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A note on tetrablock contractions

Haripada Sau

Abstract. A commuting triple of operators (A,B, P ) on a Hilbert
space H is called a tetrablock contraction if the closure of the set

E =

{
(a11, a22,detA) : A =

(
a11 a12
a21 a22

)
with ‖A‖ < 1

}
is a spectral set. In this paper, we construct a functional model and
produce a set of complete unitary invariants for a pure tetrablock con-
traction. In this construction, the fundamental operators, which are the
unique solutions of the operator equations

A−B∗P = DPX1DP and B −A∗P = DPX2DP ,

where X1, X2 ∈ B(DP ) play a pivotal role. As a result of the functional
model, we show that every pure tetrablock isometry (A,B, P ) on an
abstract Hilbert space H is unitarily equivalent to the tetrablock con-
traction (MG∗

1+G2z,MG∗
2+G1z,Mz) on H2

DP∗ (D), where G1 and G2 are

the fundamental operators of (A∗, B∗, P ∗). We prove a Beurling–Lax–
Halmos type theorem for a triple of operators (MF∗

1 +F2z,MF∗
2 +F1z,Mz),

where E is a Hilbert space and F1, F2 ∈ B(E). We also deal with a nat-
ural example of tetrablock contraction on a functions space to find out
its fundamental operators.
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1. Introduction

The set tetrablock is defined as

E =

{
(a11, a22,detA) : A =

(
a11 a12

a21 a22

)
with ‖A‖ < 1

}
.

This domain was studied in [1] and [2] for its geometric properties. Let A(E)
be the algebra of functions holomorphic in E and continuous in Ē. The
distinguished boundary of E (denoted by b(E)), i.e., the Shilov boundary
with respect to A(E), is found in [1] and [2] to be the set

bE =

{
(a11, a22,detA) : A =

(
a11 a12

a21 a22

)
whenever A is unitary

}
.

The operator theory on tetrablock was first developed in [7].

Definition 1.1. A triple (A,B, P ) of commuting bounded operators on a
Hilbert space H is called a tetrablock contraction if E is a spectral set for
(A,B, P ), i.e., the Taylor joint spectrum of (A,B, P ) is contained in E and

||f(A,B, P )|| ≤ ||f ||∞,E = sup{|f(x1, x2, x3)| : (x1, x2, x3) ∈ E}

for any polynomial f in three variables.

It turns out that in case the set is polynomially convex as in the case of
tetrablock, the condition that the Taylor joint spectrum lies inside the set,
is redundant, see Lemma 3.3 in [7]. There are analogues of unitaries and
isometries.

A tetrablock unitary is a commuting pair of normal operators (A,B, P )
such that its Taylor joint spectrum is contained in bE.

A tetrablock isometry is the restriction of a tetrablock unitary to a joint
invariant subspace. See [7], for several characterizations of a tetrablock
unitary and a tetrablock isometry.

Consider a tetrablock contraction (A,B, P ). Then it is easy to see that
P is a contraction.

Fundamental equations for a tetrablock contraction are introduced in [7].
And these are

(1.1) A−B∗P = DPF1DP , and B −A∗P = DPF2DP

where DP = (I − P ∗P )
1
2 is the defect operator of the contraction P and

F1, F2 are bounded operators on DP , where DP = RanDP . Theorem 3.5 in
[7] says that the two fundamental equations can be solved and the solutions
F1 and F2 are unique. The unique solutions F1 and F2 of (1.1) are called the
fundamental operators of the tetrablock contraction (A,B, P ). Moreover,
w(F1) and w(F2) are not greater than 1, where w(X), for a bounded operator
X on a complex Hilbert space H, denotes the numerical radius of X, i.e.,

w(X) = {|〈Xh, h〉| : where h ∈ H with ‖h‖ = 1}.
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The adjoint triple (A∗, B∗, P ∗) is also a tetrablock contraction as can
be seen from the definition. By what we stated above, there are unique
G1, G2 ∈ B(DP ∗) such that

(1.2) A∗ −BP ∗ = DP ∗G1DP ∗ and B∗ −AP ∗ = DP ∗G2DP ∗ .

Moreover, w(G1) and w(G2) are not greater than 1.
In [7] (Theorem 6.1), it was shown that the tetrablock is a complete

spectral set under the conditions that F1 and F2 satisfy

(1.3) [X1, X2] = 0 and [X1, X
∗
1 ] = [X2, X

∗
2 ]

in place of X1 and X2 respectively. Where [X1, X2], for two bounded oper-
ators X1 and X2, denotes the commutator of X1 and X2, i.e., the operator
X1X2 − X2X1. In Section 2, we show that if the contraction P has dense
range, then commutativity of the fundamental operators F1 and F2 is enough
to have a dilation of the tetrablock contraction (A,B, P ). In fact, under the
same hypothesis we show that G1 and G2 also satisfy (1.3), in place of X1

and X2 respectively. This is the content of Theorem 2.6.
For a Hilbert space E , H2

E(D) stands for the Hilbert space of E-valued
analytic functions on D with square summable Taylor series co-efficients
about the point zero. When E = C, we write H2

E(D) as H2(D). The space
H2
E(D) is unitarily equivalent to the space H2(D) ⊗ E via the map znξ →

zn ⊗ ξ, for all n ≥ 0 and ξ ∈ E . We shall identify these unitarily equivalent
spaces and use them, without mention, interchangeably as per notational
convenience

In [6], Beurling characterized invariant subspaces for the ’multiplication
by z’ operator on the Hardy space H2(D). In [11], Lax extended Beurling’s
result to the finite-dimensional vector space valued Hardy spaces. Then
Halmos extended Lax’s result to infinite-dimensional vector spaces in [10].
The extended result is the following.

Theorem 1.2 (Beurling–Lax–Halmos). Let 0 6=M be a closed subspace of
H2
E(D). Then M is invariant under Mz if and only if there exist a Hilbert

space E∗ and an inner function (E∗, E ,Θ) such that M = ΘH2
E∗(D).

In Section 3, we prove a Beurling–Lax–Halmos type theorem for a triple
of operators, which is the first main result of this paper. More explic-
itly, given a Hilbert space E and two bounded operators F1, F2 ∈ B(E), we
shall see that a nonzero closed subspace M of H2

E(D) is invariant under
(MF ∗1 +F2z,MF ∗2 +F1z,Mz) if and only if

(F ∗1 + F2z)Θ(z) = Θ(z)(G1 +G∗2z),

(F ∗2 + F1z)Θ(z) = Θ(z)(G2 +G∗1z),

for all z ∈ D for some unique G1, G2 ∈ B(E∗), where (E∗, E ,Θ) is the
Beurling–Lax–Halmos representation of M. Along the way we shall see
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that if F1 and F2 are such that (MF ∗1 +F2z,MF ∗2 +F1z,Mz) on H2(E) is a tetra-
block isometry, then (MG1+G∗2z

,MG2+G∗1z
,Mz) is also a tetrablock isometry

on H2(E∗). This is the content of Theorem 3.1.
A contraction P on a Hilbert space H is called pure if P ∗n → 0 strongly,

i.e., ‖P ∗nh‖2 → 0, for all h ∈ H. A contraction P is called completely-
nonunitary (c.n.u.) if it has no reducing sub-spaces on which its restriction
is unitary. A tetrablock contraction (A,B, P ) is called a pure tetrablock
contraction if the contraction P is pure.

