n)]
S KO(f:],k(h‘»a

the element of (8.2) is equal to the element of (8.3) in Ko(Fj). Thus (i)
holds.
(ii) is similar to (i). O

We note that for j, k € Z,
Ko(Fpk) =lim{ei1: Ko(Fik) — Ko(Fjs1a)}
Ko(Fjn) = lim{ee 1 0 Ko(Fjk) — Ko(Fjp+1)}-

The following lemma is direct.

Lemma 8.9. For k,j € Z,, the following diagrams are commutative:

(i)

1
Ko(Fjy1,k) LN Ko(Fjg1,6-1)-

Hence 7;1 yields a homomorphism from Ko(F, k) to Ko(Fpr—1).
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(ii)
Ko(Fjr) —— Ko(Fj_1k)

o | ot |

Ko(Fjkt1) S Ko(Fj-1k41)-
Hence 7;1 yields a homomorphism from Ko(Fjy) to Ko(Fj—14)-
The homomorphisms
it Ko(Fj) — Ko(Fjrie), b1 o Ko(Fjik) — Ko(Fjet1)
are naturally induce homomorphisms
Ko(Fjn) — Ko(Fjtin), a1 Ko(Fpr) — Ko(Fpri1)

which we denote by ty1,, ¢y +1 respectively. They are also induced by the
identities (5.1), (5.2) respectively.

Lemma 8.10. For k,j € Z, the following diagrams are commutative:

(i)
-1
Ko(Fp k) LI Ko(Fpr-1)
LpHrll Lp,HJ{
-1
Ko(Fp+1) LA Ko(Fpk)-
(i)

K[)(]:j,n) E— Ko(]:jflm)

L+1,nl L+1,nl

-1
Ko(Fiiry) —2— Ko(Fj,).

Proof. (i) As in the proof of Lemma 8.9, one may take an element of
Ko(F, ) as in the following form:

m(l)
> (T Suy @ 1n )2%(5*()T5(Z ®1,) G@KO ¢

i=1
for some projection p € M, (A) and j,l with | = j + k, where
= (E!@ 1)p(E!®1) € M,(ELAE)).

Let f() €1(1)€(3) with & (i) € X7, £(i) € Bg—1(A,)). One may assume that
Te(iySu(iy # 0 so that TS, ) = S u(iy Tgy for some v(i)' € Bj(A,), £(i) €
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By—1(Ay). As in the proof of Lemma 8.9, one has

Ty ([(Teiy Sy © 1 )pﬁ(S*(i)Tg(-) ® 1,)]
[(Tey Suiy @ La)pi(S5) Ty © L))
[(Suiy Ty @ 1n)p¢(5§<i)IT§(iy ® 15)].

Hence we have
b1 © Yy ([(TeiySusy ® 1n)p (S Tey © 1n))
= ta11([Suiy Ty © )P (T 3y Sy © 1al)

= Z vy Teys @ 1n)(Ty ® L)pi(Th @ 1n)(T§(i)/bS:(i)’ ® 15)].
bexn

On the other hand, the equality T¢(;)S, ;) = Tg(i)lS,,(i)/Tg(i), implies

L1 ([(TeySuy @ 1 )pé(sﬁ(i)Tg(i) ® 1,)]

- Z T€ 1)1 ’Tﬁ( )’b®1 )(Tg@ln)pé(Tb@)l )( HOL S*( ) g( )1®1 )]
bexn

and hence
Y0 bt ((Tewy oy @ 1n)pi(S3 Ty © 1n)]

= > 0 ((Tets Suty Teayn © )T © 1)
bexn

| * * *
0i(Th ® 1n)(T’(‘)/b vy Le(iy, @ 1n)])

= Z v(iy Teiys © 1n) (T @ 1o)p}(Ty ® 1n)(T§(,~yb5Z(i)/ ® 1n)].
bexn

(ii) The proof is completely symmetric to the above proof. ([

Since the homomorphisms A,, A, : Ko(A) — Ko(A) are mutually com-
mutative, the map A, induces a homomorphism on the inductive limit
G, = lim{), : Ko(A) — Ko(A)} and similarly A, does on the inductive
limit G;,. They are still denoted by A,, A, respectively.

Lemma 8.11. For k,j € Z, the following diagrams are commutative:
(i)
-1
¥ Lp,
I{b(]i%k) ——JL—% }(O(JZLk_l) —Jiiié l{b(]i%k)

‘Ppykl q’p,kl

)\7]
G,.
o
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(if)

Proof. (i) As in the proof of Lemma 8.8 and Lemma 8.10 one may take an
element of Ko(F, ) as in the following form:

m(l)
> O UTeySuiiy © 1n)ph (S Tey © 1n) @ Ko(Fjx

i=1
for some projection p € M,,(A) and j,! with [ = j + k, where
=(Elo1)p(Ele1).

