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A slope invariant and the
𝑨-polynomial of knots

Léo Bénard, Vincent Florens and Adrien Rodau

Abstract. The 𝐴-polynomial is a knot invariant related to the space of
SL2(ℂ) representations of the knot group. In this paper our interests lies in
the logarithmic Gauss map of the 𝐴-polynomial. We develop a homologi-
cal point of view on this function by extending the constructions of Degt-
yarev, the second author and Lecuona to the setting of non-abelian represen-
tations. It defines a rational function on the character variety, which unifies
various known invariants such as the change of curves in the Reidemeister
function, the modulus of boundary-parabolic representations, the boundary
slope of some incompressible surfaces embedded in the exterior of the knot
𝐾 or equivalently the slopes of the sides of the Newton polygon of the 𝐴-
polynomial𝐴𝐾 . We also present a method to compute this invariant in terms
of Alexander matrices and Fox calculus.
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1. Introduction
The set of all representations of a knot group in SL2(ℂ) carries naturally the

structure of an algebraic set. This holds also for the characters of these represen-
tations, whose set is called the SL2(ℂ)-character variety of the knot. Given a pe-
ripheral structure of the knot, the character variety is a plane curve inℂ∗ × ℂ∗,
whose coordinates 𝑀 and 𝐿 correspond to the eigenvalues of the meridian 𝑚
and the preferred longitude 𝓁. The polynomial 𝐴𝐾(𝐿,𝑀) defining this curve
is an invariant of the knot, called the 𝐴-polynomial. This invariant contains a
lot of interesting information on the knot; in particular, Boyer and Zhang [4]
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and Dunfield and Garoufalidis [13] showed that 𝐴𝐾 = 𝐿 − 1 if and only if 𝐾 is
trivial.
In this paper, ourmotivations come, among others, from the following result

of Boden:

Theorem 1.1 ([3]). If the𝑀-degree deg𝑀 𝐴𝐾(𝐿,𝑀) of the 𝐴-polynomial is zero,
then 𝐾 is the trivial knot.

This result motivates the systematic study of the logarithmic Gauss map of
the 𝐴-polynomial

𝑀
𝐿 ⋅

𝜕𝑀𝐴𝐾(𝐿,𝑀)
𝜕𝐿𝐴𝐾(𝐿,𝑀)

, (1)

where 𝜕𝑀 and 𝜕𝐿 denote the partial derivatives. By Theorem 1.1, this rational
function vanishes identically on {𝐴𝐾 = 0} if and only if 𝐾 is trivial.
The logarithmic Gauss map was introduced in [14] by Guelfand, Kapranov

and Zelevinsky in order to study some determinantial varieties. Then it has
been used for instance by Mikhalkin in [17] for studying the topology of ar-
rangements of real plane curves. In [15], Marché and Guilloux showed it is
related with the volume function of the 𝐴-polynomial of knots, or more gener-
ally of exact polynomials.
Our proposal is to develop a homological point of view on this function,

by extending the constructions of Degtyarev, the second author and Lecuona
[10, 11] to the setting of non-abelian representations. Let𝐾 be an oriented knot
in the 3-sphere 𝑆3 with exterior𝑀𝐾 . Denote by 𝑅(𝑀𝐾) and 𝑋(𝑀𝐾) the SL2(ℂ)-
representation and character varieties of the knot 𝐾. We consider representa-
tions 𝜌∶ 𝜋1(𝑀𝐾) → SL2(ℂ) composed with the adjoint action of SL2(ℂ) on the
Lie algebra Ad∶ SL2(ℂ) → Aut(𝔰𝔩2(ℂ)), and show that there is a non-empty
Zariski open subset of 𝑋(𝑀𝐾) such that for all 𝜌 in this subset

- there is an element 𝑣𝜌 ∈ 𝔰𝔩2(ℂ) such that (𝑣𝜌 ⊗𝓁, 𝑣𝜌 ⊗𝑚) is a basis of
the homology group𝐻1(𝜕𝑀𝐾 , Ad ◦𝜌) ≃ ℂ2 with coefficients twisted by
Ad◦𝜌, and

- the kernel of the homomorphism induced by the inclusion:

𝒵(𝐾,Ad ◦𝜌) = ker (𝐻1(𝜕𝑀𝐾 , Ad ◦𝜌)
𝑖∗⟶𝐻1(𝑀𝐾 , Ad ◦𝜌))

is generated by a single vector of the form 𝑎 𝑣𝜌 ⊗ 𝓁 + 𝑏 𝑣𝜌 ⊗𝑚 for some
[𝑏 ∶ 𝑎] ∈ ℂℙ1.