Sz.-Nagy and Foias developed the model theory for a contraction [13].
There have been numerous developments in model theory of commuting tu-
ples associated with domains in Cn(n ≥ 1) [4, 3, 8, 9, 12]. Section 4 gives a
functional model of pure tetrablock contractions, the second main result of
this paper. In this model theory, the fundamental operators play a pivotal
role. We shall see that if (A,B, P ) is a pure tetrablock contraction on a
Hilbert space H, then the operators A,B and P are unitarily equivalent to
PHP

(I⊗G∗1+Mz⊗G2)|HP
, PHP

(I⊗G∗2+Mz⊗G1)|HP
and PHP

(Mz⊗IDP∗ )|HP

respectively, where G1 and G2 are fundamental operators of (A∗, B∗, P ∗) and
HP is the model space of a pure contraction P , as in [13]. This is the con-
tent of Theorem 4.2. As a corollary to this theorem, we shall see that every
pure tetrablock isometry (A,B, P ) on an abstract Hilbert space H is uni-
tarily equivalent to the tetrablock contraction (MG∗1+G2z,MG∗2+G1z,Mz) on

H2
DP∗

(D), where G1 and G2 are the fundamental operators of (A∗, B∗, P ∗).
Two equations associated with a contraction P and its defect operators

that have been known from the time of Sz.-Nagy and that will come handy
are

(1.4) PDP = DP ∗P

and its corresponding adjoint relation

(1.5) DPP
∗ = P ∗DP ∗ .

Proof of (1.4) and (1.5) can be found in [13, ch. 1, sec. 3].
For a contraction P , the characteristic function ΘP is defined by

(1.6) ΘP (z) = [−P + zDP ∗(IH − zP ∗)−1DP ]|DP
for all z ∈ D.

By virtue of (1.4), it follows that, for each z ∈ D, the operator ΘP (z) is an
operator from DP into DP ∗ .

In [13], Sz.-Nagy and Foias found a set of unitary invariant for c.n.u. con-
tractions. The set consists of only one member, the characteristic function
of the contraction. There are many beautiful results in this direction, see
[8, 9, 12] and the references therein. In Section 5, we produce a set of unitary
invariants for a pure tetrablock contraction (A,B, P ). In this case the set of
unitary invariants consists of three members, the characteristic function of
P and the two fundamental operators of (A∗, B∗, P ∗). This (Theorem 5.4)
is the third major result of this paper. The result states that for two pure
tetrablock contractions (A,B, P ) and (A′, B′, P ′) to be unitary equivalent,
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it is necessary and sufficient that the characteristic functions of P and P ′

coincide and the fundamental operators (G1, G2) and (G′1, G
′
2) of (A,B, P )

and (A′, B′, P ′) respectively, are unitary equivalent by the same unitary that
is involved in the coincidence of the characteristic functions of P and P ′.

It is very hard to compute the fundamental operators of a tetrablock
contraction, in general. We now know how important the role of the funda-
mental operators is in the model theory of pure tetrablock contractions. So it
is important to have a concrete example of fundamental operators and grasp
the above model theory by dealing with them. That is what Section 6 does.
In other words, we find the fundamental operators (G1, G2) of the adjoint
of a pure tetrablock isometry (A,B, P ) and the unitary operator which uni-
tarizes (A,B, P ) to the pure tetrablock isometry (MG∗1+G2z,MG∗2+G1z,Mz)

on H2
DP∗

(D).

2. Relations between fundamental operators

In this section we prove some important relations between fundamental
operators of a tetrablock contraction. Before going to state and prove the
main theorem of this section, we shall recall two results, which were proved
originally in [7].

Lemma 2.1. Let (A,B, P ) be a tetrablock contraction with commuting fun-
damental operators F1 and F2. Then

A∗A−B∗B = DP (F ∗1F1 − F ∗2F2)DP .

Lemma 2.2. The fundamental operators F1 and F2 of a tetrablock contrac-
tion (A,B, P ) are the unique bounded linear operators on DP that satisfy
the pair of operator equations

DPA = X1DP +X∗2DPP and DPB = X2DP +X∗1DPP.

Now we state and prove three relations between the fundamental opera-
tors of a tetrablock contraction, which will be used later in this paper.

Lemma 2.3. Let (A,B, P ) be a tetrablock contraction on a Hilbert space H.
Let F1, F2 and G1, G2 be fundamental operators of (A,B, P ) and (A∗, B∗, P ∗)
respectively. Then

DPF1 = (ADP −DP ∗G2P )|DP
and DPF2 = (BDP −DP ∗G1P )|DP .

Proof. We shall prove only one of the above, proof of the other is similar.
For h ∈ H, we have

(ADP −DP ∗G2P )DPh = A(I − P ∗P )h− (DP ∗G2DP ∗)Ph

= Ah−AP ∗Ph− (B∗ −AP ∗)Ph
= Ah−AP ∗Ph−B∗Ph+AP ∗Ph

= (A−B∗P )h = (DPF1)DPh. �
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Lemma 2.4. Let (A,B,P) be a tetrablock contraction on a Hilbert space H.
Let F1, F2 and G1, G2 be fundamental operators of (A,B, P ) and (A∗, B∗, P ∗)
respectively. Then

PFi = G∗iP |DP
for i=1, 2.

Proof. We shall prove only for i = 1, the proof for i = 2 is similar. Note
that the operators on both sides are from DP to DP ∗ . Let h, h′ ∈ H be any
two elements. Then

〈(PF1 −G∗1P )DPh,DP ∗h
′〉

= 〈DP ∗PF1DPh, h
′〉 − 〈DP ∗G

∗
1PDPh, h

′〉
= 〈P (DPF1DP )h, h′〉 − 〈(DP ∗G

∗
1DP ∗)Ph, h

′〉
= 〈P (A−B∗P )h, h′〉 − 〈(A− PB∗)Ph, h′〉
= 〈(PA− PB∗P −AP + PB∗P )h, h′〉 = 0. �

Lemma 2.5. Let (A,B, P ) be a tetrablock contraction on a Hilbert space H.
Let F1, F2 and G1, G2 be fundamental operators of (A,B, P ) and (A∗, B∗, P ∗)
respectively. Then

(F ∗1DPDP ∗ − F2P
∗)|DP∗ = DPDP ∗G1 − P ∗G∗2,

(F ∗2DPDP ∗ − F1P
∗)|DP∗ = DPDP ∗G2 − P ∗G∗1.

