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C∗-algebras associated with textile
dynamical systems

Kengo Matsumoto

Abstract. A C∗-symbolic dynamical system (A, ρ,Σ) is a finite family
{ρα}α∈Σ of endomorphisms of a C∗-algebra A with some conditions. It
yields a C∗-algebra Oρ from an associated Hilbert C∗-bimodule. In this
paper, we will extend the notion of C∗-symbolic dynamical system to
C∗-textile dynamical system (A, ρ, η,Σρ,Ση, κ) which consists of two
C∗-symbolic dynamical systems (A, ρ,Σρ) and (A, η,Ση) with certain
commutation relations κ between their endomorphisms {ρα}α∈Σρ and
{ηa}a∈Ση . C∗-textile dynamical systems yield two-dimensional subshifts
and C∗-algebras Oκ

ρ,η. We will study their structure of the algebras Oκ
ρ,η

and present its K-theory formulae.
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1. Introduction

In [24], the author has introduced a notion of λ-graph system as presen-
tations of subshifts. The λ-graph systems are labeled Bratteli diagram with
shift transformation. They yield C∗-algebras so that its K-theory groups are
related to topological conjugacy invariants of the underlying symbolic dy-
namical systems. The class of these C∗-algebras include the Cuntz–Krieger
algebras. He has extended the notion of λ-graph system to C∗-symbolic
dynamical system, which is a generalization of both a λ-graph system and
an automorphism of a unital C∗-algebra. It is a finite family {ρα}α∈Σ of
endomorphisms of a unital C∗-algebra A such that ρα(ZA) ⊂ ZA, α ∈ Σ
and

∑
α∈Σ ρα(1) ≥ 1 where ZA denotes the center of A. A finite labeled

graph G gives rise to a C∗-symbolic dynamical system (AG , ρG ,Σ) such that
A = CN for some N ∈ N. A λ-graph system L is a generalization of a finite
labeled graph and yields a C∗-symbolic dynamical system (AL, ρ

L,Σ) such
that AL is C(ΩL) for some compact Hausdorff space ΩL with dimΩL = 0.
It also yields a C∗-algebra OL. A C∗-symbolic dynamical system (A, ρ,Σ)
provides a subshift Λρ over Σ and a Hilbert C∗-bimodule HρA over A. The
C∗-algebra Oρ for (A, ρ,Σ) may be realized as a Cuntz–Pimsner algebra
from the Hilbert C∗-bimodule HρA ([27], cf. [15], [39]). We call the algebra
Oρ the C∗-symbolic crossed product of A by the subshift Λρ. If A = C(X)
with dimX = 0, there exists a λ-graph system L such that the subshift Λρ
is the subshift ΛL presented by L and the C∗-algebra Oρ is the C∗-algebra
OL associated with L. If in particular, A = CN , the subshift Λρ is a sofic
shift and Oρ is a Cuntz–Krieger algebra. If Σ = {α} an automorphism α of
a unital C∗-algebra A, the C∗-algebra Oρ is the ordinary crossed product
A×α Z.

G. Robertson–T. Steger [43] have initiated a certain study of higher di-
mensional analogue of Cuntz–Krieger algebras from the view point of tiling
systems of 2-dimensional plane. After their work, A. Kumjian–D. Pask [19]
have generalized their construction to introduce the notion of higher rank
graphs and its C∗-algebras. The C∗-algebras constructed from higher rank
graphs are called the higher rank graph C∗-algebras. Since then, there have
been many studies on these C∗-algebras by many authors (cf. [1], [9], [10],
[11], [13], [16], [19], [36], [42], [43], etc.).

M. Nasu in [34] has introduced the notion of textile system which is use-
ful in analyzing automorphisms and endomorphisms of topological Markov
shifts. A textile system also gives rise to a two-dimensional tiling called
Wang tiling. Among textile systems, LR textile systems have specific prop-
erties that consist of two commuting symbolic matrices. In [28], the author
has extended the notion of textile systems to λ-graph systems and has de-
fined a notion of textile systems on λ-graph systems, which are called textile
λ-graph systems for short. C∗-algebras associated to textile systems have
been initiated by V. Deaconu ([9]).
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In this paper, we will extend the notion of C∗-symbolic dynamical sys-
tem to C∗-textile dynamical system which is a higher dimensional ana-
logue of C∗-symbolic dynamical system. The C∗-textile dynamical system
(A, ρ, η,Σρ,Ση, κ) consists of two C∗-symbolic dynamical systems (A, ρ,Σρ)
and (A, η,Ση) with the following commutation relations between ρ and η
through κ. Set

Σρη = {(α, b) ∈ Σρ × Ση | ηb ◦ ρα 6= 0},
Σηρ = {(a, β) ∈ Ση × Σρ | ρβ ◦ ηa 6= 0}.

We require that there exists a bijection κ : Σρη −→ Σηρ, which we fix and
call a specification. Then the required commutation relations are

(1.1) ηb ◦ ρα = ρβ ◦ ηa if κ(α, b) = (a, β).

A C∗-textile dynamical system provides a two-dimensional subshifts and a
C∗-algebra Oκρ,η. The C∗-algebra Oκρ,η is defined to be the universal C∗-
algebra C∗(x, Sα, Ta;x ∈ A, α ∈ Σρ, a ∈ Ση) generated by x ∈ A and two
families of partial isometries Sα, α ∈ Σρ, Ta, a ∈ Ση subject to the following
relations called (ρ, η;κ):∑

β∈Σρ

SβS
∗
β = 1, xSαS

∗
α = SαS

∗
αx, S∗αxSα = ρα(x),(1.2)

∑
b∈Ση

TbT
∗
b = 1, xTaT

∗
a = TaT

∗
ax, T ∗axTa = ηa(x),(1.3)

SαTb = TaSβ if κ(α, b) = (a, β)(1.4)

for all x ∈ A and α ∈ Σρ, a ∈ Ση.
In Section 3, we will construct a tiling system in the plane from a C∗-

textile dynamical system. The resulting tiling system is a two-dimensional
subshift. In Section 4, we will study some basic properties of the C∗-
algebra Oκρ,η. In Section 5, we will introduce a condition called (I) on
(A, ρ, η,Σρ,Ση, κ) which will be studied as a generalization of the condi-
tion (I) on C∗-symbolic dynamical system [26] (cf. [8], [25]). In Section 6,
we will realize the C∗-algebra Oκρ,η as a Cuntz–Pimsner algebra associated
with a certain Hilbert C∗-bimodule in a concrete way. We will have the
following theorem.

Theorem 1.1. Let (A, ρ, η,Σρ,Ση, κ) be a C∗-textile dynamical system sat-
isfying condition (I). Then the C∗-algebra Oκρ,η is a unique concrete C∗-
algebra subject to the relations (ρ, η;κ). If (A, ρ, η,Σρ,Ση, κ) is irreducible,
Oκρ,η is simple.

A C∗-textile dynamical system (A, ρ, η,Σρ,Ση, κ) is said to form square
if the C∗-subalgebra of A generated by the projections ρα(1), α ∈ Σρ and
the C∗-subalgebra of A generated by the projections ηa(1), a ∈ Ση coincide.
It is said to have trivial K1 if K1(A) = {0}. In Section 7 and Section 8, we
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will restrict our interest to the C∗-textile dynamical systems forming square
to prove the following K-theory formulae:

Theorem 1.2. Suppose that (A, ρ, η,Σρ,Ση, κ) forms square and has trivial
K1. Then there exist short exact sequences for K0(Oκρ,η) and K1(Oκρ,η) such
that

0 −→ K0(A)/((id− λη)K0(A) + (id− λρ)K0(A))

−→ K0(Oκρ,η)
−→ Ker(id− λη) ∩Ker(id− λρ) in K0(A) −→ 0

and

0 −→ (Ker(id− λη) in K0(A))/(id− λρ)(Ker(id− λη) in K0(A))

−→ K1(Oκρ,η)
−→ Ker(id− λ̄ρ) in (K0(A)/(id− λη)K0(A)) −→ 0

where the endomorphisms λρ, λη : K0(A) −→ K0(A) are defined by

λρ([p]) =
∑
α∈Σρ

[ρα(p)] ∈ K0(A) for [p] ∈ K0(A),

λη([p]) =
∑
a∈Ση

[ηa(p)] ∈ K0(A) for [p] ∈ K0(A)

and λ̄ρ denotes an endomorphism on K0(A)/(1− λη)K0(A) induced by λρ.

Let A,B be mutually commuting N × N matrices with entries in non-
negative integers. Let GA = (VA, EA), GB = (VB, EB) be directed graphs
with common vertex set VA = VB, whose transition matrices are A,B re-
spectively. Let MA,MB denote symbolic matrices for GA, GB whose com-
ponents consist of formal sums of the directed edges of GA, GB respectively.
Let ΣAB,ΣBA be the sets of the pairs of the concatenated directed edges
in EA × EB, EB × EA respectively. By the condition AB = BA, one may
take a bijection κ : ΣAB −→ ΣBA which gives rise to a specified equiva-

lence MAMB

κ∼= MBMA. We then have a C∗-textile dynamical system
written as (A, ρA, ρB,ΣA,ΣB, κ). The associated C∗-algebra is denoted by
OκA,B. The C∗-algebra OκA,B is realized as a 2-graph C∗-algebra constructed

by Kumjian–Pask ([19]). It is also seen in Deaconu’s paper [9]. We will see
the following proposition in Section 9.

Proposition 1.3. Keep the above situations. There exist short exact se-
quences for K0(OκA,B) and K1(OκA,B) such that

0 −→ ZN/((1−A)ZN + (1−B)ZN )

−→ K0(OκA,B)

−→ Ker(1−A) ∩Ker(1−B) in ZN −→ 0
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and

0 −→ (Ker(1−B) in ZN )/(1−A)(Ker(1−B) in ZN )

−→ K1(OκA,B)

−→ Ker(1− Ā) in (ZN/(1−B)ZN ) −→ 0,

where Ā is an endomorphism on the abelian group ZN/(1 − B)ZN induced
by the matrix A.

Throughout the paper, we will denote by Z+ the set of nonnegative inte-
gers and by N the set of positive integers.

This paper is a revised version of the paper: arXiv:1106.5092v1.

2. λ-graph systems, C∗-symbolic dynamical systems and
their C∗-algebras

In this section, we will briefly review λ-graph systems and C∗-symbolic
dynamical systems. Throughout the section, Σ denotes a finite set with its
discrete topology, that is called an alphabet. Each element of Σ is called
a symbol. Let ΣZ be the infinite product space

∏
i∈Z Σi, where Σi = Σ,

endowed with the product topology. The transformation σ on ΣZ given
by σ((xi)i∈Z) = (xi+1)i∈Z is called the full shift over Σ. Let Λ be a shift
invariant closed subset of ΣZ i.e. σ(Λ) = Λ. The topological dynamical
system (Λ, σ|Λ) is called a two-sided subshift, written as Λ for brevity. A
word µ = (µ1, . . . , µk) of Σ is said to be admissible for Λ if there exists
(xi)i∈Z ∈ Λ such that µ1 = x1, . . . , µk = xk. Let us denote by |µ| the
length k of µ. Let Bk(Λ) be the set of admissible words of Λ with length k.
The union ∪∞k=0Bk(Λ) is denoted by B∗(Λ) where B0(Λ) denotes the empty
word. For two words µ = (µ1, . . . , µk), ν = (ν1, . . . , νn), we write a new word
µν = (µ1, . . . , µk, ν1, . . . , νn).

There is a class of subshifts called sofic shifts, that are presented by finite
labeled graphs ([14], [17], [18]). λ-graph systems are generalization of finite
labeled graphs. Any subshift is presented by a λ-graph system. Let

L = (V,E, λ, ι)

be a λ-graph system over Σ with vertex set V = ∪l∈Z+Vl and edge set E =
∪l∈Z+El,l+1 that is labeled with symbols in Σ by a map λ : E → Σ, and that
is supplied with surjective maps ι(= ιl,l+1) : Vl+1 → Vl for l ∈ Z+. Here the
vertex sets Vl, l ∈ Z+ and the edge sets El,l+1, l ∈ Z+ are finite disjoint sets
for each l ∈ Z+. An edge e in El,l+1 has its source vertex s(e) in Vl and its
terminal vertex t(e) in Vl+1 respectively. Every vertex in V has a successor
and every vertex in Vl for l ∈ N has a predecessor. It is then required that
for vertices u ∈ Vl−1 and v ∈ Vl+1, there exists a bijective correspondence
between the set of edges e ∈ El,l+1 such that t(e) = v, ι(s(e)) = u and the set
of edges f ∈ El−1,l such that s(f) = u, t(f) = ι(v), preserving their labels
([24]). We assume that L is left-resolving, which means that t(e) 6= t(f)
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whenever λ(e) = λ(f) for e, f ∈ El,l+1. Let us denote by {vl1, . . . , vlm(l)} the

vertex set Vl at level l. For i = 1, 2, . . . ,m(l), j = 1, 2, . . . ,m(l + 1), α ∈ Σ
we put

Al,l+1(i, α, j) =

{
1 if s(e) = vli, λ(e) = α, t(e) = vl+1

j for some e ∈ El,l+1,

0 otherwise,

Il,l+1(i, j) =

{
1 if ιl,l+1(vl+1

j ) = vli,

0 otherwise.

The C∗-algebra OL associated with L is the universal C∗-algebra generated
by partial isometries Sα, α ∈ Σ and projections Eli, i = 1, 2, . . . ,m(l), l ∈ Z+

subject to the following operator relations called (L):∑
β∈Σ

SβS
∗
β = 1,(2.1)

m(l)∑
i=1

Eli = 1, Eli =

m(l+1)∑
j=1

Il,l+1(i, j)El+1
j ,(2.2)

SαS
∗
αE

l
i = EliSαS

∗
α,(2.3)

S∗αE
l
iSα =

m(l+1)∑
j=1

Al,l+1(i, α, j)El+1
j ,(2.4)

for i = 1, 2, . . . ,m(l), l ∈ Z+, α ∈ Σ. If L satisfies λ-condition (I) and is
λ-irreducible, the C∗-algebra OL is simple and purely infinite ([25], [26]).

Let AL,l be the C∗-subalgebra of OL generated by the projections Eli, i =
1, . . . ,m(l). We denote by AL the C∗-subalgebra of OL generated by all the
projections Eli, i = 1, . . . ,m(l), l ∈ Z+. As AL,l ⊂ AL,l+1 and ∪l∈Z+AL,l is
dense in A, the algebra AL is a commutative AF-algebra. For α ∈ Σ, put

ρLα(X) = S∗αXSα for X ∈ AL.

Then {ρLα}α∈Σ yields a family of ∗-endomorphisms of AL such that ρLα(1) 6=
0,
∑

α∈Σ ρ
L
α(1) ≥ 1 and for any nonzero x ∈ AL, ρLα(x) 6= 0 for some α ∈ Σ.

The situations above are generalized to C∗-symbolic dynamical systems as
follows. Let A be a unital C∗-algebra. In what follows, an endomorphism of
A means a ∗-endomorphism of A that does not necessarily preserve the unit
1A of A. The unit 1A is denoted by 1 unless we specify. Denote by ZA the
center of A. Let ρα, α ∈ Σ be a finite family of endomorphisms of A indexed
by symbols of a finite set Σ. We assume that ρα(ZA) ⊂ ZA, α ∈ Σ. The
family ρα, α ∈ Σ of endomorphisms of A is said to be essential if ρα(1) 6= 0
for all α ∈ Σ and

∑
α ρα(1) ≥ 1. It is said to be faithful if for any nonzero

x ∈ A there exists a symbol α ∈ Σ such that ρα(x) 6= 0.
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Definition 2.1 (cf. [27]). A C∗-symbolic dynamical system is a triplet
(A, ρ,Σ) consisting of a unital C∗-algebra A and an essential and faithful
finite family {ρα}α∈Σ of endomorphisms of A.

As in the above discussion, we have a C∗-symbolic dynamical system
(AL, ρ

L,Σ) from a λ-graph system L. In [27], [29], [30], we have defined
a C∗-symbolic dynamical system in a less restrictive way than the above
definition. Instead of the above condition

∑
α∈Σ ρα(1) ≥ 1 with ρα(ZA) ⊂

ZA, α ∈ Σ, we have used the condition in the papers that the closed ideal
generated by ρα(1), α ∈ Σ coincides with A. All of the examples appeared
in the papers [27], [29], [30] satisfy the condition

∑
α∈Σ ρα(1) ≥ 1 with

ρα(ZA) ⊂ ZA, α ∈ Σ, and all discussions in the papers well work under the
above new definition.

A C∗-symbolic dynamical system (A, ρ,Σ) yields a subshift Λρ over Σ
such that a word (α1, . . . , αk) of Σ is admissible for Λρ if and only if

(ραk ◦ · · · ◦ ρα1)(1) 6= 0

([27, Proposition 2.1]). We say that a subshift Λ acts on a C∗-algebra A if
there exists a C∗-symbolic dynamical system (A, ρ,Σ) such that the associ-
ated subshift Λρ is Λ.

The C∗-algebra Oρ associated with a C∗-symbolic dynamical system

(A, ρ,Σ)

has been originally constructed in [27] as a C∗-algebra by using the Pimsner’s
general construction of C∗-algebras from Hilbert C∗-bimodules [39] (cf. [15]
etc.). It is realized as the universal C∗-algebra C∗(x, Sα;x ∈ A, α ∈ Σ)
generated by x ∈ A and partial isometries Sα, α ∈ Σ subject to the following
relations called (ρ):∑

β∈Σ

SβS
∗
β = 1, xSαS

∗
α = SαS

∗
αx, S∗αxSα = ρα(x)

for all x ∈ A and α ∈ Σ. The C∗-algebra Oρ is a generalization of the
C∗-algebra OL associated with the λ-graph system L.

A C∗-symbolic dynamical system (A, ρ,Σ) is said to be free if there exists
a unital increasing sequence A0 ⊂ A1 ⊂ · · · ⊂ A of C∗-subalgebras of A
such that:

(1) ρα(Al) ⊂ Al+1 for all l ∈ Z+ and α ∈ Σ.
(2) ∪l∈Z+Al is dense in A.
(3) For j ≤ l there exists a projection q ∈ Dρ ∩ Al′ such that:

(i) qx 6= 0 for 0 6= x ∈ Al,
(ii) φnρ (q)q = 0 for all n = 1, 2, . . . , j,
where Dρ is the C∗-subalgebra of Oρ generated by elements

Sµ1 · · ·SµkxS
∗
µk
· · ·S∗µ1
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for (µ1, . . . , µk) ∈ B∗(Λρ) and x ∈ A, and

φρ(X) =
∑
α∈Σ

SαXS
∗
α, X ∈ Dρ.

The freeness has been called condition (I) in [30]. If in particular, one may
take the above subalgebrasAl ⊂ A, l = 0, 1, 2, . . . to be of finite dimensional,
then (A, ρ,Σ) is said to be AF-free. (A, ρ,Σ) is said to be irreducible if there
is no nontrivial ideal of A invariant under the positive operator λρ on A
defined by λρ(x) =

∑
α∈Σ ρα(x), x ∈ A. It has been proved that if (A, ρ,Σ)

is free and irreducible, then the C∗-algebra Oρ is simple ([30]).

3. C∗-textile dynamical systems and two-dimensional
subshifts

Let Σ be a finite set. The two-dimensional full shift over Σ is defined to
be

ΣZ2
= {(xi,j)(i,j)∈Z2 | xi,j ∈ Σ}.

An element x ∈ ΣZ2
is regarded as a function x : Z2 −→ Σ which is called a

configuration on Z2. For x ∈ ΣZ2
and F ⊂ Z2, let xF denote the restriction

of x to F . For a vector m = (m1,m2) ∈ Z2, let σm : ΣZ2 −→ ΣZ2
be the

translation along vector m defined by

σm((xi,j)(i,j)∈Z2) = (xi+m1,j+m2)(i,j)∈Z2 .

A subset X ⊂ ΣZ2
is said to be translation invariant if σm(X) = X for all

m ∈ Z2. It is obvious to see that a subset X ⊂ ΣZ2
is translation invariant

if ond only if X is invariant only both horizontally and vertically, that is,
σ(1,0)(X) = X and σ(0,1)(X) = X. For k ∈ Z+, put

[−k, k]2 = {(i, j) ∈ Z2 | −k ≤ i, j ≤ k} = [−k, k]× [−k, k].

A metric d on ΣZ2
is defined by for x, y ∈ ΣZ2

with x 6= y

d(x, y) =
1

2k
if x(0,0) = y(0,0),

where k = max{k ∈ Z+ | x[−k,k]2 = y[−k,k]2}. If x(0,0) 6= y(0,0), put k = −1
on the above definition. If x = y, we set d(x, y) = 0. A two-dimensional

subshift X is defined to be a closed, translation invariant subset of ΣZ2
(cf.

[21, p.467]). A finite subset F ⊂ Z2 is said to be a shape. A pattern f on a
shape F is a function f : F −→ Σ. For a list F of patterns, put

XF = {(xi,j)(i,j)∈Z2 | σm(x)|F 6∈ F for all m ∈ Z2 and F ⊂ Z2}.

It is well-known that a subset X ⊂ ΣZ2
is a two-dimensional subshift if and

only if there exists a list F of patterns such that X = XF.
We will define a certain property of two-dimensional subshift as follows:
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Definition 3.1. A two-dimensional subshift X is said to have the diagonal
property if for (xi,j)(i,j)∈Z2 , (yi,j)(i,j)∈Z2 ∈ X, the conditions

xi,j = yi,j , xi+1,j−1 = yi+1,j−1

imply

xi,j−1 = yi,j−1, xi+1,j = yi+1,j .

A two-dimensional subshift having the diagonal property is called a textile
dynamical system.

Lemma 3.2. If a two dimensional subshift X has the diagonal property,
then for x ∈ X and (i, j) ∈ Z2, the configuration x is determined by the
diagonal line (xi+n,j−n)n∈Z through (i, j).

