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Sublacunary sequences that are strong
sweeping out

Sovanlal Mondal, Madhumita Roy andMáté Wierdl

Abstract. An increasing sequence (𝑎𝑛) of positive integers which satisfies
𝑎𝑛+1∕𝑎𝑛 ≥ 1+𝜂 for some positive 𝜂 is called a lacunary sequence. It has been
known for over twenty years that every lacunary sequence has the strong
sweeping out property which means that in every aperiodic dynamical sys-
tem we can find a set 𝐸 of arbitrary small measure so that

lim sup
𝑁

1
𝑁

∑

𝑛≤𝑁
1𝐸(𝑇𝑎𝑛𝑥) = 1

and
lim inf

𝑁

1
𝑁

∑

𝑛≤𝑁
1𝐸(𝑇𝑎𝑛𝑥) = 0

almost everywhere. In this paper, we improve this result by showing that if
(𝑎𝑛) satisfies only 𝑎𝑛+1

𝑎𝑛
> 1 + 1

(log log 𝑛)1−𝜂
for some positive 𝜂, then it already has the strong sweeping out property.
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1. Introduction and main results
Throughout this paper, we use the notation

[𝑁] ∶= {1, 2, … ,𝑁}, where 𝑁 is any positive integer.
Let𝑇 be ameasure preserving transformation on the probability space (𝑋, Σ, 𝜇).
After Birkhoff’s pointwise ergodic theorem was proved, naturally the question
was raised whether it is possible to generalize the theorem along any sequence
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(𝑎𝑛) of integers instead of taking the entire sequence (𝑛). Krengel [Kre71] was
the one who first constructed a strictly increasing sequence (𝑎𝑛) of positive in-
tegers so that in every aperiodic system the ergodic averages 1

𝑁

∑

𝑛∈[𝑁]
𝑓(𝑇𝑎𝑛𝑥)

diverge almost everywhere. Soon after, Bellow showed in [Bel83] that if (𝑎𝑛) is
a lacunary sequence, that is, it satisfies 𝑎𝑛+1

𝑎𝑛
≥ 1 + 𝜂 for some positive 𝜂, then

in every aperiodic system and for every 𝑝 satisfying 1 ≤ 𝑝 < ∞, there exists a
function 𝑓 ∈ 𝐿𝑝 such that the ergodic averages along (𝑎𝑛) diverge a.e. Our first
main result provides a growth condition for a sequence (𝑎𝑛) to be pointwise bad
which applies to some sublacunary sequences as well. Recall that a sequence
(𝑎𝑛) is said to be sublacunary if it satisfies lim𝑛

𝑎𝑛+1
𝑎𝑛

= 1.

Theorem 1.1 (Deterministic condition). Suppose (𝑎𝑛) is a sequence which
satisfies

𝑎𝑛+1
𝑎𝑛

≥ 1 + 1
(log log 𝑛)1−𝜂

(1)

for some 𝜂 > 0. Then in every aperiodic dynamical system (𝑋, Σ, 𝜇, 𝑇) and every
𝜖 > 0, there exists a set 𝐸 ∈ Σ with 𝜇(𝐸) < 𝜖 such that for almost every 𝑥 ∈ 𝑋, we
have

lim sup
𝑁→∞

1
𝑁

∑

𝑛∈[𝑁]
1𝐸(𝑇𝑎𝑛𝑥) = 1 and lim inf

𝑁→∞
1
𝑁

∑

𝑛∈[𝑁]
1𝐸(𝑇𝑎𝑛𝑥) = 0.

An example of a sequence (𝑎𝑛) which satisfies the growth condition in Eq.
(1) is (𝑎𝑛) =

(
⌊𝑒

𝑛
(log log 𝑛)1−𝜂 ⌋

)
𝑛
for some 𝜂 > 0.

Definition 1.2 (Pointwise good and bad sequence). Let 1 ≤ 𝑝 ≤ ∞ and (𝑎𝑛)
be a sequence of positive integers. We say that (𝑎𝑛) is pointwise good for 𝐿𝑝 if for
every measure preserving system (𝑋, Σ, 𝜇, 𝑇) and every 𝑓 ∈ 𝐿𝑝(𝑋) the limit

lim
𝑁→∞

1
𝑁

∑

𝑛∈[𝑁]
𝑓(𝑇𝑎𝑛𝑥)

exists a.e.. Similarly, we say the sequence (𝑎𝑛) is pointwise bad for 𝐿𝑝 if for every
aperiodic measure preserving system (𝑋, Σ, 𝜇, 𝑇) there exists a function
𝑓 ∈ 𝐿𝑝(𝑋) such that

lim
𝑁→∞

1
𝑁

∑

𝑛∈[𝑁]
𝑓(𝑇𝑎𝑛𝑥)

fails to exist a.e..