Proof. For h ∈ H, we have

(F ∗1DPDP ∗ − F2P
∗)DP ∗h

= F ∗1DP (I − PP ∗)h− F2P
∗DP ∗h

= F ∗1DPh− F ∗1DPPP
∗h− F2DPP

∗h

= F ∗1DPh− (F ∗1DPP + F2DP )P ∗h

= F ∗1DPh−DPBP
∗h [by Lemma 2.2]

= (ADP −DP ∗G2P )∗h−DPBP
∗h [by Lemma 2.3]

= DPA
∗h− P ∗G∗2DP ∗h−DPBP

∗h

= DP (A∗ −BP ∗)h− P ∗G∗2DP ∗h

= DPDP ∗G1DP ∗h− P ∗G∗2DP ∗h

= (DPDP ∗G1 − P ∗G∗2)DP ∗h.

Proof of the other relation is similar and hence is skipped. �

Now we prove the main result of this section.

Theorem 2.6. Let F1 and F2 be fundamental operators of a tetrablock con-
traction (A,B, P ) on a Hilbert space H. And let G1 and G2 be fundamental
operators of the tetrablock contraction (A∗, B∗, P ∗). If [F1, F2] = 0 and P
has dense range, then:

(i) [F1, F
∗
1 ] = [F2, F

∗
2 ].

(ii) [G1, G2] = 0.
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(iii) [G1, G
∗
1] = [G2, G

∗
2].

Proof. (i) From Lemma 2.2 we have DPA = F1DP + F ∗2DPP . This gives
after multiplying by F2 from the left in both sides,

F2DPA = F2F1DP + F2F
∗
2DPP

⇒ DPF2DPA = DPF2F1DP +DPF2F
∗
2DPP

⇒ (B −A∗P )A = DPF2F1DP +DPF2F
∗
2DPP

⇒ BA−A∗AP = DPF2F1DP +DPF2F
∗
2DPP.

Similarly, multiplying by F1 from the left in both sides of

DPB = F2DP + F ∗1DPP

and proceeding as above we get

AB −B∗BP = DPF1F2DP +DPF1F
∗
1DPP.

Subtracting these two equations we get

(A∗A−B∗B)P = DP [F1, F2]DP +DP (F1F
∗
1 − F2F

∗
2 )DPP.

Eliminating A and B by Lemma 2.1, we have

DP (F ∗1F1 − F ∗2F2)DPP = DP [F1, F2]DP +DP (F1F
∗
1 − F2F

∗
2 )DPP

⇒ DP ([F1, F
∗
1 ]− [F2, F

∗
2 ])DPP = 0 [since [F1, F2] = 0.]

⇒ DP ([F1, F
∗
1 ]− [F2, F

∗
2 ])DP = 0 [since RanP is dense in H.]

⇒ [F1, F
∗
1 ] = [F2, F

∗
2 ].

(ii) From Lemma 2.4, we have that PFi = G∗iP |DP
for i = 1 and 2. So

we have

PF1F2DP = G∗1PF2DP

⇒ PF2F1DP = G∗1PF2DP [since F1 and F2 commute]

⇒ G∗2G
∗
1PDP = G∗1G

∗
2PDP [applying Lemma 2.4]

⇒ [G∗1, G
∗
2]DP ∗P = 0⇒ [G1, G2] = 0 [since RanP is dense in H].

(iii) From Lemma 2.3, we have DPF1 = (ADP − DP ∗G2P )|DP
, which

gives after multiplying F2DP from right in both sides

DPF1F2DP = ADPF2DP −DP ∗G2PF2DP

⇒ DPF1F2DP = A(B −A∗P )−DP ∗G2G
∗
2PDP [applying Lemma 2.4]

⇒ DPF1F2DP = AB −AA∗P −DP ∗G2G
∗
2PDP .

Similarly, multiplying by F1DP from the right on both sides of

DPF2 = (BDP −DP ∗G1P )|DP ,

we get

DPF2F1DP = BA−BB∗P −DP ∗G1G
∗
1PDP .
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Subtracting these two equations we get

DP [F1, F2]DP = DP ∗(G1G
∗
1 −G2G

∗
2)DP ∗P − (AA∗ −BB∗)P.

Now applying Lemma 2.1 for the tetrablock contraction (A∗, B∗, P ∗) and
re-arranging terms, we get

DP [F1, F2]DP = DP ∗([G1, G
∗
1]− [G2, G

∗
2])DP ∗P

⇒ DP ∗([G1, G
∗
1]− [G2, G

∗
2])DP ∗P = 0 [since [F1, F2] = 0.]

⇒ [G1, G
∗
1] = [G2, G

∗
2] [since RanP is dense in H]. �

We would like to mention a corollary to Theorem 2.6 which gives a suf-
ficient condition of when commutativity of the fundamental operators of
(A,B, P ) is necessary and sufficient for the commutativity of the fundamen-
tal operators of (A∗, B∗, P ∗).

Corollary 2.7. Let (A,B, P ) be a tetrablock contraction on a Hilbert space
H such that P is invertible. Let F1, F2, G1 and G2 be as in Theorem 2.6.
Then [F1, F2] = 0 if and only if [G1, G2] = 0.

Proof. Suppose that [F1, F2] = 0. Since P has dense range, by part (ii)
of Theorem 2.6, we get [G1, G2] = 0. Conversely, let [G1, G2] = 0. Since
P is invertible, P ∗ has dense range too. So applying Theorem 2.6 for the
tetrablock contraction (A∗, B∗, P ∗), we get [F1, F2] = 0. �

We conclude this section with another relation between the fundamental
operators which will be used in the next section.

Lemma 2.8. Let F1 and F2 be fundamental operators of a tetrablock con-
traction (A,B, P ) and G1 and G2 be fundamental operators of the tetrablock
contraction (A∗, B∗, P ∗). Then

(F ∗1 + F2z)ΘP ∗(z) = ΘP ∗(z)(G1 +G∗2z),(2.1)

(F ∗2 + F1z)ΘP ∗(z) = ΘP ∗(z)(G2 +G∗1z),(2.2)

for all z ∈ D.

