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Note on the cortex of some exponential
Lie groups

Béchir Dali

Abstract. In this paper, we built a family of 4d-dimensional two-step
nilpotent Lie algebras (gd)d≥2 so that the cortex of the dual of each
gd is a projective algebraic set. We also give a complete description of
the cortex of the exponential connected and simply connected Lie group
G = Rn o R.
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1. Introduction

The cortex of general locally compact group G was defined in [9] as

cor(G) = {π ∈ Ĝ, π is not Hausdorff-separated

from the identity representation 1G},

where Ĝ is the dual of G (set of equivalence classes of unitary irreducible

representations of G). Note that Ĝ is equipped with the topology of Fell
which can be described in terms of weak containment (see [6]) and, in gen-

eral, is not separated. However, if G is abelian, then Ĝ is separated and
hence cor(G) = {1G}.

When G is a connected and simply connected nilpotent Lie group with Lie

algebra g, the Kirillov theory says that g∗/Ad∗(G) and Ĝ are homeomorphic,
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1248 BÉCHIR DALI

where Ad∗(G) denotes the coadjoint representation of G on the dual g∗ of
g. Hence, for this class of Lie groups, cor(G) can be identified with a certain
Ad∗(G)-invariant subset of g∗. From [2], one introduces the cortex of g∗ as

Cor(g∗) = {` = lim
m→∞

Ad∗sm(`m), where {sm} ⊂ G

and {`m} ⊂ g∗such that lim
m→∞

`m = 0}

and we have π` ∈ cor(G) if and only if ` ∈ Cor(g∗). Note that in the case of
general Lie groups, the two definitions are not so easily related. Motivated by
this situation, the authors in [3] define the cortex CV (G) of a representation
of a locally compact group G on a finite-dimensional vector space V as the
set of all v ∈ V for which G.v and {0} cannot be Hausdorff-separated in
the orbit-space V/G. They give a precise description of CV (G) in the case
G = R. Moreover, they consider the subset ICV (G) of V consisting of the
common zeroes of all G-invariant polynomials P on V with P (0) = 0. Note
that when G is a nilpotent Lie group, one has ICV (G) ⊂ CV (G) and they
show that ICV (G) = CV (G) when G is a nilpotent Lie group of the form
G = Rn o R and V = g∗ the dual of the Lie algebra g. This fails for a
general nilpotent Lie group, even in the case of two-step nilpotent Lie group
(see [2]). In [7], the authors show that the cortex of a connected and simply
connected nilpotent Lie group is a semi-algebraic set. In [5] one gives an
explicit description of the cortex of certain class of exponential Lie algebras
(using the results of parametrization in [1]).

Fixing the class of two-step nilpotent Lie algebras, we see that each coad-
joint orbit is a flat (affine) symplectic manifold, however the cortex of that
class of Lie algebras may not be flat and in this paper, we give a generaliza-
tion of the example given in [2] p. 210. Our example consists of a family of
4d-dimensional two-step nilpotent Lie algebras (gd)d≥2 such that the cortex
of each g∗d is the zero set of a homogeneous polynomial of degree d in the

complement z⊥d of the center zd of gd. Finally we give some remarks on the
cortex of Rn oR.

The paper is organized as follows: The next section is a review of the
mathematics and basic tools used throughout the rest of the text. In the
third section, we focus on the class of two-step nilpotent Lie algebras g,
and we give a refinement of Theorem 4.5 ([1] p. 548) by which we give
a description of the algebra of G-invariant polynomials on g∗ (G is the
corresponding Lie group of g). Next we give an interesting example of a
family of two-step nilpotent Lie algebras (gd)d≥2 for which the cortex of the
dual g∗d of each gd is the zero set of homogeneous polynomials of degree
d. In the final section, we consider the exponential nonnilpotent Lie group
G = Rn o R and we give a complete and explicit description of the cortex
of the dual of its Lie algebra.