Whether a sequence will be pointwise good or bad for 𝐿𝑝 depends on many
factors, such as, the speed of the sequence (𝑎𝑛), the value of 𝑝, and sometimes
the intrinsic arithmetic properties of the sequence (𝑎𝑛). From Theorem 1.1, we
can see that if a sequence grows very fast, then it will be pointwise bad even for
𝐿∞. At the other extreme, if a sequence grows slower than any positive power of
𝑛, for example (𝑎𝑛) =

(
⌊(log 𝑛)𝑐⌋

)
for some 𝑐 > 0, then it is again pointwise bad
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for 𝐿∞ as shown by Jones and Wierdl [JW94, Example 2.18] (see also [Loy22]).
Bellow [Bel89] and Reinhold-Larsson [Rei94] proved that whether a sequence
will be pointwise good for 𝐿𝑝 or not can depend on the value of 𝑝. More pre-
cisely, they showed that for any given 1 ≤ 𝑝 < 𝑞 ≤ ∞, there are sequences
(𝑎𝑛) which are pointwise good for 𝐿𝑞 but pointwise bad for 𝐿𝑝. Parrish gives
refinements of these results in terms of Orlicz spaces in [And11]. In general,
neither the growth rate of the sequence, nor the value of 𝑝 alone can determine
whether the sequence is pointwise good or bad. In some cases, one has to ana-
lyze the intrinsic arithmetic properties of the sequence (𝑎𝑛). One such curious
example is (𝑛𝑘)𝑛. A celebrated result of Bourgain [Bou88, Theorem 2] says that
the sequence (𝑛𝑘)𝑛 is pointwise good for 𝐿2 when 𝑘 is a positive integer. On the
other hand, the sequence (⌊𝑛𝑘 + log 𝑛⌋)𝑛 is known to be pointwise bad for 𝐿2
when 𝑘 is a positive integer [BKQW05, Theorem C].
After showing that polynomials are pointwise good for 𝐿2, Bourgain showed

in [Bou89] that a polynomial sequence is pointwise good for 𝐿𝑝 for every 𝑝 > 1,
and Wierdl [Wie88] proved the same for the sequence of primes. However, the
sequence of squares is pointwise bad for 𝐿1, as was shown by Buczolich and
Mauldin [BM10]. LaVictoire showed the same in [Lav11] for the sequence (𝑛𝑘)
of 𝑘th powers for a fixed positive integer 𝑘 and for the sequence of primes. It
was largely believed that there cannot be any sequence (𝑎𝑛) which is point-
wise good for 𝐿1 and satisfies (𝑎𝑛+1 − 𝑎𝑛) → ∞ as 𝑛 → ∞, but Buczolich
disproved this conjecture in [Buc07]. Later, LaVictoire [LaV09] showed that a
large class of random sequences also serve as counterexamples. It follows from
the work of Urban and Zienkiewicz [UZ07] that (⌊𝑛𝑐⌋), 𝑐 ∈ (1, 1.001) is point-
wise good for 𝐿1. The current best result is due to Mirek [Mir15] who showed
that ⌊𝑛𝑐⌋, 𝑐 ∈ (1, 30

29
) is pointwise good for 𝐿1 (see also [Tro21]). It would be in-

teresting to know if the latter result can be extended to all positive non integer
𝑐. The case of 𝐿2 is known from [BKQW05] as well as 𝐿𝑝, 𝑝 > 1. For further
exposition in this area, the reader is referred to the survey article of [RW95].

Now we will give the formal definition of the strong sweeping out property.

Definition 1.3 (Strong sweeping out property). Let (𝑎𝑛) be a sequence of inte-
gers. We say that a sequence (𝑎𝑛) has the strong sweeping out property if in every
aperiodic dynamical system (𝑋, Σ, 𝜇, 𝑇) and for every 𝜖 > 0, there exists a set
𝐸 ∈ Σ with 𝜇(𝐸) < 𝜖 such that for almost every 𝑥 ∈ 𝑋 we have

lim sup
𝑁→∞

1
𝑁

∑

𝑛∈[𝑁]
1𝐸(𝑇𝑎𝑛𝑥) = 1 and lim inf

𝑁→∞
1
𝑁

∑

𝑛∈[𝑁]
1𝐸(𝑇𝑎𝑛𝑥) = 0.

It is clear from the definition that the strong sweeping out property is a very
strong type of non-convergence. In particular, if a sequence (𝑎𝑛) has the strong
sweeping out property then (𝑎𝑛) is 𝐿𝑝-bad for every 𝑝 ∈ [1,∞].
In 1996, it was shown in [ABJLRW, Corollary 1.11] that every lacunary se-

quence has the strong sweeping out property. Our theorem is an improvement
of their result.
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Theorem1.1 can also be interpreted fromadifferent viewpoint. Itwas proved
by Jones and Wierdl [JW94, Corollary 2.14] that for 1 ≤ 𝑝 < ∞ if a sequence
(𝑎𝑛) satisfies

𝑎𝑛+1
𝑎𝑛

≥ 1+ 1

(log 𝑛)
1
𝑝 −𝜂

for some 𝜂 > 0, then (𝑎𝑛) is pointwise bad for

𝐿𝑝. Theorem 1.1 can be viewed as an extension of this result to not only 𝐿∞ but
indicators as well. It is also interesting to compare our result with the results of
Berkes [Ber97] on lacunary polynomials.
In the next theorem, we will give a probabilistic condition for a sequence

(𝑎𝑛) to have the strong sweeping out property. Before we state the result, let
us explain the notion of a randomly generated sequence. Suppose (𝜎𝑛) is a se-
quence of positive numbers; 𝜎𝑛 is the probability with which 𝑛 is chosen into
the random sequence. More precisely, let 𝑌𝑛 be a sequence of {0, 1}-valued ran-
dom variables on the probability space (Ω, 𝛽, 𝑃) so that 𝑃(𝑌𝑛 = 1) = 𝜎𝑛 and
𝑃(𝑌𝑛 = 0) = 1 − 𝜎𝑛. For each 𝜔 ∈ Ω, let 𝐴𝜔 be the sequence defined by the
property that 𝑛 ∈ 𝐴𝜔 if and only if 𝑌𝑛(𝜔) = 1. Our second main result is the
following:

Theorem 1.4 (Probabilistic condition). Let 𝜂 > 0 be arbitrary and

𝜎𝑛 =
(log log log 𝑛)1−𝜂

𝑛 .