The representations which verify these conditions are called admissible. We
define the slope of 𝐾 at the admissible representation 𝜌 by

𝑠𝐾(𝜌) = −𝑏𝑎 ∈ ℂℙ1.
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We prove that representations which restrict to non-parabolic representations
of the boundary 𝜕𝑀𝐾 of𝑀𝐾 are admissible, see Lemma 3.4. If 𝜌 is a boundary-
parabolic representation, we define the slope 𝑠𝐾(𝜌) as the modulus of the eu-
clidean structure induced by the restricted representation on 𝜋1(𝜕𝑀𝐾), see Sec-
tion 3.3. It turns out that these two different definitions fit well and that the
following holds.

Proposition 1.2. The slope depends only on the conjugacy classes of the repre-
sentations and induces a rational function

𝑠𝐾 ∶ 𝑋 ⊂ 𝑋(𝑀𝐾)⟶ ℂℙ1

on each irreducible component 𝑋 of the character variety.

Note that if the representation is real or unitary, then 𝑠𝐾 takes values inℝℙ1
(see Proposition 3.13). For any knot, the function 𝑠𝐾 can be computed by Fox
calculus, see Section 3.5. We illustrate themethod in the case of the trefoil knot,
and further compute the slope of the figure-eight knot.
The following theorem relates 𝑠𝐾 to the original motivation; a precise state-

ment is given in Theorem 4.1.

Theorem 1.3. The slope function 𝑠𝐾 equals minus the logarithmic Gauss map of
the 𝐴-polynomial defined in Eq. (1).

We also relate 𝑠𝐾 to the change of curve factor for the Reidemeister torsion.
Let𝕋𝑀𝐾 ,𝓁(𝜌) and𝕋𝑀𝐾 ,𝑚(𝜌) be the Reidemeister torsions according to homology
bases induced by the choices of the curves 𝓁 and𝑚 in 𝜕𝑀𝐾 , see Section 3.4.

Proposition 1.4. The slope coincides with the quotient of Reidemeister torsion:

𝑠𝐾(𝜌) =
𝕋𝑀𝐾 ,𝓁(𝜌)
𝕋𝑀𝐾 ,𝑚(𝜌)

for all 𝜌 such that this formula is well-defined.

Porti had already observed ([18, Corollary 4.9]) that the logarithmic Gauss
map of the𝐴-polynomial could be expressed as a ratio of torsions -up to a sign-,
and that this ratio of torsions is equal to themodulus of 𝜌when it is a boundary-
parabolic representation ([18, Proposition 4.7]). Our point of view permits to
fix and compute the sign ambiguity. Moreover, our results Proposition 1.2 and
Theorem 1.3 are more general, since they do not require the Reidemeister tor-
sion to be well-defined, for instance they hold for high dimensional compo-
nents of the character variety.
Finally, we consider ideal points of the𝐴-polynomial, those are points added

at infinity in a compactification of the curve {𝐴(𝐿,𝑀) = 0} in ℂ2. In [9], Culler
and Shalen constructed incompressible surfaces in𝑀𝐾 associated to suchpoints.
Those surfaces have a non-empty boundary, whose slope is determined by ra-
tional number 𝑝∕𝑞. We prove the following theorem:
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Theorem 1.5. Let 𝑦 ∈ ℂℙ2 be an ideal point of the curve {𝐴𝐾(𝐿,𝑀) = 0}. The
value of 𝑠𝐾 at 𝑦 equalsminus the slope of the Culler–Shalen incompressible sur-
face associated to 𝑦.

This theorem sheds some light on the main theorem of [7], which states that
the boundary slopes of the Culler–Shalen surfaces are boundary slopes of the
Newton polygon of the 𝐴-polynomial. Indeed it is well-known that the loga-
rithmic Gauss map converges at those ideal points to the value of the slope of
the corresponding boundary of the Newton polygon.
To conclude this introduction, we mention that the slope invariant can be

extended to orthogonal (real) representations of link groups. In this more gen-
eral setting, the first twisted homology space𝐻1(𝜕𝑀𝐾 , 𝜌) can have an arbitrary
dimension higher than 2 and the kernel 𝒵(𝐾, 𝜌) might not be a line anymore.
However, the space𝐻1(𝜕𝑀𝐾 , 𝜌) carries a natural symplectic structure given by
the (twisted) intersection form on 𝜕𝑀𝐾 , and 𝒵(𝐾, 𝜌) is still a Lagrangian sub-
space. A construction of Arnold [1] related to the Maslov index allows to con-
struct a generalized slope for this context, lying in 𝑆1 ⊂ ℂ∗. As it turns out, in
the case of a representation 𝜌∶ 𝜋1(𝑀𝐾) → SU(2), both theories coincide via the
natural isomorphism ℝℙ1 ≃ 𝑆1. We postpone rigorous definitions and further
study of this invariant to an upcoming article.