2. Background material and notations

If G is a locally compact group, Vershik and Karpushev [9] introduce the
notion of cortex of G as the set of all unitary irreducible representations of
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G that cannot be Hausdorff separated from the trivial representation. If G
a Lie group with Lie algebra g, it’s known that G acts on g by the adjoint
action denoted by Ad and on g∗ by the coadjoint action denoted by Ad∗.
Following [3], we recall the following:

Definition 2.1. Let π be a continuous representation of a locally compact
Lie group G on a finite-dimensional (real) space V we define

CV (π) = {v = lim
m→∞

π(sm)vm, lim
m→∞

vm = 0, {sm}m ⊂ G},

and the cortex of invariants of π as

ICV (π) = {v ∈ V : p(v) = p(0) for all G-invariant polynomials on V }.

In particular when G is a locally compact Lie group and π is the contra-
gredient representation of G on the dual g∗ of the Lie algebra g of G, one
has:

Definition 2.2. We define the cortex of g∗ as

Cor(g∗) =
{

lim
m→∞

Ad∗sm(`m) | (sm)m ⊂ G, (`m)m ⊂ g∗ with lim
m→∞

`m = 0
}
,

and the cortex of invariants

ICor(g∗) = {` ∈ g∗ : p(`) = p(0), for all G-invariant polynomial p on g∗}.

When G is a nilpotent connected and simply connected Lie group, Kir-
illov’s theory establishes a bijection between g∗/Ad∗(G) (the orbit space of

the coadjoint representation of G on g∗) and Ĝ (the unitary dual of G).
More precisely, associated to ` ∈ g∗ is an irreducible representation π` of
G, and πf and π` (f ∈ g∗) are equivalent if and only if f ∈ Ad∗(G)`. The
Kirillov correspondence is a homeomorphism provided that g∗/Ad∗(G) is

endowed with the quotient topology [4]. In that case, the unitary dual Ĝ
of G can be parameterized via the orbit-method. More precisely, let ` ∈ g∗

and p` be a Pukanszky polarization at `, we define the representation π`,p`
by

π`,p` := indGP`
χ`,

where P` = exp p` and χ` is the unitary character associated with P` given
by

χ`(expX) = e−i〈`,X〉, X ∈ p`.

Then:

Theorem 2.1 (A. A. Kirillov). Let G be a simply connected nilpotent real
Lie group with Lie algebra g. If ` ∈ g∗, there exists a polarization p(`)
of g for ` such that the monomial representation π`,p(`) := indGexp p`

χ` is
irreducible and of trace class. If `′ is an element of g∗ which belongs to the
coadjoint orbit of ` and p`′ is a polarization of g for `′, then the monomial
representations π`,p` and π`′,p`′ are unitarily equivalent. Conversely, if h
and h′ are polarizations of g for ` ∈ g∗ and `′ ∈ g∗ respectively such that the
monomial representations π`,h and π`′,h′ of G are unitarily equivalent, then
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` and `′ belong to the same coadjoint orbit of G in g∗. Finally, for each
irreducible unitary representation π of G, there exists a unique coadjoint
orbit O of G in g∗ such that for any linear from ` and each polarization h of
g for `, the representations π and indGexp h χ` are unitarily equivalent. Any
irreducible unitary representation of G is strongly trace class. Moreover the
mapping

K : g∗/Ad∗(G) −→ Ĝ
O` 7→ [π`,p(`)]

is a homeomorphism (the Kirillov correspondence).

The above Kirillov’s result was generalized immediately to the class known
as exponential solvable Lie groups, the Kirillov correspondence is still a
bijection. For more details, see [8]. With this in mind, we see that if G is
an exponential Lie group, then π := π`,p` ∈ cor(G) (cortex of G) if and only
if ` ∈ Cor(g∗). However if G is exponential nonnilpotent, ICor(g∗) may not
be defined.

Throughout, G will always denote a connected and simply connected Lie
group with (real) Lie algebra g. We denote by z the center of g (if it exists)
and g∗ denotes the dual of g. If ` ∈ g∗, O` denotes the coadjoint orbit of `.