Proof. We prove Equation (2.1) only. The proof of Equation (2.2) is similar.
By definition of ΘP ∗ we have

(F ∗1 + F2z)ΘP ∗(z) = (F ∗1 + F2z)

(
−P ∗ +

∞∑
n=0

zn+1DPP
nDP ∗

)
,

which after a re-arrangement of terms gives

−F ∗1P ∗ + z(−F2P
∗ + F ∗1DPDP ∗) +

∞∑
n=2

zn(F ∗1DPP + F2DP )Pn−2DP ∗ ,

which by Lemma 2.2, 2.4 and 2.5 is equal to

−P ∗G1 + z(DPDP ∗G1 − P ∗G∗2) +

∞∑
n=2

znDPBP
n−2DP ∗ .
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On the other hand

ΘP ∗(z)(G1 +G∗2z) =

(
−P ∗ +

∞∑
n=0

zn+1DPP
nDP ∗

)
(G1 +G∗2z),

which after a re-arrangement of terms gives

−P ∗G1 + z(DPDP ∗G1 − P ∗G∗2) +

∞∑
n=2

znDPP
n−2(PDP ∗G1 +DP ∗G

∗
2),

which by Lemma 2.2 is equal to

− P ∗G1 + z(DPDP ∗G1 − P ∗G∗2) +

∞∑
n=2

znDPP
n−2BDP ∗

= −P ∗G1 + z(DPDP ∗G1 − P ∗G∗2) +
∞∑
n=2

znDPBP
n−2DP ∗ .

Hence (F ∗1 + F2z)ΘP ∗(z) = ΘP ∗(z)(G1 +G∗2z) for all z ∈ D. �

3. Beurling–Lax–Halmos representation for a triple of
operators

In this section we prove a Beurling–Lax–Halmos type theorem for the
triple of operators (MF ∗1 +F2z,MF ∗2 +F1z,Mz) on H2

E(D), where E is a Hilbert
space and F1, F2 ∈ B(E). The triple (MF ∗1 +F2z,MF ∗2 +F1z,Mz) is not com-
muting triple in general, but we shall show that when they commute an
interesting thing happens.

Theorem 3.1. Let F1, F2 ∈ B(E) be two operators. Then a nonzero closed
subspace M of H2

E(D) is (MF ∗1 +F2z,MF ∗2 +F1z,Mz)-invariant if and only if

(F ∗1 + F2z)Θ(z) = Θ(z)(G1 +G∗2z),

(F ∗2 + F1z)Θ(z) = Θ(z)(G2 +G∗1z),

for all z ∈ D, for some unique G1, G2 ∈ B(E∗), where (E∗, E ,Θ) is the
Beurling–Lax–Halmos representation of M.

Moreover, if the triple (MF ∗1 +F2z,MF ∗2 +F1z,Mz) on H2
E(D) is a tetrablock

isometry, then the triple (MG1+G∗2z
,MG2+G∗1z

,Mz) is also a tetrablock isom-

etry on H2(E∗) .

Proof. So let {0} 6= M ⊆ H2
E(D) be a (MF ∗1 +F2z,MF ∗2 +F1z,Mz)-invariant

subspace. LetM = MΘH
2
E∗(D) be the Beurling–Lax–Halmos representation

of M, where (E∗, E ,Θ) is an inner analytic function and E∗ is an auxiliary
Hilbert space. Since M is MF ∗1 +F2z and MF ∗2 +F1z invariant also, we have

MF ∗1 +F2zMΘH
2
E∗(D) ⊆MΘH

2
E∗(D),

MF ∗2 +F1zMΘH
2
E∗(D) ⊆MΘH

2
E∗(D).
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Now let us define two operators X and Y on H2(E∗) by the following way:

MF ∗1 +F2zMΘ = MΘX,

MF ∗2 +F1zMΘ = MΘY.

That X and Y are well defined and unique, follows from the fact that Θ is an
inner analytic function, hence MΘ is an isometry, (see [13, ch. V, prop. 2.2].)

MF ∗1 +F2zMΘ = MΘX ⇒ M∗ΘM
∗
F ∗1 +F2zMΘ = X∗ [as MΘ is an isometry]

⇒ M∗zM
∗
ΘM

∗
F ∗1 +F2zMΘ = M∗zX

∗

⇒ M∗ΘM
∗
F ∗1 +F2zMΘM

∗
z = M∗zX

∗

⇒ X∗M∗z = M∗zX
∗.

Hence X commutes with Mz. Similarly one can prove that Y commutes with
Mz. So X = MΦ and Y = MΨ, for some Φ,Ψ ∈ H∞(B(E∗)). Therefore we
have

MF ∗1 +F2zMΘ = MΘMΦ,(3.1)

MF ∗2 +F1zMΘ = MΘMΨ.(3.2)

Multiplying M∗Θ from left of (3.1) and (3.2) and using the fact that MΘ is
an isometry, we get

M∗ΘMF ∗1 +F2zMΘ = MΦ,(3.3)

M∗ΘMF ∗2 +F1zMΘ = MΨ.(3.4)

Multiplying M∗z from left of (3.3) we get, M∗ΘM
∗
F ∗2 +F1z

MΘ = M∗zMΦ, here

we have used the fact that MΘ and Mz commute. Hence

MΨ = M∗ΘMΘMΨ = M∗ΘMF ∗2 +F1zMΘ = M∗ΦMz.

Similarly dealing with Equation (3.4), we get MΦ = M∗ΨMz. Considering
the power series expression of Φ and Ψ and using that MΦ = M∗ΨMz and
MΨ = M∗ΦMz, we get Φ and Ψ to be of the form Φ(z) = G1 + G∗2z and
Ψ(z) = G2 + G∗1z for some G1, G2 ∈ B(E∗). Uniqueness of G1 and G2

follows from the fact that X and Y are unique. The converse part is trivial.
Hence the proof of the first part of the theorem.

Moreover, suppose that (MF ∗1 +F2z,MF ∗2 +F1z,Mz) is a tetrablock isometry.
To show that (MG1+G∗2z

,MG2+G∗1z
,Mz) is also a tetrablock isometry we first

show that they commute with each other. Commutativity of MG1+G∗2z
and
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MG2+G∗1z
with Mz is clear. Now

MG1+G∗2z
MG2+G∗1z

= M∗ΘMF ∗1 +F2zMΘM
∗
ΘMF ∗2 +F1zMΘ [using Equations (3.3) and (3.4)]

= M∗ΘMF ∗1 +F2zMF ∗2 +F1zMΘ [by Equation (3.2)]

= M∗ΘMF ∗2 +F1zMF ∗1 +F2zMΘ [since MF ∗1 +F2z and MF ∗2 +F1z commute]

= M∗ΘMF ∗2 +F1zMΘM
∗
ΘMF ∗1 +F2zMΘ [by Equation (3.1)]

= MG2+G∗1z
MG1+G∗2z

.

Since (MF ∗1 +F2z,MF ∗2 +F1z,Mz) is a tetrablock isometry, we have by part (3)
of Theorem 5.7 in [7] that ||MF ∗2 +F1z|| ≤ 1, . From the operator equation

MG2+G∗1z
= M∗ΘMF ∗2 +F1zMΘ

we get that ||MG2+G∗1z
|| ≤ 1. From the proof of the first part, we have

that MΦ = M∗ΨMz Hence (MG1+G∗2z
,MG2+G∗1z

,Mz) is a tetrablock isometry
invoking part (3) of Theorem 5.7 in [7]. �

Now we use Lemma 2.8 to prove the following result which is a conse-
quence of Theorem 3.1.