Keep the notations as in the proof of Lemma 8.8, we have

b1 © Yy ((Teiy Sy @ 1n)PH(S5 Tey © 1n)])

&(
= 3 (o Teayn © L) (T3 © L) (T © 1) (T2 Sy © o))
bexn

so that

Py O La1 0 '7771([(T£(i)5u(i) ® 1a)Pi (S5 Ty © 1))

= > @0 k[Sutiy Teyn © 1n)(T @ L)PUT, © L) (T, S5y © 1n)])
bexn

= > (T3 @ L)pi(Ty @ 1,)]
bexn

= (7)) = Oy 0 @) ([(Teiy Sty © 1)PL (S Ty @ 1)))-

Therefore we have @, 01y 1107, = Ao ®pp.
(ii) The proof is completely symmetric to the above proof. O

Put for j, k € Z4
G = Ko(Fpi)(= G, =lim{\, : Ko(A) — Ko(A)}),
Gjn = Ko(Fjn)(= Gy = lim{A, : Ko(A) — Ko(A)}).

The map A, : Ko(A) — Ko(A) naturally gives rise to a homomorphism
from G, to G, 41 which we will still denote by A,. Similarly we have a
homomorphism A, from G, to Gjt1,,.

Lemma 8.12. For k,j € Z4, the following diagrams are commutative:
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(i)
Ky (]:pJﬁ) AN K (}—p,k—&-l)
Ay
Gp,k; —_— Gp,k+1'
(ii)

Ko(Fin) —2% Ko(Fisry)

Ap
Gin  ——  Gjtip

We denote the abelian group Ko(F), ) by G,. Since
Ko(Fpn) = lim{ep 1 Ko(Fpr) — Ko(Fpps1)}
= lijm{m,n : Ko(Fjn) — Ko(Fj+1m)}h

one has
Gpn = h}gn{)‘n 1Gpk — Gpri} = h;m{)‘p Gy — Giein
Define two endomorphisms
opon Gpp = lilgn{)\,7 :Gpp — Gop1y  and
op on Gy = hjm{)‘p G — Givin}
by setting
o9, k) € Gpp — [9,k — 1] € Gpp—1 for g € G, and
op:h,jl € Gjy — [h,j —1] € Gj_1, for h € Gy,
Therefore we have:

Lemma 8.13.

(i) There exists an isomorphism ®,  : Ko(F,r) — G,y such that the
following diagrams are commutative:

and hence
Ko(Fo) 5 Ko(F,
o(Fpm) o(Fpm)
q:'p ool q>p,ooJ/
id—oy
GPW 7 GP’W‘
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(ii) There exists an isomorphism Pog 5 : Ko(Fpn) — Gy, such that the
following diagrams are commutative:

and hence

id—y, !
Ko(Fp) =, Ko(Fpn)

- b
id—op
GPJ? GPW‘

Let us denote by J4 the natural embedding A = Fyo9 — F,,, which
induces a homomorphism J 4, : Ko(A) — Ko(F,y)-

Lemma 8.14. The homomorphism Ja. : Ko(A) — Ko(F,y) is injective
such that

JA*O)\p:'yp_IOJA* and JA*O)\n:’y,I_IOJA*.

Proof. We will first show that the endomorphisms A, A, on Ky(.A) are both
injective. Put a projection Q, = 5,5 and a subalgebra A, = po(A) of A
for @ € 3. Then the endomorphism p, on A extends to an isomorphism
from AQ, onto A, by setting po(z) = StxS,,x € AQ, whose inverse is
o+ Ao — AQ, defined by ¢, (y) = SaySk,y € A,. Hence the induced
homomorphism pg. : Ko(AQq) — Ko(Ay) is an isomorphism. Since A =
D.csr QaA, the homomorphism

Z ¢a* O Povx * KO(A) — @ KO(QaA>

aeXr aedr

is an isomorphism, one may identify Ko(A) = @ e Ko(QaA). Let g €
Ko(A) satisfy A\p(g) = 0. Put go = Pax © pax(g) € Ko(QaA) for a € ¥ so

that g = > csw ga- AS pg« © Pax = 0 for B # a, one sees pgy(ga) = 0 for
B # . Hence

0=2(0)= > Y ppe(90) = D pax(9a) € €D Ko(Aa).