3. The two-step nilpotent Lie algebras

Let G be a connected and simply connected two-step nilpotent Lie group
with Lie algebra g, then if O` = Ad∗(G)`, one has

O` = {`}+ T`O`,
and

T`O` = g(`)⊥,

where T`O` is the tangent space ofO` at `, by which we see that the coadjoint
orbits in two-step nilpotent Lie algebras are flat (and symplectic) manifolds.
In [2], the authors show the following:

Proposition 3.1. Let g be a nilpotent Lie algebra of class 2 (i.e, [g, [g, g]] =
0), and let G = exp g be the associated Lie group. Denote by ad∗ the coad-
joint representation of g on g∗. Let f ∈ g∗. Then the corresponding repre-
sentation πf of G belongs to cor(G) if and only if f belongs to the closure
of the subset {ad∗X(`), X ∈ g, ` ∈ g∗} of g∗.

From this we can conclude the following:

Corollary 3.2. Let g is a two-step nilpotent Lie algebra. If T`O` denotes
the tangent space to the coadjoint orbit O` at `, then the Cor(g∗) is the
closure in g∗ of the set ⋃

`∈g∗
T`O` =

⋃
O`∈g∗/Ad∗(G)

TO`,

where TO` is the fiber tangent of O` and g∗/Ad∗(G) is the space of coadjoint
orbits in g∗.
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Proof. Indeed, for any ` ∈ g∗, one has

{ad∗X(`);X ∈ g} = T`O`,
and hence with Proposition (3.1), the conclusion yields. �

Here we give a refinement of Theorem 4.5 ([1] p. 548).

Proposition 3.3. Let G be a two-step nilpotent Lie group with Lie algebra
g, choose a real Jordan–Hölder basis {Xj}. Let P be the corresponding
fine stratification of g∗, and let Ω be a layer belonging to P. Then there
is an explicit construction of an open set U in g∗ and real-valued functions
p1, p2, . . . , pd, q1, q2, . . . , qd on U , such that U contains Ω, and such that for
each coadjoint orbit O` in Ω, p1|O`

, p2|O`
, . . . , pd|O`

, q1|O`
, q2|O`

, . . . , qd|O`
are

real-valued, global canonical coordinates for O`. Moreover, for each 1 ≤ j ≤
n, 0 ≤ u ≤ d, there are rational functions αj,u and βj,u such that for each
1 ≤ j ≤ n and ` ∈ Ω one has

`j := `(Xj) =
∑

u: ju≤j
αj,u(`)pu +

d∑
r=1

βj,u(`)qu.

Proof. Recall that the construction of pr, qr depends on the flag

(gj = span{X1, . . . , Xj})1≤j≤n.
More precisely if jt = min{jr, 1 ≤ r ≤ d}, then:

p
(1)
1 = `it , q

(1)
1 =

`jt
`[Xjt , Xit ]

.

Now suppose we have built p
(m)
1 , . . . , p

(m)
k , . . . , q

(m)
1 , . . . , q

(m)
k , then for gm+1

one has either m + 1 /∈ e and in this case p
(m+1)
r = p

(m)
r , q

(m+1)
r = q

(m)
r or

m+ 1 = jk+1 ∈ e and in this case

q(m+1)
r (`) = q(m)

r (exp−qXm+1`) = q(m)
r (`)− q{xm+1, q

(m)
r },

and

p(m+1)
r (`) = p(m)

r (exp−qXm+1`) = p(m)
r (`)− q{xm+1, p

(m)
r },

with q = y
`[Xm+1,y]

, where y is a Gm-invariant and non-Gm+1-invariant

polynomial function such that {xm+1, y} is nonvanishing on Ω (here Gj =
exp gj). �

Corollary 3.4. Let e = {e1 < · · · < e2d} be the set of jump indices cor-
responding to the minimal layer in g∗. Let F be the cross-section mapping
associated with the minimal layer Ω then F (`) = (F1(`), . . . , Fn(`)) and let
e = {e1 < · · · < e2d} be the corresponding jump indices then

Fk(`) =


`k, if k = 1, . . . e1 − 1;

0, if k ∈ e;

`k +
∑

j:ej≤k−1 aj(`)`ej , if k /∈ e, k ≥ e1,
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where each of a1(`), . . . , ak−1(`) is (nontrivial) a rational regular function
on the minimal layer depending only upon `0 = `|z (z is the center of g).