Then for a.e. 𝜔, the random sequence 𝐴𝜔 = (𝑎𝑛(𝜔)) is strong sweeping out.

This result is an improvement of [JLW99, Theorem C] where the same con-
clusion was obtained under the stronger hypothesis 𝜎(𝑛) = 1

𝑛
.

2. Proof of the main results
2.1. Notation. Let 𝑆 be a finite set and let 𝑓 = (𝑓𝑛)𝑛∈𝑆 be a sequence of num-
bers or functions indexed by 𝑆. We denote the arithmetic average of (𝑓𝑛) by
𝔸𝑆𝑓,

𝔸𝑆𝑓 = 𝔸𝑆𝑓𝑛 ∶=
1
#𝑆

∑

𝑛∈𝑆
𝑓𝑛 (2)

For a sequence 𝑤 = (𝑤(𝑛))𝑛∈𝑆 of numbers not identically 0, which we regard
as the sequence of weights, we denote the 𝑤-weighted average of 𝑓 by 𝔸𝑤

𝑆 𝑓,

𝔸𝑤
𝑆 𝑓 = 𝔸𝑤

𝑆 𝑓𝑛 ∶=
1∑

𝑛∈𝑆 𝑤(𝑛)
∑

𝑛∈𝑆
𝑤(𝑛)𝑓𝑛. (3)

2.2. Proof of Theorem 1.1. We will consider higher dimensional torus for
proving our result. Originally, such argument was used by Jones in [Jon04]
to prove that the finite union of lacunary sequences has the strong sweeping
out property. Later, an extension of this method was used in [Mon23] by the
first author of this paper. This technique is referred to as the grid method.
To prove Theorem 1.1, we need the following two lemmas.
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Lemma 2.1. Let 𝐴̃ = (𝑎𝑛)𝑛∈[𝑁] be a finite sequence of integers which satisfies
𝑎𝑛+1
𝑎𝑛

> 2𝑄 for some 𝑄 ≤ 𝑁. Suppose that 𝐴̃ = ⋅⋃
𝑞∈[𝑄]

𝐴𝑞 be partition of 𝐴̃. Then

there exists an irrational number 𝑟 ∈ (0, 1) such that for all 𝑞 ∈ [𝑄] we have
𝑟𝑎𝑛 ∈ 𝐼𝑄−𝑞 (mod 1) whenever 𝑎𝑛 ∈ 𝐴𝑞, where 𝐼𝑞 =

(𝑞−1
𝑄
, 𝑞
𝑄

)
.

Proof. This lemma in a bit different form appeares elsewhere [JW94, Lemma
2.13], hence its proof is skipped here. □

Lemma 2.2. Let 𝐴 = (𝑎𝑛) be a sequence of integers which satisfies the following
property: For every 𝐶 > 0, 𝜖 > 0 and𝑁1 ∈ ℕ, there exists a dynamical system
(𝑋, Σ, 𝜇, 𝑇), a set 𝐸 ∈ Σ with 𝜇(𝐸) < 𝜖, and an integer𝑁2 > 𝑁1 such that

𝜇
{
𝑥 ∈ 𝑋 ∶ max

𝑁2≤𝑁≤𝑁2
𝔸[𝑁]1𝐸(𝑇𝑎𝑛𝑥) > 1 − 𝜖

}
≥ 𝐶𝜇(𝐸). (4)

Then the sequence 𝐴 = (𝑎𝑛) has the strong sweeping out property.
Proof. A version of this lemma appears elsewhere [Mon23, Theorem 3.1] al-
ready with detailed proof, so we will just outline the proof here.
First, by using Calderon’s transference principle [Cal68], one can prove that

if we have amaximal inequality onℝ (with respect to the transformation 𝜏(𝑛) =
𝑛+1), then the maximal inequality transfers to any dynamical system with the
same constant. Hence the hypothesis of Theorem 2.2 implies that there is a
denial of a maximal inequality onℝ. Now, we invoke [ABJLRW, Theorem 2.3]
to finish the proof of this theorem. □

Proof of Theorem 1.1. Let𝐶 > 0,𝑁1 ∈ ℕ, and 𝜖 > 0. By Lemma 2.2, it will be
sufficient to find a set 𝐸 in 𝕋𝐾 with 𝜆(𝐾)(𝐸) < 𝜖, and an integer𝑁2 > 𝑁1 which
satisfy Eq. (4). Here 𝕋𝐾 denotes the 𝐾-dimensional torus and 𝜆(𝐾) means the
Haar-Lebesgue measure on 𝕋𝐾 .
Let 𝑁 > 𝑁1 be a very large positive integer. As

𝑎𝑛 ≠ 𝑎𝑚 for 𝑛 ≠ 𝑚,
(𝑎𝑛) can also be considered as a set. Since for 𝑥 ∈ (0, 1), we have 𝑒𝑥 = 1 + 𝑥 +
𝑂(𝑥2), we can rewrite the given condition as