BEXP aeXP aEXP aEXP

It follows that pa«(ga) = 0 in Ko(Ay). Since pas : Ko(QaA) — Ko(Ay) is
isomorphic, one sees that g, = 0 in Ky(AQ,) for all a € ¥°. This implies
that g = > csp9a = 0 in Ko(A). Therefore the endomorphism A, on
Ko(A) is injective, and similarly so is A;,.
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By the previous lemma, there exists an isomorphism ®;, : Ko(Fjr) —
Ko(A) such that the diagram

L41,%

Ko(Fjx) —— Ko(Fji1k)

‘bj,kl ‘bj+1,kl
Ko(A) —s  Ko(A)

is commutative so that the embedding t41. @ Ko(Fjr) — Ko(Fjt1,k) is
injective, and similarly ¢, 11 @ Ko(Fjr) — Ko(Fjr+1) is injective. Hence
for n,m € N, the homomorphism

tnm  Ko(A) = Ko(Foo) — Ko(Fnm)

defined by the compositions of ¢, 1, and ¢y 41 is injective. By [44, Theorem
6.3.2 (iii)], one knows Ker(Jax) = Up menKer(tnm), so that Ker(Ja.) =
0. O

We henceforth identify the group Ko(A) with its image J4+(Ko(A)) in
Ko(Fpy). As in the above proof, not only Ko(A)(= Ko(Fo,0)) but also the
groups Ko(Fj ) for j, k are identified with subgroups of Ko(F,,) via injec-
tive homomorphisms from Ko(Fj ) to Ko(F,,) induced by the embeddings
of Fj into F,,. We note that

(id — ’Yn)KO(}—pm) = (id — 7;1)K0(-7:p,n)7
(id = 7p) Ko(Fpy) = (id — Vgl)KO(Fpm)
and
Ker(id — v,) NKer(id — v,) in Ko(F,,)
= Ker(id — ’y;l) N Ker(id — ’y;l) in Ko(Fpp)-

Denote by (id — v,)Ko(Fp,y) + (id — v,)Ko(Fp,,) the subgroup of Ko(F,,)
generated by (id — v,)Ko(F,,) and (id — v,) Ko(Fpz)-

Lemma 8.15. Any element in Ko(F,,) is equivalent to some element of
Ko(A) modulo the subgroup (id — v,)Ko(Fp,) + (id — v5) Ko(Fpp)-

Proof. For g € Ko(F,,), we may assume that g € Ko(F; ) for some j,k €
Z. As ;! commutes with v, !, one sees that (y,')7 o (fyn_l)k(g) € Ko(A).
Put g1 = ”y/jl(g) so that
9= Y ot 9 =979+ — (Y o (DM ).
We inductively see that g — (7;1)j o (777*1)’“(9) belongs to the subgroup
(id = vp) Ko(Fp,p) + (id = v5) Ko(Fp,p)- O

Denote by (id — A,)Ko(A) + (id — A;) Ko(A) the subgroup of Ky(.A) gen-
erated by (id — A,)Ko(A) and (id — \)) Ko(A).
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Lemma 8.16. If g € Ky(A) belongs to

(id — Vgl)KO(Fp,n) + (id — '7771)[(0(-7:0777)7
then g belongs to (id — A\,)Ko(A) + (id — A\;)) Ko(A).
Proof. By the assumption that g € (id—~, ) Ko(F,)+(id—v, ") Ko(Fpy),
there exist 1, hy € Ko(F,,) such that g = (id —~, ") (h1) + (id — 7, 1) (ha).
We may assume that hy,hy € Ko(Fj) for large enough j,k € Z,. Put

ei = (v, 1) o (ygl)k(hi) which belongs to Ko(Foo)(= Ko(A)) for i = 0,1.
It follows that

N0 Na(g) = (id — Ay)(er) + (id — A, e2)
Since g € Ky(A) and /\f;o)\g(g) € (id—\,)Ko(A)+ (id—X,) Ko (A), as in the

proof of Lemma 8.15, by putting ¢ = )\Z(g),g("’m) = )\Zn(g(")) € Ko(A)
we have

9= X0 N(9)
=g—\(9)+ g — )\p(g(l)) +¢@ — /\p(g(2)) 44 gli™h — )\p(g(j—l))
+ gl — )‘n(g(j)) + U — )\n(g(jﬁl)) + gU2) — )\n(g(j’2)) 4.
+ glik=1) _ /\n(g(j,kfl))
= (id — \,) (g + g+ 4 gU D) 4 (d — )\n)(g(j) + gl 4.4 gLk
so that g belongs to the subgroup (id — Ay,) Ko(A) + (id — A,) Ko(A). O
Hence we obtain the following lemma for the cokernel.
Lemma 8.17. The quotient group
Ko(Fpuy) /(i = 5 YKo (Fp) + (id = 75 ) Ko(Fp)
is isomorphic to the quotient group
Ko(A)/((d = A)Ko(A) + (id = A,) Ko(A)).
Proof. Surjectivity of the quotient map
Ko(A) — Ko(Fpy)/((id — ’Yﬁl)KO(]:p7n) + (id - V;I)Ko(fpm))
comes from Lemma 8.15. Its kernel coincides with
(id — Ay) Ko(A) + (id — A,) Ko(A)
by the preceding lemma. O
For the kernel, we have:
Lemma 8.18. The subgroup
Ker(id — *yn_l) N Ker(id — %—1) in Ko(Fpn)
18 1somorphic to the subgroup
Ker(id — ) N Ker(id — X)) in Ko(A)



1232 KENGO MATSUMOTO

through J .