Proof. For each layer in g∗, the mapping (`e1 , . . . , `e2d) 7→ (pi(`), qi(`))1≤i≤d
is a rational diffeomorphism whose inverse is also rational on any layer, then
we consider the minimal layer and by Proposition 3.3, we can write

pi(`) =
∑
j

uj(`1, . . . , `p)`ej , qi(`) =
∑
j

vj(`1, . . . , `p)`ej , i = 1, . . . , d,

where uj and vj are rational regular functions on the minimal layer. Then
after substituting each of the functions (pi, qi)i by the above expressions in
the coordinate functions (`k)k/∈e we obtain the invariant functions of g∗ and
this ends the proof. �

Corollary 3.5. If g is a two-step nilpotent Lie algebra and g∗ denotes its
dual, then

ICor(g∗) = {` ∈ g∗ : `(Z) = 0 ∀Z ∈ z}.

Proof. The nontrivial coordinates of the cross-section mapping

(Fk(`))k≥p,k/∈e

associated with the minimal layer can be written as

Fk(`) =
B(`0)`k +Ak(`

0)

B(`0)
, k /∈ e, k > p := e1,

where each of B(`0) and B(`0)`k + Ak(`
0), (k ≥ p, k /∈ e) is a nontrivial

G-invariant polynomial on g∗, with `0 = `|z. Note that these polynomials
are homogeneous and for each k ≥ p, k /∈ e, one has

deg(B(`0)`k +Ak(`
0)) = deg(B(`0)) + 1.

Finally the ring Pol(g∗)G of G-invariant polynomials is spanned by the poly-
nomials

`1, . . . , `p, B(`0),
(
B(`0)`k +Ak(`

0)
)
k≥p,k/∈e ,

and this ends the proof. �

3.1. Main example. In [2], one introduces an interesting example of 8-
dimensional two-step nilpotent Lie algebra g so that the corresponding cor-
tex in g∗ is a projective algebraic set given by a quadric and such that
Cor(g∗) ( ICor(g∗). Here we give a generalization of that example. Let
d ∈ N with d ≥ 2 and let gd be the Lie algebra with basis

(Z1, . . . , Zd, Y1, Y2, . . . , Y2d−1, Y2d, X1, . . . , Xd),

and nontrivial brackets

[Xi, Y2i−1] = Z1, i = 1, . . . , d,

[Xk, Y2k] = Zk+1, k = 1, . . . , d− 1,

[Xd, Y2d] = Z2 + · · ·+ Zd.
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Let’s denote the center of gd by zd = span{Z1, . . . , Zd} and Gd the corre-
sponding connected and simply connected Lie group.

Proposition 3.6. For each Lie algebra gd (d ≥ 2), one has:

(i) The minimal layer in g∗d is given by

Ωd = {` ∈ g∗d : `(Z1) 6= 0}.

(ii) The coadjoint orbits in Ωd are 2d-dimensional and if

` =
d∑

k=1

(λkZ
∗
k + βkX

∗
k) +

2d∑
k=1

γkY
∗
k ∈ Ωd,

ξ = ((zi)1≤i≤d, (yj)1≤j≤2d, (xk)1≤k≤d) ∈ G`,

then

ξ =



zk = λk, if k = 1, . . . , d;

y2k−1 = γ2k−1 + sjλ1, if k = 1, . . . , d− 1;

y2k = γ2k + sjλk+1, if k = 1, . . . , d− 1;

y2d−1 = γ2d−1 + sdλ1;

y2d = γ2d + sd(λ2 + · · ·+ λd);

xk = βk + tk if k = 1, . . . , d.

(iii) The algebra of G-invariant polynomials is

Pol(g∗d)
Gd = R[z1, . . . , zd, z1y2 − z2y1, . . . , z1y2d−2 − zd−1y2d−3,

z1y2d − (z2 + · · ·+ zd)y2d−1].

Proof. Let Bd = (U1, . . . , U4d) be the Jordan–Hölder basis defined by

Ui =


Zi, if 1 ≤ i ≤ d,
Yi−d, if d+ 1 ≤ i ≤ 3d;

Xi−3d, if 3d+ 1 ≤ i ≤ 4d.