𝑎𝑛+1
𝑎𝑛

> 𝑒
1

(log log𝑁)1−𝜂 for 𝑛 ∈ [𝑁]. (5)

Let us choose a natural number 𝑄 = 𝑄(𝑁) which just needs to go to ∞ as
𝑁 → ∞. Choose another integer 𝐾 = 𝐾(𝑁) large enough so that

𝑒
𝐾

(log log𝑁)1−𝜂 > 2𝑄. (6)
This implies

𝑎𝑛+𝐾
𝑎𝑛

> 2𝑄 for 𝑛 ∈ [𝑁]. (7)

For any 𝑘 ∈ [𝐾], define
𝐴𝑘 ∶=

{
𝑎𝑛 ∶ 𝑛 ≡ 𝑘 (mod 𝐾) and 𝑛 ∈ [𝑁]

}
. (8)
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Observe that for each 𝑘 ∈ [𝐾], 𝐴𝑘 satisfies the hypothesis of Lemma 2.1. That
means each 𝐴𝑘 has the property that if it is partitioned into 𝑄 sets, e.g. 𝐴𝑘 =
⋅
⋃

𝑞∈[𝑄]
𝐴𝑘,𝑞, then there is an irrational number 𝑟𝑘 so that

𝑟𝑘𝑎𝑛 ∈ 𝐼𝑄−𝑞 (mod 1) for all 𝑎𝑛 ∈ 𝐴𝑘,𝑞, 𝑞 ∈ [𝑄], (9)

where
𝐼𝑞 ∶=

(𝑞 − 1
𝑄 , 𝑞𝑄

)
. (10)

The above partition𝐴1, 𝐴2, ..., 𝐴𝐾 of (𝑎𝑛)𝑛∈[𝑁] naturally induces a partition of
the index set [𝑁] into 𝐾 index sets𝒩𝑘, 𝑘 ∈ [𝐾]. For every 𝗑 = (𝑥1, 𝑥2, … , 𝑥𝐾) ∈
𝕋𝐾 , we then have

𝔸𝐽𝑓(𝑇𝑎𝑛𝗑) =
1
#𝐽

∑

𝑘∈[𝐾]

∑

𝑛∈𝐽∩𝒩𝑘

𝑓(𝑇𝑎𝑛𝗑). (11)

The space of action is the 𝐾 dimensional torus 𝕋𝐾 , subdivided into little 𝐾
dimensional cubes 𝐶 of the form

𝐶 = 𝐼𝑞(1) × 𝐼𝑞(2) × ...... × 𝐼𝑞(𝑘) for some 𝑞(𝑘) ≤ 𝑄 for 𝑞 ≤ 𝑄. (12)

At this point it is useful to introduce the following vectorial notation to de-
scribe these cubes 𝐶. For a vector 𝐪 =

(
𝑞(1), 𝑞(2), ..., 𝑞(𝐾)

)
with 𝑞(𝑘) ∈ [𝑄],

define
𝐼𝐪 ∶= 𝐼𝑞(1) × 𝐼𝑞(2) ×⋯ × 𝐼𝑞(𝐾). (13)

Since each component 𝑞(𝑘) can take up the values 1, 2, … , 𝑄, we divided 𝕋𝐾
into 𝑄𝐾 cubes. We also consider the “bad” set 𝐸 ⊂ 𝕋𝐾 defined by

𝐸 ∶= ∪𝑘≤𝐾(0, 1) × (0, 1) ×⋯ ×
(
𝐼1 ∪ 𝐼2

)
⏟⎴⏟⎴⏟

k-th coordinate

×⋯ × (0, 1). (14)

Defining the set 𝐸𝑘 ⊂ 𝕋𝐾 by
𝐸𝑘 ∶= (0, 1) × (0, 1) ×⋯ ×

(
𝐼1 ∪ 𝐼2

)
⏟⎴⏟⎴⏟

k-th coordinate

×⋯ × (0, 1) (15)

we have
𝐸 = ∪𝑘≤𝐾𝐸𝑘 and 𝜆(𝐾)(𝐸𝑘) ≤

2
𝑄 for every 𝑘 ≤ 𝐾. (16)

By Eq. (16), we have

𝜆(𝐾)(𝐸) ≤ 2𝐾
𝑄 . (17)

Since we want the measure of the “bad set” to be smaller and smaller, we
must assume

𝐾 << 𝑄. (18)
Now the idea is to have averages thatmove each of the cubes into the support

of the set 𝐸. The 2-dimensional version of the process is illustrated in Fig. 1.
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bad set 𝐸

(𝑥1, 𝑥2) ∈ 𝐵6,3

Figure 1. Illustration of the 2-dimensional case. Here the
“bad set” E is the orange colored region. Let (𝑥1, 𝑥2) be an
arbitrary point (which belongs to 𝐵6,3 in this case). We need
to look at an average where 𝑟1𝑎𝑛 ∈ ( 4

10
, 5
10
) for all 𝑛 ∈ 𝐴1

and 𝑟2𝑎𝑛 ∈ ( 7
10
, 8
10
) for all 𝑛 ∈ 𝐴2. Then it would give us

(𝑥1, 𝑥2) + (𝑟1𝑎𝑛, 𝑟2𝑎𝑛) ∈ 𝐸 for all 𝑛 ∈ 𝐴1 ∪ 𝐴2.