Corollary 3.2. Let F1, F2 and G1, G2 be fundamental operators of (A,B, P )
and (A∗, B∗, P ∗) respectively. Then the triple (MG1+G∗2z

,MG2+G∗1z
,Mz) is a

tetrablock isometry whenever (MF ∗1 +F2z,MF ∗2 +F1z,Mz) is a tetrablock isom-
etry, provided P ∗ is pure, i.e., Pn → 0 strongly as n→∞.

Proof. Note that while proving the last part of Theorem 3.1, we used the
fact that the multiplier MΘ is an isometry. Since P ∗ is pure, by virtu of
Proposition 3.5 of chapter VI in [13], we note that the multiplier MΘP∗ is
an isometry. From Lemma 2.8, we have

(F ∗1 + F2z)ΘP ∗(z) = ΘP ∗(z)(G1 +G∗2z),

(F ∗2 + F1z)ΘP ∗(z) = ΘP ∗(z)(G2 +G∗1z),

for all z ∈ D. Invoking the last part of Theorem 3.1, we get the result as
stated. �

4. Functional model

In this section we find a functional model of pure tetrablock contractions.
We first need to recall the functional model of pure contractions from [13].

The characteristic function as in (1.6) induces a multiplication operator
MΘP

from H2(D)⊗DP into H2(D)⊗DP ∗ , defined by

MΘP
f(z) = ΘP (z)f(z), for all f ∈ H2(D)⊗DP and z ∈ D.

Note that MΘP
(Mz ⊗ IDP

) = (Mz ⊗ IDP∗ )MΘP
. Let us define

HP = (H2(D)⊗DP ∗)	MΘP
(H2(D)⊗DP ).
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In [13], Sz.-Nagy and Foias showed that every pure contraction P de-
fined on an abstract Hilbert space H is unitarily equivalent to the opera-
tor PHP

(Mz ⊗ IDP∗ )HP
, where the Hilbert space HP is as defined above

and PHP
is the projection of H2(D) ⊗ DP ∗ onto HP . Now we mention

an interesting and well-known result, a proof of which can be found in [8,
Lemma 3.6]. There it is proved for a commuting contractive d-tuple, for
d ≥ 1. We shall write the proof here for the sake of completeness. Define
W : H → H2(D)⊗DP ∗ by

W (h) =
∞∑
n=0

zn ⊗DP ∗P
∗nh, for all h ∈ H.

It is easy to check that W is an isometry when P is pure and its adjoint is
given by

W ∗(zn ⊗ ξ) = PnDP ∗ξ, for all ξ ∈ DP ∗ and n ≥ 0.

Lemma 4.1. For every contraction P , the identity

(4.1) WW ∗ +MΘP
M∗ΘP

= IH2(D)⊗DP∗

holds.

Proof. As observed by Arveson in the proof of Theorem 1.2 in [5], the
operator W ∗ satisfies the identity

W ∗(kz ⊗ ξ) = (I − z̄P )−1DP ∗ξ for z ∈ D and ξ ∈ DP ∗ ,
where kz(w) := (1− 〈w, z〉)−1 for all w ∈ D. Therefore we have

〈(WW ∗ +MΘP
M∗ΘP

)(kz ⊗ ξ), (kw ⊗ η)〉
= 〈W ∗(kz ⊗ ξ),W ∗(kw ⊗ η)〉+ 〈M∗ΘP

(kz ⊗ ξ),M∗ΘP
(kw ⊗ η)〉

= 〈(I − z̄P )−1DP ∗ξ, (I − w̄P )−1DP ∗η〉+ 〈kz ⊗ΘP (z)∗ξ, kw ⊗ΘP (w)∗η〉
= 〈DP ∗(I − wP ∗)−1(I − z̄P )−1DP ∗ξ, η〉+ 〈kz, kw〉〈ΘP (w)ΘP (z)∗ξ, η〉
= 〈kz ⊗ ξ, kw ⊗ η〉 for all z, w ∈ D and ξ, η ∈ DP ∗ .

Here, the last equality follows from the following well-known identity

I −ΘP (w)ΘP (z)∗ = (1− wz̄)DP ∗(I − wP ∗)−1(I − z̄P )−1DP ∗ .

Now using the fact that {kz : z ∈ D} forms a total set of H2(D), the assertion
follows. �

The following theorem is the main result of this section.

Theorem 4.2. Let (A,B, P ) be a pure tetrablock contraction on a Hilbert
space H. Then the operators A,B and P are unitarily equivalent to

PHP
(I ⊗G∗1 +Mz ⊗G2)|HP

,

PHP
(I ⊗G∗2 +Mz ⊗G1)|HP

,

PHP
(Mz ⊗ IDP∗ )|HP

,

respectively, where G1, G2 are the fundamental operators of (A∗, B∗, P ∗).
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Proof. Since W is an isometry, WW ∗ is the projection onto RanW and
since P is pure, MΘP

is also an isometry. So by Lemma 4.1, we have

W (HP ) = (H2(D)⊗DP ∗)	MΘP
(H2(D)⊗DP ).

For every ξ ∈ DP ∗ and n ≥ 0, we have

W ∗(I ⊗G∗1 +Mz ⊗G2)(zn ⊗ ξ) = W ∗(zn ⊗G∗1ξ) +W ∗(zn+1 ⊗G2ξ)

= PnDP ∗G
∗
1ξ + Pn+1DP ∗G2ξ

= Pn(DP ∗G
∗
1 + PDP ∗G2)ξ

= PnADP ∗ξ [by Lemma 2.2]

= APnDP ∗ξ = AW ∗(zn ⊗ ξ).

Therefore we have W ∗(I ⊗G∗1 +Mz ⊗G2) = AW ∗ on the set

{zn ⊗ ξ : where n ≥ 0 and ξ ∈ DP ∗},

which spans H2(D)⊗DP ∗ and hence we have W ∗(I⊗G∗1 +Mz⊗G2) = AW ∗,
which implies W ∗(I ⊗ G∗1 + Mz ⊗ G2)W = A. Therefore A is unitarily
equivalent to PHP

(I ⊗G∗1 +Mz ⊗G2)|HP
. Also we have for every ξ ∈ DP ∗

and n ≥ 0,

W ∗(I ⊗G∗2 +Mz ⊗G1)(zn ⊗ ξ) = W ∗(zn ⊗G∗2ξ) +W ∗(zn+1 ⊗G1ξ)

= PnDP ∗G
∗
2ξ + Pn+1DP ∗G1ξ

= Pn(DP ∗G
∗
2 + PDP ∗G1)ξ

= PnBDP ∗ξ [by Lemma 2.2]

= BPnDP ∗ξ = BW ∗(zn ⊗ ξ).

Hence by the same argument as above, we have

W ∗(I ⊗G∗2 +Mz ⊗G1) = BW ∗.