Proof. For g € Ker(id — %7_1) NKer(id — 7;1) in Ko(F,,), one may assume
that g € Ko(Fj ) for some j,k € Z4 so that g = (ygl)jo(fy,]_l)k(g) € Ko(A).
Since A, = v, ! and A, = 7, on Ky(A) under the identification between
Ja+(Ko(A)) and Ko(A) via Jx, one has that g € Ker(id—\,)NKer(id—2A,)
in Ko(A). The converse inclusion relation

Ker(id — A;) N Ker(id — A,) C Ker(id — v, ') N Ker(id — v, ")
is clear through the above identification. O

Therefore the short exact sequence for Ko(Oy,) in Theorem 7.10 is re-
stated as the following proposition.

Proposition 8.19. Assume that (A, p,n, X, X" k) forms square and
K1(Fpn) = {0}
Then there exists a short exact sequence:
0 — Ko(A)/((id = Ay) Ko(A) + (id — Ap) Ko(A))
— KO(O;’H)
— Ker(id — A\;)) N Ker(id — A,) in Ko(A)
— 0.

Let F, be the fixed point algebra (0,)? of the C*-algebra O, by the gauge
action p for the C*-symbolic dynamical system (A, p, £¥). The algebra F,, is
isomorphic to the subalgebra F, o of F,, in a natural way. As in the proof
of Lemma 8.15, the group Ky(F,0) is regarded as a subgroup of Ko(F, )
and the restriction of v, ! to Ko(F,0) satisfies v, ' (Ko(Fp,0)) C Ko(Fp0) s
that v, ! yields an endomorphism on Ko(F,), which we still denote by Vo L

For the group K1(0Oj, ), we provide several lemmas.

Lemma 8.20.
(i) Any element in Ko(F, ) is equivalent to some element of Ko(F,0)(=
Ko(F,)) modulo the subgroup (id — ~vy) Ko(F,y)-
(ii) If g € Ko(Fpo)(= Ko(Fp)) belongs to (id — vy)Ko(Fpy), then g
belongs to (id — v,) Ko(F),).

As 7, commutes with v, on Ko(F,,), it naturally acts on the quotient
group Ko(F,,)/(1d — 'yn_l)Ko(]-"pm). We denote it by #,. Similarly A, natu-
rally induces an endomorphism on Ky(A)/(id — ;) Ko(A). We denote it by
Mo
Lemma 8.21.

(i) The quotient group Ko(F), )/(1d Yo YKo(F,,) is isomorphic to the

quotient group Ko(F,)/(id — v, 1) Ko(F,), that is also isomorphic to
the quotient group Ko(A)/(id — A ) o(A).
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(ii) The kernel of id — 5, in Ko(F,y)/(id — v, ') Ko(F,.,) is isomorphic
to the kernel of id — A, in Ko(A)/(id — \;) Ko(A).
Proof. (i) The fact that the three quotient groups
KO(}—pm)/(id - %71)K0(~7'—p,n)7
Ko(Fp)/(id — ’Yn_l)KO(}—p)»
Ko(A)/(id = Ap) Ko(A),

are naturally isomorphic is similarly proved to the previous discussions.

(ii) The kernel Ker(id —7,) in Ko(F,y)/(id =y, 1) Ko(Fp,y) is isomorphic
to the kernel Ker(id — 7,) in Ko(F,)/(id — v, ') Ko(F,) which is isomorphic
to the kernel Ker(id — ) in Ko(A)/(id — \,)) Ko(A). O

Lemma 8.22. The kernel of id —y, in Ko(F,y) is isomorphic to the kernel
ofid—ry, in Ko(F,) that is also isomorphic to the kernel of id— A, in Ko(A)
such that the quotient group

(Ker(id — ) in Ko(Fpp))/(id =) (Ker(id —vy) in Ko(Fp,y))
is isomorphic to the quotient group
(Ker(id — \y) in Ko(A))/(id — A,) (Ker(id — A;) in Ko(A)).
Proof. The proofs are similar to the previous discussions. ([l

Therefore the short exact sequence for Ki1(Oy,) in Theorem 7.10 is re-
stated as the following proposition.