Since we have 𝑄𝐾 cubes, we need to have 𝑄𝐾 averages 𝔸𝐽𝑖 . This means we
need to have 𝑄𝐾 disjoint intervals 𝐽𝑖 of indices. The length of these intervals
𝐽𝑖 needs to be “significant”, in comparison with 𝐽𝑖−1. For our purpose, 𝐽𝑖 =
(2𝑁1+𝑖, 2𝑁1+𝑖+1) will be suitable. This means we need to have 𝑄𝐾 exponents
available, which implies that

𝑁 ≥ 2𝑄𝐾 . (19)

For simplicity, we assume that

𝑁 = 2𝑄𝐾 (20)

To make our plan work, first let us check that we can really choose such 𝐾(𝑁)
which satisfies the condition (18), (20) and (6). Let us write Eq. (6) as

𝐾
(log log𝑁)1−𝜂

> log 2𝑄. (21)
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Using the assumption 𝑁 = 2𝑄𝐾 , the condition in Eq. (21) becomes
𝐾

(𝐾 log𝑄)1−𝜂
> log 2𝑄. (22)

After rearranging and ignoring the difference between log𝑄 and log 2𝑄, we get

𝐾𝜂 >
(
log𝑄

)2−𝜂
, (23)

which we can simplify a bit generously to

𝐾 > (log𝑄)
2
𝜂 . (24)

We certainly can choose 𝐾 to satisfy Eq. (24) and also make sure that 𝐾(𝑁)
𝑄(𝑁)

goes
to 0 as 𝑁 → ∞. Choose 𝑁2 large enough so that 𝐾(𝑁2) and 𝑄(𝑁2) satisfy Eq.
(24) and the following:

2𝐾(𝑁2)
𝑄(𝑁2)

< min{𝜖, 1𝐶 }. (25)

So we have 𝑄𝐾 cubes 𝐶𝑖, 𝑖 ∈ [𝑄𝐾] and 𝑄𝐾 intervals 𝐽𝑖, 𝑖 ∈ [𝑄𝐾]. We match 𝐶𝑖
with 𝐽𝑖. We know that 𝐶𝑖 is of the form

𝐶𝑖 = 𝐼𝗊𝑖 , (26)

for some 𝐾 dimensional vector 𝗊𝑖 =
(
𝑞𝑖(1), 𝑞𝑖(2), … 𝑞𝑖(𝐾)

)
with 𝑞𝑖(𝑘) ∈ [𝑄] for

every 𝑘 ∈ [𝐾]. The interval 𝐽𝑖 is partitioned as
𝐽𝑖 =

⋃

𝑘∈[𝐾]
(𝐽𝑖 ∩𝒩𝑘). (27)

For a given 𝑘 ∈ [𝐾], let us define the set of indices𝒩𝑘,𝑞 for 𝑞 ≤ 𝑄, by

𝒩𝑘,𝑞 ∶=
⋃

𝑖≤𝑄𝐾 ,𝑞𝑖(𝑘)=𝑞
(𝐽𝑖 ∩𝒩𝑘) (28)

Since the sets 𝐴𝑘,𝑞 ∶=
{
𝑎𝑛 ∶ 𝑛 ∈ 𝒩𝑘,𝑞

}
form a partition of 𝐴𝑘, by the argument

above Eq. (9), there is an irrational number 𝑟𝑘 so that
𝑟𝑘𝑎𝑛 ∈ 𝐼𝑄−𝑞 (mod 1) for 𝑛 ∈ 𝒩𝑘,𝑞 and 𝑞 ≤ 𝑄. (29)

Define the transformation 𝑇 on the 𝐾 dimensional torus 𝕋𝐾 by
𝑇(𝑥1, 𝑥2, … , 𝑥𝐾) ∶= (𝑥1 + 𝑟1, 𝑥2 + 𝑟2, … , 𝑥𝐾 + 𝑟𝐾). (30)

We claim that {
𝗑| max

𝑖∈[𝑄𝐾]
𝔸𝐽𝑖1𝐸(𝑇

𝑎𝑛𝗑) = 1
}
= 𝕋𝐾 . (31)

Indeed, let 𝗑 ∈ 𝐶𝑖 and consider the average 𝔸𝐽𝑖 . Let us write

𝔸𝑛∈𝐽𝑖1𝐸(𝑇
𝑎𝑛𝗑) = 1

#𝐽𝑖
∑

𝑘≤𝐾

∑

𝐽𝑖∩𝒩𝑘

1𝐸(𝑇𝑎𝑛𝗑) (32)

= 1
#𝐽𝑖

∑

𝑘≤𝐾

∑

𝑛∈𝐽𝑖∩𝒩𝑘

1𝐸(𝑥1 + 𝑟1𝑎𝑛, 𝑥2 + 𝑟2𝑎𝑛, … , 𝑥𝐾 + 𝑟𝐾𝑎𝑛). (33)
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We claim that for each 𝑘 ∈ [𝐾]
(𝑥1 + 𝑟1𝑎𝑛, 𝑥2 + 𝑟2𝑎𝑛, … 𝑥𝑘 + 𝑟𝑘𝑎𝑛, … , 𝑥𝐾 + 𝑟𝐾𝑎𝑛) ∈ 𝐸𝑘 if 𝑛 ∈ 𝐽𝑖 ∩𝒩𝑘 (34)