Therefore B is unitarily equivalent to PHP
(I ⊗ G∗2 + Mz ⊗ G1)|HP

. And
finally,

W ∗(Mz ⊗ I)(zn ⊗ ξ) = W ∗(zn+1 ⊗ ξ) = Pn+1DP ∗ξ = PW ∗(zn ⊗ ξ).

Therefore P is unitarily equivalent to PHP
(Mz ⊗ IDP∗ )|HP

. Note that the
unitary operator which unitarizes A,B and P to their model operators is
W : H → HP . �

We end this section with an important result which gives a functional
model for a special class of tetrablock contractions, viz., pure tetrablock
isometries. This is a consequence of Theorem 4.2. This is important because
this gives a relation between the fundamental operators G1 and G2 of adjoint
of a pure tetrablock isometry.

Corollary 4.3. Let (A,B, P ) be a pure tetrablock isometry. Then (A,B, P )
is unitarily equivalent to (MG∗1+G2z,MG∗2+G1z,Mz), where G1 and G2 are
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the fundamental operators of (A∗, B∗, P ∗). Moreover, G1 and G2 satisfy
Equation (1.3).

Proof. Note that for an isometry P , the defect space DP is zero, hence the
charateristic function ΘP is also zero. So for an isometry P , the space HP
becomes H2(D) ⊗ DP ∗ . So by Theorem 4.2, we have the result. From the
commutativity of the triple (MG∗1+G2z,MG∗2+G1z,Mz), it follows that G1 and
G2 satisfy Equation (1.3). �

Remark 4.4. In [7] (Theorem 5.10), it was shown that every pure tetrablock
isometry (A,B, P ) on H is unitarily equivalent to (Mτ∗1 +τ2z,Mτ∗2 +τ1z,Mz)

on H2
E(D) for some τ1, τ2 in B(E). Corollary 4.3 shows that the space E

can be taken to be DP ∗ and the operators τ1, τ2 can be taken to be the
fundamental operators of (A∗, B∗, P ∗).

5. A complete set of unitary invariants

Given two contractions P and P ′ on Hilbert spaces H and H′ respectively,
we say that the characteristic functions of P and P ′ coincide if there are
unitary operators u : DP → DP ′ and u∗ : DP ∗ → DP ′∗ such that the
following diagram commutes for all z ∈ D,

DP
ΘP (z)−−−−→ DP ∗

u

y yu∗
DP ′ −−−−→

ΘP ′ (z)
DP ′∗ .

In [13], Sz.-Nagy and Foias proved that the characteristic function of a c.n.u.
contraction is a complete unitary invariant. In other words,

Theorem 5.1. Two completely nonunitary contractions are unitarily equiv-
alent if and only if their characteristic functions coincide.

In this section we give a complete set of unitary invariants for a pure
tetrablock contraction.

Proposition 5.2. If two tetrablock contractions (A,B, P ) and (A′, B′, P ′)
defined on H and H′ respectively are unitarily equivalent then so are their
fundamental operators.

Proof. Let U : H → H′ be a unitary such that UA = A′U,UB = B′U and
UP = P ′U . Then we have

UD2
P = U(I − P ∗P ) = U − P ′∗PU = D2

P ′U,

which gives UDP = DP ′U . Let Ũ = U |DP
. Then note that Ũ ∈ B(DP ,DP ′)

and ŨDP = DP ′Ũ . Let F1, F2 and F ′1, F
′
2 be fundamental operators of
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(A,B, P ) and (A′, B′, P ′) respectively. Then

DP ′ŨF1Ũ
∗DP ′ = ŨDPF1DP Ũ

∗ = Ũ(A−B∗P )DP Ũ
∗

= A′ −B′∗P ′ = DP ′F
′
1DP ′ .

Therefore we have ŨF1Ũ
∗ = F ′1. Similarly one can prove ŨF2Ũ

∗ = F ′2. �

The next result is a sort of converse to the previous proposition for pure
tetrablock contractions.

Proposition 5.3. Let (A,B, P ) and (A′, B′, P ′) be two pure tetrablock con-
tractions defined on H and H′ respectively. Suppose that the characteristic
functions of P and P ′ coincide and the fundamental operators (G1, G2) of
(A∗, B∗, P ∗) and (G′1, G

′
2) of (A′∗, B′∗, P ′∗) are unitarily equivalent by the

same unitary that is involved in the coincidence of the characteristic func-
tions of P and P ′. Then (A,B, P ) and (A′, B′, P ′) are unitarily equivalent.

Proof. Let u : DP → DP ′ and u∗ : DP ∗ → DP ′∗ be unitary operators such
that

u∗G1 = G′1u∗, u∗G2 = G′2u∗ and u∗ΘP (z) = ΘP ′(z)u

hold for all z ∈ D. The unitary operator u∗ : DP ∗ → DP ′∗ induces another
unitary operator U∗ : H2(D)⊗DP ∗ → H2(D)⊗DP ′∗ defined by

U∗(z
n ⊗ ξ) = (zn ⊗ u∗ξ)

for all ξ ∈ DP ∗ and n ≥ 0. Note that

U∗(MΘP
f(z)) = u∗ΘP (z)f(z) = ΘP ′(z)uf(z) = MΘP ′ (uf(z)),

for all f ∈ H2(D)⊗DP and z ∈ D. Hence U∗ takes RanMΘP
onto RanMΘP ′ .

Since U∗ is unitary, we have

U∗(HP ) = U∗((RanMΘP
)⊥) = (U∗RanMΘP

)⊥ = (RanMΘP ′ )
⊥ = HP ′ .

By definition of U∗ we have

U∗(I ⊗G∗1 +Mz ⊗G2)∗ = (I ⊗ u∗)(I ⊗G1 +M∗z ⊗G∗2)

= I ⊗ u∗G1 +M∗z ⊗ u∗G∗2
= I ⊗G′1u∗ +M∗z ⊗G′∗2 u∗
= (I ⊗G′1 +M∗z ⊗G′∗2 )(I ⊗ u∗)
= (I ⊗G′∗1 +Mz ⊗G′2)∗U∗.

Similar calculation gives us

U∗(I ⊗G∗2 +Mz ⊗G1)∗ = (I ⊗G′∗2 +Mz ⊗G′1)∗U∗.

Therefore HP ′ = U∗(HP ) is a co-invariant subspace of (I ⊗G′∗1 +Mz ⊗G′2)
and (I ⊗G′∗2 +Mz ⊗G′1). Hence

PHP
(I ⊗G∗1 +Mz ⊗G2)|HP

∼= PHP ′ (I ⊗G
′∗
1 +Mz ⊗G′2)|HP ′
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and

PHP
(I ⊗G∗2 +Mz ⊗G1)|HP

∼= PHP ′ (I ⊗G
′∗
2 +Mz ⊗G′1)|HP ′

and the unitary operator which unitarizes them is U∗|HP
: HP → HP ′ .