Proof. By the diagonal property, the sequence (xi+n,j−n)n∈Z determines
both the sequences (xi+1+n,j−n)n∈Z and (xi−1+n,j−n)n∈Z. Repeating this
way, the sequence (xi+n,j−n)n∈Z determines the whole configuration x. �

Let (A, ρ, η,Σρ,Ση, κ) be a C∗-textile dynamical system. It consists of two
C∗-symbolic dynamical systems (A, ρ,Σρ) and (A, η,Ση) with common uni-
tal C∗-algebra A and commutation relations between their endomorphisms
ρα, α ∈ Σρ, ηa, a ∈ Ση through a bijection κ between the following sets Σρη

and Σηρ, where

Σρη = {(α, b) ∈ Σρ × Ση | ηb ◦ ρα 6= 0},
Σηρ = {(a, β) ∈ Ση × Σρ | ρβ ◦ ηa 6= 0}.

The given bijection κ : Σρη −→ Σηρ is called a specification. The required
commutation relations are

(3.1) ηb ◦ ρα = ρβ ◦ ηa if κ(α, b) = (a, β).

A C∗-textile dynamical system will yield a two-dimensional subshift Xκ
ρ,η.

We set

Σκ = {ω = (α, b, a, β) ∈ Σρ × Ση × Ση × Σρ | κ(α, b) = (a, β)}.

For ω = (α, b, a, β), since ηb ◦ρα = ρβ ◦ ηa as endomorphisms on A, one may
identify the quadruplet (α, b, a, β) with the endomorphism ηb ◦ρα(= ρβ ◦ηa)
on A which we will denote by simply ω. Define maps t(= top), b(= bottom) :
Σκ −→ Σρ and l(= left), r(= right) : Σκ −→ Σρ by setting

t(ω) = α, b(ω) = β, l(ω) = a, r(ω) = b.

· α=t(ω)−−−−→ ·

a=l(ω)

y yb=r(ω)

· −−−−→
β=b(ω)

·
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A configuration (ωi,j)(i,j)∈Z2 ∈ ΣZ2

κ is said to be paved if the conditions

t(ωi,j) = b(ωi,j+1), r(ωi,j) = l(ωi+1,j),

l(ωi,j) = r(ωi−1,j), b(ωi,j) = t(ωi,j−1)

hold for all (i, j) ∈ Z2. We set

Xκ
ρ,η = {(ωi,j)(i,j)∈Z2 ∈ ΣZ2

κ | (ωi,j)(i,j)∈Z2 is paved and

ωi+n,j−n ◦ ωi+n−1,j−n+1 ◦ · · · ◦ ωi+1,j−1 ◦ ωi,j 6= 0

for all (i, j) ∈ Z2, n ∈ N},

where ωi+n,j−n ◦ ωi+n−1,j−n+1 ◦ · · · ◦ ωi+1,j−1 ◦ ωi,j is the compositions as
endomorphisms on A.

Lemma 3.3. Suppose that a configuration (ωi,j)(i,j)∈Z2 ∈ ΣZ2

κ is paved.
Then (ωi,j)(i,j)∈Z2 ∈ Xκ

ρ,η if and only if

ρb(ωi+n,j−m) ◦ · · · ◦ ρb(ωi+1,j−m) ◦ ρb(ωi,j−m) ◦ ηl(ωi,j−m) ◦ · · · ηl(ωi,j−1) ◦ ηl(ωi,j) 6= 0

for all (i, j) ∈ Z2, n,m ∈ Z+.

·

l(ωi,j)

y
·

l(ωi,j−1)

y
·
...

·

l(ωi,j−m)

y
· −−−−−−→

b(ωi,j−m)
· −−−−−−−→

b(ωi+1,j−m)
· · · −−−−−−−−→

b(ωi+n,j−m)
·

Proof. Suppose that (ωi,j)(i,j)∈Z2 ∈ Xκ
ρ,η. For (i, j) ∈ Z2, n,m ∈ Z+, we

may assume that m ≥ n. Since

0 6=ωi+m,j−m ◦ · · · ◦ ωi+n+1,j−m ◦ ωi+n,j−m ◦ · · · ◦ ωi,j−m
◦ · · · ◦ ωi+1,j−1 ◦ ωi,j

=ωi+m,j−m ◦ · · · ◦ ωi+n+1,j−m ◦ ρb(ωi+n,j−m) ◦ · · · ◦ ρb(ωi+1,j−m) ◦ ρb(ωi,j−m)

◦ ηl(ωi,j−m) · · · ◦ ηl(ωi,j−m) ◦ · · · ◦ ηl(ωi,j−1) ◦ ηl(ωi,j),

one has

ρb(ωi+n,j−m) ◦ · · · ◦ρb(ωi+1,j−m) ◦ρb(ωi,j−m) ◦ηl(ωi,j−m) ◦ · · · ηl(ωi,j−1) ◦ηl(ωi,j) 6= 0.
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The converse implication is clear by the equality:

ωi+n,j−n ◦ · · · ◦ ωi,j−n ◦ · · · ◦ ωi,j−1 ◦ ωi,j
= ρb(ωi+n,j−n) ◦ · · · ◦ ρb(ωi,j−n) ◦ ηl(ωi,j−n) · · · ◦ ηl(ωi,j−1) ◦ ηl(ωi,j). �

Proposition 3.4. Xκ
ρ,η is a two-dimensional subshift having diagonal prop-

erty, that is, Xκ
ρ,η is a textile dynamical system.

Proof. It is easy to see that the set

E = {(ωi,j)(i,j)∈Z2 ∈ ΣZ2

κ | (ωi,j)(i,j)∈Z2 is paved}

is closed, because its complement is open in ΣZ2

κ . The following set

U = {(ωi,j)(i,j)∈Z2 ∈ ΣZ2

κ | ωk+n,l−n ◦ ωk+n−1,l−n+1

◦ · · · ◦ ωk+1,l−1 ◦ ωk,l = 0 for some (k, l) ∈ Z2, n ∈ N}

is open in ΣZ2

κ . As the equality Xκ
ρ,η = E ∩ U c holds, the set Xκ

ρ,η is closed.
It is also obvious that Xκ

ρ,η is translation invariant so that Xκ
ρ,η is a two-

dimensional subshift. It is easy to see that Xκ
ρ,η has diagonal property. �

We call Xκ
ρ,η the textile dynamical system associated with

(A, ρ, η,Σρ,Ση, κ).

Let us now define a (one-dimensional) subshiftXδκ over Σκ, which consists
of diagonal sequences of Xκ

ρ,η as follows:

Xδκ = {(ωn,−n)n∈Z ∈ ΣZ
κ | (ωi,j)(i,j)∈Z2 ∈ Xκ

ρ,η}.

By Lemma 3.2, an element (ωn,−n)n∈Z of Xδκ may be extended to

(ωi,j)(i,j)∈Z2 ∈ Xκ
ρ,η

in a unique way. Hence the one-dimensional subshift Xδκ determines the
two-dimensional subshift Xκ

ρ,η. Therefore we have:

Lemma 3.5. The two-dimensional subshift Xκ
ρ,η is not empty if and only if

the one-dimensional subshift Xδκ is not empty.

For (A, ρ, η,Σρ,Ση, κ), we will have a C∗-symbolic dynamical system
(A, δκ,Σκ) in Section 4. It presents the subshift Xδκ . Since a subshift
presented by a C∗-symbolic dynamical system is always not empty, one sees

Proposition 3.6. The two-dimensional subshift Xκ
ρ,η is not empty.
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4. C∗-textile dynamical systems and their C∗-algebras

The C∗-algebra Oκρ,η is defined to be the universal C∗-algebra

C∗(x, Sα, Ta;x ∈ A, α ∈ Σρ, a ∈ Ση)

generated by x ∈ A and partial isometries Sα, α ∈ Σρ, Ta, a ∈ Ση subject to
the following relations called (ρ, η;κ):∑

β∈Σρ

SβS
∗
β = 1, xSαS

∗
α = SαS

∗
αx, S∗αxSα = ρα(x),(4.1)

∑
b∈Ση

TbT
∗
b = 1, xTaT

∗
a = TaT

∗
ax, T ∗axTa = ηa(x),(4.2)

SαTb = TaSβ if κ(α, b) = (a, β)(4.3)

for all x ∈ A and α ∈ Σρ, a ∈ Ση. We will study the algebra Oκρ,η. For
(α, b, a, β) ∈ Σρ × Ση × Ση × Σρ, we set

RB(α, a) = {(b, β) ∈ Ση × Σρ | κ(α, b) = (a, β)},
R(α, a, β) = {b ∈ Ση | κ(α, b) = (a, β)},

R(α, a) =
⋃
β∈Σρ

R(α, a, β).

Lemma 4.1. For α ∈ Σρ, a ∈ Ση, one has T ∗aSα 6= 0 if and only if
RB(α, a) 6= ∅.

Proof. Suppose that T ∗aSα 6= 0. As T ∗aSα =
∑

b′∈Ση T
∗
aSαTb′T

∗
b′ , there exists

b′ ∈ Ση such that T ∗aSαTb′ 6= 0. Hence ηb′ ◦ ρα 6= 0 so that (α, b′) ∈ Σρη.
Then one may find (a′, β′) ∈ Σρ such that κ(α, b′) = (a′, β′) and hence
SαTb′ = Ta′Sβ′ . Since 0 6= T ∗aSαTb′ = T ∗aTa′Sβ′ , one sees that a = a′ so that
(b′, β′) ∈ RB(α, a).

Suppose next that κ(α, b) = (a, β) for some (b, β) ∈ Ση × Σρ. Since
ηb ◦ ρα = ρβ ◦ ηa 6= 0, one has 0 6= SαTb = TaSβ. It follows that

S∗βT
∗
aSαTb = (TaSβ)∗TaSβ

so that T ∗aSα 6= 0. �

Lemma 4.2. For α ∈ Σρ, a ∈ Ση, we have

(4.4) T ∗aSα =
∑

(b,β)∈RB(α,a)

Sβηb(ρα(1))T ∗b

and hence

(4.5) S∗αTa =
∑

(b,β)∈RB(α,a)

Tbρβ(ηa(1))S∗β.

Proof. We may assume that T ∗aSα 6= 0. One has

T ∗aSα =
∑
b′∈Ση

T ∗aSαTb′T
∗
b′ .
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For b′ ∈ Ση with (α, b′) ∈ Σρη, take (a′, β′) ∈ Σηρ such that κ(α, b′) = (a′, β′)
so that

T ∗aSαTb′T
∗
b′ = T ∗aTa′Sβ′T

∗
b′ .

Hence T ∗aSαTb′T
∗
b′ 6= 0 implies a = a′. Since T ∗aTa = ηa(1) which commutes

with Sβ′S
∗
β′ , we have

T ∗aTaSβ′T
∗
b′ = Sβ′S

∗
β′T
∗
aTaSβ′T

∗
b′ = Sβ′ρβ′(ηa(1))T ∗b′ = Sβ′ηb′(ρα(1))T ∗b′ .

It follows that

T ∗aSα =
∑

(b′,β′)∈RB(α,a)

T ∗aTaSβ′T
∗
b′ =

∑
(b′,β′)∈RB(α,a)

Sβ′ηb′(ρα(1))T ∗b′ . �

Hence we have:

Lemma 4.3. For α ∈ Σρ, a ∈ Ση, we have

TaT
∗
aSαS

∗
α =

∑
b∈R(α,a)

SαTbT
∗
b S
∗
α.

Hence TaT
∗
a commutes with SαS

∗
α.

Proof. By (4.4), we have

TaT
∗
aSαS

∗
α =

∑
(b,β)∈RB(α,a)

TaSβηb(ρα(1))T ∗b S
∗
α

=
∑

b∈R(α,a)

SαTbηb(ρα(1))T ∗b S
∗
α

=
∑

b∈R(α,a)

Sαρα(1)TbT
∗
b S
∗
α

=
∑

b∈R(α,a)

SαTbT
∗
b S
∗
α. �

Recall that ZA denotes the center of A which consists of elements of A
commuting with all elements of A.

Lemma 4.4. For α ∈ Σρ, a ∈ Ση and x, y ∈ ZA, TayT
∗
a commutes with

SαxS
∗
α.
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Proof. By (4.4), we have

TayT
∗
aSαxS

∗
α = Tay

∑
(b,β)∈RB(α,a)

Sβηb(ρα(1))T ∗b xS
∗
α

=
∑

(b,β)∈RB(α,a)

TaSβS
∗
βySβηb(ρα(1))T ∗b xTbT

∗
b S
∗
α

=
∑

(b,β)∈RB(α,a)

SαTbρβ(y)ηb(ρα(1))ηb(x)S∗βT
∗
a

=
∑

(b,β)∈RB(α,a)

SαTbηb(x)ηb(ρα(1))ρβ(y)S∗βT
∗
a

=
∑

(b,β)∈RB(α,a)

Sαxρα(1)TbS
∗
βyT

∗
a

=
∑

(b,β)∈RB(α,a)

SαxS
∗
αSαTbS

∗
βT
∗
aTayT

∗
a

=
∑

b∈R(α,a)

Sαx · S∗αSαTbT ∗b S∗αTa · yT ∗a .

Now if (α, b′) 6∈ Σρ,η, then SαTb′ = 0. Hence∑
b∈R(α,a)

S∗αSαTbT
∗
b S
∗
αTa =

∑
b∈Ση

S∗αSαTbT
∗
b S
∗
αTa = S∗αTa.

Therefore we have
TayT

∗
aSαxS

∗
α = SαxS

∗
αTayT

∗
a . �

For words µ = (µ1, . . . , µj) ∈ Bj(Λρ), ζ = (ζ1, . . . , ζk) ∈ Bk(Λη), we set

Sµ = Sµ1 · · ·Sµj , Tζ = Tζ1 · · ·Tζk .
For a subset F of Oκρ,η, denote by C∗(F ) the C∗-subalgebra of Oκρ,η generated
by the elements of F . We define C∗-subalgebras Dρ,η,Dj,k of Oκρ,η by

Dρ,η =C∗(SµTζxT
∗
ζ S
∗
µ : µ ∈ B∗(Λρ), ζ ∈ B∗(Λη), x ∈ A),

Dj,k =C∗(SµTζxT
∗
ζ S
∗
µ : µ ∈ Bj(Λρ), ζ ∈ Bk(Λη), x ∈ A) for j, k ∈ Z+.

By the commutation relation (4.3), one sees that

Dj,k = C∗(TξSνxS
∗
νT
∗
ξ : ν ∈ Bj(Λρ), ξ ∈ Bk(Λη), x ∈ A).

The identities

SµTζxT
∗
ζ S
∗
µ =

∑
a∈Ση

SµTζaηa(x)T ∗ζaS
∗
µ,

TξSνxS
∗
νT
∗
ξ =

∑
α∈Σρ

TξSναρα(x)S∗ναT
∗
ξ

for x ∈ A and µ, ν ∈ Bj(Λρ), ζ, ξ ∈ Bk(Λη) yield the embeddings

Dj,k ↪→ Dj,k+1, Dj,k ↪→ Dj+1,k
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respectively such that ∪j,k∈Z+Dj,k is dense in Dρ,η.

Proposition 4.5. If A is commutative, so is Dρ,η.

Proof. The preceding lemma tells us that D1,1 is commutative. Suppose
that the algebra Dj,k is commutative for fixed j, k ∈ N. We will show that
the both algebras Dj+1,k and Dj,k+1 are commutative. The algebra Dj+1,k

consists of the linear span of elements of the form:

SαxS
∗
α for x ∈ Dj,k, α ∈ Σρ.

For x, y ∈ Dj,k, α, β ∈ Σρ, we will show that SαxS
∗
α commutes with both

SβyS
∗
β and y. If α = β, it is easy to see that SαxS

∗
α commutes with SαyS

∗
α,

because ρα(1) ∈ A ⊂ Dj,k. If α 6= β, both SαxS
∗
αSβyS

∗
β and SβyS

∗
βSαxS

∗
α

are zeros. Since S∗αySα ∈ Dj−1,k ⊂ Dj,k, one sees S∗αySα commutes with x.
One also sees that SαS

∗
α ∈ Dj,k commutes with y. It follows that

SαxS
∗
αy = SαxS

∗
αySαS

∗
α = SαS

∗
αySαxS

∗
α = ySαxS

∗
α.

Hence the algebra Dj+1,k is commutative, and similarly so is Dj,k+1. By
induction, the algebras Dj,k are all commutative for all j, k ∈ N. Since
∪j,k∈NDj,k is dense in Dρ,η, Dρ,η is commutative. �

Proposition 4.6. Let Oalgρ,η be the dense ∗-subalgebra of Oκρ,η algebraically
generated by elements x ∈ A, Sα, α ∈ Σρ and Ta, a ∈ Ση. Then each element

of Oalgρ,η is a finite linear combination of elements of the form:

(4.6) SµTζxT
∗
ξ S
∗
ν for x ∈ A, µ, ν ∈ B∗(Λρ), ζ, ξ ∈ B∗(Λη).

Proof. For α, β ∈ Σρ, a, b ∈ Ση and x ∈ A, we have

S∗αSβ =

{
ρα(1) ∈ A if α = β,

0 otherwise,

S∗αTa =
∑

(b,β)∈RB(α,a)

Tbρβ(ηa(1))S∗β,

S∗αx = ρα(x)Sα,

T ∗aTb =

{
ηa(1) ∈ A if a = b,

0 otherwise,

T ∗aSα =
∑

(b,β)∈RB(α,a)

Sβηb(ρα(1))T ∗b ,

T ∗ax = ηa(x)T ∗a .

And also

S∗βT
∗
a =

{
T ∗b S

∗
α if (a, β) ∈ Σηρ and (a, β) = κ(α, b),

0 if (a, β) 6∈ Σηρ.

Therefore we conclude that any element of Oalgρ,η is a finite linear combination
of elements of the form of (4.6). �

Similarly we have:

Proposition 4.7. Each element of Oalgρ,η is a finite linear combination of
elements of the form:

(4.7) TζSµxS
∗
νT
∗
ξ for x ∈ A, µ, ν ∈ B∗(Λρ), ζ, ξ ∈ B∗(Λη).
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In the rest of this section, we will have a C∗-symbolic dynamical system
(A, δκ,Σκ) from (A, ρ, η,Σρ,Ση, κ), which presents the one-dimensional sub-
shift Xδκ described in the previous section. For (A, ρ, η,Σρ,Ση, κ), define
an endomorphism δκω on A for ω ∈ Σκ by setting

δκω(x) = ηb(ρα(x))(= ρβ(ηa(x))), x ∈ A, ω = (α, b, a, β) ∈ Σκ.

Lemma 4.8. (A, δκ,Σκ) is a C∗-symbolic dynamical system that presents
Xδκ.

Proof. We will show that δκ is essential and faithful. Now both C∗-symbolic
dynamical systems (A, η,Ση) and (A, ρ,Ση) are essential. Since ρα(ZA) ⊂
ZA and ηa(ZA) ⊂ ZA, it is clear that δκω(ZA) ⊂ ZA. By the inequalities∑

ω∈Σκ

δκω(1) =
∑
b∈Ση

∑
α∈Σρ

ηb(ρα(1)) ≥
∑
b∈Ση

ηb(1) ≥ 1

{δκ}ω∈Σκ is essential. For any nonzero x ∈ A, there exists α ∈ Σρ such that
ρα(x) 6= 0 and there exists b ∈ Ση such that ηb(ρα(x)) 6= 0. Hence δκ is
faithful so that (A, δκ,Σκ) is a C∗-symbolic dynamical system. It is obvious
that the subshift presented by (A, δκ,Σκ) is Xδκ . �

Put

X̂κ
ρ,η = {(ωi,−j)(i,j)∈N2 ∈ ΣN2

κ | (ωi,j)(i,j)∈Z2 ∈ Xκ
ρ,η}

and

X̂δκ = {(ωn,−n)n∈N ∈ ΣN
κ | (ωi,j)(i,j)∈N2 ∈ X̂κ

ρ,η}.

The latter set X̂δκ is the right one-sided subshift for Xδκ .

Lemma 4.9. A configuration (ωi,−j)(i,j)∈N2 ∈ X̂κ
ρ,η extends to a whole con-

figuration (ωi,j)(i,j)∈Z2 ∈ Xκ
ρ,η.

Proof. For (ωi,−j)(i,j)∈N2 ∈ X̂κ
ρ,η, put xi = ωi,−i, i ∈ N so that x = (xi)i∈N ∈

X̂δκ . Since X̂δκ is a one-sided subshift, there exists an extension x̃ ∈ Xδκ to
two-sided sequence such that x̃i = xi for i ∈ N. By the diagonal property, x̃
determines a whole configuration ω̃ to Z2 such that ω̃ ∈ Xκ

δ,η and (ω̃i,−i)i∈N =
x̃. Hence ω̃i,−j = ωi,−j for all i, j ∈ N. �

Let Dρ,η be the C∗-subalgebra of Dρ,η defined by

Dρ,η = C∗(SµTζT
∗
ζ S
∗
µ : µ ∈ B∗(Λρ), ζ ∈ B∗(Λη))

= C∗(TξSνS
∗
νT
∗
ξ : ν ∈ B∗(Λρ), ξ ∈ B∗(Λη))

which is a commutative C∗-subalgebra of Dρ,η. Put for µ = (µ1, . . . , µn) ∈
B∗(Λρ), ζ = (ζ1, · · · , ζm) ∈ B∗(Λη) the cylinder set

Uµ,ζ = {(ωi,−j)(i,j)∈N2 ∈ X̂κ
ρ,η |

t(ωi,−1) = µi, i = 1, . . . , n, r(ωn,−j) = ζj , j = 1, . . . ,m}.
The following lemma is direct.
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Lemma 4.10. Dρ,η is isomorphic to C(X̂κ
ρ,η) through the correspondence

such that SµTζT
∗
ζ S
∗
µ goes to χUµ,ζ , where χUµ,ζ is the characteristic function

for the cylinder set Uµ,ζ on X̂κ
ρ,η.