Organization of the paper. In Section 2 we collect basic definitions on char-
acter varieties and 𝐴-polynomials. In Section 3 we define the slope invariant
and we prove Proposition 1.2 and Proposition 1.4. In Section 4 we prove Theo-
rem 1.3. Finally, in Section 5 we prove Theorem 1.5.

Acknowledgments. This paper has beenwrittenwhile LéoBénardwas amem-
ber of the Research Training Group 2491 “Fourier Analysis and Spectral The-
ory”, University of Göttingen. He thanks the Research Group, and in particular
Thomas Schick, for the time he spent there. The authors thank Julien Marché,
Stepan Yu.Orevkov and Joan Porti for related conversations.

2. Representation varieties and 𝑨-polynomial
This section is devoted to definitions and properties of representations spaces

and character varieties (Section 2.1). We compute the character variety of the
group ℤ2 in Section 2.2 and define the 𝐴-polynomial of knots in Section 2.3.
References for character varieties are [19, 20], the 𝐴-polynomial was first de-
fined in [7], see also [6].

2.1. Representation and character varieties. Let Γ be a finitely generated
group. The representation variety is the affine algebraic set

𝑅(Γ) = Hom(Γ, SL2(ℂ)).

If Γ is generated by 𝑛 elements, the representation variety is an algebraic subset
of SL2(ℂ)𝑛 given by polynomial relations corresponding to the relations of the
group Γ. Two different presentations yield naturally isomorphic algebraic sets.
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A representation 𝜌 ∶ Γ → SL2(ℂ) is abelian if 𝜌(Γ) is an abelian subgroup of
SL2(ℂ). A representation 𝜌 is reducible if there exists a proper subspace ofℂ2 in-
variant under the action of 𝜌(Γ). Equivalently, 𝜌(Γ) is conjugated to a subgroup
of the group of upper-triangular matrices in SL2(ℂ). Abelian representations
are reducible, but the converse does not hold. Non-reducible representations
are irreducible.
Two representations 𝜌 and 𝜌′ in 𝑅(Γ) are equivalent if they have the same

trace:
𝜌 ∼ 𝜌′ if and only if Tr 𝜌(𝛾) = Tr 𝜌′(𝛾), for any 𝛾 ∈ Γ.

The set of equivalence classes of representations coincides with the algebro-
geometric quotient of 𝑅(Γ) by the action of SL2(ℂ) by conjugation. This quo-
tient is usually constructed through invariant theory, and is denoted

𝑋(Γ) = 𝑅(Γ)∕∕ SL2(ℂ).

Points of the character variety are called characters. The equivalence class of a
representation 𝜌 (the character of 𝜌) is denoted by 𝜒𝜌 ∶ Γ → ℂ with 𝜒𝜌(𝛾) =
Tr(𝜌(𝛾)) for 𝛾 ∈ Γ. If Γ is the fundamental group of a manifold 𝑊, we sim-
ply write 𝑅(𝑊) and 𝑋(𝑊) for the representation and character varieties of the
manifold𝑊.
Despite the fact that being abelian is not a well-defined notion on the char-

acter variety, the notion of being reducible makes sense there, since a reducible
representation 𝜌∶ Γ → SL2(ℂ) can be characterized by the fact that for any
𝛾, 𝛿 ∈ Γ, the following equality holds (see for instance [9, Lemma 1.2.1]):

Tr 𝜌
(
𝛾𝛿𝛾−1𝛿−1

)
= 2. (2)

The character variety 𝑋(Γ) can be decomposed as

𝑋(Γ) = 𝑋irr(Γ) ∪ 𝑋red(Γ),

where 𝑋red(Γ) is the set of reducible characters, and its complement 𝑋irr(Γ) is
the set of irreducible characters. Eq. (2) implies that 𝑋red(Γ) is a Zariski closed
subset of 𝑋(Γ).
An algebraic set is reducible if it can be written as a union of two proper

algebraic subset, else it is irreducible. An irreducible component of an algebraic
set is a maximal irreducible algebraic subset.

Remark 2.1. Despite𝑅(Γ) or𝑋(Γ) being called varieties, they are not quite alge-
braic varieties in general: they are actually reducible, andmight not be reduced
as schemes (some points or subspaces might have multiplicity). On the other
hand, any irreducible component is irreducible, and in particular reduced, by
definition.