Using the methods of [1], we can see that the minimal layer in g∗d is

Ωd = {` ∈ g∗ : `(U1) = `(Z1) 6= 0},

which corresponds to the set of jump indices ed = id ∪ jd with

id = {d+ 1 < d+ 3 < · · · < 3d− 1},
jd = {3d+ 1, 3d+ 2, . . . , 4d}.

Then by using the methods of [1] (the parametrization of coadjoint orbits)
we can deduce the results of (ii) and (iii). �

Remark 3.1.
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(i) If Ωd is the minimal layer given as above, then the canonical coor-
dinates on Ωd (see [1]) are given by

pi(`) = xi, qi(`) =
y2i−1
z1

, i = 1, . . . , d.

(ii) The cross-section Σd is given by

Σd =

(∑
k/∈e

RU∗k

)
∩ Ωd =

(
d∑

k=1

RZ∗k + RY ∗2k

)
∩ Ωd.

(iii) The cross-section mapping Fd : Ωd → Σd is as follows

Fd(zi, yj , xk) =

d∑
i=1

ziZ
∗
i

+

d−1∑
i=1

(
y2i −

zi+1

zi
y2i−1

)
Y ∗2i +

(
y2d −

z2 + · · ·+ zd
z1

)
Y ∗2d,

where (Z∗1 , . . . , Z
∗
d , Y

∗
1 , . . . , Y

∗
2d, X

∗
1 , . . . , X

∗
d) is the dual basis of B.

Proposition 3.7. Let’s denote ` =
∑d

i=1(ziZ
∗
i +xiX

∗
i )+

∑2d
j=1 yjY

∗
j ∈ g∗ by

` = (zi, yj , xk), where (Z∗1 , . . . , Z
∗
d , Y

∗
1 , . . . , Y

∗
2d, X

∗
1 , . . . , X

∗
d) is the dual basis

in g∗d. Then the cortex of g∗d is the projective algebraic set given by

Cor(g∗d) =

{
` = (zi, yj , xk) : z1 = · · · = zd =

= y2d−1

(
d−1∑
i=1

y2i

d−1∏
j=1,j 6=i

y2j−1

)
− y2d

d−1∏
j=1

y2j−1 = 0

}
.

Proof. Note that since Ωd is dense in g∗d (Zariski open subset in g∗d) then

Cor(g∗d) =
{

lim
m

Ad∗expXm
`m, (`m) ∈ g∗d, (`m)m ∈ Ωd, and lim

m
`m = 0

}
.

On the other hand if O` = G`, then the tangent space T`O` at ` is

T`O` = {ad∗X(`), ` ∈ Ωd, X ∈ Vect{Y2k−1, Xk, 1 ≤ k ≤ d}}.

Now if ` = (λi, γj , βk) ∈ Ωd and ξ ∈ T`O`, with

ξ =
d∑
i=1

(ziZ
∗
i + xiX

∗
i ) +

2d∑
j=1

yiY
∗
i ,
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then 

zi = 0, if i = 1, . . . , d;

y2j−1 = sjλ1, if j = 1, . . . , d− 1;

y2j = sjλj+1, if j = 1, . . . , d− 1;

y2d−1 = sdλ1;

y2d = sd(λ2 + · · ·+ λd);

xk = tk, if k = 1, . . . , d.

From which we can see that ξ = (zi, yj , xk) ∈ T`O if and only if
zi = 0, if i = 1, . . . , d;

y2j = y2j−1
λj+1

λ1
, if j = 1, . . . , d− 1;

y2d = y2d−1
λ2+···+λd

z1
.

with y2j−1, xj are free variables in R (j = 1, . . . , d). Then we see that a.e.
ξ ∈ T`O satisfies

y2d
y2d−1

=
d−1∑
j=1

y2j
y2j−1

,

and hence

Cor(g∗d) =

` = (zi, yj , xk) ∈ g∗d : zi = 0,

y2d−1

d−1∑
i=1

y2i

d−1∏
j=1,j 6=i

y2j−1

− y2d d−1∏
j=1

y2j−1 = 0

 . �

Corollary 3.8. For each integer d ≥ 2 if zd denotes the center of the Lie
algebra gd, then

Cor(g∗d) $ ICor(g∗d) = z⊥d .