Proposition 8.23. Assume that (A, p,n, 37, X", k) forms square and
K1 (Fpn) = {0}
Then there exists a short exact sequence:
0 — (Ker(id — \y) in Ko(A))/(id — A,)(Ker(id — \,;) in Ko(A))
— K 1((’);7,7)
— Ker(id — A,) in (Ko(A)/(id — A\y) Ko (A))
— 0.
We give a condition on (A, p,n, £#, %", k) which makes K1 (F,,) = {0}.
Lemma 8.24. Suppose that a C*-textile dynamical system
(A, p,n,XP X" k)
forms square and satisfies K1(A) = {0}. Then K(F,,) = {0}.

Proof. The algebra F),, is an inductive limit C*-algebra of subalgebras F; j,
with inclusion maps (5.3). Let E!,i = 1,...,m(l) be the minimal projections
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in A; as in Lemma 8.4, which are central in A such that Zﬁ(ll) Ell =1. By
Lemma 8.4, we have

m(l) m(l)
Ky\(Fjr) = P Ki(Fiuli)) = @ K1(ELAEL) = Ki(A)
=1

i=1
so that the condition K;(A) = {0} implies K;(F,,) = {0}. O
A a C*-textile dynamical system (A, p,n, X, %", k) is said to have trivial
K, if K1(A) = {0}.
Consequently we reach the following K-theory formulae for the C*-algebra
(’)’;m by Proposition 8.19 and Proposition 8.23.

Theorem 8.25. Suppose that a C*-textile dynamical system
(A, p,n, 27, 57, K)

forms square having trivial K. Then there exist short exact sequences for
their K-groups as in the following way:

0 — Ko(A)/((id = Ay) Ko(A) + (id — Ap) Ko(A))
— Ko(O,,)
— Ker(id — A\;)) N Ker(id — A,) in Ko(A)
— 0

and
0 — (Ker(id — \y) in Ko(A))/(id — A,)(Ker(id — A;)) in Ko(A))
——%-}(1(67;n)
— Ker(id — \,) in (Ko(A)/(id — A;) Ko(A))
— 0
where the endomorphisms X\,, Ay : Ko(A) — Ko(A) are defined by
Ao([p]) = D [pa(p)] € Ko(A) for [p] € Ko(A),

aeXr

A([p]) = Y [na(p)] € Ko(A) for [p] € Ko(A).

aexn

9. Examples

9.1. LR-textile A-graph systems. A symbolic matrix
M = [M(i )=

is a matrix whose components consist of formal sums of elements of an
alphabet X, such as

where ¥ = {a, b, c}.

_|la a+c
el
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M is said to be essential if there is no zero column or zero row. M is
said to be left-resolving if for each column a symbol does not appear in
@ a E)'— b] is left-resolving, but [CCL “ Z b]
is not left-resolving because of b at the second column. We assume that
symbolic matrices are always essential and left-resolving. We denote by ©M
the alphabet ¥ of the symbolic matrix M.

Let M = [M(4,4)];=; and M" = [M'(i,5)]Y;=, be N x N symbolic
matrices over M and M’ respectively. Suppose that there is a bijection
K XM — »M' | Following Nasu’s terminology [34] we say that M and M’
are equivalent under specification x, or simply, specified equivalent if M’ can
be obtained from M by replacing every symbol a € ¥M by k(o) € M
That is if M(i,5) = a1 + -+ 4+ ap, then M'(i,j) = k(1) + - - + K£(ay). We

K
write this situation as M = M’ (see [34]).
For a symbolic matrix M = [M(4, ])] _, over M we set for a €
M j=1,...,N

two different rows. For example,

AM( 0, ) 1 if o appears in M(1, j),
7’7 a’ = .
J 0 otherwise.

Put an N x N nonnegative matrix AM = [AM(, )]” 1 by setting
AM (,7) Z AM (1,0, 7).
aexM

Let A be an N-dimensional commutative C*-algebra CV with minimal pro-
jections FE1,..., En such that

A=CE, & ---®CEy.
We set for a € X M:

N
Z (i,a,5)E i=1,...,N.

Then we have a C’*—symbohc dynamical system (A, p™, ZM).

Let M = [M(i, )IN—) and N = [N(i, §)]}Y;—; be N x N symbolic matrices
over ¥M and IV respectively. We have two C*-symbolic dynamical systems
(A, pM, 2M) and (A, PV, 2V). Put

MY = {(a,b) € M SV | )0 pi # 03,
SANM = {(a,8) € TV x M| it o g/ # 0}

Suppose that there is a bijection x from YMN {0 SNM guch that yields a
specified equivalence

(9.1) MN = NM
and fix it.
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Proposition 9.1. Keep the above situations. The specified equivalence (9.1)
induces a specification k : SMN _y SNM guch that

(9.2) o oot =p5tom if k(ab) =(a,B).

Hence (A, pM,pN, M. EN, k) gives rise to a C*-textile dynamical system
which forms square having trivial K.