Two representations 𝜌 and 𝜌′ are conjugate if there exists a matrix 𝑀 ∈
SL2(ℂ) such that 𝜌(𝛾) = 𝑀𝜌′(𝛾)𝑀−1 for every 𝛾 ∈ Γ. Two conjugate repre-
sentations define the same character; the converse is false in general, but true
for elements of 𝑋irr(Γ). More precisely, the following holds.
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Proposition 2.2. [9, Proposition 1.5.2] If 𝜌 and 𝜌′ are two representations Γ →
SL2(ℂ) with 𝜌 irreducible and 𝜒𝜌 = 𝜒𝜌′ , then 𝜌 and 𝜌′ are conjugate (and 𝜌′ is
irreducible as well).

Two non-conjugate representations having the same character in 𝑋(Γ)must
be reducible. If Γ is a knot group, Burde and de Rham [5, 12] showed that the
set of characters containing non-conjugate representations is finite.

2.2. The character variety ofℤ𝟐. Wedescribe explicitly the character variety
of a 2-torus 𝑆1 × 𝑆1. Pick a basis𝑚,𝓁 of 𝜋1(𝑆1 × 𝑆1) = ℤ2. Any representation
in SL2(ℂ) is conjugate to a representation 𝜌 given by two commuting matrices
of the form

𝜌(𝑚) = (𝑀 ∗
0 𝑀−1) , 𝜌(𝓁) = (𝐿 ∗

0 𝐿−1)

for𝑀,𝐿 ∈ ℂ∗. Each point of the character variety 𝑋(𝑆1 × 𝑆1) has a pre-image
in 𝑅(𝑆1 × 𝑆1) of the form

𝜌(𝑚) = (𝑀 0
0 𝑀−1) , 𝜌(𝓁) = (𝐿 0

0 𝐿−1) , 𝑀, 𝐿 ∈ ℂ∗. (3)

This pre-image is unique up to the involution 𝜎 of (ℂ∗)2 sending (𝐿,𝑀) to
(𝐿−1,𝑀−1), and 𝑋(𝑆1 × 𝑆1) can be identified with the singular affine complex
surface (ℂ∗)2∕𝜎. It embeds in ℂ3 as the zeros of the polynomial

∆ = 𝑥2 + 𝑦2 + 𝑧2 − 𝑥𝑦𝑧 − 4.

Indeed, the function algebra of𝑋(𝑆1×𝑆1)naturally identifieswith the𝜎-invariant
sub-algebraℂ[𝑀+𝑀−1, 𝐿+𝐿−1] ofℂ[𝐿±1,𝑀±1]. This algebra of invariant func-
tions is isomorphic with ℂ[𝑥, 𝑦, 𝑧]∕(∆) through

𝑀 +𝑀−1 ↦ 𝑥, 𝐿 + 𝐿−1 ↦ 𝑦, 𝑀𝐿 + (𝑀𝐿)−1 ↦ 𝑧.

From this description, one sees that the singular locus of𝑋(𝑆1×𝑆1) consists on
the four points {(𝐿,𝑀) = (±1, ±1)}.

2.3. The 𝑨-polynomial. Let 𝐾 be an oriented knot in 𝑆3 with exterior 𝑀𝐾 .
The inclusion 𝜕𝑀𝐾 ⊂ 𝑀𝐾 induces an injective group homomorphism 𝜋1(𝜕𝑀𝐾)
↪ 𝜋1(𝑀𝐾). Let 𝑟 be the restriction map:

𝑟∶ 𝑋(𝑀𝐾)⟶ 𝑋(𝜕𝑀𝐾) ≃ 𝑋(𝑆1 × 𝑆1).

For short we denote by 𝜌𝜕 = 𝑟(𝜌) the restriction of 𝜌 to𝜋1(𝜕𝑀𝐾). By Section 2.2,
the choice of the longitude 𝓁 and the meridian 𝑚 induces an identification of
𝑋(𝑆1 × 𝑆1) with a quotient of (ℂ∗)2. The image of 𝑟 is a union of points and
curves, possibly with multiplicities, see for instance [13, Lemma 2.1]. Discard-
ing the 0-dimensional components, the 𝐴-polynomial of 𝐾 is the unique poly-
nomial 𝐴𝐾(𝐿,𝑀) in ℂ[𝐿,𝑀] whose zero locus in ℂ2 is exactly mapped onto
the image of 𝑟. Note that 𝐴𝐾(𝐿,𝑀) is always divisible by 𝐿 − 1. This factor
corresponds to the curve of reducible characters. Boyer, Zhang, Dunfield and
Garoufalidis have shown the following result.
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Theorem 2.3 ([4, 13]). Let 𝐾 be a knot in 𝑆3. The 𝐴-polynomial 𝐴𝐾(𝐿,𝑀) is
equal to (𝐿 − 1)𝑘 for some 𝑘, if and only if 𝐾 is the trivial knot (and in this case
𝑘 = 1).