Since, 𝐸𝑘 ⊂ 𝐸, we would have
1𝐸(𝑥1 + 𝑟1𝑎𝑛, 𝑥2 + 𝑟2𝑎𝑛, … 𝑥𝑘 + 𝑟𝑘𝑎𝑛, … , 𝑥𝐾 + 𝑟𝐾𝑎𝑛) = 1 if 𝑛 ∈ 𝐽𝑖 ∩𝒩𝑘 (35)

which would imply that

1𝐸(𝑇𝑎𝑛𝗑) = 1 for all 𝑛 ∈ 𝐽𝑖. (36)

So let us prove Eq. (34). Since 𝗑 ∈ 𝐶𝑖 = 𝐼𝗊, we have 𝑥𝑘 ∈ 𝐼𝑞𝑖(𝑘) for every 𝑘. By
the definition of 𝑟𝑘 in Eq. (29) we have 𝑟𝑘𝑎𝑛 ∈ 𝐼𝑄−𝑞𝑖(𝑘) if 𝑛 ∈ 𝐽𝑖 ∩𝒩𝑘. It follows
that

𝑥𝑘 + 𝑟𝑘𝑎𝑛 ∈ 𝐼𝑞𝑖(𝑘) + 𝐼𝑄−𝑞𝑖(𝑘) if 𝑛 ∈ 𝐽𝑖 ∩𝒩𝑘. (37)
Since 𝐼𝑞𝑖(𝑘) + 𝐼𝑄−𝑞𝑖(𝑘) ⊂ 𝐼1 ∪ 𝐼2, we get

𝑥𝑘 + 𝑟𝑘𝑎𝑛 ∈ 𝐼1 ∪ 𝐼2 if 𝑛 ∈ 𝐽𝑖 ∩𝒩𝑘.
By the definition of 𝐸𝑘 in (15), this implies that

(𝑥1 + 𝑟1𝑎𝑛, 𝑥2 + 𝑟2𝑎𝑛, … 𝑥𝑘 + 𝑟𝑘𝑎𝑛, … , 𝑥𝐾 + 𝑟𝐾𝑎𝑛) ∈ 𝐸𝑘
as claimed. □

Remark 2.3. We make two remarks here:
(1) Sharpness: We can prove Theorem 1.1 by replacing the assumption (1)

with
𝑎𝑛+1
𝑎𝑛

> 1 +
(log log log 𝑛)2+𝜂

log log 𝑛 , 𝜂 > 0.

(2) Theorem 1.1 can also be proved by using [PS10, Theorem 3.1]. By apply-
ing this result, one can slightly weaken the hypothesis. More precisely, we
can prove that any sequence (𝑎𝑛) satisfying

𝑎𝑛+1
𝑎𝑛

> 1 +
(log log log 𝑛)1+𝜂

log log 𝑛 , 𝜂 > 0,

has the strong sweeping out property.

We can generalize Theorem 1.1 for weighted ergodic averages in the follow-
ing way:

Theorem 2.4. Let (𝑤(𝑛)) be a sequence of real numbers from the interval (0, 1]
and denote 𝐺(𝑛) ∶= ∑

𝑖∈[𝑛]𝑤(𝑖). Suppose (𝑎𝑛) is a sequence of integer which
satisfies

𝑎𝑛+1
𝑎𝑛

≥ 1 + 1
(log log𝐺(𝑛))1−𝜂

(38)

for some 𝜂 > 0. Then (𝑎𝑛) satisfies the strong sweeping out property for the
𝑤-weighted averages𝔸𝑤

[𝑁]𝑓(𝑇
𝑎𝑛𝑥).
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Proof. The proof of Theorem 1.1 will work in this case after the following obvi-
ous modifications. Instead of 𝔸𝐽 , we have to work with the weighted averages
𝔸𝑤
𝐽 . Accordingly, the length of 𝐽𝑖 also has to be changed. A suitable choice of

𝐽𝑖 in this case would be following:

𝐽𝑖 =
(
𝐺−1(2𝑁1+𝑖), 𝐺−1(2𝑁1+𝑖+1)

)
(39)

Now, one can reiterate the argument given in Theorem 1.1 to get the desired
conclusion. □

Corollary 2.5. If (𝑎𝑛) is a sequence of integers satisfying
𝑎𝑛+1
𝑎𝑛

≥ 1 + 1
(log log log 𝑛)1−𝜂

for some 𝜂 > 0, then (𝑎𝑛) has the strong sweeping out property for the logarithmic
averages

𝔸1∕𝑛
[𝑁]𝑓(𝑇

𝑎𝑛𝑥) = 1
log𝑁

∑

[𝑁]

1
𝑛𝑓(𝑇

𝑎𝑛𝑥).

2.3. Proof of Theorem 1.4. Now, we will prove Theorem 1.4. For any se-
quence𝐴 of integers, we define𝐴(𝑡) ∶= {𝑛 ∈ 𝐴 ∶ 𝑛 ≤ 𝑡}.Observe that Theorem
1.4 will follow from Theorem 1.1 and the following lemma.