Proof. Since MN & N M, one sees that fori,5 =1,2,..., N,
K(MAN (i, j)) = NM(, j).
For (a,b) € SMN | there exists i,k = 1,2,..., N such that
o o pa(Ei) > Ey.
As k(a, b) appears in N M(i, k), by putting (a, 3) = k(«, b), we have
Pt o o (Ei) > Ey.
Hence k(a,b) € SNM. One indeed sees that p{)\/ opM = pg/‘ o pV by the
relation M = N M. O

Two symbolic matrices satisfying (9.1) give rise to an LR textile system
that has been introduced by Nasu (see [34]). Textile systems introduced by
Nasu give a strong tool to analyze automorphisms and endomorphisms of
topological Markov shifts. The author has generalized LR-textile systems to
LR-textile A-graph systems which consist of two pairs of sequences (M, I) =
(MU_H, Il,l+1)lGZ+ and (N, I = (-N’l,l-i-lv Iu_i_l)leZJr such that

K
(9.3) MypaNG 142 = Ny Mg e, leZy

through a specification x ([28]). We denote the LR-textile A-graph system
by 779\]\;1 Denote by £M and £V the associated A-graph systems respec-
tively. Since £M and £V have common sequences VZM = V}N A€ Zy of
vertices which denoted by V;,l € Z,, and its common inclusion matrices
Ii41,1 € Zy. Hence £M and £V form square in the sense of [28, p.170].
Let (Apq, pM, 2M) and (.AN,pN,EN) be the associated C*-symbolic dy-
namical systems with the A-graph systems £M and fvad respectively. Since
both the algebras A and Ap are the C*-algebras of inductive limit of the
system I}y, : C(V}) = C(Vi41),1 € Z4, they are identical, which is denoted

by A. It is easy to see that the relation (9.3) implies
(9.4) o =popyt it K(a,b) = (a.f).

Proposition 9.2. An LR-textile A-graph system 779/{71 yields a C*-textile

dynamical system (A, pM, pN, M SN k) which forms square. Conversely,
a C*-textile dynamical system (A, p,n, P, X" k) which forms square yields
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an LR-textile \-graph system %ﬁf, such that the associated C*-textile dy-
namical system written (Ap,n,pMp,pM",EMp,EMp,f@)
(A, p,n, 3P X" k) in the sense that the relations:

p
Ao CA, pla,, =™ mla,, =0

s a subsystem of

MM

hold.

Proof. Let ’779/\\/4 be an LR-textile A-graph system. As in the above dis-

cussions, we have a C*-textile dynamical system (A, p™, N, oM SN K).
Conversely, let (A, p,n, 3P, X" k) be a C*-textile dynamical system which
forms square. Put for [ € N

A= C(pu(D) s € Bi(A,)), Al = C*(ne(1) : € € Bi(Ay)).

Since A7 = A] and they are commutative and of finite dimensional, the
algebra

_ P __ n
Apn = Viez, A} = Uiez, Ay

is a commutative AF-subalgebra of A. It is easy to see that both (A, ., p, )
and (A,,,n, X") are C*-symbolic dynamical systems such that

(9~5) b © Pa = PB CNa if H(av b) = (a7 B)

By [27], there exist A-graph systems £° and £7 whose C*-symbolic dynami-
cal systems are (A, p, £°) and (A, n, ") respectively. Let (MP”,I7) and
(MM, 1) be the associated symbolic matrix systems. It is easy to see that
the relation (9.5) implies

K
P n ~ n P
MM EME ML e leZ,.

Hence we have an LR-textile A-graph system 776%5, . It is direct to see that the
associated C*-textile dynamical system is (Ap ., pla,,» 1 4,.,, 27, X", k). O

Let A be an N x N matrix with entries in nonnegative integers. We may
consider a directed graph G4 = (V4, E4) with vertex set V4 and edge set E4.
The vertex set V4 consists of N vertices which we denote by {vi,...,un}.
We equip A(i,j) edges from the vertex v; to the vertex v;. Denote by E4
the set of the edges. Let ¥4 = F4 and the labeling map A4 : F4 — ¥4 be
defined as the identity map. Then we have a labeled directed graph denoted

by G 4 as well as a symbolic matrix M4 = [MA(i,j)L]-szl by setting
e1+---+e if e1,...,e, are edges from v; to v;
MA(i,j): 1+ +en . 1, .7 n g % 7
0 if there is no edge from v; to v;.