3. The slope invariant
In this section we will define the slope of an admissible representation (Sec-

tion 3.1), and observe that generic SL2(ℂ)-representations are admissible. In
Section 3.2 we show that the slope is invariant by conjugation of the represen-
tation. We prove in Section 3.3 that it yields a rational function on irreducible
components of the character variety and that the slope of a real representation
is a real number. Then we prove in Section 3.4 that the slope can be written as
a quotient of Reidemeister torsions. Finally, in Section 3.5 we describe a proce-
dure to compute the slope with an Alexander matrix.

3.1. Admissible representations. Let 𝑉 be a finite dimensional ℂ-vector
space, and 𝜌∶ 𝜋1(𝑀𝐾) → GL(𝑉) be a representation. The representation ex-
tends to a ring homomorphism and 𝑉 can be viewed as a right ℤ[𝜋1(𝑀𝐾)]-
module 𝑉𝜌. The twisted homology 𝐻∗(𝑀𝐾 , 𝜌) is the homology of the complex
of ℂ-vector spaces:

𝐶∗(𝑀𝐾 ; 𝜌) = 𝑉𝜌 ⊗ℤ[𝜋1(𝑀𝐾)] 𝐶∗(𝑀𝐾 ; ℤ[𝜋1(𝑀𝐾)]).

Definition 3.1. A representation 𝜌∶ 𝜋1(𝑀𝐾) → GL(𝑉) is admissible if it satis-
fies:

- there exists 𝑣𝜌 ∈ 𝑉 such that {𝑣𝜌 ⊗ 𝓁, 𝑣𝜌 ⊗ 𝑚} is a basis of the space
𝐻1(𝜕𝑀𝐾 , 𝑉𝜌) ≃ ℂ2,

- the kernel of the homomorphism induced by the inclusion:

𝒵(𝐾, 𝜌) = ker (𝐻1(𝜕𝑀𝐾 , 𝑉𝜌)
𝑖∗⟶𝐻1(𝑀𝐾 , 𝑉𝜌))

has dimension one.

We restrict to representations 𝜌∶ 𝜋1(𝑀𝐾) → SL2(ℂ). The composition of 𝜌
with the adjoint actionAd of SL2(ℂ) on 𝔰𝔩2(ℂ) induces the following represen-
tation:

Ad◦𝜌 ∶ 𝜋1(𝑀𝐾) ⟶ Aut(𝔰𝔩2(ℂ))
𝛾 ⟼

(
𝑣 ↦ 𝜌(𝛾)𝑣𝜌(𝛾)−1

)
.

Definition 3.2. Let𝜌∶ 𝜋1(𝑀𝐾) → SL2(ℂ) be such thatAd◦𝜌 is admissible. Let
𝑎 (𝑣𝜌 ⊗ 𝓁) + 𝑏 (𝑣𝜌 ⊗𝑚) be a generator of 𝒵(𝐾,Ad ◦𝜌) for some [𝑎 ∶ 𝑏] ∈ ℂℙ1.
The slope of the knot 𝐾 at the representation 𝜌 is

𝑠𝐾(𝜌) = −𝑏𝑎 ∈ ℂ ∪∞.

Definition 3.3. A representation 𝜌∶ 𝜋1(𝑀𝐾) → SL2(ℂ) is boundary-parabolic
if the restriction 𝜌𝜕 ∶ 𝜋1(𝜕𝑀𝐾) → SL2(ℂ) is parabolic, that is Tr 𝜌(𝛾) = ±2 for
any 𝛾 ∈ 𝜋1(𝜕𝑀𝐾).
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Aboundary-parabolic character is the character of a boundary-parabolic rep-
resentation.

Lemma 3.4. Let 𝜌∶ 𝜋1(𝑀𝐾) → SL2(ℂ) be a non-parabolic representation. The
vector space 𝐻1(𝜕𝑀𝐾 , Ad ◦𝜌) is isomorphic to ℂ2, and the kernel subspace
𝒵(𝑀,Ad ◦𝜌) is one-dimensional. Moreover, if 𝜌 is not boundary-parabolic, then
Ad◦𝜌 is admissible.

Proof. The group 𝜋1(𝑀𝐾) is generated by pairwise conjugate meridians. If 𝜌
is non-parabolic, then the image of a meridian must differ to±𝐼2, otherwise we
would have 𝜌(𝜋1(𝑀𝐾)) ⊂ {±𝐼2}.
Consider the complex𝐶∗(𝜕𝑀𝐾 , Ad ◦𝜌)with one 0-cell, two 1-cells correspond-

ing to 𝓁 and 𝑚 and one 2-cell. An explicit computation of the homology of
shows that the dimension of 𝐻1(𝜕𝑀𝐾 , Ad ◦𝜌) is two. Moreover, when 𝜌 is not
boundary-parabolic, for 𝑣𝜌 ∈ 𝔰𝔩2(ℂ) invariant by Ad◦𝜌𝜕, the pair of vectors
(𝑣𝜌⊗𝓁, 𝑣𝜌⊗𝑚) forms a basis of𝐻1(𝜕𝑀𝐾 , Ad ◦𝜌). Since the Killing form on the
local system 𝔰𝔩2(ℂ) yields a Poincaré duality isomorphism 𝐻∗(𝑀𝐾 , Ad ◦𝜌) ≃
𝐻3−∗(𝑀𝐾 , 𝜕𝑀𝐾 , Ad ◦𝜌), the following diagram is commutative