And also by definition of U∗ we have

U∗(Mz ⊗ IDP∗ ) = (I ⊗ u∗)(Mz ⊗ IDP∗ ) = (Mz ⊗ IDP ′∗ )(I ⊗ u∗)
= (Mz ⊗ IDP ′∗ )U∗.

So PHP
(Mz ⊗ IDP∗ )|HP

∼= PHP ′ (Mz ⊗ IDP ′∗ )|HP ′ and the same unitary
U∗|HP

: HP → HP ′ unitarizes them. Therefore (A,B, P ) ∼= (A′, B′, P ′). �

Combining the last two propositions and Theorem 5.1, we get the follow-
ing theorem which is the main result of this section.

Theorem 5.4. Let (A,B, P ) and (A′, B′, P ′) be two pure tetrablock con-
tractions defined on H and H′ respectively. Suppose (G1, G2) and (G′1, G

′
2)

are fundamental operators of (A∗, B∗, P ∗) and (A′∗, B′∗, P ′∗) respectively.
Then (A,B, P ) is unitarily equivalent to (A′, B′, P ′) if and only if the char-
acteristic functions of P and P ′ coincide and (G1, G2) is unitarily equivalent
to (G′1, G

′
2) by the same unitary that is involved in the coincidence of the

characteristic functions of P and P ′.

6. An example

6.1. Fundamental operators. Consider the Hilbert space

H2(D2) =

f : D2 → C : f(z1, z2) =

∞∑
i,j=0

aijz
i
1z
j
2 with

∞∑
i,j=0

|aij |2 <∞


with the inner product〈 ∞∑

i,j=0

aijz
i
1z
j
2,

∞∑
i,j=0

bijz
i
1z
j
2

〉
=

∞∑
i=0

∞∑
j=0

aijbij .

Consider the commuting triple of operators (Mz1 ,Mz2 ,Mz1z2) on H2(D2).
It can be easily checked by Theorem 5.4 in [7], that (Mz1 ,Mz2 ,Mz1z2) is
a tetrablock unitary on L2(T2). Note that (Mz1 ,Mz2 ,Mz1z2) on H2(D2)
is the restriction of the tetrablock unitary (Mz1 ,Mz2 ,Mz1z2) on L2(T2) to
the common invariant subspace H2(D2) (naturally embedded) of L2(T2).
Hence by definition, (Mz1 ,Mz2 ,Mz1z2) on H2(D2) is a tetrablock isometry.
In this section we calculate the fundamental operators of the tetrablock
co-isometry (M∗z1 ,M

∗
z2 ,M

∗
z1z2) on H2(D2). For notational convenience, we

denote Mz1 ,Mz2 and Mz1z2 by A,B and P respectively.
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Note that every element f ∈ H2(D2) has the form
∑∞

i,j=0 aijz
i
1z
j
2 where

aij ∈ C, for all i, j ≥ 0. So we can write f in the matrix form

((aij))
∞
i,j=0 =


a00 a01 a02 . . .
a10 a11 a12 . . .
a20 a21 a22 . . .
...

...
...

. . .

 ,

where (ij)-th entry in the matrix, denotes the co-efficient of zi1z
j
2 in the series∑∞

i,j=0 aijz
i
1z
j
2. We shall write the matrix form instead of writing the series.

In this notation,

A
(

((aij))
∞
i,j=0

)
=
(
a(i−1)j

)
,(6.1)

B
(

((aij))
∞
i,j=0

)
=
(
ai(j−1)

)
,(6.2)

P
(

((aij))
∞
i,j=0

)
=
(
a(i−1)(j−1)

)
,(6.3)

with the convention that aij is zero if either i or j is negative.

Lemma 6.1. The adjoints of the operators A,B and P are as follows:

A∗
(

((aij))
∞
i,j=0

)
=
(
a(i+1)j

)
,

B∗
(

((aij))
∞
i,j=0

)
=
(
ai(j+1)

)
,

P ∗
(

((aij))
∞
i,j=0

)
=
(
a(i+1)(j+1)

)
.

Proof. This is a matter of easy inner product calculations. �

Lemma 6.2. The defect space of P ∗ in the matrix form is

DP ∗ =



a00 a01 a02 . . .
a10 0 0 . . .
a20 0 0 . . .

...
...

...
. . .

 : |a00|2 +
∞∑
j=1

|a0j |2 +
∞∑
j=1

|aj0|2 <∞

 .

The defect space in the function form is span{1, zi1, z
j
2 : i, j ≥ 1}. The defect

operator for P ∗ is

DP ∗


a00 a01 a02 . . .
a10 a11 a12 . . .
a20 a21 a22 . . .

...
...

...
. . .

 =


a00 a01 a02 . . .
a10 0 0 . . .
a20 0 0 . . .

...
...

...
. . .

 .

Proof. Since P is an isometry, DP ∗ is the projection onto the orthogonal
complement of Ran(P ). The rest follows from the formula for P in (6.3). �



1364 HARIPADA SAU

Definition 6.3. Define G1, G2 : DP ∗ → DP ∗ by

G1


a00 a01 a02 . . .
a10 0 0 . . .
a20 0 0 . . .
...

...
...

. . .

 =


a10 0 0 . . .
a20 0 0 . . .
a30 0 0 . . .
...

...
...

. . .

 ,

G2


a00 a01 a02 . . .
a10 0 0 . . .
a20 0 0 . . .
...

...
...

. . .

 =


a01 a02 a03 . . .
0 0 0 . . .
0 0 0 . . .
...

...
...

. . .

 ,

for all aj0, a0j ∈ C, j = 0, 1, 2, . . . with
∑∞

j=0 |a0j |2 +
∑∞

j=1 |aj0|2 <∞.

Lemma 6.4. The operators G1 and G2 defined in Definition 6.3 are the
fundamental operators of (A∗, B∗, P ∗).

Proof. We must show that G1 and G2 satisfy the fundamental equations.
Using Lemma 6.1, we get

(A∗ −BP ∗)


a00 a01 a02 . . .
a10 a11 a12 . . .
a20 a21 a22 . . .
...

...
...

. . .



=


a10 a11 a12 . . .
a20 a21 a22 . . .
a30 a31 a32 . . .
...

...
...

. . .

−B

a11 a12 a13 . . .
a21 a22 a23 . . .
a31 a32 a33 . . .
...

...
...

. . .



=


a10 a11 a12 . . .
a20 a21 a22 . . .
a30 a31 a32 . . .
...

...
...

. . .

−


0 a11 a12 . . .
0 a21 a22 . . .
0 a31 a32 . . .
...

...
...

. . .



=


a10 0 0 . . .
a20 0 0 . . .
a30 0 0 . . .
...

...
...

. . .


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and

(B∗ −AP ∗)


a00 a01 a02 . . .
a10 a11 a12 . . .
a20 a21 a22 . . .
...

...
...

. . .