Let B be an N x N matrix with entries in nonnegative integers such that

(9.6) AB = BA.
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The equality (9.6) implies that the cardinal numbers of the sets of the pairs
of directed edges

£4P(i, j) = {(e. /) € Ea x Ep | s(e) = vi, t(e) = s(f), ¢(f) = v;} and
BP0, 5) = {(f,e) € Ep x Ba| s(f) = vi, t(f) = s(e), t(e) = vj}
coincide with each other for each v; and v;. We put 48 = UN_ $4B(5 4)

4,j=1
ZBA — UN~ EBA

and i1 (i,7) so that one may take a bijection x : 248 —

Y84 which gives rise to a specified equivalence MM p = MpMy. We
then have a C*-textile dynamical system
(A, pMa, pME 24, 55 k)
which we denote by
(A’ pA7 pB7 EA? EB’ K)'
The associated C*-algebra is denoted by O . The algebra O 5 depends

on the choice of a specification « : S48 — B4 The algebras are 2-graph
algebras of Kumjian and Pask [19]. They are also C*-algebras associated to
textile systems studied by V. Deaconu [9]. By Theorem 8.25, we have:

Proposition 9.3. Keep the above situations. There exist short exact se-
quences:

0—ZN/(1—A)ZN + (1 - B)ZN)
— Ko(O% p)
— Ker(1 — A)NKer(1 — B) in Z¥ — 0
and
0 — (Ker(1 — B) in Z™)/(1 — A)(Ker(1 — B) in ZV)
— K I(OZ,B)
— Ker(1—A) in ZV/(1 - B)ZN — 0.

We consider 1 x 1 matrices [N] and [M] with its entries N and M re-
spectively for 1 < N, M € N. Let Gy be a directed graph with one ver-
tex and N directed self-loops. Similarly we consider a directed graph Gy
with M directed self-loops at the vertex. The self-loops are denoted by
SN ={eg,...,eyyand M = {f;, ..., far} respectively. As a specification

K, we take the exchanging map (e, f) € 2V x M — (fe) € M x ©N
which we will fix. Put

pN(1) =1, p}j(1):1 fori=1,...,N, j=1,..., M.
Then we have a C*-textile dynamical system
(C, pN, pM 2N 2M k).
The associated C*-algebra is denoted by OR ;-
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Lemma 9.4. O ), = Oy ® Op.

Proof. Let s;,i=1,...,Nandt;,i =1,..., M be the generating isometries
of the Cuntz algebra Opn and those of of Oy respectively which satisfy

N

M
Zsisf = 1, tht;f = 1.
j=1

=1

Let S;,¢ = 1,...,N and Tj,7 = 1,..., M be the generating isometries of
O} i satisfying

N M
Y SiSi=1, > T,;Ty=1
i=1 j=1

and
SiT; =1T55;, i=1,....,N, j=1,...,M.

The universality of Of ,, subject to the relations and that of the tensor
product Oy ®O) ensure us that the correspondence ® : On yr — ONRO N
given by ®(S5;) = s; ® 1, ®(7T;) = 1 ®t; yields an isomorphism. O

Although we may easily compute the K-groups K*(O]"Q ~) by using the
Kiinneth formula for K;(On ® Opr) ([46]), we will compute them by Propo-
sition 9.3 as in the following way.

Proposition 9.5 (cf. [19]). For 1 < N,M € N, the C*-algebra OF; , is
simple, purely infinite, such that

Ko(OX m) = K1(Oy ) = Z/dZ
where d = ged(N — 1, M — 1) the greatest common divisor of N — 1, M — 1.

Proof. It is easy to see that the group Z/((N —1)Z+ (N —1)Z) is isomorphic
to Z/dZ. As Ker(N —1) =Ker(M —1) =0 in Z, we see that

Ko(ON v) = Z/dZ.
It is elementary to see that the subgroup
{lk)eZ/(M —1)Z | (N - 1)k e (M —-1)Z}
of Z/(M — 1)Z is isomorphic to Z/dZ. Hence we have
K1(Oy \) = Z/dZ. O

We will generalize the above examples from the view point of tensor prod-
ucts.
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9.2. Tensor products. Let (A, p, ¥7) and (A", n, 3") be C*-symbolic dy-
namical systems. We will construct a C*-textile dynamical system by taking
tensor product. Put

A=A A", Pa = Pa®id, Mo = id®1n4g, P =%r, X1 ="
for @ € ¥*,a € X", where ® means the minimal C*-tensor product ®mnin.
For (a,a) € ¥P x X7, we see 0 po(1) # 0 if and only if n,(1) # 0, pa(1) # 0,
so that B B
Y =3%P x X" and similarly X" = X" x ¥°.
Define & : ¥PT — 37 by setting &(a, b) = (b, a).
Lemma 9.6. (A, p,7, %, %7 &) is a C*-textile dynamical system.
Proof. By [2], we have Z 1 = Z40 ® Z4n so that
pa(Zi) C Zs a€X’ and po(Zz) CZ4z a€X
We also have Y 55 pa(1) = > e Pa(l) ® 1 > 1, and similarly
>l =1
a€exn

so that both families {pq }aexs and {7, }esi of endomorphisms are essential.
Since {pa }aexe is faithful on AP, the homomorphism