Lemma 2.6. Under the hypothesis of Theorem 1.4, for a.e. 𝜔, there exists a
subsequence 𝐵𝜔 = (𝑏𝑛(𝜔)) of 𝐴𝜔 = (𝑎𝑛(𝜔)) such that the following holds:

lim
𝑡→∞

𝐵𝜔(𝑡)
𝐴𝜔(𝑡)

= 1 (40)

𝑏𝑛+1(𝜔)
𝑏𝑛(𝜔)

> 𝑒
1

(log log 𝑛)1−𝜂∕2 (41)

Proof. Let 𝑢𝑛 = min{𝑡|
∑

𝑘≤𝑡
𝜎𝑘 ≥ 𝑛}. First observe that 𝑢𝑛 ∼ 𝑒𝑛(log log 𝑛)−1+𝜂 . By

the strong law of large numbers, we have for a.e. 𝜔 that

lim
𝑛→∞

𝐴𝜔(𝑢𝑛)∑
𝑢≤𝑢𝑛

𝜎𝑢
= 1,

which implies that lim𝑛→∞
𝐴𝜔(𝑢𝑛)

𝑛
= 1.

Clearly, 𝑢𝑛+1
𝑢𝑛

∼ 𝑒
1

(log log 𝑛)1−𝜂 . However, this does not imply that

𝑎𝑛+1(𝜔)
𝑎𝑛(𝜔)

> 𝑒
1

(log log 𝑛)1−𝜂 .
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𝑢𝑘
𝑎𝑘(𝜔)

𝑢𝑘+1
𝑎𝑘+1(𝜔)𝑎𝑘+2(𝜔)

𝑢𝑘+2 𝑢𝑘+3
𝑎𝑘+3(𝜔)

𝑢𝑘+4

Figure 2. An example where 𝐴𝜔 may not satisfy the condition (41)

So, we need to modify our sequence. Let 𝑣𝑛 = 𝑒𝑛(log log 𝑛)
−1+ 𝜂

2 and 𝐼𝑛 =
[𝑣𝑛, 𝑣𝑛+1) ∩ ℕ. The properties of (𝑣𝑛) that we shall use here are the following:

𝑣𝑛+1
𝑣𝑛

≥ 𝑒
1

(log log 𝑛)1−
𝜂
2 and lim

𝑛→∞

∑

𝑢∈𝐼𝑛
𝜎𝑢 = 0. (42)

Let

𝐷𝜔 = (𝑑𝑛(𝜔)) ∶= {𝑑 ∶ 𝑑 ∈ 𝐼𝑛 ∩ 𝐴𝜔 for some 𝑛 ∈ ℕ satisfying 𝐼𝑛+1 ∩ 𝐴𝜔 ≠ ∅}
and

𝐸𝜔 = (𝑒𝑛(𝜔)) ∶=
⋃

𝑛∈ℕ
{𝐼𝑛 ∩ 𝐴𝜔 ∶ |𝐼𝑛 ∩ 𝐴𝜔| > 1}.

In Fig. 3, 𝑎𝑘+1(𝜔) ∈ 𝐷𝜔 because 𝐼𝑘+1 ∩ 𝐴𝜔 ≠ ∅. And 𝑎𝑘+3(𝜔), 𝑎𝑘+4(𝜔) ∈ 𝐸𝜔.

𝑣𝑘
𝑎𝑘(𝜔)

𝑣𝑘+1
𝑎𝑘+1(𝜔) 𝑎𝑘+2(𝜔)

𝑣𝑘+2 𝑣𝑘+3
𝑎𝑘+3(𝜔)
𝑣𝑘+4 𝑣𝑘+5

𝑎𝑘+5(𝜔)
𝑣𝑘+6

𝑎𝑘+4(𝜔)
𝑣𝑘+7

Figure 3. Construction of 𝐷𝜔 and 𝐸𝜔

Define 𝐵𝜔 ∶= 𝐴𝜔 ⧵ (𝐷𝜔∪𝐸𝜔). Note that 𝐵𝜔 satisfies the following properties
(1) If |𝐵𝜔 ∩ 𝐼𝑛| = 1 then |𝐵𝜔 ∩ 𝐼𝑛+1| = 0.
(2) |𝐵𝜔 ∩ 𝐼𝑛| ≤ 1 for all 𝑛.

from which it follows that (𝑏𝑛(𝜔)) satisfies Eq. (41).

𝑣𝑘
𝑎𝑘(𝜔)

𝑣𝑘+1
𝑎𝑘+2(𝜔)

𝑣𝑘+2 𝑣𝑘+3 𝑣𝑘+4 𝑣𝑘+5
𝑎𝑘+3(𝜔)

𝑣𝑘+6 𝑣𝑘+7

Figure 4. Construction of 𝐵𝜔

It remains to verify Eq. (40).
It will be sufficient to show that for a.e. 𝜔,
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lim
𝑡→∞

𝐷𝜔(𝑡)
𝐴𝜔(𝑡)

= 0 and lim
𝑡→∞

𝐸𝜔(𝑡)
𝐴𝜔(𝑡)

= 0.

By the strong law of large numbers, we need to show that

lim
𝑡→∞

𝔼𝐷𝜔(𝑡)
∑

𝑛≤𝑡 𝜎𝑛
= 0 and lim

𝑡→∞

𝔼𝐸𝜔(𝑡)
∑

𝑛≤𝑡 𝜎𝑛
= 0.