=


a01 a02 a03 . . .
a11 a12 a13 . . .
a21 a22 a23 . . .
...

...
...

. . .

−A

a11 a12 a13 . . .
a21 a22 a23 . . .
a31 a32 a33 . . .
...

...
...

. . .



=


a01 a02 a03 . . .
a11 a12 a13 . . .
a21 a22 a23 . . .
...

...
...

. . .

−


0 0 0 . . .
a11 a12 a13 . . .
a21 a22 a23 . . .
...

...
...

. . .



=


a01 a02 a03 . . .
0 0 0 . . .
0 0 0 . . .
...

...
...

. . .

 .

Using Lemma 6.2 and Definition 6.3, we get

DP ∗G1DP ∗


a00 a01 a02 . . .
a10 a11 a12 . . .
a20 a21 a22 . . .
...

...
...

. . .

 = DP ∗G1


a00 a01 a02 . . .
a10 0 0 . . .
a20 0 0 . . .
...

...
...

. . .



=


a10 0 0 . . .
a20 0 0 . . .
a30 0 0 . . .
...

...
...

. . .

 ,

DP ∗G2DP ∗


a00 a01 a02 . . .
a10 a11 a12 . . .
a20 a21 a22 . . .
...

...
...

. . .

 = DP ∗G2


a00 a01 a02 . . .
a10 0 0 . . .
a20 0 0 . . .
...

...
...

. . .



=


a01 a02 a03 . . .
0 0 0 . . .
0 0 0 . . .
...

...
...

. . .

 .

Therefore, G1 and G2 are the fundamental operators of (A∗, B∗, P ∗). �
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6.2. Explicit unitary equivalence. From Corollary 4.3, we now know
that if (A,B, P ) is a pure tetrablock isometry, then (A,B, P ) is unitarily
equivalent to (MG∗1+G2z,MG∗2+G1z,Mz), where G1 and G2 are the funda-

mental operators of (A∗, B∗, P ∗). The operator Mz1z2 on H2(D2) is a pure
contraction as can be checked from the formula of P ∗ in Lemma 6.1. In
the final theorem of this section, we find the unitary operator which imple-
ments the unitary equivalence of the pure tetrablock isometry (A,B, P ) on
H2(D2).

Theorem 6.5. The operator U : H2(D2)→ H2
DP∗

(D) defined by

(6.4) Uf(z) = DP ∗(I − zP ∗)−1f, for all f ∈ H2(D2) and z ∈ D

is a unitary operator and satisfies

U∗(MG∗1+G2z,MG∗2+G1z,Mz)U = (A,B, P ).

Proof. We first prove that U is one-one. Expanding the series in (6.4), we
get

(6.5) Uf(z) = DP ∗f + zDP ∗P
∗f + z2DP ∗P

∗2f + · · · .

Therefore

‖Uf‖2H2
DP∗

(D) = ‖DP ∗f‖2DP∗
+ ‖DP ∗P

∗f‖2DP∗
+ ‖DP ∗P

∗2f‖2DP∗
+ · · ·

= ‖f‖2 − lim
n→∞

‖P ∗nf‖2 = ‖f‖2H2(D2). [since P is pure]

From the explicit series form of U (Equation 6.5), we see that U in matrix
form is the following.

U


a00 a01 a02 . . .
a10 a11 a12 . . .
a20 a21 a22 . . .
...

...
...

. . .

 =


a00 a01 a02 . . .
a10 0 0 . . .
a20 0 0 . . .
...

...
...

. . .



+ z


a11 a12 a13 . . .
a21 0 0 . . .
a31 0 0 . . .
...

...
...

. . .



+ z2


a22 a23 a24 . . .
a32 0 0 . . .
a42 0 0 . . .
...

...
...

. . .

+ · · · .
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From this representation, it is easy to see that U is onto H2
DP∗

(D). It can

be easily checked by definition of G1 and G2 (Definition 6.3) that

G∗1


a00 a01 a02 . . .
a10 0 0 . . .
a20 0 0 . . .
...

...
...

. . .

 =


0 0 0 0 . . .
a00 0 0 0 . . .
a10 0 0 0 . . .
a20 0 0 0 . . .
...

...
...

...
. . .

 ,

G∗2


a00 a01 a02 . . .
a10 0 0 . . .
a20 0 0 . . .
...

...
...

. . .

 =


0 a00 a01 a02 . . .
0 0 0 0 . . .
0 0 0 0 . . .
...

...
...

...
. . .

 .

To prove U∗(MG∗1+G2z,MG∗2+G1z,Mz)U = (A,B, P ), we proceed by proving
U∗MzU = P first. Note that

MzU


a00 a01 a02 . . .
a10 a11 a12 . . .
a20 a21 a22 . . .
...

...
...

. . .

 = z


a00 a01 a02 . . .
a10 0 0 . . .
a20 0 0 . . .
...

...
...

. . .



+ z2


a11 a12 a13 . . .
a21 0 0 . . .
a31 0 0 . . .
...

...
...

. . .



+ z3


a22 a23 a24 . . .
a32 0 0 . . .
a42 0 0 . . .
...

...
...

. . .

+ · · · .

Therefore

U∗MzU


a00 a01 a02 . . .
a10 a11 a12 . . .
a20 a21 a22 . . .
...

...
...

. . .

 =


0 0 0 0 . . .
0 a00 a01 a02 . . .
0 a10 a11 a12 . . .
0 a20 a21 a22 . . .
...

...
...

...
. . .



= P


a00 a01 a02 . . .
a10 a11 a12 . . .
a20 a21 a22 . . .
...

...
...

. . .

 .

Now to prove Mz1 = U∗MG∗1+zG2U , we first calculate MG∗1+zG2U . Using the
definition of G1, G2 and U , it is a matter of straightforward computation to
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obtain

MG∗1+zG2U


a00 a01 a02 . . .
a10 a11 a12 . . .
a20 a21 a22 . . .
...

...
...

. . .

 =


0 0 0 . . .
a00 0 0 . . .
a10 0 0 . . .
...

...
...

. . .



+ z


a01 a02 a03 . . .
a11 0 0 . . .
a21 0 0 . . .
...

...
...

. . .



+ z2


a12 a13 a14 . . .
a22 0 0 . . .
a32 0 0 . . .
...

...
...

. . .

+ · · · .

Therefore

U∗MG∗1+zG2U


a00 a01 a02 . . .
a10 a11 a12 . . .
a20 a21 a22 . . .
...

...
...

. . .

 =


0 0 0 0 . . .
a00 a01 a02 a03 . . .
a10 a11 a12 a13 . . .
a20 a21 a22 a23 . . .
...

...
...

...
. . .



= Mz1


a00 a01 a02 . . .
a10 a11 a12 . . .
a20 a21 a22 . . .
...

...
...

. . .

 .

The proof of Mz2 = U∗MG∗2+zG1U is similar. �
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