5. Condition (I) for C∗-textile dynamical systems

The notion of condition (I) for finite square matrices with entries in {0, 1}
has been introduced in [8]. The condition has been generalized by many
authors to corresponding conditions for generalizations of the Cuntz–Krieger
algebras (cf. [12], [15], [20], [41], etc.). The condition (I) for C∗-symbolic
dynamical systems (including λ-graph systems) has been also defined in [29]
(cf. [25], [26]). All of these conditions give rise to the uniqueness of the
associated C∗-algebras subject to some operator relations among certain
generating elements.

In this section, we will introduce the notion of condition (I) for C∗-textile
dynamical systems to prove the uniqueness of the C∗-algebras Oκρ,η under
the relation (ρ, η;κ).

Let (A, ρ, η,Σρ,Ση, κ) be a C∗-symbolic dynamical system over Σ and
Xκ
ρ,η the associated two-dimensional subshift. Denote by Λρ,Λη the associ-

ated subshifts to the C∗-symbolic dynamical systems (A, ρ,Σρ), (A, η,Ση)
respectively. For µ = (µ1, . . . , µj) ∈ Bj(Λρ), ζ = (ζ1, . . . , ζk) ∈ Bk(Λη),
we put ρµ = ρµj ◦ · · · ◦ ρµ1 , ηζ = ηζk ◦ · · · ◦ ηζ1 respectively. Recall that
|µ|, |ζ| denotes the lengths j, k respectively. In the algebra Oκρ,η, we set the
subalgebras

Fρ,η
= C∗(SµTζxT

∗
ξ S
∗
ν : µ, ν ∈ B∗(Λρ), ζ, ξ ∈ B∗(Λη), |µ| = |ν|, |ζ| = |ξ|, x ∈ A)

and for j, k ∈ Z+,

Fj,k = C∗(SµTζxT
∗
ξ S
∗
ν : µ, ν ∈ Bj(Λρ), ζ, ξ ∈ Bk(Λη), x ∈ A).

We notice that

Fj,k = C∗(TζSµxS
∗
νT
∗
ξ : µ, ν ∈ Bj(Λρ), ζ, ξ ∈ Bk(Λη), x ∈ A).

The identities

SµTζxT
∗
ξ S
∗
ν =

∑
a∈Ση

SµTζaηa(x)T ∗ξaS
∗
ν ,(5.1)

TζSµxS
∗
νT
∗
ξ =

∑
α∈Σρ

TζSµαρα(x)S∗ναT
∗
ξ(5.2)

for x ∈ A and µ, ν ∈ Bj(Λρ), ζ, ξ ∈ Bk(Λη) yield the embeddings

(5.3) ι∗,+1 : Fj,k ↪→ Fj,k+1, ι+1,∗ : Fj,k ↪→ Fj+1,k

respectively, such that ∪j,k∈Z+Fj,k is dense in Fρ,η.



1196 KENGO MATSUMOTO

By the universality of Oκρ,η subject to the relations (ρ, η;κ), we may define

an action θ : T2 −→ Aut(Oκρ,η) of the two-dimensional torus group

T2 = {(z, w) ∈ C2 | |z| = |w| = 1}
to Oκρ,η by setting

θz,w(Sα) = zSα, θz,w(Ta) = wTa, θz,w(x) = x

for α ∈ Σρ, a ∈ Ση, x ∈ A and z, w ∈ T. We call the action θ : T2 −→
Aut(Oκρ,η) the gauge action of T2 on Oκρ,η. The fixed point algebra of Oκρ,η
under θ is denoted by (Oκρ,η)θ. Let Eρ,η : Oκρ,η −→ (Oκρ,η)θ be the conditional
expectation defined by

Eρ,η(X) =

∫
(z,w)∈T2

θz,w(X) dzdw, X ∈ Oκρ,η

where dzdw means the normalized Haar measure on T2. The following
lemma is routine.

Lemma 5.1. (Oκρ,η)θ = Fρ,η.

Define homomorphisms φρ, φη : Dρ,η −→ Dρ,η by setting

φρ(X) =
∑
α∈Σρ

SαXS
∗
α, φη(X) =

∑
a∈Ση

TaXT
∗
a , X ∈ Dρ,η.

It is easy to see that by (4.3)

φρ ◦ φη = φη ◦ φρ on Dρ,η.

Definition 5.2. A C∗-textile dynamical system (A, ρ, η,Σρ,Ση, κ) is said
to satisfy condition (I) if there exists a unital increasing sequence

A0 ⊂ A1 ⊂ · · · ⊂ A
of C∗-subalgebras of A such that:

(1) ρα(Al) ⊂ Al+1, ηa(Al) ⊂ Al+1 for all l ∈ Z+, α ∈ Σρ, a ∈ Ση.
(2) ∪l∈Z+Al is dense in A.
(3) For ε > 0, j, k, l ∈ N with j + k ≤ l and

X0 ∈ F lj,k = C∗(SµTζxT
∗
ξ S
∗
ν : µ, ν ∈ Bj(Λρ), ζ, ξ ∈ Bk(Λη), x ∈ Al),

there exists an element

g ∈ Dρ,η ∩ Al′(= {y ∈ Dρ,η | ya = ay for a ∈ Al})
with 0 ≤ g ≤ 1 such that:

(i) ‖X0φ
j
ρ ◦ φkη(g)‖ ≥ ‖X0‖ − ε,

(ii) φnρ (g)φmη (g) = φnρ (φmη (g))g = φnρ (g)g = φmη (g)g = 0 for all n =
1, 2, . . . , j, m = 1, 2, . . . , k.

If in particular, one may take the above subalgebras Al ⊂ A, l = 0, 1, 2, . . .
to be of finite dimensional, then (A, ρ, η,Σρ,Ση, κ) is said to satisfy AF-
condition (I). In this case, A = ∪∞l=0Al is an AF-algebra.
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As the element g above belongs to the diagonal subalgebra Dρ,η of Fρ,η,
the condition (I) of (A, ρ, η,Σρ,Ση, κ) is intrinsically determined by itself by
virtue of Lemma 5.5 below.

We will also introduce the following condition called free, which will be
stronger than condition (I) but easier to confirm than condition (I).

Definition 5.3. A C∗-textile dynamical system (A, ρ, η,Σρ,Ση, κ) is said
to be free if there exists a unital increasing sequence A0 ⊂ A1 ⊂ · · · ⊂ A of
C∗-subalgebras of A such that:

(1) ρα(Al) ⊂ Al+1, ηa(Al) ⊂ Al+1 for all l ∈ Z+, α ∈ Σρ, a ∈ Ση.
(2) ∪l∈Z+Al is dense in A.
(3) For j, k, l ∈ N with j + k ≤ l there exists a projection q ∈ Dρ,η ∩Al′

such that:
(i) qa 6= 0 for 0 6= a ∈ Al.
(ii) φnρ (q)φmη (q) = φnρ (φmη (q))q = φnρ (q)q = φmη (q)q = 0 for all n =

1, 2, . . . , j, m = 1, 2, . . . , k.

If in particular, one may take the above subalgebras Al ⊂ A, l = 0, 1, 2, . . .
to be of finite dimensional, then (A, ρ, η,Σρ,Ση, κ) is said to be AF-free.

Proposition 5.4. If a C∗-textile dynamical system (A, ρ, η,Σρ,Ση, κ) is free
(resp. AF-free), then it satisfies condition (I) (resp. AF-condition (I)).

Proof. Assume that (A, ρ, η,Σρ,Ση, κ) is free. Take an increasing sequence
Al, l ∈ N of C∗-subalgebras of A satisfying the above conditions (1), (2),
(3) of freeness. For j, k, l ∈ N with j + k ≤ l there exists a projection
q ∈ Dρ,η ∩ Al′ satisfying the above two conditions (3i) and (3ii). Put

Qlj,k = φjρ(φ
k
η(q)).

For x ∈ Al, µ, ν ∈ Bj(Λρ), ξ, ζ ∈ Bk(Λη), one has the equality

Qlj,kSµTζxT
∗
ξ S
∗
ν = SµTζxT

∗
ξ S
∗
ν

so that Qlj,k commutes with all of elements of F lj,k. By using the condition

(3i) for q one directly sees that SµTζxT
∗
ξ S
∗
ν 6= 0 if and only if

Qlj,kSµTζxT
∗
ξ S
∗
ν 6= 0.

Hence the map

X ∈ F lj,k −→ XQlj,k ∈ F lj,kQlj,k
defines a homomorphism, that is proved to be injective by a similar proof to
the proof of [30, Proposition 3.7]. Hence we have ‖XQlj,k‖ = ‖X‖ ≥ ‖X‖−ε
for all X ∈ F lj,k. �

Let B be a unital C∗-algebra. Suppose that there exist an injective ∗-
homomorphism π : A −→ B preserving their units and two families

sα ∈ B, α ∈ Σρ and ta ∈ B, a ∈ Ση
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of partial isometries satisfying∑
β∈Σρ

sβs
∗
β = 1, π(x)sαs

∗
α = sαs

∗
απ(x), s∗απ(x)sα = π(ρα(x)),

∑
b∈Ση

tbt
∗
b = 1, π(x)tat

∗
a = tat

∗
aπ(x), t∗aπ(x)ta = π(ηa(x)),

sαtb = tasβ if κ(α, b) = (a, β)

for all x ∈ A and α ∈ Σρ, a ∈ Ση. Put Ã = π(A) and

ρ̃α(π(x)) = π(ρα(x)), η̃a(π(x)) = π(ηa(x)), x ∈ A.

It is easy to see that (Ã, ρ̃, η̃,Σρ,Ση, κ) is a C∗-textile dynamical system
such that the presented textile dynamical system Xκ

ρ̃,η̃ is the same as the

one Xκ
ρ,η presented by (A, ρ, η,Σρ,Ση, κ). Let Oπ,s,t be the C∗-subalgebra

of B generated by π(x) and sα, ta for x ∈ A, α ∈ Σρ, a ∈ Ση. Let Fπ,s,t
be the C∗-subalgebra of Oπ,s,t generated by sµtζπ(x)t∗ξs

∗
ν for x ∈ A and

µ, ν ∈ B∗(Λρ), ζ, ξ ∈ B∗(Λη) with |µ| = |ν|, |ζ| = |ξ|. By the universality of
the algebra Oκρ,η, the correspondence

x ∈ A −→ π(x) ∈ Ã, Sα −→ sα, α ∈ Σρ, Ta −→ ta, a ∈ Ση

extends to a surjective ∗-homomorphism π̃ : Oκρ,η −→ Oπ,s,t.

Lemma 5.5. The restriction of π̃ to the subalgebra Fρ,η is a ∗-isomorphism
from Fρ,η to Fπ,s,t. Hence if (A, ρ, η,Σρ,Ση, κ) satisfies condition (I) (resp.

is free), (Ã, ρ̃, η̃,Σρ,Ση, κ) satisfies condition (I) (resp. is free).

Proof. It suffices to show that π̃ is injective on Fj,k for all j, k ∈ Z. Suppose∑
µ,ν∈Bj(Λρ),ζ,ξ∈Bk(Λη)

sµtζπ(xµ,ζ,ξ,ν)t∗ξs
∗
ν = 0

with xµ,ζ,ξ,ν ∈ A. For µ′, ν ′ ∈ Bj(Λρ), ζ ′, ξ′ ∈ Bk(Λη), one has

π(ηζ′(ρµ′(1))xµ′,ζ′,ξ′,ν′ηξ′(ρν′(1)))

= t∗ζ′s
∗
µ′

 ∑
µ,ν∈Bj(Λρ),ζ,ξ∈Bk(Λη)

sµtζπ(xµ,ζ,ξ,ν)t∗ξs
∗
ν

 sν′tξ′ = 0.

As π : A −→ B is injective, one sees

ηζ′(ρµ′(1))xµ′,ζ′,ξ′,ν′ηξ′(ρν′(1)) = 0

so that
Sµ′Tζ′xµ′,ζ′,ξ′,ν′T

∗
ξ′S
∗
ν′ = 0.

Hence we have ∑
µ,ν∈Bj(Λρ),ζ,ξ∈Bk(Λη)

SµTζxµ,ζ,ξ,νT
∗
ξ S
∗
ν = 0.

Therefore π̃ is injective on Fj,k. �
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We henceforth assume that (A, ρ, η,Σρ,Ση, κ) satisfies condition (I) de-
fined above. Take a unital increasing sequence {Al}l∈Z+ of C∗-subalgebras

of A as in the definition of condition (I). Recall that the algebra F lj,k for
j, k ≤ l is defined by

F lj,k = C∗(SµTζxT
∗
ξ S
∗
ν : µ, ν ∈ Bj(Λρ), ζ, ξ ∈ Bk(Λη), x ∈ Al).

There exists an inclusion relation F lj,k ⊂ F l
′
j′,k′ for j ≤ j′, k ≤ k′ and l ≤ l′

through the identities (5.1), (5.2). Let Pπ,s,t be the ∗-subalgebra of Oπ,s,t
algebraically generated by π(x), sα, ta for x ∈ Al, l ∈ Z+, α ∈ Σρ, a ∈ Ση.

Lemma 5.6. Any element x ∈ Pπ,s,t can be expressed in a unique way as

x =
∑
|ν|,|ξ|≥1

x−ξ,−νt
∗
ξs
∗
ν +

∑
|ζ|,|ν|≥1

tζxζ,−νs
∗
ν +

∑
|µ|,|ξ|≥1

sµxµ,−ξt
∗
ξ

+
∑
|µ|,ζ|≥1

sµtζxµ,ζ +
∑
|ξ|≥1

x−ξt
∗
ξ +

∑
|ν|≥1

x−νs
∗
ν

+
∑
|µ|≥1

sµxµ +
∑
|ζ|≥1

tζxζ + x0

where the above summations Σ are all finite sums and the elements

x−ξ,−ν , xζ,−ν , xµ,−ξ, xµ,ζ , x−ξ, x−ν , xµ, xζ , x0

for µ, ν ∈ B∗(Λρ), ζ, ξ ∈ B∗(Λη) all belong to the dense subalgebra

Pπ,s,t ∩ Fπ,s,t
which satisfy

x−ξ,−ν = x−ξ,−νηξ(ρν(1)), xζ,−ν = ηζ(1)xζ,−νρν(1),

xµ,−ξ = ρµ(1)xµ,−ξηξ(1), xµ,ζ = ηζ(ρµ(1))xµ,ζ ,

x−ξ = x−ξηξ(1), x−ν = x−νρν(1),

xµ = ρµ(1)xµ, xζ = ηζ(1)xζ .

Proof. Put

x−ξ,−ν = Eρ,η(xsνtξ), xζ,−ν = Eρ,η(t∗ζxsν),

xµ,−ξ = Eρ,η(s∗µxtξ), xµ,ζ = Eρ,η(t∗ζs∗µx),

x−ξ = Eρ,η(xtξ), x−ν = Eρ,η(xsν),

xµ = Eρ,η(s∗µx), xζ = Eρ,η(t∗ζx),

x0 = Eρ,η(x).

Then we have the desired expression of x. The elements

x−ξ,−ν , xζ,−ν , xµ,−ξ, xµ,ζ , x−ξ, x−ν , xµ, xζ , x0

for µ, ν ∈ B∗(Λρ), ζ, ξ ∈ B∗(Λη) are automatically determined by the above
formulae so that the expression is unique. �
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Lemma 5.7. For h ∈ Dρ,η ∩ A′l and j, k ∈ Z with j + k ≤ l, put

hj,k = φjρ ◦ φkη(h).

Then we have

(i) hj,ksµ = sµh
j−|µ|,k for µ ∈ B∗(Λρ) with |µ| ≤ j.

(ii) hj,ktζ = tζh
j,k−|ζ| for ζ ∈ B∗(Λη) with |ζ| ≤ k.

(iii) hj,k commutes with any element of F lj,k.

Proof. (i) It follows that for µ ∈ B∗(Λρ) with |µ| ≤ j

hj,ksµ =
∑
|µ′|=|µ|

sµ′φ
j−|µ|
ρ (φkη(h))s∗µ′sµ = sµφ

j−|µ|
ρ (φkη(h))s∗µsµ.

Since h ∈ A′l and Aj+k ⊂ Al, one has

φj−|µ|ρ (φkη(h))s∗µsµ =
∑

ν∈Bj−|µ|(Λρ)

∑
ξ∈Bk(Λη)

sνtξht
∗
ξs
∗
νs
∗
µsµ

=
∑

ν∈Bj−|µ|(Λρ)

∑
ξ∈Bk(Λη)

sνtξht
∗
ξs
∗
νs
∗
µsµsνtξt

∗
ξs
∗
ν

=
∑

ν∈Bj−|µ|(Λρ)

∑
ξ∈Bk(Λη)

sνtξηξ(ρµν(1))ht∗ξs
∗
ν

=
∑

ν∈Bj−|µ|(Λρ)

∑
ξ∈Bk(Λη)

sνρµν(1)tξht
∗
ξs
∗
ν

= s∗µsµφ
j−|µ|
ρ (φkη(h)) = s∗µsµh

j−|µ|,k

so that hj,ksµ = sµh
j−|µ|,k.

(ii) Similarly we have hj,ktζ = tζh
j,k−|ζ| for ζ ∈ B∗(Λη) with |ζ| ≤ k.

(iii) For x ∈ Al, µ, ν ∈ Bj(Λρ), ζ, ξ ∈ Bk(Λη), we have

hj,ksµtζ = sµh
0,ktζ = sµtζh

0,0 = sµtζh.

It follows that

hj,ksµtζxt
∗
ξs
∗
ν = sµtζhxt

∗
ξs
∗
ν = sµtζxht

∗
ξs
∗
ν = sµtζxt

∗
ξs
∗
νh

j,k.

Hence hj,k commutes with any element of F lj,k. �

Lemma 5.8. Assume that (A, ρ, η,Σρ,Ση, κ) satisfies condition (I). For
x ∈ Pπ,s,t, let x0 = Eρ,η(x) as in Lemma 5.6. Then we have

‖x0‖ ≤ ‖x‖.

Proof. We may assume that the elements for x ∈ Pπ,s,t
x−ξ,−ν , xζ,−ν , xµ,−ξ, xµ,ζ , x−ξ, x−ν , xµ, xζ , x0

in Lemma 5.6 belong to π̃(F l1j1,k1
) for some j1, k1, l1 and µ, ν ∈ ∪j0n=0Bn(Λρ),

ζ, ξ ∈ ∪k0
n=0Bn(Λη) for some j0, k0. Take j, k, l ∈ Z+ such as

j ≥ j0 + j1, k ≥ k0 + k1, l ≥ max{j + k, l1}.
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By Lemma 5.5, (Ã, ρ̃, η̃,Σρ,Ση, κ) satisfies condition (I). For any ε > 0, the

numbers j, k, l, and the element x0 ∈ π̃(F l1j1,k1
), one may find

g ∈ π̃(Dρ,η) ∩ π(Al)′

with 0 ≤ g ≤ 1 such that:

(i) ‖x0φ
j
ρ ◦ φkη(g)‖ ≥ ‖x0‖ − ε.

(ii) φnρ (g)φmη (g) = φnρ (φmη (g))g = φnρ (g)g = φmη (g)g = 0 for all n =
1, 2, . . . , j, m = 1, 2, . . . , k.

Put h = g
1
2 and hj,k = φjρ ◦ φkη(h). It follows that ‖x‖ ≥ ‖hj,kxhj,k‖ and

‖hj,kxhj,k‖ = ‖(1) + (2) + (3) + (4) + (5) + (6)‖
where the summands are given by∑

|ν|,|ξ|≥1

hj,kx−ξ,−νt
∗
ξs
∗
νh

j,k(1)

∑
|ζ|,|ν|≥1

hj,ktζxζ,−νs
∗
νh

j,k(2)

∑
|µ|,|ξ|≥1

hj,ksµxµ,−ξt
∗
ξh
j,k(3)

∑
|µ|,ζ|≥1

hj,ksµtζxµ,ζh
j,k(4)

∑
|ξ|≥1

hj,kx−ξt
∗
ξh
j,k +

∑
|ν|≥1

hj,kx−νs
∗
νh

j,k +
∑
|µ|≥1

hj,ksµxµh
j,k(5)

+
∑
|ζ|≥1

hj,ktζxζh
j,k

hj,kx0h
j,k.(6)

For (1), as x−ξ,−ν ∈ π̃(F l1j1,k1
) ⊂ π̃(F lj,k), one sees that x−ξ,−ν commutes

with hj,k. Hence we have

hj,kx−ξ,−νt
∗
ξs
∗
νh

j,k = x−ξ,−νh
j,kt∗ξs

∗
νh

j,k = x−ξ,−νh
j,khj−|ν|,k−|ξ|t∗ξs

∗
ν

and

hj,khj−|ν|,k−|ξ|(hj,khj−|ν|,k−|ξ|)∗ =φjρ(φ
k
η(g)) · φj−|ν|ρ (φk−|ξ|η (g))

=φj−|ν|ρ ◦ φk−|ξ|η (φ|ξ|η (φ|ν|ρ (g)g)) = 0

so that

hj,kx−ξ,−νt
∗
ξs
∗
νh

j,k = 0.

For (2), as xξ,−ν ∈ π̃(F l1j1,k1
) ⊂ π̃(F lj,k−|ξ|), one sees that xξ,−ν commutes

with hj,k−|ξ|. Hence we have

hj,ktξxξ,−νs
∗
νh

j,k = tξh
j,k−|ξ|xξ,−νh

j−|ν|,ks∗ν = tξxξ,−νh
j,k−|ξ|hj−|ν|,ks∗ν
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and

hj,k−|ξ|hj−|ν|,k(hj,k−|ξ|hj−|ν|,k)∗ =φjρ(φ
k−|ζ|
η (g)) · φj−|ν|ρ (φkη(g))

=φj−|ν|ρ ◦ φk−|ζ|η (φ|ν|ρ (g)φ|ζ|η (g)) = 0

so that

hj,ktξxξ,−νs
∗
νh

j,k = 0.