TEA — > Fpy(z)e D TA
acXr aexr
is injective so that the homomorphism
TRYEA QAT — Y Ppy(m)@ye Y TA @A
aexr aeXr
is injective. This implies that {pa }acxr is faithful. Similarly, so is {74 }eexn-
Hence (A, p,XP) and (A, 7, X7) are both C*-symbolic dynamical systems.
It is direct to see that 7, o po = pa © 7y for (a,b) € XP7. Therefore
(A, p,77,2P, X1 k) is a C*-textile dynamical system. O
We call (A, p,7, %P, X7 k) the tensor product between (A”,p,¥*) and

(A7, m,%"). Denote by Sa,a € ¥P, T;,a € X7 the generating partial isome-
tries of the C*-algebra OF 5 for the C*-textile dynamical system

(A, p, 7, %°, 57, k).
By the universality for the algebra (’)377 subject to the relations (p,7; &),

the algebra Dj 5 is isomorphic to the tensor product D, ® D,, through the
correspondence

S Te(x @ y)TE S, +— SuxS), @ TeyTy
for p € Byi(Ay),& € Bi(Ay), v € AP,y € A"
Lemma 9.7. Suppose that (A?, p, ") and (A",n,%") are both free (resp.

AF-free). Then the tensor product (A, p,7, %P, X" k) is free (resp. AF-free).
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Proof. Suppose that (A”, p, ¥*) and (A"7,n,3") are both free. There exist
increasing sequences A7, 1 € Z and A}l € Z, of C*-subalgebras of A” and
A" satisfying the conditions of their freeness respectively. Put

Al:Alp(@A?, ZGZ+

It is clear that:

(1) pa(A}) C Ajy1, € 3P and 7,(A;) C Ajp1,a € X0 for 1 € Zy.

(2) Uiez, A; is dense in A.

We will show that the condition (3) for A in Definition 5.3 holds. Take
and fix arbitrary j,k,0l € N with j + k < [. For j < [, one may take
a projection g, € D, N Af " satisfying the condition (3) of the freeness of
(AP, p,¥P), and similarly for k < [, one may take a projection ¢, € D, ﬂ.A?/.
Put ¢ = q, ® ¢, € D, ® Dy(= Dpy) so that ¢ € Dy N Aj. As the maps
Pz e A — qor € qpAl and @) 1 y € A — gz € ¢, A] are both
isomorphisms, the tensor product

P rye AARA — (¢, @ qy)(xRY) € (¢, @ qy) (AT @ A))

is isomorphic. Hence ga # 0 for 0 # a € A;. It is straightforward to see
that g satisfies the condition (3) (ii) of Definition 5.3. Therefore the tensor
product (A, p,7, 2P, X7, k) is free. It is obvious to see that if both (A, p, ¥*)
and (A", n, ") are AF-free, then (A, p, 7, ¥, X7 k) is AF-free. O

Proposition 9.8. Suppose that (A?,p,X°) and (A",n,X") are both free.
Then the C*-algebra Og’ﬁ for the tensor product C*-textile dynamical system
(A, p,7, %P, %1 R) is isomorphic to the minimal tensor product 0,20, of the
C*-algebras between O, and O,,. If in particular, (A?, p,XP) and (A",n,3")
are both irreducible, the C*-algebra OF 5 is simple.

Proof. Suppose that (A”, p,¥”) and (A", n, X") are both free. By the pre-
ceding lemma, the tensor product (A, p, 7, X7, X7, &) is free and hence sat-
isfies condition (I). Let s, € X and t,,a € X" be the generating partial
isometries of the C*-algebras O, and O, respectively. Let S, € ¥ and
Tu,a € X7 be the generating partial isometries of the C*-algebra O% .. By
the uniqueness of the algebra Ogﬁ with respect to the relations (p, 7; k), the
correspondence

Sa —5.®1€0,®0,, T, —1®t, € 0,20,

naturally gives rise to an isomorphism from Og,ﬁ onto the tensor product
0, ® Oy.

If in particular, (A, p, ¥?) and (A", n,X") are both irreducible, the C*-
algebras O, and O,, are both simple so that Og’ﬁ is simple. ([l

We remark that the tensor product (A, p, 77, 37, X7, &) does not necessarily
form square. The K-theory groups K, ((’)gﬂ) are computed from the Kiinneth
formulae for K,(O, ® O,,) [46].
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10. Concluding remark

In [31], a different construction of C*-algebra written Oy, from C*-textile
dynamical system (A, p,n, P X" k) is studied by using a 2-dimensional
analogue of Hilbert C*-bimodule. The C*-algebra Oy, is different from the
C*-algebra Of  in the present paper (see also [33], [32]).
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