Note that 𝐷𝜔(𝑡) ≤
∑

𝑣𝑘≤𝑡

( ∑

𝑛∈𝐼𝑘
𝑌𝑛(𝜔)

)
. sup
𝑛∈𝐼𝑘+1

𝑌𝑛. Since the random variables

𝑋𝑘 =
∑

𝑛∈𝐼𝑘
𝑌𝑛, 𝑘 = 1, 2, 3, ...., are independent, it follows that

𝔼𝐷𝜔(𝑡) ≤ 𝔼
∑

𝑣𝑘≤𝑡

( ∑

𝑛∈𝐼𝑘
𝑌𝑛
)
. sup
𝑛∈𝐼𝑘+1

𝑌𝑛

≤ 𝔼
∑

𝑣𝑘≤𝑡

( ∑

𝑛∈𝐼𝑘
𝑌𝑛
)
.
( ∑

𝑛∈𝐼𝑘+1
𝑌𝑛
)

≤
∑

𝑣𝑘≤𝑡

( ∑

𝑛∈𝐼𝑘
𝜎𝑛
)
.
( ∑

𝑛∈𝐼𝑘+1
𝜎𝑛
)
.

Hence,

lim sup
𝑡→∞

𝔼𝐷𝜔(𝑡)
∑

𝑛≤𝑡 𝜎𝑛
≤ lim sup

𝑡→∞

∑
𝑣𝑘≤𝑡

(∑
𝑛∈𝐼𝑘

𝜎𝑛
)
.
(∑

𝑛∈𝐼𝑘+1
𝜎𝑛
)

∑
𝑛≤𝑡 𝜎𝑛

≤ lim sup
𝑘→∞

( ∑

𝑛∈𝐼𝑘+1
𝜎𝑛
)
∑

𝑣𝑘≤𝑡
(∑

𝑛∈𝐼𝑘
𝜎𝑛
)

∑
𝑛≤𝑡 𝜎𝑛

= 0
(
By Eq. (42)

)
.

Similarly, letting |𝐼𝑘| = 𝑙 we have

lim sup
𝑡→∞

𝔼𝐸𝜔(𝑡)
∑

𝑛≤𝑡 𝜎𝑛

= lim sup
𝑡→∞

∑

𝑣𝑘≤𝑡

(
2
∑

𝑚≠𝑛∈𝐼𝑘
𝜎𝑚𝜎𝑛 + 3

∑

𝑚≠𝑛≠𝑝∈𝐼𝑘
𝜎𝑚𝜎𝑛𝜎𝑝+…+𝑙

∑

𝑚1≠𝑚2≠⋯≠𝑚𝑙∈𝐼𝑘
𝜎𝑚1𝜎𝑚2…𝜎𝑚𝑙

)

∑
𝑛≤𝑡 𝜎𝑛

≤ lim sup
𝑡→∞

∑
𝑣𝑘≤𝑡

(
2
(∑

𝑚∈𝐼𝑘 𝜎𝑚
)2
+ 3

(∑
𝑚∈𝐼𝑘 𝜎𝑚

)3
+⋯+ 𝑙

(∑
𝑚∈𝐼𝑘 𝜎𝑚

)𝑙)

∑
𝑛≤𝑡 𝜎𝑛

≤ lim sup
𝑡→∞

∑
𝑣𝑘≤𝑡

(∑
𝑚∈𝐼𝑘 𝜎𝑚

)
⋅
(
2
(∑

𝑚∈𝐼𝑘 𝜎𝑚
)
+ 3

(∑
𝑚∈𝐼𝑘 𝜎𝑚

)2
+⋯+ 𝑙

(∑
𝑚∈𝐼𝑘 𝜎𝑚

)(𝑙−1))

∑
𝑛≤𝑡 𝜎𝑛

≤ lim sup
𝑘→∞

(
2
( ∑

𝑚∈𝐼𝑘
𝜎𝑚

)
+ 3

( ∑

𝑚∈𝐼𝑘
𝜎𝑚

)2
+… 𝑙

( ∑

𝑚∈𝐼𝑘
𝜎𝑚

)(𝑙−1))
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≤ lim sup
𝑘→∞

𝑥 ⋅ (2 − 𝑥)
(1 − 𝑥)2

(
where 𝑥 =

∑

𝑚∈𝐼𝑘
𝜎𝑚

)

= 0
(
By Eq. (42)

)
.

This completes the proof. □

3. Open problems
The first problem asks if our result in Theorem 1.1 is sharp.

Problem 3.1. Suppose the sequence (𝑎𝑛) of positive integers satisfies
𝑎𝑛+1
𝑎𝑛

> 1 + 1
log log 𝑛 (43)

Is (𝑎𝑛) strong sweeping out?

It is known from [JLW99] that there is a pointwise good sequence (𝑎𝑛) for 𝐿2

satisfying
𝑎𝑛+1
𝑎𝑛

≥ 1 + 1
(log 𝑛)1+𝜂

for every 𝜂 > 0 and large enough 𝑛. We already

mentioned [JW94, Corollary 2.14] that if (𝑎𝑛) satisfies
𝑎𝑛+1
𝑎𝑛

≥ 1+ 1
(log 𝑛)1∕2−𝜂

for

some positive 𝜂 then (𝑎𝑛) is pointwise bad for 𝐿2.

Problem 3.2. Suppose the sequence (𝑎𝑛) of positive integers satisfies
𝑎𝑛+1
𝑎𝑛

≥ 1 + 1
log 𝑛 (44)

for every large enough 𝑛. Is (𝑎𝑛) then pointwise bad for 𝐿2?
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