For (3), as xµ,−ξ ∈ π̃(F l1j1,k1
) ⊂ π̃(F lj−|µ|,k), one sees that xµ,−ξ commutes

with hj−|µ|,k. Hence we have

hj,ksµxµ,−ξt
∗
ξh
j,k = sµh

j−|µ|,kxµ,−ξh
j,k−|ξ|t∗ξ = sµxµ,−ξh

j−|µ|,khj,k−|ξ|t∗ξ

and

hj−|µ|,khj,k−|ξ|(hj−|µ|,khj,k−|ξ|)∗ =φj−|µ|ρ (φkη(g)) · φjρ(φk−|ξ|η (g))

=φj−|µ|ρ ◦ φk−|ξ|η (φ|ξ|η (g)φ|µ|ρ (g)) = 0

so that

hj,ksµxµ,−ξt
∗
ξh
j,k = 0.

For (4), as xµ,ζ ∈ π̃(F l1j1,k1
) ⊂ π̃(F lj−|µ|,k−|ζ|), one sees that xµ,ζ commutes

with hj−|µ|,k−|ζ|. Hence we have

hj,ksµtζxµ,ζh
j,k = sµtζh

j−|µ|,k−|ζ|xµ,ζh
j,k = sµtζxµ,ζh

j−|µ|,k−|ζ|hj,k

and

hj−|µ|,k−|ζ|hj,k(hj−|µ|,k−|ζ|hj,k)∗ =φj−|µ|ρ (φk−|ζ|η (g)) · φjρ(φkη(g))

=φj−|µ|ρ ◦ φk−|ζ|η (gφ|µ|ρ (φ|ζ|η (g))) = 0

so that

hj,ksµtζxµ,ζh
j,k = 0.

For (5), as x−ξ commutes with hj,k, we have

hj,kx−ξt
∗
ξh
j,k = x−ξh

j,khj,k−|ξ|t∗ξ

and

hj,khj,k−|ξ|(hj,khj,k−|ξ|)∗ =φjρ(φ
k|
η (g)) · φjρ(φk−|ξ|η (g))

=φjρ ◦ φk−|ξ|η (φ|ξ|η (g)g) = 0

so that

hj,kx−ξt
∗
ξh
j,k = 0.

We similarly see that

hj,kx−νs
∗
νh

j,k = hj,ksµxµh
j,k = hj,ktζxζh

j,k = 0.

Therefore we have

‖x‖ ≥ ‖hj,kx0h
j,k‖ = ‖x0(hj,k)2‖ = ‖x0φ

j
ρ ◦ φkη(g)‖ ≥ ‖x0‖ − ε. �

By a similar argument to [8, 2.8 Proposition], one sees:
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Corollary 5.9. Assume (A, ρ, η,Σρ,Ση, κ) satisfies condition (I). There ex-
ists a conditional expectation Eπ,s,t : Oπ,s,t −→ Fπ,s,t such that

Eπ,s,t ◦ π̃ = π̃ ◦ Eρ,η.

Therefore we have

Proposition 5.10. Assume that (A, ρ, η,Σρ,Ση, κ) satisfies condition (I).
The ∗-homomorphism π̃ : Oκρ,η −→ Oπ,s,t defined by

π̃(x) = π(x), x ∈ A, π̃(Sα) = sα, α ∈ Σρ, π̃(Ta) = ta, a ∈ Ση

becomes a surjective ∗-isomorphism, and hence the C∗-algebras Oκρ,η and
Oπ,s,t are canonically ∗-isomorphic through π̃.

Proof. The map π̃ : Fρ,η → Fπ,s,t is ∗-isomorphic and satisfies Eπ,s,t ◦ π̃ =
π̃ ◦ Eρ,η. Since Eρ,η : Oκρ,η −→ Fρ,η is faithful, a routine argument shows that
the ∗-homomorphism π̃ : Oκρ,η −→ Oπ,s,t is actually a ∗-isomorphism. �

Hence the following uniqueness of the C∗-algebra Oκρ,η holds.

Theorem 5.11. Assume that (A, ρ, η,Σρ,Ση, κ) satisfies condition (I). The
C∗-algebra Oκρ,η is the unique C∗-algebra subject to the relation (ρ, η;κ). This
means that if there exist a unital C∗-algebra B, an injective ∗-homomorphism
π : A −→ B and two families of partial isometries sα, α ∈ Σρ, ta, a ∈ Ση

satisfying the following relations :∑
β∈Σρ

sβs
∗
β = 1, π(x)sαs

∗
α = sαs

∗
απ(x), s∗απ(x)sα = π(ρα(x)),

∑
b∈Ση

tbt
∗
b = 1, π(x)tat

∗
a = tat

∗
aπ(x), t∗aπ(x)ta = π(ηa(x))

sαtb = tasβ if κ(α, b) = (a, β)

for (α, b) ∈ Σρη, (a, β) ∈ Σηρ and x ∈ A, α ∈ Σρ, a ∈ Ση, then the corre-
spondence

x ∈ A −→ π(x) ∈ B, Sα −→ sα ∈ B, Ta −→ ta ∈ B
extends to a ∗-isomorphism π̃ from Oκρ,η onto the C∗-subalgebra Oπ,s,t of B
generated by π(x), x ∈ A and sα, α ∈ Σ, ta, a ∈ Ση.

For a C∗-textile dynamical system (A, ρ, η,Σρ,Ση, κ), let λρ,η : A → A
be the positive map on A defined by

λρ,η(x) =
∑

α∈Σρ,a∈Ση

ηa ◦ ρα(x), x ∈ A.

Then (A, ρ, η,Σρ,Ση, κ) is said to be irreducible if there exists no nontrivial
ideal of A invariant under λρ,η.

Corollary 5.12. If (A, ρ, η,Σρ,Ση, κ) satisfies condition (I) and is irre-
ducible, the C∗-algebra Oκρ,η is simple.
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Proof. Assume that there exists a nontrivial ideal I of Oκρ,η. Now suppose
that I ∩ A = {0}. As S∗αSα = ρα(1), T ∗aTa = ηa(1) ∈ A, one knows that
Sα, Ta 6∈ I for all α ∈ Σρ, a ∈ Ση. By the above theorem, the quotient map
q : Oκρ,η −→ Oκρ,η/I must be injective so that I is trivial. Hence one sees
that I ∩ A 6= {0} and it is invariant under λρ,η. �

6. Concrete realization

In this section we will realize the C∗-algebra Oκρ,η for (A, ρ, η,Σρ,Ση, κ)
in a concrete way as a C∗-algebra constructed from a Hilbert C∗-bimodule.
For γi ∈ Σρ ∪ Ση, put

ξγi =

{
ργi if γi ∈ Σρ,

ηγi if γi ∈ Ση.

A finite sequence of labels (γ1, γ2, . . . , γk) ∈ (Σρ ∪ Ση)k is said to be con-
catenated labeled path if ξγk ◦ · · · ◦ ξγ2 ◦ ξγ1(1) 6= 0. For m,n ∈ Z+, let
L(n,m) be the set of concatenated labeled paths (γ1, γ2, . . . , γm+n) such that
symbols in Σρ appear in (γ1, γ2, . . . , γm+n) n-times and symbols in Ση ap-
pear in (γ1, γ2, . . . , γm+n) m-times. We define a relation in L(n,m) for i =
1, 2, . . . , n+m− 1. We write

(γ1, . . . , γi−1, γi, γi+1, γi+2, . . . , γm+n)

≈
i

(γ1, . . . , γi−1, γ
′
i, γ
′
i+1, γi+2, . . . , γm+n)

if one of the following two conditions holds:
(1) (γi, γi+1) ∈ Σρη, (γ′i, γ

′
i+1) ∈ Σηρ and κ(γi, γi+1) = (γ′i, γ

′
i+1),

(2) (γi, γi+1) ∈ Σηρ, (γ′i, γ
′
i+1) ∈ Σρη and κ(γ′i, γ

′
i+1) = (γi, γi+1).

Denote by ≈ the equivalence relation in L(n,m) generated by the relations
≈
i
, i = 1, 2, . . . , n+m− 1. Let T(n,m) = L(n,m)/ ≈ be the set of equivalence

classes of L(n,m) under ≈. Denote by [γ] ∈ T(n,m) the equivalence class of

γ ∈ L(n,m). Put the vectors e = (1, 0), f = (0,−1) in R2. Consider the
set of all paths consisting of sequences of vectors e, f starting at the point
(−n,m) ∈ R2 for n,m ∈ Z+ and ending at the origin. Such a path consists
of n e-vectors and m f -vectors. Let P(n,m) be the set of all such paths from
(−n,m) to the origin. We consider the correspondence

ρα −→ e (α ∈ Σρ), ηa −→ f (a ∈ Ση),

denoted by π. It extends a surjective map from L(n,m) to P(n,m) in a natural
way. For a concatenated labeled path γ = (γ1, γ2, . . . , γn+m) ∈ L(n,m), put
the projection in A

Pγ = (ξγn+m ◦ · · · ◦ ξγ2 ◦ ξγ1)(1).

We note that Pγ 6= 0 for all γ ∈ L(n,m).
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Lemma 6.1. For γ, γ′ ∈ L(n,m), if γ ≈ γ′, we have Pγ = Pγ′. Hence the
projection P[γ] for [γ] ∈ T(n,m) is well-defined.

Proof. If κ(α, b) = (a, β), one has ηb ◦ ρα(1) = ρβ ◦ ηa(1) 6= 0. Hence the
assertion is obvious. �

Denote by |T(n,m)| the cardinal number of the finite set T(n,m). Let et, t ∈
T(n,m) be the standard complete orthonormal basis of C|T(n,m)|. Define

H(n,m) =
∑

t∈T(n,m)

⊕Cet ⊗ PtA

(
=

∑
t∈T(n,m)

⊕Span{cet ⊗ Ptx | c ∈ C, x ∈ A}

)
the direct sum of Cet ⊗ PtA over t ∈ T(n,m). H(n,m) has a structure of
C∗-bimodule over A by setting

(et ⊗ Ptx)y := et ⊗ Ptxy,
φ(y)(et ⊗ Ptx) := et ⊗ ξγ(y)x(= et ⊗ Ptξγ(y)x) for x, y ∈ A

where t = [γ] for γ = (γ1, . . . , γn+m) and ξγ(y) = (ξγn+m ◦ · · · ◦ ξγ2 ◦ ξγ1)(y).
Define an A-valued inner product on H(n,m) by setting

〈et ⊗ Ptx | es ⊗ Psy〉 :=

{
x∗Pty if t = s,

0 otherwise

for t, s ∈ T(n,m) and x, y ∈ A. Then H(n,m) becomes a Hilbert C∗-bimodule
over A. Put H(0,0) = A. Denote by Fκ the Hilbert C∗-bimodule over A
defined by the direct sum:

Fκ =
∑

(n,m)∈Z2
+

⊕H(n,m).

For α ∈ Σρ, a ∈ Ση, the creation operators sα, ta on Fκ :

sα : H(n,m) −→ H(n+1,m), ta : H(n,m) −→ H(n,m+1)

are defined by

sαx = e[α] ⊗ P[α]x, for x ∈ H(0,0)(= A),

sα(e[γ] ⊗ P[γ]x) =

{
e[αγ] ⊗ P[αγ]x if αγ ∈ L(n+1,m),

0 otherwise,

tax = e[a] ⊗ P[a]x, for x ∈ H(0,0)(= A),

ta(e[γ] ⊗ P[γ]x) =

{
e[aγ] ⊗ P[aγ]x if aγ ∈ L(n,m+1),

0 otherwise.

For y ∈ A an operator iFκ(y) on Fκ:

iFκ(y) : H(n,m) −→ H(n,m)
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is defined by

iFκ(y)x = yx for x ∈ H(0,0)(= A),

iFκ(y)(e[γ] ⊗ P[γ]x) = φ(y)(e[γ] ⊗ P[γ]x)(= e[γ] ⊗ ξγ(y)x).

Define the Cuntz–Toeplitz C∗-algebra for (A, ρ, η,Σρ,Ση, κ) by

T κρ,η = C∗(sα, ta, iFκ(y) | α ∈ Σρ, a ∈ Ση, y ∈ A)

as the C∗-algebra on Fκ generated by sα, ta, iFκ(y) for α ∈ Σρ, a ∈ Ση, y ∈ A.

Lemma 6.2. For α ∈ Σρ, a ∈ Ση, we have

(i) s∗α(e[γ] ⊗ P[γ]x) =

{
φ(ρα(1))(e[γ′] ⊗ P[γ′]x) if γ ≈ αγ′,
0 otherwise.

(ii) t∗a(e[γ] ⊗ P[γ]x) =

{
φ(ηa(1))(e[γ′] ⊗ P[γ′]x) if γ ≈ aγ′,
0 otherwise.

Proof. (i) For γ ∈ L(n,m), γ
′ ∈ L(n−1,m) and α ∈ Σρ, we have

〈s∗α(e[γ] ⊗ P[γ]x) | e[γ′] ⊗ P[γ′]x
′〉 = 〈e[γ] ⊗ P[γ]x | e[αγ′] ⊗ P[αγ′]x

′〉

=

{
x∗P[αγ′]x if γ ≈ αγ′,
0 otherwise.

On the other hand,

φ(ρα(1))(e[γ′] ⊗ P[γ′]x) = e[γ′] ⊗ P[αγ′]Pγ′x = e[γ′] ⊗ P[αγ′]x

so that

〈φ(ρα(1))(e[γ′] ⊗ P[γ′]x) | e[γ′] ⊗ P[γ′]x
′〉 = x∗P[αγ′]x

′.

Hence we obtain the desired equality. Similarly we see (ii). �

The following lemma is straightforward.

Lemma 6.3. For α ∈ Σρ, a ∈ Ση and γ ∈ L(n,m), x ∈ A, we have:

(i)

sαs
∗
α(e[γ] ⊗ P[γ]x) =

{
e[γ] ⊗ P[γ]x) if γ ≈ αγ′ for some γ′ ∈ L(n−1,m),

0 otherwise.

(ii)

tat
∗
a(e[γ] ⊗ P[γ]x) =

{
e[γ] ⊗ P[γ]x) if γ ≈ aγ′ for some γ′ ∈ L(n,m−1),

0 otherwise.

Hence we see:

Lemma 6.4.

(i) 1 −
∑

α∈Σρ sαs
∗
α = the projection onto the subspace spanned by the

vectors e[γ] ⊗ P[γ]x for γ ∈ ∪∞m=0L(0,m), x ∈ A.
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(ii) 1 −
∑

a∈Ση tat
∗
a = the projection onto the subspace spanned by the

vectors e[γ] ⊗ P[γ]x for γ ∈ ∪∞n=0L(n,0), x ∈ A.

Lemma 6.5. For α ∈ Σρ, a ∈ Ση and x ∈ A, we have:

(i) s∗αxsα = φ(ρα(x)) and in particular s∗αsα = φ(ρα(1)).
(ii) t∗axta = φ(ηa(x)) and in particular t∗ata = φ(ηa(1)).

Proof. (i) It follows that for γ ∈ L(n,m) with αγ ∈ L(n+1,m) and y ∈ A,

s∗αxsα(e[γ] ⊗ P[γ]y) = s∗α(e[αγ] ⊗ P[αγ]yξαγ(x))

= e[γ] ⊗ P[γ]yξγ(ρα(x))

= φ(ρα(x))(e[γ] ⊗ P[γ]y).

If αγ 6∈ L(n+ 1,m), we have

sα(e[γ] ⊗ P[γ]y) = 0, φ(ρα(x))(e[γ] ⊗ P[γ]y) = 0.

Hence we see that s∗αxsα = φ(ρα(x)). Similarly we see (ii). �

Lemma 6.6. For α, β ∈ Σρ, a, b ∈ Ση we have:

(6.1) sαtb = tasβ if κ(α, b) = (a, β).

Proof. For γ ∈ L(n,m) with αbγ, aβγ ∈ L(n+1,m+1) and x ∈ A, we have

sαtb(e[γ] ⊗ P[γ]x) = e[αbγ] ⊗ P[αbγ]y),

tasβ(e[γ] ⊗ P[γ]x) = (e[aβγ] ⊗ P[aβγ]x).

Since κ(α, b) = (a, β), the condition αbγ ∈ L(n+1,m+1) is equivalent to the
condition aβγ ∈ L(n+1,m+1). We then have [αbγ] = [aβγ] and P[αbγ] =
P[aβγ]. �

Let Iκρ,η be the ideal of T κρ,η generated by the two projections:

1−
∑
α∈Σρ

sαs
∗
α and 1−

∑
a∈Ση

tat
∗
a.

Let Ôκρ,η be the quotient C∗-algebra

Ôκρ,η = T κρ,η/Iκρ,η.

Let πρ,η : T κρ,η −→ Ôκρ,η be the quotient map. Put

Ŝα = πρ,η(sα), T̂a = πρ,η(ta), î(x) = πρ,η(i(Fκ)(x)

for α ∈ Σρ, a ∈ Ση and x ∈ A. By the above discussions, the following
relations hold:∑

β∈Σρ

ŜβŜ
∗
β = 1, î(x)ŜαŜ

∗
α = ŜαŜ

∗
αî(x), Ŝ∗αî(x)Ŝα = î(ρα(x)),

∑
b∈Ση

T̂bT̂
∗
b = 1, î(x)T̂aT̂

∗
a = T̂aT̂

∗
a î(x), T̂ ∗a î(x)T̂a = î(ηa(x)),

ŜαT̂b = T̂aŜβ if κ(α, b) = (a, β)
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for all x ∈ A and α ∈ Σρ, a ∈ Ση.
For (z, w) ∈ T2, the correspondence

e[γ] ⊗ P[γ]x ∈ H(n,m) −→ znwme[γ] ⊗ P[γ]x ∈ H(n,m)

yields a unitary representation of T2 onH(n,m), which extends to Fκ, denoted
by u(z,w). Since

u(z,w)T κρ,ηu∗(z,w) = T κρ,η, u(z,w)Iκρ,ηu∗(z,w) = Iκρ,η,

The map

X ∈ T κρ,η −→ u(z,w)Xu
∗
(z,w) ∈ T

κ
ρ,η

yields an action of T2 on the C∗-algebra Ôκρ,η, which we denote by θ̂. Simi-

larly to the action θ on Oκρ,η, we may define the conditional expectation Êρ,η
from Ôκρ,η to the fixed point algebra (Ôκρ,η)θ̂ by taking the integration of the

function θ̂(z,w)(X) over (z, w) ∈ T2 for X ∈ Ôκρ,η. Then as in the proof of
Proposition 5.10, one may prove the following theorem.

Theorem 6.7. The algebra Ôκρ,η is canonically ∗-isomorphic to the C∗-
algebra Oκρ,η through the correspondences:

Sα −→ Ŝα, Ta −→ T̂a, x −→ î(x)

for α ∈ Σρ, a ∈ Ση and x ∈ A.

7. K-Theory machinery

Let us denote by K the C∗-algebra of compact operators on a separa-
ble infinite dimensional Hilbert space. For a C∗-algebra B, we denote by
M(B) its multiplier algebra. In this section, we will study K-theory groups
K∗(Oκρ,η) for the C∗-algebra Oκρ,η. We fix a C∗-textile dynamical system
(A, ρ, η,Σρ,Ση, κ). We define two actions

ρ̂ : T −→ Aut(Oκρ,η), η̂ : T −→ Aut(Oκρ,η)

of the circle group T = {z ∈ C | |z| = 1} to Oκρ,η by setting

ρ̂z = θ(z,1), η̂w = θ(1,w), z, w ∈ T.

They satisfy

ρ̂z ◦ η̂w = η̂w ◦ ρ̂z = θ(z,w), z, w ∈ T.
Set the fixed point algebras

(Oκρ,η)ρ̂ = {x ∈ Oκρ,η | ρ̂z(x) = x for all z ∈ T},

(Oκρ,η)η̂ = {x ∈ Oκρ,η | η̂w(x) = x for all w ∈ T}.

For x ∈ (Oκρ,η)ρ̂, define the Oκρ,η-valued constant function

x̂ ∈ L1(T,Oκρ,η) ⊂ Oκρ,η ×ρ̂ T
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from T by setting x̂(z) = x, z ∈ T. Put p0 = 1̂. By [45], the algebra (Oκρ,η)ρ̂
is canonically isomorphic to p0(Oκρ,η ×ρ̂ T)p0 through the map

jρ : x ∈ (Oκρ,η)ρ̂ −→ x̂ ∈ p0(Oκρ,η ×ρ̂ T)p0

which induces an isomorphism

(7.1) jρ∗ : Ki((Oκρ,η)ρ̂) −→ Ki(p0(Oκρ,η ×ρ̂ T)p0), i = 0, 1

on their K-groups. By a similar manner to the proofs given in [23, Section
4], one may prove the following lemma.

Lemma 7.1.

(i) There exists an isometry

v ∈M((Oκρ,η ×ρ̂ T)⊗K)

such that vv∗ = p0 ⊗ 1, v∗v = 1.
(ii) Oκρ,η ×ρ̂ T is stably isomorphic to (Oκρ,η)ρ̂, and similarly Oκρ,η ×η̂ T is

stably isomorphic to (Oκρ,η)η̂.
(iii) The inclusion ιρ̂ : p0(Oκρ,η ×ρ̂ T)p0 ↪→ Oκρ,η ×ρ̂ T induces an isomor-

phism

ιρ̂∗ : Ki(p0(Oκρ,η ×ρ̂ T)p0) ∼= Ki(Oκρ,η ×ρ̂ T), i = 0, 1

on their K-groups.

Thanks to the lemma above, the isomorphism

Ad(v∗) : x ∈ p0(Oκρ,η ×ρ̂ T)p0 ⊗K −→ v∗xv ∈ (Oκρ,η ×ρ̂ T)⊗K

induces isomorphisms

(7.2) Ad(v∗)∗ : Ki(p0(Oκρ,η ×ρ̂ T)p0) −→ Ki(Oκρ,η ×ρ̂ T), i = 0, 1.