𝐻2(𝑀, 𝜕𝑀𝐾 , Ad ◦𝜌) 𝐻1(𝜕𝑀𝐾 , Ad ◦𝜌) 𝐻1(𝑀𝐾 , Ad ◦𝜌)

𝐻1(𝑀𝐾 , Ad ◦𝜌)∗ 𝐻1(𝜕𝑀𝐾 , Ad ◦𝜌)∗ 𝐻2(𝑀𝐾 , 𝜕𝑀𝐾 , Ad ◦𝜌)∗

𝛿 𝑖∗

𝑖∗ 𝛿∗

with exact rows and where the vertical arrows are isomorphisms. Exactness
implies

dimker 𝑖∗ = rank 𝛿 = rank 𝑖∗ = rank 𝑖∗
since the diagram commutes and transposition preserves the rank. Hence

dim𝒵(𝐾,Ad ◦𝜌) = dimker 𝑖∗ = (1∕2) dim𝐻1(𝜕𝑀,Ad ◦𝜌). □

As an example, we compute the slope for abelian non boundary-parabolic
representations. Let 𝜑∶ 𝜋1(𝑀𝐾) → 𝐻1(𝑀𝐾) = ℤ be the abelianization. For
any 𝜆 ∈ ℂ∗, there is an abelian representation

𝜌𝜆 ∶ 𝜋1(𝑀𝐾)⟶ SL2(ℂ) (4)

𝛾 ⟼
(
𝜆𝜑(𝛾) 0
0 𝜆−𝜑(𝛾)

)

and any abelian, non boundary-parabolic representation is conjugate to a rep-
resentation of this form.

Lemma 3.5. For any 𝜆 ≠ ±1, the slope at the abelian representation 𝜌𝜆 vanishes:

𝑠𝐾(𝜌𝜆) = 0.

Proof. Up to conjugation, the representation Ad◦𝜌 has the form

Ad◦𝜌(𝛾) = ( 𝜆
2𝜑(𝛾) 0 0
0 1 0
0 0 𝜆−2𝜑(𝛾)

)
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and 𝔰𝔩2(ℂ) splits as ℤ[𝜋1(𝑀𝐾)]-module as

𝔰𝔩2(ℂ) = ℂ𝜆2 ⊕ℂ⊕ℂ𝜆−2 .

This yields a splitting in twisted homology (with abelian coefficients), for 𝑈 =
𝜕𝑀𝐾 or 𝑈 = 𝑀𝐾 :

𝐻1(𝑈,Ad ◦𝜌) = 𝐻1 (𝑈,ℂ𝜆2) ⊕ 𝐻1(𝑈,ℂ) ⊕ 𝐻1 (𝑈,ℂ𝜆−2)

Since 𝜆 ≠ ±1, for 𝑈 = 𝜕𝑀𝐾 the only non-trivial summand is 𝐻1(𝜕𝑀𝐾 , ℂ), and

themap𝐻1(𝜕𝑀𝐾 , Ad ◦𝜌)
𝑖∗,⟶𝐻1(𝑀𝐾 , Ad ◦𝜌) coincides with the corresponding

map induced by the inclusion in homology with trivial coefficients

𝐻1(𝜕𝑀𝐾 , ℂ) → 𝐻1(𝑀𝐾 , ℂ),

whose kernel is generated by 𝓁. □

3.2. The slope of characters. By the following lemma, the slope does not de-
pend on the conjugacy class of an irreducible representation. Combined with
Proposition 2.2, it follows that the slope of an irreducible representation de-
pends only on its character.

Lemma3.6. Let𝜌 and𝜌′∶ 𝜋1(𝑀𝐾) → SL2(ℂ) be two irreducible, non boundary-
parabolic representations. If 𝜌 and 𝜌′ are conjugate, then 𝑠𝐾(𝜌) = 𝑠𝐾(𝜌′).