Proof. The ring of G-invariant polynomials on g∗ is given by

Pol(g∗d)
Gd =

R
[
z1, . . . , zd,

(
z1y2i − zi+1y2i−1

)
1≤i≤d−1, z1y2d − (z2 + · · ·+ zd)y2d−1

]
,

where Gd is the connected and simply connected (nilpotent) Lie group cor-
responding to gd. Thus

{` ∈ g∗d : P (`) = P (0), ∀P ∈ Pol(g∗d)
Gd} = z⊥d ,

where

z⊥d = {` ∈ g∗d : `(Z) = 0, ∀Z ∈ zd}.
hence with Proposition 3.7, we conclude that

Cor(g∗d) $ ICor(g∗d) = z⊥d . �
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4. The Lie group Rn o R
In [3], in there is a study of the cortex of the nilpotent Lie group

G = Rn oR,
the authors show that

Cor(g∗) = ICor(g∗)

= {` ∈ g∗ : P (`) = P (0), P is G invariant polynomial on g∗}.
The definition of ICor(g∗) may not exist if G is not nilpotent but we can
define G-invariant (or semi-invariant) functions. Let’s consider the following
example:

Example 4.1. Let (X1, X2, A) be a basis in g with

[A,X1, ] = X1, [A,X2] = −2X2.

Let’s identify g∗ with R3 under the dual basis (X∗1 , X
∗
2 , A

∗), and denote
x = (x1, x2, a) ∈ g∗, then the minimal layer is

Ω = {` = (`1, `2, a) ∈ g∗ : `1 6= 0}.
If ` = (`1, `2, a) ∈ g∗, then the coadjoint orbit of ` is given by

O` = {x ∈ g∗ : x = (`1e
t, `2e

−2t, a+ s), t, s ∈ R},
that is,

O` = {x = (x1, x2, x3) ∈ g∗ : sign(x1) = sign(`1), x
2
1x2 = `21`2, x3 ∈ R}.

We can check that the cortex of g∗ is given by

Cor(g∗) = {` = (`1, `2, `3) ∈ g∗ : `1`2 = 0}.
On other hand, the cross-section mapping is as follows

F : Ω→ Ω, ` 7→
(

sign(`1) =
`1
|`1|

, `21`2, 0

)
,

from which we see the existence of G-invariant polynomial p(x) = x21x2 and
we see that

Cor(g∗) = {` ∈ g∗ : p(`) = 0}.

In this example if we let [A,X1] = X1, [A,X2] = −
√

2X2 then there are

no G-invariant polynomials on g∗, however the function x
√
2

1 x2 is G-invariant
and the cortex is still the same. This example can be generalized. To this
end, if g = Rn⊕RA, we denote sp(adA) = {λ1, . . . , λn} the set of eigenvalues
of adA, and for λ ∈ sp(adA), we set.

Eλ =
⋃
m∈N

ker(adA− λ)m,

and
E+ =

⋃
λ∈sp(adA),<(λ)>0

Eλ,
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E− =
⋃

λ∈sp(adA),<(λ)<0

Eλ.

Then we have the following:

Proposition 4.2. Let G = Rn oR be the Lie group whose Lie algebra g =
Rn⊕RA. Suppose that adA is diagonalizable, and let sp(adA) = {λ1, . . . , λn}
denote the set of eigenvalues of adA.

(a) If {<(λj)}1≤j≤n ⊂ (0,∞) or {<(λj)}1≤j≤n ⊂ (−∞, 0) then

Cor(g∗) = g∗.

(b) If
∏n
j=1<(λj) < 0. Then the cortex of g∗ is the union of two vector

spaces. More precisely

Cor(g∗) = (V + + RA∗) ∪ (V − + RA∗),
where

V + = (E+)
∗
, V − = (E−)

∗
.