Let ˆ̂ρ be the automorphism on Oκρ,η ×ρ̂ T for the positive generator of Z
for the dual action of ρ̂. By (7.1) and (7.2), we may define an isomorphism

βρ,i = j−1
ρ∗ ◦Ad(v∗)−1

∗ ◦ ˆ̂ρ∗ ◦Ad(v∗)∗ ◦ jρ∗ : Ki((Oκρ,η)ρ̂) −→ Ki((Oκρ,η)ρ̂)

for i = 0, 1, so that the diagram is commutative:

Ki(Oκρ,η ×ρ̂ T)
ˆ̂ρ∗−−−−→ Ki(Oκρ,η ×ρ̂ T)xAd(v∗)∗

xAd(v∗)∗

Ki(p0(Oκρ,η ×ρ̂ T)p0) Ki(p0(Oκρ,η ×ρ̂ T)p0)xjρ∗ xjρ∗
Ki((Oκρ,η)ρ̂)

βρ,i−−−−→ Ki((Oκρ,η)ρ̂).
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By [39] (cf. [15]), one has the six term exact sequence of K-theory:

K0(Oκρ,η ×ρ̂ T)
id− ˆ̂ρ∗−−−−→ K0(Oκρ,η ×ρ̂ T)

ι∗−−−−→ K0((Oκρ,η ×ρ̂ T)× ˆ̂ρ Z)

δ

x exp

y
K1((Oκρ,η ×ρ̂ T)× ˆ̂ρ Z) ←−−−−

ι∗
K1(Oκρ,η ×ρ̂ T) ←−−−−

id− ˆ̂ρ∗

K1(Oκρ,η ×ρ̂ T).

Since (Oκρ,η ×ρ̂ T) × ˆ̂ρ Z ∼= O
κ
ρ,η ⊗ K and Ki(Oκρ,η ×ρ̂ T) ∼= Ki((Oκρ,η)ρ̂), one

has:

Lemma 7.2. The following six term exact sequence of K-theory holds:

K0((Oκρ,η)ρ̂)
id−βρ,0−−−−−→ K0((Oκρ,η)ρ̂)

ι∗−−−−→ K0(Oκρ,η)

δ

x exp

y
K1(Oκρ,η) ←−−−−

ι∗
K1((Oκρ,η)ρ̂) ←−−−−−

id−βρ,1
K1((Oκρ,η)ρ̂).

Hence there exist short exact sequences for i = 0, 1:

0 −→ Coker(id− βρ,i) in Ki((Oκρ,η)ρ̂)
−→ Ki(Oκρ,η)

−→ Ker(id− βρ,i+1) in Ki+1((Oκρ,η)ρ̂)
−→ 0.

In the rest of this section, we will study the groups

Coker(id− βρ,i) in Ki((Oκρ,η)ρ̂), Ker(id− βρ,i+1) in Ki+1((Oκρ,η)ρ̂).

The action η̂ acts on the subalgebra (Oκρ,η)ρ̂, which we still denote by η̂.

Then the fixed point algebra ((Oκρ,η)ρ̂)η̂ of (Oκρ,η)ρ̂ under η̂ coincides with
Fρ,η. The above discussions for the action ρ̂ : T −→ Oκρ,η works for the

action η̂ : T −→ (Oκρ,η)ρ̂ as in the following way. For y ∈ ((Oκρ,η)ρ̂)η̂, define

the constant function ŷ ∈ L1(T, (Oκρ,η)ρ̂) ⊂ (Oκρ,η)ρ̂ ×η̂ T by setting ŷ(w) =

y, w ∈ T. Putting q0 = 1̂, the algebra ((Oκρ,η)ρ̂)η̂ is canonically isomorphic

to q0((Oκρ,η)ρ̂ ×η̂ T)q0 through the map

jρη : y ∈ ((Oκρ,η)ρ̂)η̂ −→ ŷ ∈ q0((Oκρ,η)ρ̂ ×η̂ T)q0

which induces an isomorphism

jρη∗ : Ki(((Oκρ,η)ρ̂)η̂) −→ Ki(q0((Oκρ,η)ρ̂ ×η̂ T)q0), i = 0, 1

on their K-groups. Similarly to Lemma 7.1, we have:

Lemma 7.3.

(i) There exists an isometry

u ∈M(((Oκρ,η)ρ̂ ×η̂ T)⊗K)

such that uu∗ = q0 ⊗ 1, u∗u = 1.
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(ii) (Oκρ,η)ρ̂ ×η̂ T is stably isomorphic to ((Oκρ,η)ρ̂)η̂.
(iii) The inclusion

ιρ̂η̂ : q0((Oκρ,η)ρ̂ ×η̂ T)q0(= ((Oκρ,η)ρ̂)η̂ = Fρ,η) ↪→ (Oκρ,η)ρ̂ ×η̂ T

induces an isomorphism

ιρ̂η̂∗ : Ki(q0((Oκρ,η)ρ̂ ×η̂ T)q0) ∼= Ki((Oκρ,η)ρ̂ ×η̂ T), i = 0, 1

on their K-groups.

The isomorphism

Ad(u∗) : y ∈ q0((Oκρ,η)ρ̂ ×η̂ T)q0 −→ u∗yu ∈ (Oκρ,η)ρ̂ ×η̂ T

induces isomorphisms

Ad(u∗)∗ : Ki(q0((Oκρ,η)ρ̂ ×η̂ T)q0) ∼= Ki((Oκρ,η)ρ̂ ×η̂ T), i = 0, 1.

Let ˆ̂ηρ be the automorphism on (Oκρ,η)ρ̂ ×η̂ T for the positive generator of Z
for the dual action of η̂. Define an isomorphism

γη,i = jρ−1
η∗ ◦Ad(u∗)−1

∗ ◦ˆ̂ηρ∗◦Ad(u∗)∗◦jρη∗ : Ki(Fρ,η) −→ Ki(Fρ,η), i = 0, 1

such that the diagram is commutative for i = 0, 1:

Ki((Oκρ,η)ρ̂ ×η̂ T)
ˆ̂ηρ∗−−−−→ Ki((Oκρ,η)ρ̂ ×η̂ T)xAd(u∗)∗

xAd(u∗)∗

Ki(q0((Oκρ,η)ρ̂ ×η̂ T)q0) Ki(q0((Oκρ,η)ρ̂ ×η̂ T)q0)xjρη∗ xjρη∗
Ki(((Oκρ,η)ρ̂)η̂) Ki(((Oκρ,η)ρ̂)η̂)∥∥∥ ∥∥∥
Ki(Fρ,η)

γη,i−−−−→ Ki(Fρ,η).

We similarly define an endomorphism γρ,i : Ki(Fρ,η) −→ Ki(Fρ,η) by ex-
changing the rôles of ρ and η.

Under the equality ((Oκρ,η)ρ̂)η̂ = Fρ,η, we have the following lemma which
is similar to Lemma 7.2

Lemma 7.4. The following six term exact sequence of K-theory holds:

K0(Fρ,η)
id−γη,0−−−−−→ K0(Fρ,η)

ι∗−−−−→ K0((Oκρ,η)ρ̂)

δ

x exp

y
K1((Oκρ,η)ρ̂) ←−−−−ι∗

K1(Fρ,η) ←−−−−−
id−γη,1

K1(Fρ,η).
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In particular, if K1(Fρ,η) = 0, we have

K0((Oκρ,η)ρ̂) = Coker(id− γη,0) in K0(Fρ,η),

K1((Oκρ,η)ρ̂) = Ker(id− γη,0) in K0(Fρ,η).

Denote by Mn(B) the n×n matrix algebra over a C∗-algebra B, which is
identified with the tensor product B ⊗Mn(C). The following lemmas hold.

Lemma 7.5. For a projection q ∈Mn((Oκρ,η)ρ) and a partial isometry S ∈
Oκρ,η such that

ρ̂z(S) = zS for z ∈ T, q(SS∗ ⊗ 1n) = (SS∗ ⊗ 1n)q,

we have

β−1
ρ,0([(SS∗ ⊗ 1n)q]) = [(S∗ ⊗ 1n)q(S ⊗ 1n)] in K0((Oκρ,η)ρ̂).

Proof. As q commutes with SS∗⊗1n, p = (S∗⊗1n)q(S⊗1n) is a projection
in (Oκρ,η)ρ̂. Since p ≤ S∗S ⊗ 1n, By a similar argument to the proof of [23,

Lemma 4.5], one sees that βρ,0([p]) = [(S⊗1n)p(S∗⊗1n)] in K0((Oκρ,η)ρ̂). �

Lemma 7.6.

(i) For a projection q ∈ Mn(Fρ,η) and a partial isometry T ∈ (Oκρ,η)ρ̂
such that

η̂w(T ) = wT for w ∈ T, q(TT ∗ ⊗ 1n) = (TT ∗ ⊗ 1n)q,

we have

γ−1
η,0([(TT ∗ ⊗ 1n)q]) = [(T ∗ ⊗ 1n)q(T ⊗ 1n)] in K0(Fρ,η).

(ii) For a projection q ∈ Mn(Fρ,η) and a partial isometry S ∈ (Oκρ,η)η̂
such that

ρ̂z(S) = zS for z ∈ T, q(SS∗ ⊗ 1n) = (SS∗ ⊗ 1n)q,

we have

γ−1
ρ,0([(SS∗ ⊗ 1n)q]) = [(S∗ ⊗ 1n)q(S ⊗ 1n)] in K0(Fρ,η).

Hence we have

Lemma 7.7. The diagram

K0(Fρ,η)
id−γρ,0−−−−−→ K0(Fρ,η)yι∗ yι∗

K0((Oκρ,η)ρ̂)
id−βρ,0−−−−−→ K0((Oκρ,η)ρ̂)

is commutative.
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Proof. By [35, Proposition 3.3], the map ι∗ : K0(Fρ,η) −→ K0((Oκρ,η)ρ̂)
is induced by the natural inclusion Fρ,η(= ((Oκρ,η)ρ̂)η) ↪→ (Oκρ,η)ρ̂. For an
element [q] ∈ K0(Fρ,η) one may assume that q ∈ Mn(Fρ,η) for some n ∈ N
so that one has

γ−1
ρ,0([q]) =

∑
α∈Σρ

[(SαS
∗
α ⊗ 1n)q]

=
∑
α∈Σρ

[(S∗α ⊗ 1n)q(Sα ⊗ 1n)]

=
∑
α∈Σρ

β−1
ρ,0([q(SαS

∗
α ⊗ 1n)]) = β−1

ρ,0([q])

so that βρ,0|K0(Fρ,η) = γρ,0. �

In the rest of this section, we assume that K1(Fρ,η) = 0. The following
lemma is crucial in our further discussions.

Lemma 7.8. In the six term exact sequence in Lemma 7.4 with K1(Fρ,η) =
0, we have the following commutative diagrams:

(7.3)

0 0y y
K1((Oκρ,η)ρ̂)

id−βρ,1−−−−−→ K1((Oκρ,η)ρ̂)

δ

y δ

y
K0(Fρ,η)

id−γρ,0−−−−−→ K0(Fρ,η)

id−γη,0
y id−γη,0

y
K0(Fρ,η)

id−γρ,0−−−−−→ K0(Fρ,η)

ι∗

y ι∗

y
K0((Oκρ,η)ρ̂)

id−βρ,0−−−−−→ K0((Oκρ,η)ρ̂)y y
0 0

Proof. It is well-known that δ-map is functorial (see [48, Theorem 7.2.5],
[4, p.266 (LX)]). Hence the diagram of the upper square

K1((Oκρ,η)ρ̂)
id−βρ,1−−−−−→ K1((Oκρ,η)ρ̂)

δ

y δ

y
K0(Fρ,η)

id−γρ,0−−−−−→ K0(Fρ,η)
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is commutative. Since γρ,0 ◦ γη,0 = γη,0 ◦ γρ,0, the diagram of the middle
square

(7.4)

K0(Fρ,η)
id−γρ,0−−−−−→ K0(Fρ,η)yid−γη,0

yid−γη,0

K0(Fρ,η)
id−γρ,0−−−−−→ K0(Fρ,η)

is commutative. The commutativity of the lower square comes from the
preceding lemma. �

We will describe the K-groups K∗(Oκρ,η) in terms of the kernels and cok-
ernels of the homomorphisms id−γρ,0 and id−γη,0 on K0(Fρ,η). Recall that
there exist two short exact sequences by Lemma 7.2:

0 −→ Coker(id− βρ,0) in K0((Oκρ,η)ρ̂)
−→ K0(Oκρ,η)

−→ Ker(id− βρ,1) in K1((Oκρ,η)ρ̂)
−→ 0

and

0 −→ Coker(id− βρ,1) in K1((Oκρ,η)ρ̂)
−→ K1(Oκρ,η)

−→ Ker(id− βρ,0) in K0((Oκρ,η)ρ̂)
−→ 0.

As γη,0 ◦ γρ,0 = γρ,0 ◦ γη,0 on K0(Fρ,η), the homomorphisms γρ,0 and
γη,0 naturally act on Coker(id − γη,0) = K0(Fρ,η)/(id − γη,0)K0(Fρ,η) and
Coker(id − γρ,0) = K0(Fρ,η)/(id − γρ,0)K0(Fρ,η) as endomorphisms respec-
tively, which we denote by γ̄ρ,0 and γ̄η,0 respectively.

Lemma 7.9.

(i) For K0(Oκρ,η), we have

Coker(id− βρ,0) in K0((Oκρ,η)ρ̂)
∼= Coker(id− γ̄ρ,0) in K0(Fρ,η)/(id− γη,0)K0(Fρ,η)
∼= K0(Fρ,η)/((id− γρ,0)K0(Fρ,η) + (id− γη,0)K0(Fρ,η))

and

Ker(id− βρ,1) in K1((Oκρ,η)ρ̂)
∼= Ker(id− γρ,0) in (Ker(id− γη,0) in K0(Fρ,η))
∼= Ker(id− γρ,0) ∩Ker(id− γη,0) in K0(Fρ,η).
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(ii) For K1(Oκρ,η), we have

Coker(id− βρ,1) in K1((Oκρ,η)ρ̂)
∼= (Ker(id− γη,0) in K0(Fρ,η))/(id− γρ,0)(Ker(id− γη,0) in K0(Fρ,η))

and

Ker(id− βρ,0) in K0((Oκρ,η)ρ̂)
∼= Ker(id− γ̄ρ,0) in (K0(Fρ,η)/(id− γη,0)K0(Fρ,η)).

Proof. (i) We will first prove the assertions for the group

Coker(id− βρ,0) in K0((Oκρ,η)ρ̂).

In the diagram (7.3), the exactness of the vertical arrows implies that ι∗ is
surjective so that

K0((Oκρ,η)ρ̂) ∼= ι∗(K0(Fρ,η)) ∼= K0(Fρ,η)/Ker(id− γη,0) in K0(Fρ,η).

By the commutativity in the lower square in the diagram (7.3), one has

Coker(id− βρ,0) in K0((Oκρ,η)ρ̂)
∼= Coker(id− γ̄ρ,0) in (Coker(id− γη,0) in K0(Fρ,η).)

The latter group will be proved to be isomorphic to the group

K0(Fρ,η)/((id− γη,0)K0(Fρ,η)) + (id− γρ,0)K0(Fρ,η)).

Put Hρ,η = (id−γη,0)K0(Fρ,η)+(id−γρ,0)K0(Fρ,η) the subgroup of K0(Fρ,η)
generated by (id − γη,0)K0(Fρ,η) and (id − γρ,0)K0(Fρ,η). Set the quotient
maps

K0(Fρ,η)
qη−→ K0(Fρ,η)/(id− γη,0)K0(Fρ,η)
q(id−γρ,0)

−→ Coker(id− γ̄ρ,0) in K0(Fρ,η)/(id− γη,0)K0(Fρ,η)
and

Φ = q(id−γρ,0) ◦ qη : K0(Fρ,η)
−→ Coker(id− γ̄ρ,0) in K0(Fρ,η)/(id− γη,0)K0(Fρ,η).

It suffices to show the equality Ker(Φ) = Hρ,η. As (id−γρ,0) commutes with
(id− γη,0), one has

(id− γη,0)K0(Fρ,η) ⊂ Ker(Φ), (id− γρ,0)K0(Fρ,η) ⊂ Ker(Φ).

Hence we have Hρ,η ⊂ Ker(Φ). On the other hand, for g ∈ Ker(Φ), we have
g ∈ (id − γ̄ρ,0)(K0(Fρ,η)/(id − γη,0)K0(Fρ,η)) so that g = (id − γρ,0)[h] for
some [h] ∈ K0(Fρ,η)/(id− γη,0)K0(Fρ,η). Hence

g = (id− γρ,0)h+ (id− γρ,0)(id− γη,0)K0(Fρ,η)
so that g ∈ Hρ,η. Hence we have Ker(Φ) ⊂ Hρ,η and Ker(Φ) = Hρ,η.
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We will second prove the assertions for the group

Ker(id− βρ,1) in K1((Oκρ,η)ρ̂).

In the diagram (7.3), the exactness of the vertical arrows implies that δ is
injective and Im(δ) = Ker(id− γη,0) so that we have

(7.5) K1((Oκρ,η)ρ̂) ∼= Ker(id− γη,0) in K0(Fρ,η).

By the commutativity in the upper square in the diagram (7.3), one has

Ker(id−βρ,1) in K1((Oκρ,η)ρ̂) ∼= Ker(id−γρ,0) in (Ker(id−γη,0) in K0(Fρ,η)).

Since γη,0 commutes with γρ,0 in K0(Fρ,η), we have

Ker(id− γρ,0) in (Ker(id− γη,0) in K0(Fρ,η))
∼= Ker(id− γρ,0) ∩Ker(id− γη,0) in K0(Fρ,η).

(ii) The assertions are similarly shown as in (i). �

Therefore we have:

Theorem 7.10. Assume that K1(Fρ,η) = 0. There exist short exact se-
quences:

0 −→ K0(Fρ,η)/((id− γρ,0)K0(Fρ,η) + (id− γη,0)K0(Fρ,η))
−→ K0(Oκρ,η)
−→ Ker(id− γρ,0) ∩Ker(id− γη,0) in K0(Fρ,η)
−→ 0

and

0 −→ (Ker(id− γη,0) in K0(Fρ,η))/(id− γρ,0)(Ker(id− γη,0) in K0(Fρ,η))
−→ K1(Oκρ,η)
−→ Ker(id− γ̄ρ,0) in (K0(Fρ,η)/(id− γη,0)K0(Fρ,η))
−→ 0.

We may describe the above formulae as follows.

Corollary 7.11. Suppose K1(Fρ,η) = 0. There exist short exact sequences:

0 −→ Coker(id− γ̄ρ,0) in (Coker(id− γη,0) in K0(Fρ,η))
−→ K0(Oκρ,η)
−→ Ker(id− γρ,0) in (Ker(id− γη,0) in K0(Fρ,η))
−→ 0
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and

0 −→ Coker(id− γρ,0) in ((Ker(id− γη,0) in K0(Fρ,η))
−→ K1(Oκρ,η)
−→ Ker(id− γ̄ρ,0) in (Coker(id− γη,0) in K0(Fρ,η))
−→ 0.

8. K-Theory formulae

In this section, we will present more useful formulae to compute the K-
groupsKi(Oκρ,η) under a certain additional assumption on (A, ρ, η,Σρ,Ση, κ).
The additional condition on (A, ρ, η,Σρ,Ση, κ) is the following:

Definition 8.1. A C∗-textile dynamical system (A, ρ, η,Σρ,Ση, κ) is said
to form square if the C∗-subalgebra C∗(ρα(1) : α ∈ Σρ) of A generated by
the projections ρα(1), α ∈ Σρ coincides with the C∗-subalgebra C∗(ηa(1) :
a ∈ Ση) of A generated by the projections ηa(1), a ∈ Ση.

Lemma 8.2. Assume that (A, ρ, η,Σρ,Ση, κ) forms square. Put for l ∈ Z+

Aρl = C∗(ρµ(1) : µ ∈ Bl(Λρ)), Aηl = C∗(ηξ(1) : ξ ∈ Bl(Λη)).
Then Aρl = Aηl .

Proof. By the assumption, we haveAρ1 = Aη1. Hence the desired equality for
l = 1 holds. Suppose that the equalities hold for all l ≤ k for some k ∈ N. For
µ = (µ1, µ2, . . . , µk, µk+1) ∈ Bk+1(Λρ) we have ρµ(1) = ρµk+1

(ρµ1µ2···µk(1))
so that ρµ(1) ∈ ρµk+1

(Aρk). By the commutation relation (3.1), one sees that

ρµk+1
(Aρk) ⊂ C

∗(ηξ(ρα(1)) : ξ ∈ Bk(Λη), α ∈ Σρ).

Since C∗(ρα(1) : α ∈ Σρ) = C∗(ηa(1) : a ∈ Ση), the algebra C∗(ηξ(ρα(1)) :
ξ ∈ Bk(Λη), α ∈ Σρ) is contained in Aηk+1 so that ρµk+1

(Aηk) ⊂ A
η
k+1. This

implies ρµ(1) ∈ Aηk+1 so that Aρk+1 ⊂ A
η
k+1 and hence Aρk+1 = Aηk+1. �

Therefore we have

Lemma 8.3. Assume that (A, ρ, η,Σρ,Ση, κ) forms square. Put for j, k ∈
Z+

Aj,k = C∗(ρµ(ηζ(1)) : µ ∈ Bj(Λρ), ζ ∈ Bk(Λη))
(= C∗(ηξ(ρν(1)) : ξ ∈ Bk(Λη), ν ∈ Bj(Λρ))).

Then Aj,k is commutative and of finite dimensional such that

Aj,k = Aρj+k(= A
η
j+k).

Hence Aj,k = Aj′,k′ if j + k = j′ + k′.

Proof. Since ηζ(1) ∈ ZA and ρµ(ZA) ⊂ ZA, the algebra Aj,k belongs to the
center ZA of A. By the preceding lemma, we have

Aj,k = C∗(ρµ(ρν(1)) : µ ∈ Bj(Λρ), ν ∈ Bk(Λρ)) = Aρj+k. �
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For j, k ∈ Z+, put l = j + k. We denote by Al the commutative finite
dimensional algebra Aj,k. Put m(l) = dimAl. Take the finite sequence of

minimal projections Eli, i = 1, 2, . . . ,m(l) in Al such that
∑m(l)

i=1 Eli = 1 and

hence Al = ⊕m(l)
i=1 CEli. Since ρα(Al) ⊂ Al+1, there exists Aρl,l+1(i, α, n),

which takes 0 or 1, such that

ρα(Eli) =

m(l+1)∑
n=1

Aρl,l+1(i, α, n)El+1
n , α ∈ Σρ, i = 1, . . . ,m(l).