Proof. Let𝐴 be amatrix inGL2(ℂ) such that𝜌′ = 𝐴𝜌𝐴−1. AnyAd◦𝜌-invariant
vector 𝑣𝜌 ∈ 𝔰𝔩2(ℂ) yields an Ad◦𝜌′-invariant vector 𝑣′𝜌 = 𝐴𝑣𝜌 𝐴−1, and the
conjugation by 𝐴 induces an isomorphism

𝐻1(𝜕𝑀𝐾 , Ad ◦𝜌)⟶ 𝐻1(𝜕𝑀𝐾 , Ad ◦𝜌′)

sending the basis {𝑣𝜌⊗𝓁, 𝑣𝜌⊗𝑚} to {𝑣′𝜌�𝓁, 𝑣′𝜌�𝑚} and the subspace𝒵(𝐾,Ad ◦𝜌)
to 𝒵(𝐾,Ad ◦𝜌′). Hence 𝑠𝐾(𝜌) = 𝑠𝐾(𝜌′). □

Remark3.7. There exist pairs of reducible, non-conjugate representationswith
the same character. Indeed, let 𝜒 be an arbitrary reducible character in𝑋(𝑀𝐾).
Consider a representation 𝜌 of the form

(
𝜆(𝛾) ∗
0 𝜆−1(𝛾)

)
, where 𝜆∶ 𝜋1(𝑀𝐾) → ℂ∗ is

a group homomorphism, chosen such that𝜒(𝜌) = 𝜒. Note that 𝜆 can further be
written 𝜆(𝛾) = 𝜆𝜑(𝛾) for some 𝜆 ∈ ℂ∗ and 𝜑 ∶ 𝜋1(𝑀𝐾) → ℤ. Hence the abelian
representation 𝜌𝜆 defined in Eq. (4) has also character 𝜒, but is not conjugated
in general to 𝜌. It turns out that they can have different slope values.
For example, consider the right-handed trefoil knot 𝑇 in 𝑆3. The character

variety 𝑋(𝑀𝑇) is the union of a line 𝑋red and a conic 𝑋irr in the plane. The line
contains only reducible characters, and any character in the conic is irreducible
except the two intersection points 𝑋red ∩ 𝑋irr. Let 𝜒 be a point in 𝑋red ∩ 𝑋irr.
Since 𝜒 is reducible, there exist 𝜆 ∈ ℂ∗ such that the abelian representation
𝜌𝜆 has character 𝜒. By Lemma 3.5, one has 𝑠𝑇(𝜌𝜆) = 0. However, we show
in Example 3.19 that the slope defines a constant function on 𝑋irr, everywhere
equal to −6.
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3.3. Regularity and properties of the slope. We extend the slope to a ra-
tional function –locally a quotient of polynomials– on the character variety
𝑋(𝑀𝐾).

There is a component 𝑋red ⊂ 𝑋(𝑀𝐾) of reducible characters only. By Re-
mark 3.7 any character in 𝑋red is the character of an abelian representation.
Hence the slope is identically zero on 𝑋red, see Lemma 3.5. Suppose now that
𝑋 ⊂ 𝑋(𝑀) is an irreducible component containing an irreducible character.

Proposition 3.8. Let𝑋 ⊂ 𝑋(𝑀) be an irreducible component which contains an
irreducible character. The slope extends to a rational function on 𝑋, still denoted
𝑠𝐾 . Moreover, if 𝜒 ∈ 𝑋 is a boundary-parabolic character then

𝑠𝐾(𝜒) = 𝜏(𝜒), (5)

where the modulus 𝜏(𝜒) ∈ ℂ is defined by taking the representative 𝜌 of 𝜒 satis-
fying

𝜌(𝑚) = (±1 1
0 ±1) , 𝜌(𝓁) = (±1 𝜏(𝜒)

0 ±1 ) .

Remark 3.9. If 𝜒 is the character of an irreducible representation and lies at
the intersection of several irreducible components, then the value of the slope
at 𝜒 is well-defined.

The rest of the section is devoted to the proof of Proposition 3.8. Lemma 3.10
asserts that the slope is a rational function in the neighborhood of any irre-
ducible, non boundary-parabolic character. For boundary parabolic characters
𝜒, we define the slope by the relation in Eq. (5) and we show that the result is
still a rational function on 𝑋 in Lemma 3.12.

Lemma 3.10. Let 𝜒0 an irreducible, non-boundary-parabolic character in 𝑋.
The slope is a rational function in a neighborhood of 𝜒0 in 𝑋.