Proof. If sp(adA) = {λ1, . . . , λn} denotes the set of eigenvalues of adA
(restricted to Rn). Then identifying g with Rn+1 (respectively Cn+1 if some
of the eigenvalues of adA are nonreal), the coadjoint orbit of any ` ∈ g∗ is
parameterized as follows

O` = {(`1eλ1t, . . . , `neλnt, `n+1 + s), t, s ∈ R}.
Since <(λj) 6= 0, j = 1, . . . , n, then for any (α1, . . . , αn) ∈ Cn the linear

system  eλ1t 0 . . .

0
. . . 0

. . . 0 eλnt


 `1

...
`n

 =

 α1
...
αn

 ,

has a unique solution (`1, . . . , `n)> with

‖(`1, . . . , `n)>‖ = ‖(e−λ1tα1, . . . , e
−λntαn)>‖.

(a) If {<(λj)}1≤j≤n ⊂ (0,∞) or {<(λj)}1≤j≤n ⊂ (−∞, 0) then for any

(α1, . . . , αn, β) ∈ g∗ it exists {x(m) = x(tm, `
(m))}m ∈ g∗ with {`(m)}m ⊂ Ω

and limm:<(λ1)tm→∞ `
(m) = 0 such that

lim
m:<(λ1)tm→∞

x(m) = (α1, . . . , αn, β),

and hence the cortex is all of g∗.
(b) In that case, let’s rearrange the basis (X1, . . . , Xn) in Cn such that

the matrix of adA in this basis is diag(λ1, . . . , λk0 , λk0+1, . . . , λn) with

<(λ1) > 0, . . . ,<(λk0) > 0,<(λk0+1) < 0, . . . ,<(λn) < 0,

then for any x = (x1, . . . , xn, xn+1) ∈ O` one has{
|`1|λk |xk|λ1 = |`k|λ1 |x1|λk , k ≤ k0,
|xk|λ1 |x1|−λk = |`k|λ1 |`1|−λk , k ≥ k0 + 1.
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Hence one has

Cor(g∗) = {` ∈ g∗ : ` = (`1, . . . , `k0 , 0, . . . , 0, `n+1)}
∪ {` ∈ g∗ : ` = (0, . . . , 0, `k0+1, . . . , `n, `n+1)}. �

Remark 4.1. Let g = Rn ⊕ RA be a real Lie algebra. Suppose that there
exists a basis (X1, . . . , Xn) in Rn such that

[A,Xj ] = mjXj , j = 1, . . . , n,

with {m1, . . . ,mn} ⊂ R×.

(a) If {mk
m1
}1≤k≤n ∈ N, then any generic coadjoint orbit of ` (`1 6= 0) is

given by

O` =

x = (x1, . . . , xn, xn+1) ∈ g∗ : x1`1 > 0, xk =
`k

`
mk
m1
1

x
mk
m1
1 ,

k = 2, . . . , n, xn+1 ∈ R

 ,

and hence, it is an open semi-algebraic subset in g∗.
(b) Now suppose that {m1, . . . ,mn} ⊂ Z× with

∏n
j=1mj < 0. We can

assume the existence of a basis (X1, . . . , Xn) in Rn so that with
respect to this basis the matrix of adA is

adA = diag(m1, . . . ,mk0 ,mk0+1, . . . ,mn)

with m1 > 0, . . . ,mk0 > 0,mk0+1 < 0, . . . ,mn < 0. Then for any
x = (x1, . . . , xn, xn+1) ∈ O` (with `1 6= 0) one has

x1`1 > 0,

`
mj

1 xm1
j = `m1

j x
mj

1 , j = 2, . . . , k0,

x
−mj

1 xm1
j = `

−mj

1 `m1
j , j = k0 + 1, . . . n.

On other hand, the polynomials

pi,j(`) = `
−mj

i `mi
j , i = 1, . . . , k0, j = k0 + 1, . . . , n

are G-invariant on g∗ and the cortex is the union of two vector spaces
given by:

Cor(g∗) = {` ∈ g∗ : pi,j(`) = 0 ∀1 ≤ i ≤ k0, k0 + 1 ≤ j ≤ n}.