Similarly, there exists Aηl,l+1(i, a, n), which takes 0 or 1, such that

ηa(E
l
i) =

m(l+1)∑
n=1

Aηl,l+1(i, a, n)El+1
n , a ∈ Ση, i = 1, . . . ,m(l).

Set for i = 1, . . . ,m(l)

Fj,k(i) = C∗(SµTζE
l
ixE

l
iT
∗
ξ S
∗
ν | µ, ν ∈ Bj(Λρ), ζ, ξ ∈ Bk(Λη), x ∈ A),

= C∗(TζSµE
l
ixE

l
iS
∗
νT
∗
ξ | µ, ν ∈ Bj(Λρ), ζ, ξ ∈ Bk(Λη), x ∈ A).

Let Nj,k(i) be the cardinal number of the finite set

{(µ, ζ) ∈ Bj(Λρ)×Bk(Λη) | ρµ(ηζ(1)) ≥ Eli}.

Since Eli is a central projection in A, we have

Lemma 8.4. For j, k ∈ Z+, put l = j + k. Then we have:

(i) Fj,k(i) is isomorphic to the matrix algebra

MNj,k(i)(E
l
iAEli)(= MNj,k(i)(C)⊗ EliAEli)

over EliAEli for i = 1, . . . ,m(l).
(ii) Fj,k = Fj,k(1)⊕ · · · ⊕ Fj,k(m(l)).

Proof. (i) For (µ, ζ) ∈ Bj(Λρ)×Bk(Λη) with SµTζE
l
i 6= 0, one has

ηζ(ρµ(1))Eli 6= 0

so that ηζ(ρµ(1)) ≥ Eli. Hence (SµTζE
l
i)
∗SµTζE

l
i = Eli. One sees that the

set

{SµTζEli | (µ, ζ) ∈ Bj(Λρ)×Bk(Λη);SµTζEli 6= 0}
consist of partial isometries which give rise to matrix units of Fj,k(i) such

that Fj,k(i) is isomorphic to MNj,k(i)(E
l
iAEli).

(ii) Since A = El1AEl1 ⊕ · · · ⊕ Elm(l)AE
l
m(l), the assertion is easy. �

Define homomorphisms λρ, λη : K0(A) −→ K0(A) by setting

λρ([p]) =
∑
α∈Σρ

[(ρα ⊗ 1n)(p)], λη([p]) =
∑
a∈Ση

[(ηa ⊗ 1n)(p)]
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for a projection p ∈Mn(A) for some n ∈ N. Recall that the identities (5.1),
(5.2) give rise to the embeddings (5.3), which induce homomorphisms

K0(Fj,k) −→ K0(Fj,k+1), K0(Fj,k) −→ K0(Fj+1,k).

We still denote them by ι∗,+1, ι+1,∗ respectively.

Lemma 8.5. Assume that (A, ρ, η,Σρ,Ση, κ) forms square. There exists an
isomorphism

Φj,k : K0(Fj,k) −→ K0(A)

such that the following diagrams are commutative:

(i)

K0(Fj,k)
ι+1,∗−−−−→ K0(Fj+1,k)

Φj,k

y Φj+1,k

y
K0(A)

λρ−−−−→ K0(A)

(ii)

K0(Fj,k)
ι∗,+1−−−−→ K0(Fj,k+1)

Φj,k

y Φj,k+1

y
K0(A)

λη−−−−→ K0(A).

Proof. Put for i = 1, 2, . . . ,m(l)

Pi =
∑

µ∈Bj(Λρ),ζ∈Bk(Λη)

SµTζE
l
iT
∗
ζ S
∗
µ.

Then Pi is a central projection in Fj,k such that
∑m(l)

i=1 Pi = 1. For X ∈ Fj,k,
one has PiXPi ∈ Fj,k(i) such that

X =

m(l)∑
i=1

PiXPi ∈
m(l)⊕
i=1

Fj,k(i).

Define an isomorphism

ϕj,k : X ∈ Fj,k −→
m(l)∑
i=1

PiXPi ∈
m(l)⊕
i=1

Fj,k(i)

which induces an isomorphism on their K-groups

ϕj,k∗ : K0(Fj,k) −→
m(l)⊕
i=1

K0(Fj,k(i)).

Take and fix ν(i), µ(i) ∈ Bj(Λρ) and ζ(i), ξ(i) ∈ Bk(Λη) such that

(8.1) Tξ(i)Sν(i) = Sµ(i)Tζ(i) and Tξ(i)Sν(i)E
l
i 6= 0.
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Hence S∗ν(i)T
∗
ξ(i)Tξ(i)Sν(i) ≥ Eli. Since Fj,k(i) is isomorphic to

MNj,k(i)
(C)⊗ EliAEli,

the embedding

ιj,k(i) : x ∈ EliAEli −→ Tξ(i)Sν(i)xS
∗
ν(i)T

∗
ξ(i) ∈ Fj,k(i)

induces an isomorphism on their K-groups

ιj,k(i)∗ : K0(EliAEli) −→ K0(Fj,k(i)).
Put

ψj,k =

m(l)⊕
i=1

ιj,k(i) :

m(l)⊕
i=1

EliAEli −→
m(l)⊕
i=1

Fj,k(i)

and hence we have an isomorphism

ψj,k∗ =

m(l)⊕
i=1

ιj,k(i)∗ :

m(l)⊕
i=1

K0(EliAEli) −→
m(l)⊕
i=1

K0(Fj,k(i)).

Since K0(A) =
⊕m(l)

i=1 K0(EliAEli), we have an isomorphism

Φj,k = ψj,k∗
−1 ◦ ϕj,k∗ : K0(Fj,k)

ϕj,k∗−→
m(l)⊕
i=1

K0(Fj,k(i))
ψj,k∗

−1

−→ K0(A).

(i) It suffices to show the following diagram

K0(Fj,k)
ι+1,∗−−−−→ K0(Fj+1,k)

ϕj,k∗

y ϕj+1,k∗

y⊕m(l)
i=1 K0(Fj,k(i))

⊕m(l)
i=1 K0(Fj+1,k(i))

ψj,k∗

x ψj+1,k∗

x
K0(A)

λρ−−−−→ K0(A)

is commutative. For x =
∑m(l)

i=1 ElixE
l
i ∈ A, we have

ψj,k(x) =

m(l)∑
i=1

Tξ(i)Sν(i)E
l
ixE

l
iS
∗
ν(i)T

∗
ξ(i) =

m(l)∑
i=1

Sµ(i)Tζ(i)E
l
ixE

l
iT
∗
ζ(i)S

∗
µ(i).

Since PiTξ(i)Sν(i)E
l
ixE

l
iS
∗
ν(i)T

∗
ξ(i)Pi = Tξ(i)Sν(i)E

l
ixE

l
iS
∗
ν(i)T

∗
ξ(i), we have

ϕ−1
j,k ◦ ψj,k(x) =

m(l)∑
i=1

Tξ(i)Sν(i)E
l
ixE

l
iS
∗
ν(i)T

∗
ξ(i)

so that

ι+1,∗ ◦ ϕ−1
j,k ◦ ψj,k(x) =

∑
α∈Σρ

m(l)∑
i=1

Tξ(i)Sν(i)αρα(ElixE
l
i)S
∗
ν(i)αT

∗
ξ(i).
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Since

Sν(i)αρα(ElixE
l
i)S
∗
ν(i)α =

m(l+1)∑
n=1

Aρl,l+1(i, α, n)Sν(i)αE
l+1
n ρα(x)El+1

n S∗ν(i)α

and Aρl,l+1(i, α, n)Sν(i)αE
l+1
n = Sν(i)αE

l+1
n , we have

∑
α∈Σρ

Sν(i)αρα(ElixE
l
i)S
∗
ν(i)α =

m(l+1)∑
n=1

∑
α∈Σρ

Sν(i)αE
l+1
n ρα(x)El+1

n S∗ν(i)α

so that

ι+1,∗ ◦ ϕ−1
j,k ◦ ψj,k(x) =

∑
α∈Σρ

m(l)∑
i=1

m(l+1)∑
n=1

Tξ(i)Sν(i)αE
l+1
n ρα(x)El+1

n S∗ν(i)αT
∗
ξ(i).

On the other hand,

ψj,k(λρ(x)) = ψj,k

m(l+1)∑
n=1

∑
α∈Σρ

El+1
n ρα(x)El+1

n


=
∑
α∈Σρ

m(l)∑
i=1

m(l+1)∑
n=1

Tξ(i)Sν(i)αE
l+1
n ρα(x)El+1

n S∗ν(i)αT
∗
ξ(i).

Therefore we have

ι+1,∗ ◦ ϕ−1
j,k ◦ ψj,k(x) = ψj,k(λρ(x)).

(ii) is symmetric to (i). �

Define the abelian groups of the inductive limits:

Gρ = lim{λρ : K0(A) −→ K0(A)}, Gη = lim{λη : K0(A) −→ K0(A)}.

Put the subalgebras of Fρ,η for j, k ∈ Z+

Fρ,k = C∗(TζSµxS
∗
νT
∗
ξ | µ, ν ∈ B∗(Λρ), |µ| = |ν|, ζ, ξ ∈ Bk(Λη), x ∈ A)

= C∗(TζyT
∗
ξ | ζ, ξ ∈ Bk(Λη), y ∈ Fρ),

Fj,η = C∗(SµTζxT
∗
ξ S
∗
ν | µ, ν ∈ Bj(Λρ), ζ, ξ ∈ B∗(Λη), |ζ| = |ξ|, x ∈ A)

= C∗(SµyS
∗
ν | µ, ν ∈ Bj(Λρ), y ∈ Fη).

By the preceding lemma, we have:

Lemma 8.6. For j, k ∈ Z+, there exist isomorphisms

Φρ,k : K0(Fρ,k) −→ Gρ, Φj,η : K0(Fj,η) −→ Gη

such that the following diagrams are commutative:
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(i)

K0(Fj,k)
ι+1,∗−−−−→ K0(Fj+1,k)

ι+1,∗−−−−→ · · ·
ι+1,∗−−−−→ K0(Fρ,k)

Φj,k

y Φj+1,k

y Φρ,k

y
K0(A)

λρ−−−−→ K0(A)
λρ−−−−→ · · · λρ−−−−→ Gρ

(ii)

K0(Fj,k)
ι∗,+1−−−−→ K0(Fj,k+1)

ι∗,+1−−−−→ · · ·
ι∗,+1−−−−→ K0(Fj,η)

Φj,k

y Φj,k+1

y Φj,η

y
K0(A)

λη−−−−→ K0(A)
λη−−−−→ · · · λη−−−−→ Gη.

Lemma 8.7. If ξ = (ξ1, . . . , ξk) ∈ Bk(Λη), ν = (ν1, . . . , νj) ∈ Bj(Λρ) satisfy

the condition ρν(ηξ(1)) ≥ Eli for some i = 1, . . . ,m(l) with l = j + k, then

T ∗ξ1TξSνE
l
i = Tξ̄SνE

l
i where ξ̄ = (ξ2, . . . , ξk).

Proof. Since T ∗ξ1Tξ = T ∗ξ1Tξ1Tξ̄T
∗
ξ̄
Tξ̄ = Tξ̄T

∗
ξ̄
T ∗ξ1Tξ1Tξ̄ = Tξ̄T

∗
ξ Tξ, we have

T ∗ξ1TξSνE
l
i = Tξ̄SνS

∗
νT
∗
ξ TξSνE

l
i = Tξ̄Sνρν(ηξ(1))Eli = Tξ̄SνE

l
i. �

Let us denote by γρ, γη the endomorphisms γρ,0, γη,0 on K0(Fρ,η) appeared
in Lemma 7.6, respectively.

Lemma 8.8. For k, j ∈ Z+, we have:

(i) The restriction of γ−1
η to K0(Fj,k) makes the following diagram com-

mutative:

K0(Fj,k)
γ−1
η−−−−→ K0(Fj,k−1)

ι∗,+1−−−−→ K0(Fj,k)

Φj,k

y Φj,k

y
K0(A)

λη−→ K0(A).

(ii) The restriction of γ−1
ρ to K0(Fj,k) makes the following diagram com-

mutative:

K0(Fj,k)
γ−1
ρ−−−−→ K0(Fj−1,k)

ι+1,∗−−−−→ K0(Fj,k)

Φj,k

y Φj,k

y
K0(A)

λρ−→ K0(A).

Proof. (i) Put l = j + k. Take a projection p ∈ Mn(A) for some n ∈ N.

Since A⊗Mn(C) =
∑m(l)

i=1
⊕(Eli ⊗ 1)(A⊗Mn)(Eli ⊗ 1), by putting

pli = (Eli ⊗ 1)p(Eli ⊗ 1) ∈Mn(EliAEli),

we have p =
∑m(l)

i=1 pli. Take

ξ(i) = (ξ1(i), . . . , ξk(i)) ∈ Bk(Λη), ν(i) = (ν1(i), . . . , νj(i)) ∈ Bj(Λρ)



C∗-ALGEBRAS ASSOCIATED WITH TEXTILE DYNAMICAL SYSTEMS 1223

as in (8.1) so that ρν(i)(ηξ(i)(1)) ≥ Eli and put ξ̄(i) = (ξ2(i), . . . , ξk(i)) so

that ξ(i) = ξ1(i)ξ̄(i). We have

ψj,k∗([p]) =

m(l)∑
i=1

⊕[(Tξ(i)Sν(i) ⊗ 1n)pli(S
∗
ν(i)T

∗
ξ(i) ⊗ 1n)] ∈

m(l)⊕
i=1

K0(Fj,k(i)).

As

(Tξ(i)Sν(i) ⊗ 1n)pli(S
∗
ν(i)T

∗
ξ(i) ⊗ 1n) ≤ Tξ1(i)T

∗
ξ1(i) ⊗ 1n,

by the preceding lemma we have

T ∗ξ1(i)Tξ(i)Sν(i)E
l
i = Tξ̄(i)Sν(i)E

l
i

so that by Lemma 7.6

γ−1
η ([(Tξ(i)Sν(i)⊗1n)pli(S

∗
ν(i)T

∗
ξ(i)⊗1n)] = [(Tξ̄(i)Sν(i)⊗1n)pli(S

∗
ν(i)T

∗
ξ̄(i)⊗1n)].

Hence K0(Fj,k) goes to K0(Fj,k−1) by the homomorphism γ−1
η . Take µ(i) ∈

Bj(Λρ), ζ̄(i) ∈ Bk−1(Λη) such that Tξ̄(i)Sν(i) = Sµ(i)Tζ̄(i) for i = 1, . . . ,m(l).
The element

m(l)∑
i=1

[(Tξ̄(i)Sν(i) ⊗ 1n)pli(S
∗
ν(i)T

∗
ξ̄(i) ⊗ 1n)]

=

m(l)∑
i=1

[(Sµ(i)Tζ̄(i) ⊗ 1n)pli(T
∗
ζ̄(i)S

∗
µ(i) ⊗ 1n)] ∈ K0(Fj,k−1)

goes to

m(l)∑
i=1

∑
a∈Ση

[(Sµ(i)Tζ̄(i)a ⊗ 1n)(T ∗a ⊗ 1n)pli(Ta ⊗ 1n)(T ∗ζ̄(i)aS
∗
µ(i) ⊗ 1n)] ∈ K0(Fj,k)

by ι∗,+1. The latter one is expressed as
(8.2)
m(l)∑
h=1

⊕
m(l)∑
i=1

∑
a∈Ση

[(Sµ(i)Tζ̄(i)a ⊗ 1n)Elh(T ∗a ⊗ 1n)pli(Ta ⊗ 1n)Elh(T ∗ζ̄(i)aS
∗
µ(i) ⊗ 1n)]

in
⊕m(l)

h=1 K0(Fj,k(h)). On the other hand, we have

λη([p]) =
∑
a∈Ση

[(T ∗a ⊗ 1n)p(Ta ⊗ 1n)]

=

m(l)∑
h=1

⊕
∑
a∈Ση

[Elh(T ∗a ⊗ 1n)p(Ta ⊗ 1n)Elh] ∈
m(l)⊕
h=1

K0(ElhAElh),
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which is expressed as

m(l)∑
h=1

⊕
∑
a∈Ση

[(Tξ(h)Sν(h)E
l
h ⊗ 1n)(T ∗a ⊗ 1n)p(Ta ⊗ 1n)(ElhS

∗
ν(h)T

∗
ξ(h) ⊗ 1n)]

=

m(l)∑
h=1

⊕
∑
a∈Ση

m(l)∑
i=1

[
(Tξ(h)Sν(h)E

l
h ⊗ 1n)(T ∗a ⊗ 1n)

· pli(Ta ⊗ 1n)(ElhS
∗
ν(h)T

∗
ξ(h) ⊗ 1n)

]
in
⊕m(l)

h=1 K0(Fj,k(h)). Take µ′(h) ∈ Bj(Λρ), ζ
′(h) ∈ Bk(Λη) such that

Tξ(h)Sν(h) = Sµ′(h)Tζ′(h) so that the above element is
(8.3)
m(l)∑
h=1

⊕
m(l)∑
i=1

∑
a∈Ση

[(Sµ′(h)Tζ′(h)E
l
h⊗1n)(T ∗a ⊗1n)pli(Ta⊗1n)(ElhT

∗
ζ′(h)S

∗
ν′(h)⊗1n)]

in
⊕m(l)

h=1 K0(Fj,k(h)). Since for h, i = 1, . . . ,m(l), a ∈ Ση their classes of the
K-groups coincide such as

[(Sµ(i)Tζ̄(i)a ⊗ 1n)Elh(T ∗a ⊗ 1n)pli(Ta ⊗ 1n)Elh(T ∗ζ̄(i)aS
∗
µ(i) ⊗ 1n)]

= [(Sµ′(h)Tζ′(h)E
l
h ⊗ 1n)(T ∗a ⊗ 1n)pli(Ta ⊗ 1n)(ElhT

∗
ζ′(h)S

∗
ν′(h) ⊗ 1n)]

∈ K0(Fj,k(h)),

the element of (8.2) is equal to the element of (8.3) in K0(Fj,k). Thus (i)
holds.

(ii) is similar to (i). �

We note that for j, k ∈ Z+,

K0(Fρ,k) = lim
j
{ι+1,∗ : K0(Fj,k) −→ K0(Fj+1,k)},

K0(Fj,η) = lim
k
{ι∗,+1 : K0(Fj,k) −→ K0(Fj,k+1)}.

The following lemma is direct.

Lemma 8.9. For k, j ∈ Z+, the following diagrams are commutative:

(i)

K0(Fj,k)
γ−1
η−−−−→ K0(Fj,k−1)

ι+1,∗

y ι+1,∗

y
K0(Fj+1,k)

γ−1
η−−−−→ K0(Fj+1,k−1).

Hence γ−1
η yields a homomorphism from K0(Fρ,k) to K0(Fρ,k−1).
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(ii)

K0(Fj,k)
γ−1
ρ−−−−→ K0(Fj−1,k)

ι∗,+1

y ι∗,+1

y
K0(Fj,k+1)

γ−1
ρ−−−−→ K0(Fj−1,k+1).

Hence γ−1
ρ yields a homomorphism from K0(Fj,η) to K0(Fj−1,η).

The homomorphisms

ι+1,∗ : K0(Fj,k) −→ K0(Fj+1,k), ι∗,+1 : K0(Fj,k) −→ K0(Fj,k+1)

are naturally induce homomorphisms

K0(Fj,η) −→ K0(Fj+1,η), ι∗,+1 : K0(Fρ,k) −→ K0(Fρ,k+1)

which we denote by ι+1,η, ιρ,+1 respectively. They are also induced by the
identities (5.1), (5.2) respectively.

Lemma 8.10. For k, j ∈ Z+, the following diagrams are commutative:

(i)

K0(Fρ,k)
γ−1
η−−−−→ K0(Fρ,k−1)

ιρ,+1

y ιρ,+1

y
K0(Fρ,k+1)

γ−1
η−−−−→ K0(Fρ,k).

(ii)

K0(Fj,η)
γ−1
ρ−−−−→ K0(Fj−1,η)

ι+1,η

y ι+1,η

y
K0(Fj+1,η)

γ−1
ρ−−−−→ K0(Fj,η).

Proof. (i) As in the proof of Lemma 8.9, one may take an element of
K0(Fρ,k) as in the following form:

m(l)∑
i=1

⊕[(Tξ(i)Sν(i) ⊗ 1n)pli(S
∗
ν(i)T

∗
ξ(i) ⊗ 1n)] ∈

m(l)⊕
i=1

K0(Fj,k(i))

for some projection p ∈Mn(A) and j, l with l = j + k, where

pli = (Eli ⊗ 1)p(Eli ⊗ 1) ∈Mn(EliAEli).

Let ξ(i) = ξ1(i)ξ̄(i) with ξ1(i) ∈ Ση, ξ̄(i) ∈ Bk−1(Λη). One may assume that
Tξ(i)Sν(i) 6= 0 so that Tξ̄(i)Sν(i) = Sν(i)′Tξ̄(i)′ for some ν(i)′ ∈ Bj(Λρ), ξ̄(i)′ ∈
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Bk−1(Λη). As in the proof of Lemma 8.9, one has

γ−1
η ([(Tξ(i)Sν(i) ⊗ 1n)pli(S

∗
ν(i)T

∗
ξ(i) ⊗ 1n)]

= [(Tξ̄(i)Sν(i) ⊗ 1n)pli(S
∗
ν(i)T

∗
ξ̄(i) ⊗ 1n)]

= [(Sν(i)′Tξ̄(i)′ ⊗ 1n)pli(S
∗
ν(i)′T

∗
ξ̄(i)′ ⊗ 1n)].

Hence we have

ι∗,+1 ◦ γ−1
η ([(Tξ(i)Sν(i) ⊗ 1n)pli(S

∗
ν(i)T

∗
ξ(i) ⊗ 1n)]

= ι∗,+1([Sν(i)′Tξ̄(i)′ ⊗ 1n)pli(T
∗
ξ̄(i)′S

∗
ν(i)′ ⊗ 1n])

=
∑
b∈Ση

[(Sν(i)′Tξ̄(i)′b ⊗ 1n)(T ∗b ⊗ 1n)pli(Tb ⊗ 1n)(T ∗ξ̄(i)′bS
∗
ν(i)′ ⊗ 1n)].

On the other hand, the equality Tξ(i)Sν(i) = Tξ(i)1
Sν(i)′Tξ̄(i)′ implies

ι∗,+1([(Tξ(i)Sν(i) ⊗ 1n)pli(S
∗
ν(i)T

∗
ξ(i) ⊗ 1n)]

=
∑
b∈Ση

[(Tξ(i)1
Sν(i)′Tξ̄(i)′b ⊗ 1n)(T ∗b ⊗ 1n)pli(Tb ⊗ 1n)(T ∗ξ̄(i)′bS

∗
ν(i)′T

∗
ξ(i)1
⊗ 1n)]

and hence

γ−1
η ◦ ι∗,+1([(Tξ(i)Sν(i) ⊗ 1n)pli(S

∗
ν(i)T

∗
ξ(i) ⊗ 1n)]

=
∑
b∈Ση

γ−1
η

(
[(Tξ(i)1

Sν(i)′Tξ̄(i)′b ⊗ 1n)(T ∗b ⊗ 1n)

· pli(Tb ⊗ 1n)(T ∗ξ̄(i)′bS
∗
ν(i)′T

∗
ξ(i)1
⊗ 1n)]

)
=
∑
b∈Ση

[(Sν(i)′Tξ̄(i)′b ⊗ 1n)(T ∗b ⊗ 1n)pli(Tb ⊗ 1n)(T ∗ξ̄(i)′bS
∗
ν(i)′ ⊗ 1n)].

(ii) The proof is completely symmetric to the above proof. �

Since the homomorphisms λρ, λη : K0(A) −→ K0(A) are mutually com-
mutative, the map λη induces a homomorphism on the inductive limit
Gρ = lim{λρ : K0(A) −→ K0(A)} and similarly λρ does on the inductive
limit Gη. They are still denoted by λρ, λη respectively.

Lemma 8.11. For k, j ∈ Z+, the following diagrams are commutative:

(i)

K0(Fρ,k)
γ−1
η−−−−→ K0(Fρ,k−1)

ιρ,+1−−−−→ K0(Fρ,k)

Φρ,k

y Φρ,k

y
Gρ

λη−→ Gρ.
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(ii)

K0(Fj,η)
γ−1
ρ−−−−→ K0(Fj−1,η)

ι+1,η−−−−→ K0(Fj,η)

Φj,η

y Φj,η

y
Gη

λρ−→ Gη.

Proof. (i) As in the proof of Lemma 8.8 and Lemma 8.10 one may take an
element of K0(Fρ,k) as in the following form:

m(l)∑
i=1

⊕[(Tξ(i)Sν(i) ⊗ 1n)pli(S
∗
ν(i)T

∗
ξ(i) ⊗ 1n)] ∈

m(l)⊕
i=1

K0(Fj,k(i))

for some projection p ∈Mn(A) and j, l with l = j + k, where

pli = (Eli ⊗ 1)p(Eli ⊗ 1).

Keep the notations as in the proof of Lemma 8.8, we have

ι∗,+1 ◦ γ−1
η ([(Tξ(i)Sν(i) ⊗ 1n)pli(S

∗
ν(i)T

∗
ξ(i) ⊗ 1n)])

=
∑
b∈Ση

[(Sν(i)′Tξ̄(i)′b ⊗ 1n)(T ∗b ⊗ 1n)pli(Tb ⊗ 1n)(T ∗ξ̄(i)′bS
∗
ν(i)′ ⊗ 1n)]

so that

Φρ,k ◦ ι∗,+1 ◦ γ−1
η ([(Tξ(i)Sν(i) ⊗ 1n)pli(S

∗
ν(i)T

∗
ξ(i) ⊗ 1n)]

=
∑
b∈Ση

Φρ,k([Sν(i)′Tξ̄(i)′b ⊗ 1n)(T ∗b ⊗ 1n)pli(Tb ⊗ 1n)(T ∗ξ̄(i)′bS
∗
ν(i)′ ⊗ 1n)])

=
∑
b∈Ση

[(T ∗b ⊗ 1n)pli(Tb ⊗ 1n)]

= λη([p
l
i]) = (λη ◦ Φρ,k)([(Tξ(i)Sν(i) ⊗ 1n)pli(S

∗
ν(i)T

∗
ξ(i) ⊗ 1n)]).

Therefore we have Φρ,k ◦ ιρ,+1 ◦ γ−1
η = λη ◦ Φρ,k.

(ii) The proof is completely symmetric to the above proof. �

Put for j, k ∈ Z+

Gρ,k = K0(Fρ,k)(∼= Gρ = lim{λρ : K0(A) −→ K0(A)}),
Gj,η = K0(Fj,η)(∼= Gη = lim{λη : K0(A) −→ K0(A)}).

The map λη : K0(A) −→ K0(A) naturally gives rise to a homomorphism
from Gρ,k to Gρ,k+1 which we will still denote by λη. Similarly we have a
homomorphism λρ from Gj,η to Gj+1,η.

Lemma 8.12. For k, j ∈ Z+, the following diagrams are commutative:
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(i)

K0(Fρ,k)
ιρ,+1−−−−→ K0(Fρ,k+1)∥∥∥ ∥∥∥

Gρ,k
λη−−−−→ Gρ,k+1.

(ii)

K0(Fj,η)
ι+1,η−−−−→ K0(Fj+1,η)∥∥∥ ∥∥∥

Gj,η
λρ−−−−→ Gj+1,η.

We denote the abelian group K0(Fρ,η) by Gρ,η. Since

K0(Fρ,η) = lim
k
{ιρ,+1 : K0(Fρ,k) −→ K0(Fρ,k+1)}

= lim
j
{ι+1,η : K0(Fj,η) −→ K0(Fj+1,η)},

one has

Gρ,η = lim
k
{λη : Gρ,k −→ Gρ,k+1} = lim

j
{λρ : Gj,η −→ Gj+1,η}.

Define two endomorphisms

ση on Gρ,η = lim
k
{λη : Gρ,k −→ Gρ,k+1} and

σρ on Gρ,η = lim
j
{λρ : Gj,η −→ Gj+1,η}

by setting

σρ :[g, k] ∈ Gρ,k −→ [g, k − 1] ∈ Gρ,k−1 for g ∈ Gρ and

ση :[h, j] ∈ Gj,η −→ [h, j − 1] ∈ Gj−1,η for h ∈ Gη.
Therefore we have:

Lemma 8.13.

(i) There exists an isomorphism Φρ,∞ : K0(Fρ,η) −→ Gρ,η such that the
following diagrams are commutative:

K0(Fρ,η)
γ−1
η−−−−→ K0(Fρ,η)

Φρ,∞

y Φρ,∞

y
Gρ,η

ση−−−−→ Gρ,η

and hence

K0(Fρ,η)
id−γ−1

η−−−−−→ K0(Fρ,η)

Φρ,∞

y Φρ,∞

y
Gρ,η

id−ση−−−−→ Gρ,η.
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(ii) There exists an isomorphism Φ∞,η : K0(Fρ,η) −→ Gρ,η such that the
following diagrams are commutative:

K0(Fρ,η)
γ−1
ρ−−−−→ K0(Fρ,η)

Φ∞,η

y Φ∞,η

y
Gρ,η

σρ−−−−→ Gρ,η

and hence

K0(Fρ,η)
id−γ−1

ρ−−−−−→ K0(Fρ,η)

Φ∞,η

y Φ∞,η

y
Gρ,η

id−σρ−−−−→ Gρ,η.

Let us denote by JA the natural embedding A = F0,0 ↪→ Fρ,η, which
induces a homomorphism JA∗ : K0(A) −→ K0(Fρ,η).

Lemma 8.14. The homomorphism JA∗ : K0(A) −→ K0(Fρ,η) is injective
such that

JA∗ ◦ λρ = γ−1
ρ ◦ JA∗ and JA∗ ◦ λη = γ−1

η ◦ JA∗.

Proof. We will first show that the endomorphisms λρ, λη on K0(A) are both
injective. Put a projection Qα = SαS

∗
α and a subalgebra Aα = ρα(A) of A

for α ∈ Σρ. Then the endomorphism ρα on A extends to an isomorphism
from AQα onto Aα by setting ρα(x) = S∗αxSα, x ∈ AQα whose inverse is
φα : Aα −→ AQα defined by φα(y) = SαyS

∗
α, y ∈ Aα. Hence the induced

homomorphism ρα∗ : K0(AQα) −→ K0(Aα) is an isomorphism. Since A =⊕
α∈Σρ QαA, the homomorphism∑

α∈Σρ

φα∗ ◦ ρα∗ : K0(A) −→
⊕
α∈Σρ

K0(QαA)

is an isomorphism, one may identify K0(A) =
⊕

α∈Σρ K0(QαA). Let g ∈
K0(A) satisfy λρ(g) = 0. Put gα = φα∗ ◦ ρα∗(g) ∈ K0(QαA) for α ∈ Σρ so
that g =

∑
α∈Σρ gα. As ρβ∗ ◦ φα∗ = 0 for β 6= α, one sees ρβ∗(gα) = 0 for

β 6= α. Hence

0 = λρ(g) =
∑
β∈Σρ

∑
α∈Σρ

ρβ∗(gα) =
∑
α∈Σρ

ρα∗(gα) ∈
⊕
α∈Σρ

K0(Aα).

It follows that ρα∗(gα) = 0 in K0(Aα). Since ρα∗ : K0(QαA) −→ K0(Aα) is
isomorphic, one sees that gα = 0 in K0(AQα) for all α ∈ Σρ. This implies
that g =

∑
α∈Σρ gα = 0 in K0(A). Therefore the endomorphism λρ on

K0(A) is injective, and similarly so is λη.



1230 KENGO MATSUMOTO

By the previous lemma, there exists an isomorphism Φj,k : K0(Fj,k) −→
K0(A) such that the diagram

K0(Fj,k)
ι+1,∗−−−−→ K0(Fj+1,k)

Φj,k

y Φj+1,k

y
K0(A)

λρ−−−−→ K0(A)

is commutative so that the embedding ι+1,∗ : K0(Fj,k) −→ K0(Fj+1,k) is
injective, and similarly ι∗,+1 : K0(Fj,k) −→ K0(Fj,k+1) is injective. Hence
for n,m ∈ N, the homomorphism

ιn,m : K0(A) = K0(F0,0) −→ K0(Fn,m)

defined by the compositions of ι+1,∗ and ι∗,+1 is injective. By [44, Theorem
6.3.2 (iii)], one knows Ker(JA∗) = ∪n,m∈NKer(ιn,m), so that Ker(JA∗) =
0. �

We henceforth identify the group K0(A) with its image JA∗(K0(A)) in
K0(Fρ,η). As in the above proof, not only K0(A)(= K0(F0,0)) but also the
groups K0(Fj,k) for j, k are identified with subgroups of K0(Fρ,η) via injec-
tive homomorphisms from K0(Fj,k) to K0(Fρ,η) induced by the embeddings
of Fj,k into Fρ,η. We note that

(id− γη)K0(Fρ,η) = (id− γ−1
η )K0(Fρ,η),

(id− γρ)K0(Fρ,η) = (id− γ−1
ρ )K0(Fρ,η)

and

Ker(id− γρ) ∩Ker(id− γη) in K0(Fρ,η)
= Ker(id− γ−1

ρ ) ∩Ker(id− γ−1
η ) in K0(Fρ,η).

Denote by (id− γρ)K0(Fρ,η) + (id− γη)K0(Fρ,η) the subgroup of K0(Fρ,η)
generated by (id− γρ)K0(Fρ,η) and (id− γη)K0(Fρ,η).

Lemma 8.15. Any element in K0(Fρ,η) is equivalent to some element of
K0(A) modulo the subgroup (id− γρ)K0(Fρ,η) + (id− γη)K0(Fρ,η).

Proof. For g ∈ K0(Fρ,η), we may assume that g ∈ K0(Fj,k) for some j, k ∈
Z+. As γ−1

ρ commutes with γ−1
η , one sees that (γ−1

ρ )j ◦ (γ−1
η )k(g) ∈ K0(A).

Put g1 = γ−1
ρ (g) so that

g − (γ−1
ρ )j ◦ (γ−1

η )k(g) = g − γ−1
ρ (g) + g1 − (γ−1

ρ )j−1 ◦ (γ−1
η )k(g1).

We inductively see that g − (γ−1
ρ )j ◦ (γ−1

η )k(g) belongs to the subgroup

(id− γρ)K0(Fρ,η) + (id− γη)K0(Fρ,η). �

Denote by (id− λρ)K0(A) + (id− λη)K0(A) the subgroup of K0(A) gen-
erated by (id− λρ)K0(A) and (id− λη)K0(A).
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Lemma 8.16. If g ∈ K0(A) belongs to

(id− γ−1
ρ )K0(Fρ,η) + (id− γ−1

η )K0(Fρ,η),
then g belongs to (id− λρ)K0(A) + (id− λη)K0(A).

Proof. By the assumption that g ∈ (id−γ−1
ρ )K0(Fρ,η)+(id−γ−1

η )K0(Fρ,η),
there exist h1, h2 ∈ K0(Fρ,η) such that g = (id− γ−1

ρ )(h1) + (id− γ−1
η )(h2).

We may assume that h1, h2 ∈ K0(Fj,k) for large enough j, k ∈ Z+. Put

ei = (γ−1
ρ )j ◦ (γ−1

η )k(hi) which belongs to K0(F0,0)(= K0(A)) for i = 0, 1.
It follows that

λjρ ◦ λkη(g) = (id− λη)(e1) + (id− λρ)(e2).

Since g ∈ K0(A) and λjρ ◦λkη(g) ∈ (id−λη)K0(A)+(id−λρ)K0(A), as in the

proof of Lemma 8.15, by putting g(n) = λnρ (g), g(n,m) = λmη (g(n)) ∈ K0(A)
we have

g − λjρ ◦ λkη(g)

= g − λρ(g) + g(1) − λρ(g(1)) + g(2) − λρ(g(2)) + · · ·+ g(j−1) − λρ(g(j−1))

+ g(j) − λη(g(j)) + g(j,1) − λη(g(j,1)) + g(j,2) − λη(g(j,2)) + · · ·

+ g(j,k−1) − λη(g(j,k−1))

= (id− λρ)(g + g(1) + · · ·+ g(j−1)) + (id− λη)(g(j) + g(j,1) + · · ·+ g(j,k−1))

so that g belongs to the subgroup (id− λη)K0(A) + (id− λρ)K0(A). �

Hence we obtain the following lemma for the cokernel.

Lemma 8.17. The quotient group

K0(Fρ,η)/((id− γ−1
η )K0(Fρ,η) + (id− γ−1

ρ )K0(Fρ,η))
is isomorphic to the quotient group

K0(A)/((id− λη)K0(A) + (id− λρ)K0(A)).

Proof. Surjectivity of the quotient map

K0(A) −→ K0(Fρ,η)/((id− γ−1
η )K0(Fρ,η) + (id− γ−1

ρ )K0(Fρ,η))
comes from Lemma 8.15. Its kernel coincides with

(id− λη)K0(A) + (id− λρ)K0(A)

by the preceding lemma. �

For the kernel, we have:

Lemma 8.18. The subgroup

Ker(id− γ−1
η ) ∩Ker(id− γ−1

ρ ) in K0(Fρ,η)
is isomorphic to the subgroup

Ker(id− λη) ∩Ker(id− λρ) in K0(A)
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through JA∗.

Proof. For g ∈ Ker(id− γ−1
η )∩Ker(id− γ−1

ρ ) in K0(Fρ,η), one may assume

that g ∈ K0(Fj,k) for some j, k ∈ Z+ so that g = (γ−1
ρ )j◦(γ−1

η )k(g) ∈ K0(A).

Since λη = γ−1
η and λρ = γ−1

ρ on K0(A) under the identification between
JA∗(K0(A)) and K0(A) via JA∗, one has that g ∈ Ker(id−λη)∩Ker(id−λρ)
in K0(A). The converse inclusion relation

Ker(id− λη) ∩Ker(id− λρ) ⊂ Ker(id− γ−1
η ) ∩Ker(id− γ−1

ρ )

is clear through the above identification. �

Therefore the short exact sequence for K0(Oκρ,η) in Theorem 7.10 is re-
stated as the following proposition.

Proposition 8.19. Assume that (A, ρ, η,Σρ,Ση, κ) forms square and

K1(Fρ,η) = {0}.
Then there exists a short exact sequence:

0 −→ K0(A)/((id− λη)K0(A) + (id− λρ)K0(A))

−→ K0(Oκρ,η)
−→ Ker(id− λη) ∩Ker(id− λρ) in K0(A)

−→ 0.

Let Fρ be the fixed point algebra (Oρ)ρ̂ of the C∗-algebra Oρ by the gauge
action ρ̂ for the C∗-symbolic dynamical system (A, ρ,Σρ). The algebra Fρ is
isomorphic to the subalgebra Fρ,0 of Fρ,η in a natural way. As in the proof
of Lemma 8.15, the group K0(Fρ,0) is regarded as a subgroup of K0(Fρ,η)
and the restriction of γ−1

η to K0(Fρ,0) satisfies γ−1
η (K0(Fρ,0)) ⊂ K0(Fρ,0) so

that γ−1
η yields an endomorphism on K0(Fρ), which we still denote by γ−1

η .

For the group K1(Oκρ,η), we provide several lemmas.

Lemma 8.20.

(i) Any element in K0(Fρ,η) is equivalent to some element of K0(Fρ,0)(=
K0(Fρ)) modulo the subgroup (id− γη)K0(Fρ,η).

(ii) If g ∈ K0(Fρ,0)(= K0(Fρ)) belongs to (id − γη)K0(Fρ,η), then g
belongs to (id− γη)K0(Fρ).

As γρ commutes with γη on K0(Fρ,η), it naturally acts on the quotient
group K0(Fρ,η)/(id− γ−1

η )K0(Fρ,η). We denote it by γ̄ρ. Similarly λρ natu-
rally induces an endomorphism on K0(A)/(id− λη)K0(A). We denote it by
λ̄ρ.

Lemma 8.21.

(i) The quotient group K0(Fρ,η)/(id−γ−1
η )K0(Fρ,η) is isomorphic to the

quotient group K0(Fρ)/(id− γ−1
η )K0(Fρ), that is also isomorphic to

the quotient group K0(A)/(id− λη)K0(A).
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(ii) The kernel of id− γ̄ρ in K0(Fρ,η)/(id− γ−1
η )K0(Fρ,η) is isomorphic

to the kernel of id− λ̄ρ in K0(A)/(id− λη)K0(A).

Proof. (i) The fact that the three quotient groups

K0(Fρ,η)/(id− γ−1
η )K0(Fρ,η),

K0(Fρ)/(id− γ−1
η )K0(Fρ),

K0(A)/(id− λη)K0(A),

are naturally isomorphic is similarly proved to the previous discussions.
(ii) The kernel Ker(id− γ̄ρ) in K0(Fρ,η)/(id−γ−1

η )K0(Fρ,η) is isomorphic

to the kernel Ker(id− γ̄ρ) in K0(Fρ)/(id− γ−1
η )K0(Fρ) which is isomorphic

to the kernel Ker(id− λ̄ρ) in K0(A)/(id− λη)K0(A). �

Lemma 8.22. The kernel of id−γρ in K0(Fρ,η) is isomorphic to the kernel
of id−γρ in K0(Fρ) that is also isomorphic to the kernel of id−λη in K0(A)
such that the quotient group

(Ker(id− γη) in K0(Fρ,η))/(id− γρ)(Ker(id− γη) in K0(Fρ,η))

is isomorphic to the quotient group

(Ker(id− λη) in K0(A))/(id− λρ)(Ker(id− λη) in K0(A)).

Proof. The proofs are similar to the previous discussions. �

Therefore the short exact sequence for K1(Oκρ,η) in Theorem 7.10 is re-
stated as the following proposition.

Proposition 8.23. Assume that (A, ρ, η,Σρ,Ση, κ) forms square and

K1(Fρ,η) = {0}.

Then there exists a short exact sequence:

0 −→ (Ker(id− λη) in K0(A))/(id− λρ)(Ker(id− λη) in K0(A))

−→ K1(Oκρ,η)
−→ Ker(id− λ̄ρ) in (K0(A)/(id− λη)K0(A))

−→ 0.

We give a condition on (A, ρ, η,Σρ,Ση, κ) which makes K1(Fρ,η) = {0}.

Lemma 8.24. Suppose that a C∗-textile dynamical system

(A, ρ, η,Σρ,Ση, κ)

forms square and satisfies K1(A) = {0}. Then K1(Fρ,η) = {0}.

Proof. The algebra Fρ,η is an inductive limit C∗-algebra of subalgebras Fj,k
with inclusion maps (5.3). Let Eli, i = 1, . . . ,m(l) be the minimal projections
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in Al as in Lemma 8.4, which are central in A such that
∑m(l)

i=1 Eli = 1. By
Lemma 8.4, we have

K1(Fj,k) =

m(l)⊕
i=1

K1(Fj,k(i)) =

m(l)⊕
i=1

K1(EliAEli) = K1(A)

so that the condition K1(A) = {0} implies K1(Fρ,η) = {0}. �

A a C∗-textile dynamical system (A, ρ, η,Σρ,Ση, κ) is said to have trivial
K1 if K1(A) = {0}.

Consequently we reach the following K-theory formulae for the C∗-algebra
Oκρ,η by Proposition 8.19 and Proposition 8.23.