Corollary 4.3. Let g = Rn ⊕ RA be a real Lie algebra. Let’s denote
sp(adA) = {λ1, . . . , λn} ⊂ C the set of eigenvalues of adA. If

{<(λj)}1≤j≤n ⊂ (0,∞) or {<(λj)}1≤j≤n ⊂ (−∞, 0),

then

Cor(g∗) = g∗.
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Proof. First let’s suppose that the real endomorphism adA has a single
eigenvalue λ ∈ C \ iR. According to λ is real or complex, we can suppose
the existence of a basis in Rn (resp. in Cn) such that the matrix of adA is
written in a Jordan block form:

adA = Jλ =


λ 1 0 . . .

0
. . .

. . .
. . .

...
. . .

. . . 1
0 . . . 0 λ


The coadjoint orbit of ` = (`1, . . . , `n, `n+1) is given by

O` =


xk = eλt

∑
j≥1,i+j=k

ti

i!
`j


1≤k≤n

, xn+1 = `n+1 + s

 , t, s ∈ R

 .

Now let’s remark that for any α ∈ Rn(resp. in Cn), since <(λ) 6= 0, the
linear system

eλt


1 0 . . . 0

t 1 0
. . .

...
. . .

. . . 0
tn−1

(n−1)! . . . t 1




`1
`2
...
`n

 =


α1

α2
...
αn


has a unique solution and if we let

M(t) =


1 0 . . . 0

t 1 0
. . .

...
. . .

. . . 0
tn−1

(n−1)! . . . t 1

 ,

then M(t) is a unipotent matrix whose inverse M−1(t) = (pi,j(t))1≤i,j≤n is
also unipotent and all its entries pi,j(t) are polynomial functions in t, then

[`1, . . . , `n]⊥ = e−λtM−1(t)[α1, . . . , αn]⊥

and

‖[`1, . . . , `n]⊥‖ = e−<(λ)tF (t),

where F (t)2 is polynomial function in t and then

lim
<(λ)t→∞

e−<(λ)tF (t) = 0,

For instance for any α = [α1, . . . , αn] ∈ Rn if λ is real (resp. α ∈ Cn if
λ ∈ C \ iR) and {tm}m ⊂ R such that limm→∞ tm<(λ) = ∞ it exists

{`(m)
1 , . . . , `

(m)
n }m such that

lim
m→∞

eλtmM(tm)[`
(m)
1 , . . . , `(m)

n ]⊥ = [α1, . . . , αn]⊥



1260 BÉCHIR DALI

and
lim
m→∞

`
(m)
1 = · · · = lim

m→∞
`(m)
n = 0.

This shows that the cortex of g∗ coincides with g∗. Finally if adA has more
then one single eigenvalue, we can write adA = diag(Jλ1 , . . . , Jλk) where
each Jλ is a Jordan block matrix. �

Remark 4.2. Let g = RX1 ⊕ RX2 ⊕ RA with

[A,X1] = X1, [A,X2] = X2.

In this example the cortex of g∗ is g∗. The cross-section mapping of the
minimal layer is given by

F (`1, `2, `3) =

(
`1
|`1|

,
`2
|`1|

, 0

)
, `1 6= 0.

On other hand, we remark that the rational function r(`1, `2, `3) = `2
`1

is

G-invariant on Ω = {` = (`1, `2, `3) ∈ g∗ : `1 6= 0} and

Cor(g∗) ! {` ∈ Ω : r(`) = 0}.

Corollary 4.4. Let g = Rn ⊕ RA, be a real Lie algebra. Let’s denote
sp(adA) = {λ1, . . . , λn} ⊂ C the set of eigenvalues of adA. If

∏n
j=1<(λj) <

0, then the cortex of g∗ is the union of two vector spaces. More precisely,
with the notations of Proposition 4.2, one has

Cor(g∗) = (V + + RA∗) ∪ (V − + RA∗).

Remark 4.3. Let g = Rn ⊕ RA be a real Lie algebra, and assume that all
the eigenvalues of adA are purely imaginary. Let’s denote h = Rn ⊕ RN
where N is the nilpotent part in the Jordan decomposition of A, then by
[3], one has

Cor(g∗) = Cor(h∗).
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