Theorem 8.25. Suppose that a C∗-textile dynamical system

(A, ρ, η,Σρ,Ση, κ)

forms square having trivial K1. Then there exist short exact sequences for
their K-groups as in the following way:

0 −→ K0(A)/((id− λη)K0(A) + (id− λρ)K0(A))

−→ K0(Oκρ,η)
−→ Ker(id− λη) ∩Ker(id− λρ) in K0(A)

−→ 0

and

0 −→ (Ker(id− λη) in K0(A))/(id− λρ)(Ker(id− λη) in K0(A))

−→ K1(Oκρ,η)
−→ Ker(id− λ̄ρ) in (K0(A)/(id− λη)K0(A))

−→ 0

where the endomorphisms λρ, λη : K0(A) −→ K0(A) are defined by

λρ([p]) =
∑
α∈Σρ

[ρα(p)] ∈ K0(A) for [p] ∈ K0(A),

λη([p]) =
∑
a∈Ση

[ηa(p)] ∈ K0(A) for [p] ∈ K0(A).

9. Examples

9.1. LR-textile λ-graph systems. A symbolic matrix

M = [M(i, j)]Ni,j=1

is a matrix whose components consist of formal sums of elements of an
alphabet Σ, such as

M =

[
a a+ c
c 0

]
where Σ = {a, b, c}.
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M is said to be essential if there is no zero column or zero row. M is
said to be left-resolving if for each column a symbol does not appear in

two different rows. For example,

[
a a+ b
c 0

]
is left-resolving, but

[
a a+ b
c b

]
is not left-resolving because of b at the second column. We assume that
symbolic matrices are always essential and left-resolving. We denote by ΣM

the alphabet Σ of the symbolic matrix M.
Let M = [M(i, j)]Ni,j=1 and M′ = [M′(i, j)]Ni,j=1 be N × N symbolic

matrices over ΣM and ΣM
′

respectively. Suppose that there is a bijection
κ : ΣM −→ ΣM

′
. Following Nasu’s terminology [34] we say thatM andM′

are equivalent under specification κ, or simply, specified equivalent ifM′ can
be obtained from M by replacing every symbol α ∈ ΣM by κ(α) ∈ ΣM

′
.

That is ifM(i, j) = α1 + · · ·+αn, thenM′(i, j) = κ(α1) + · · ·+ κ(αn). We

write this situation as M
κ∼=M′ (see [34]).

For a symbolic matrix M = [M(i, j)]Ni,j=1 over ΣM, we set for α ∈
ΣM, i, j = 1, . . . , N

AM(i, α, j) =

{
1 if α appears in M(i, j),

0 otherwise.

Put an N ×N nonnegative matrix AM = [AM(i, j)]Ni,j=1 by setting

AM(i, j) =
∑
α∈ΣM

AM(i, α, j).

Let A be an N -dimensional commutative C∗-algebra CN with minimal pro-
jections E1, . . . , EN such that

A = CE1 ⊕ · · · ⊕ CEN .
We set for α ∈ ΣM:

ρMα (Ei) =
N∑
j=1

AM(i, α, j)Ej , i = 1, . . . , N.

Then we have a C∗-symbolic dynamical system (A, ρM,ΣM).
LetM = [M(i, j)]Ni,j=1 andN = [N (i, j)]Ni,j=1 beN×N symbolic matrices

over ΣM and ΣN respectively. We have two C∗-symbolic dynamical systems
(A, ρM,ΣM) and (A, ρN ,ΣN ). Put

ΣMN = {(α, b) ∈ ΣM × ΣN | ρNb ◦ ρMα 6= 0},
ΣNM = {(a, β) ∈ ΣN × ΣM | ρMβ ◦ ρNa 6= 0}.

Suppose that there is a bijection κ from ΣMN to ΣNM such that κ yields a
specified equivalence

(9.1) MN
κ∼= NM

and fix it.
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Proposition 9.1. Keep the above situations. The specified equivalence (9.1)
induces a specification κ : ΣMN −→ ΣNM such that

(9.2) ρNb ◦ ρMα = ρMβ ◦ ρNa if κ(α, b) = (a, β).

Hence (A, ρM, ρN ,ΣM,ΣN , κ) gives rise to a C∗-textile dynamical system
which forms square having trivial K1.

Proof. Since MN
κ∼= NM, one sees that for i, j = 1, 2, . . . , N ,

κ(MN (i, j)) = NM(i, j).

For (α, b) ∈ ΣMN , there exists i, k = 1, 2, . . . , N such that

ρNb ◦ ρMα (Ei) ≥ Ek.

As κ(α, b) appears in NM(i, k), by putting (a, β) = κ(α, b), we have

ρMβ ◦ ρNa (Ei) ≥ Ek.

Hence κ(α, b) ∈ ΣNM. One indeed sees that ρNb ◦ ρMα = ρMβ ◦ ρNa by the

relation MN
κ∼= NM. �

Two symbolic matrices satisfying (9.1) give rise to an LR textile system
that has been introduced by Nasu (see [34]). Textile systems introduced by
Nasu give a strong tool to analyze automorphisms and endomorphisms of
topological Markov shifts. The author has generalized LR-textile systems to
LR-textile λ-graph systems which consist of two pairs of sequences (M, I) =
(Ml,l+1, Il,l+1)l∈Z+ and (N , I) = (Nl,l+1, Il,l+1)l∈Z+ such that

(9.3) Ml,l+1Nl+1,l+2

κ∼= Nl,l+1Ml+1,l+2, l ∈ Z+

through a specification κ ([28]). We denote the LR-textile λ-graph system
by TKMN . Denote by LM and LN the associated λ-graph systems respec-

tively. Since LM and LN have common sequences VMl = V Nl , l ∈ Z+ of
vertices which denoted by Vl, l ∈ Z+, and its common inclusion matrices
Il,l+1, l ∈ Z+. Hence LM and LN form square in the sense of [28, p.170].

Let (AM, ρM,ΣM) and (AN , ρN ,ΣN ) be the associated C∗-symbolic dy-
namical systems with the λ-graph systems LM and LN respectively. Since
both the algebras AM and AN are the C∗-algebras of inductive limit of the
system I∗l,l+1 : C(Vl)→ C(Vl+1), l ∈ Z+, they are identical, which is denoted

by A. It is easy to see that the relation (9.3) implies

(9.4) ρMα ◦ ρNb = ρNa ◦ ρMβ if κ(α, b) = (a, β).

Proposition 9.2. An LR-textile λ-graph system TKMN yields a C∗-textile

dynamical system (A, ρM, ρN ,ΣM,ΣN , κ) which forms square. Conversely,
a C∗-textile dynamical system (A, ρ, η,Σρ,Ση, κ) which forms square yields
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an LR-textile λ-graph system TKMρ

Mη
such that the associated C∗-textile dy-

namical system written (Aρ,η, ρM
ρ
, ρM

η
,ΣM

ρ
,ΣM

ρ
, κ) is a subsystem of

(A, ρ, η,Σρ,Ση, κ) in the sense that the relations:

Aρ,η ⊂ A, ρ|Aρ,η = ρM
ρ
, η|Aρ,η = ρM

η

hold.

Proof. Let TKMN be an LR-textile λ-graph system. As in the above dis-

cussions, we have a C∗-textile dynamical system (A, ρM, ρN ,ΣM,ΣN , κ).
Conversely, let (A, ρ, η,Σρ,Ση, κ) be a C∗-textile dynamical system which
forms square. Put for l ∈ N

Aρl = C∗(ρµ(1) : µ ∈ Bl(Λρ)), Aηl = C∗(ηξ(1) : ξ ∈ Bl(Λη)).

Since Aρl = Aηl and they are commutative and of finite dimensional, the
algebra

Aρ,η = ∪l∈Z+A
ρ
l = ∪l∈Z+A

η
l

is a commutative AF-subalgebra ofA. It is easy to see that both (Aρ,η, ρ,Σρ)
and (Aρ,η, η,Ση) are C∗-symbolic dynamical systems such that

(9.5) ηb ◦ ρα = ρβ ◦ ηa if κ(α, b) = (a, β)

By [27], there exist λ-graph systems Lρ and Lη whose C∗-symbolic dynami-
cal systems are (Aρ,η, ρ,Σρ) and (Aρ,η, η,Ση) respectively. Let (Mρ, Iρ) and
(Mη, Iη) be the associated symbolic matrix systems. It is easy to see that
the relation (9.5) implies

Mρ
l,l+1M

η
l+1,l+2

κ∼=Mη
l,l+1M

ρ
l+1,l+2, l ∈ Z+.

Hence we have an LR-textile λ-graph system TKMρ

Mη
. It is direct to see that the

associated C∗-textile dynamical system is (Aρ,η, ρ|Aρ,η , η|Aρ,η ,Σρ,Ση, κ). �

Let A be an N ×N matrix with entries in nonnegative integers. We may
consider a directed graphGA = (VA, EA) with vertex set VA and edge set EA.
The vertex set VA consists of N vertices which we denote by {v1, . . . , vN}.
We equip A(i, j) edges from the vertex vi to the vertex vj . Denote by EA
the set of the edges. Let ΣA = EA and the labeling map λA : EA −→ ΣA be
defined as the identity map. Then we have a labeled directed graph denoted
by GA as well as a symbolic matrix MA = [MA(i, j)]Ni,j=1 by setting

MA(i, j) =

{
e1 + · · ·+ en if e1, . . . , en are edges from vi to vj ,

0 if there is no edge from vi to vj .

Let B be an N ×N matrix with entries in nonnegative integers such that

(9.6) AB = BA.
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The equality (9.6) implies that the cardinal numbers of the sets of the pairs
of directed edges

ΣAB(i, j) = {(e, f) ∈ EA × EB | s(e) = vi, t(e) = s(f), t(f) = vj} and

ΣBA(i, j) = {(f, e) ∈ EB × EA | s(f) = vi, t(f) = s(e), t(e) = vj}

coincide with each other for each vi and vj . We put ΣAB = ∪Ni,j=1ΣAB(i, j)

and ΣBA = ∪Ni,j=1ΣBA(i, j) so that one may take a bijection κ : ΣAB −→

ΣBA which gives rise to a specified equivalence MAMB

κ∼= MBMA. We
then have a C∗-textile dynamical system

(A, ρMA , ρMB ,ΣA,ΣB, κ)

which we denote by

(A, ρA, ρB,ΣA,ΣB, κ).

The associated C∗-algebra is denoted by OκA,B. The algebra OκA,B depends

on the choice of a specification κ : ΣAB −→ ΣBA. The algebras are 2-graph
algebras of Kumjian and Pask [19]. They are also C∗-algebras associated to
textile systems studied by V. Deaconu [9]. By Theorem 8.25, we have:

Proposition 9.3. Keep the above situations. There exist short exact se-
quences:

0 −→ ZN/((1−A)ZN + (1−B)ZN )

−→ K0(OκA,B)

−→ Ker(1−A) ∩Ker(1−B) in ZN −→ 0

and

0 −→ (Ker(1−B) in ZN )/(1−A)(Ker(1−B) in ZN )

−→ K1(OκA,B)

−→ Ker(1−A) in ZN/(1−B)ZN −→ 0.

We consider 1 × 1 matrices [N ] and [M ] with its entries N and M re-
spectively for 1 < N,M ∈ N. Let GN be a directed graph with one ver-
tex and N directed self-loops. Similarly we consider a directed graph GM
with M directed self-loops at the vertex. The self-loops are denoted by
ΣN = {e1, . . . , eN} and ΣM = {f1, . . . , fM} respectively. As a specification
κ, we take the exchanging map (e, f) ∈ ΣN × ΣM −→ (f, e) ∈ ΣM × ΣN

which we will fix. Put

ρNei (1) = 1, ρMfj (1) = 1 for i = 1, . . . , N, j = 1, . . . ,M.

Then we have a C∗-textile dynamical system

(C, ρN , ρM ,ΣN ,ΣM , κ).

The associated C∗-algebra is denoted by OκN,M .
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Lemma 9.4. OκN,M = ON ⊗OM .

Proof. Let si, i = 1, . . . , N and tj , i = 1, . . . ,M be the generating isometries
of the Cuntz algebra ON and those of of OM respectively which satisfy

N∑
i=1

sis
∗
i = 1,

M∑
j=1

tjt
∗
j = 1.

Let Si, i = 1, . . . , N and Tj , i = 1, . . . ,M be the generating isometries of
OκN,M satisfying

N∑
i=1

SiS
∗
i = 1,

M∑
j=1

TjT
∗
j = 1

and

SiTj = TjSi, i = 1, . . . , N, j = 1, . . . ,M.

The universality of OκN,M subject to the relations and that of the tensor
productON⊗OM ensure us that the correspondence Φ : ON,M −→ ON⊗OM
given by Φ(Si) = si ⊗ 1, Φ(Tj) = 1⊗ tj yields an isomorphism. �

Although we may easily compute the K-groups K∗(OκM,N ) by using the

Künneth formula for Ki(ON ⊗OM ) ([46]), we will compute them by Propo-
sition 9.3 as in the following way.

Proposition 9.5 (cf. [19]). For 1 < N,M ∈ N, the C∗-algebra OκN,M is
simple, purely infinite, such that

K0(OκN,M ) ∼= K1(OκN,M ) ∼= Z/dZ

where d = gcd(N − 1,M − 1) the greatest common divisor of N − 1,M − 1.

Proof. It is easy to see that the group Z/((N−1)Z+(N−1)Z) is isomorphic
to Z/dZ. As Ker(N − 1) = Ker(M − 1) = 0 in Z, we see that

K0(OκN,M ) ∼= Z/dZ.

It is elementary to see that the subgroup

{[k] ∈ Z/(M − 1)Z | (N − 1)k ∈ (M − 1)Z}

of Z/(M − 1)Z is isomorphic to Z/dZ. Hence we have

K1(OκN,M ) ∼= Z/dZ. �

We will generalize the above examples from the view point of tensor prod-
ucts.
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9.2. Tensor products. Let (Aρ, ρ,Σρ) and (Aη, η,Ση) be C∗-symbolic dy-
namical systems. We will construct a C∗-textile dynamical system by taking
tensor product. Put

Ā = Aρ⊗Aη, ρ̄α = ρα⊗id, η̄a = id⊗ηa, Σρ̄ = Σρ, Ση̄ = Ση

for α ∈ Σρ, a ∈ Ση, where ⊗ means the minimal C∗-tensor product ⊗min.
For (α, a) ∈ Σρ×Ση, we see ηb ◦ρα(1) 6= 0 if and only if ηb(1) 6= 0, ρα(1) 6= 0,
so that

Σρ̄η̄ = Σρ × Ση and similarly Ση̄ρ̄ = Ση × Σρ.

Define κ̄ : Σρ̄η̄ −→ Ση̄ρ̄ by setting κ̄(α, b) = (b, α).

Lemma 9.6. (Ā, ρ̄, η̄,Σρ̄,Ση̄, κ̄) is a C∗-textile dynamical system.

Proof. By [2], we have ZĀ = ZAρ ⊗ ZAη so that

ρ̄α(ZĀ) ⊂ ZĀ, α ∈ Σρ̄ and ρ̄a(ZĀ) ⊂ ZĀ, a ∈ Ση̄.

We also have
∑

α∈Σρ̄ ρ̄α(1) =
∑

α∈Σρ ρα(1)⊗ 1 ≥ 1, and similarly∑
a∈Ση̄

η̄(1) ≥ 1

so that both families {ρ̄α}α∈Σρ̄ and {η̄a}a∈Ση̄ of endomorphisms are essential.
Since {ρα}α∈Σρ is faithful on Aρ, the homomorphism

x ∈ Aρ −→
∑
α∈Σρ

⊕ρα(x) ∈
∑
α∈Σρ

⊕Aρ

is injective so that the homomorphism

x⊗ y ∈ Aρ ⊗Aη −→
∑
α∈Σρ

⊕ρα(x)⊗ y ∈
∑
α∈Σρ

⊕Aρ ⊗Aη

is injective. This implies that {ρ̄α}α∈Σρ̄ is faithful. Similarly, so is {η̄a}a∈Ση̄ .
Hence (Ā, ρ̄,Σρ̄) and (Ā, η̄,Ση̄) are both C∗-symbolic dynamical systems.
It is direct to see that η̄b ◦ ρ̄α = ρ̄α ◦ η̄b for (α, b) ∈ Σρ̄η̄. Therefore
(Ā, ρ̄, η̄,Σρ̄,Ση̄, κ̄) is a C∗-textile dynamical system. �

We call (Ā, ρ̄, η̄,Σρ̄,Ση̄, κ̄) the tensor product between (Aρ, ρ,Σρ) and
(Aη, η,Ση). Denote by Sα, α ∈ Σρ̄, Ta, a ∈ Ση̄ the generating partial isome-
tries of the C∗-algebra Oκ̄ρ̄,η̄ for the C∗-textile dynamical system

(Ā, ρ̄, η̄,Σρ̄,Ση̄, κ̄).

By the universality for the algebra Oκ̄ρ̄,η̄ subject to the relations (ρ̄, η̄; κ̄),
the algebra Dρ̄,η̄ is isomorphic to the tensor product Dρ ⊗ Dη through the
correspondence

SµTξ(x⊗ y)T ∗ξ S
∗
µ ←→ SµxS

∗
µ ⊗ TξyT ∗ξ

for µ ∈ B∗(Λρ), ξ ∈ B∗(Λη), x ∈ Aρ, y ∈ Aη.

Lemma 9.7. Suppose that (Aρ, ρ,Σρ) and (Aη, η,Ση) are both free (resp.
AF-free). Then the tensor product (Ā, ρ̄, η̄,Σρ̄,Ση̄, κ̄) is free (resp. AF-free).
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Proof. Suppose that (Aρ, ρ,Σρ) and (Aη, η,Ση) are both free. There exist
increasing sequences Aρl , l ∈ Z+ and Aηl , l ∈ Z+ of C∗-subalgebras of Aρ and
Aη satisfying the conditions of their freeness respectively. Put

Āl = Aρl ⊗A
η
l , l ∈ Z+.

It is clear that:
(1) ρ̄α(Āl) ⊂ Āl+1, α ∈ Σρ̄ and η̄a(Āl) ⊂ Āl+1, a ∈ Ση̄ for l ∈ Z+.
(2) ∪l∈Z+Āl is dense in Ā.
We will show that the condition (3) for Ā in Definition 5.3 holds. Take

and fix arbitrary j, k, l ∈ N with j + k ≤ l. For j ≤ l, one may take
a projection qρ ∈ Dρ ∩ Aρl

′
satisfying the condition (3) of the freeness of

(Aρ, ρ,Σρ), and similarly for k ≤ l, one may take a projection qη ∈ Dη∩Aηl
′
.

Put q = qρ ⊗ qη ∈ Dρ ⊗ Dη(= Dρ̄,η̄) so that q ∈ Dρ̄,η̄ ∩ Ā′l. As the maps
Φρ
l : x ∈ Aρl −→ qρx ∈ qρAρl and Φη

l : y ∈ Aηl −→ qηx ∈ qηAηl are both
isomorphisms, the tensor product

Φρ
l ⊗ Φη

l : x⊗ y ∈ Aρl ⊗A
η
l −→ (qρ ⊗ qη)(x⊗ y) ∈ (qρ ⊗ qη)(Aρl ⊗A

η
l )

is isomorphic. Hence qa 6= 0 for 0 6= a ∈ Āl. It is straightforward to see
that q satisfies the condition (3) (ii) of Definition 5.3. Therefore the tensor
product (Ā, ρ̄, η̄,Σρ̄,Ση̄, κ̄) is free. It is obvious to see that if both (Aρ, ρ,Σρ)
and (Aη, η,Ση) are AF-free, then (Ā, ρ̄, η̄,Σρ̄,Ση̄, κ̄) is AF-free. �

Proposition 9.8. Suppose that (Aρ, ρ,Σρ) and (Aη, η,Ση) are both free.
Then the C∗-algebra Oκ̄ρ̄,η̄ for the tensor product C∗-textile dynamical system

(Ā, ρ̄, η̄,Σρ̄,Ση̄, κ̄) is isomorphic to the minimal tensor product Oρ⊗Oη of the
C∗-algebras between Oρ and Oη. If in particular, (Aρ, ρ,Σρ) and (Aη, η,Ση)
are both irreducible, the C∗-algebra Oκ̄ρ̄,η̄ is simple.

Proof. Suppose that (Aρ, ρ,Σρ) and (Aη, η,Ση) are both free. By the pre-
ceding lemma, the tensor product (Ā, ρ̄, η̄,Σρ̄,Ση̄, κ̄) is free and hence sat-
isfies condition (I). Let sα, α ∈ Σρ and ta, a ∈ Ση be the generating partial
isometries of the C∗-algebras Oρ and Oη respectively. Let Sα, α ∈ Σρ̄ and
Ta, a ∈ Ση̄ be the generating partial isometries of the C∗-algebra Oκ̄ρ̄,η̄. By

the uniqueness of the algebra Oκ̄ρ̄,η̄ with respect to the relations (ρ̄, η̄; κ̄), the
correspondence

Sα −→ sα ⊗ 1 ∈ Oρ ⊗Oη, Ta −→ 1⊗ ta ∈ Oρ ⊗Oη
naturally gives rise to an isomorphism from Oκ̄ρ̄,η̄ onto the tensor product
Oρ ⊗Oη.

If in particular, (Aρ, ρ,Σρ) and (Aη, η,Ση) are both irreducible, the C∗-
algebras Oρ and Oη are both simple so that Oκ̄ρ̄,η̄ is simple. �

We remark that the tensor product (Ā, ρ̄, η̄,Σρ̄,Ση̄, κ̄) does not necessarily
form square. The K-theory groupsK∗(Oκ̄ρ̄,η̄) are computed from the Künneth
formulae for K∗(Oρ ⊗Oη) [46].
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10. Concluding remark

In [31], a different construction of C∗-algebra written OHκ from C∗-textile
dynamical system (A, ρ, η,Σρ,Ση, κ) is studied by using a 2-dimensional
analogue of Hilbert C∗-bimodule. The C∗-algebra OHκ is different from the
C∗-algebra Oκρ,η in the present paper (see also [33], [32]).
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