Proof. Let 𝜌0 in 𝑅(𝑀𝐾) be a representation with character 𝜒0. By Lemma 3.4
one has𝐻1(𝜕𝑀𝐾 , Ad ◦𝜌) ≃ ℂ2. The set of complex lines

ℙ(𝜌) = ℙ(𝐻1(𝜕𝑀𝐾 , Ad ◦𝜌))

is a complex algebraic variety isomorphic to ℂ𝑃1. If 𝜌 and 𝜌′ are conjugate,
then there is a natural algebraic isomorphism ℙ(𝜌) ≃ ℙ(𝜌′). It defines an alge-
braic ℂℙ1-fibration on a neighborhood of 𝜒𝜌0 , and for any 𝜒, the complex line
𝒵(𝑀𝐾 , Ad ◦𝜌) is an algebraic section of this fibration, independent of the choice
of representation 𝜌 with character 𝜒.
It remains to show that the identification ℙ(𝜌) ≃ ℂℙ1 is algebraic, in other

words, that the choice of the basis (𝑣𝜌⊗𝓁, 𝑣𝜌⊗𝑚) depends algebraically on 𝜌.
Since 𝜌0 is not boundary-parabolic, we can shrink the chosen neighborhood so
that no representation 𝜌 near 𝜌0 is boundary-parabolic. Then, since 𝜌𝜕 is con-
jugated to a diagonal representation, there is a unique Ad◦𝜌𝜕-invariant vector
𝑣𝜌 with norm 1 in 𝔰𝔩2(ℂ). This choice depends polynomially on the entries of
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the matrixAd◦𝜌(𝑚), and then the basis (𝑣𝜌⊗𝓁, 𝑣𝜌⊗𝑚) depends algebraically
on 𝜌. □

We now consider the case of boundary-parabolic characters.

Lemma 3.11. Let 𝜌0 be a boundary-parabolic representation whose character
𝜒𝜌0 lies in 𝑋. Then 𝜌0 is irreducible, in particular 𝜌0(𝑚) ≠ ±𝐼2.

Proof. For 𝜌 reducible in 𝑋, [5, 12] implies that 𝜌(𝑚) has eigenvalues 𝜆, 𝜆−1
in ℂ, whose square is a root of the Alexander polynomial ∆𝑀𝐾

(𝑡), in particular
𝜆 ≠ ±1, and 𝜌 is not boundary-parabolic. Now for irreducible 𝜌, the image
of any meridian must be different of 𝐼2, since meridians generate the group
𝜋1(𝑀𝐾). □

Lemma 3.12. Let 𝑋 ⊂ 𝑋(𝑀) be an irreducible component containing an irre-
ducible character, and 𝜒0 ∈ 𝑋 a boundary-parabolic character. Then the slope
function 𝑠𝐾 is rational in a neighborhood of 𝜒0.

Proof. Suppose first that 𝑋 contains only boundary-parabolic characters. Any
𝜒 ∈ 𝑋 is the character of a representation 𝜌 such that 𝜌(𝑚) =

( ±1 1
0 ±1

)
. Hence

𝜒 ↦ 𝜏(𝜒) is rational.
Now we assume that 𝑋 contains a non boundary-parabolic character. By

definition, boundary-parabolic characters form a Zariski closed subset of𝑋. By
Lemma 3.10, the slope function is rational on the open, non-empty subset of 𝑋
consisting of non boundary-parabolic characters. By analytic continuation, it
is enough to show that

lim
𝜒→𝜒0

𝑠𝐾(𝜒) = 𝜏(𝜒0).

By Lemma 3.11 any boundary-parabolic representation 𝜌0 with character 𝜒0
is irreducible. Moreover, since 𝜌0(𝑚) can not be trivial, we can chose such a 𝜌0
satisfying

𝜌0(𝑚) =
( ±1 1
0 ±1

)
.

For any 𝜒 close to 𝜒0, we chose similarly a representation 𝜌 with character 𝜒
such that

𝜌(𝑚) =
(𝑀 1
0 𝑀−1

)
,

with𝑀 close to ±1 in ℂ∗. For such 𝜌, let 𝑣𝜌 =
(
𝑀−𝑀−1 2

0 𝑀−1−𝑀

)
be an Ad◦𝜌𝜕-

invariant vector. The limit at 𝜌0 of 𝑣𝜌 is the (Ad ◦𝜌0)𝜕-invariant vector 𝑣𝜌0 =( 0 2
0 0
)
. However, a direct computation shows that 𝑣𝜌0 ⊗ 𝓁 and 𝑣𝜌0 ⊗𝑚 are lin-

early dependent in 𝐻1(𝜕𝑀𝐾 , Ad ◦𝜌0), and we cannot compute the slope of the
boundary parabolic representation 𝜌0 bymeans of Definition 3.2. Nevertheless,
the subspace 𝒵(𝐾,Ad ◦𝜌0) is one-dimensional by Lemma 3.4.
It implies that the map 𝑖∗∶ 𝐻1(𝜕𝑀𝐾 , Ad ◦𝜌) → 𝐻1(𝑀𝐾 , Ad ◦𝜌) has rank one

at any representation 𝜌 near 𝜌0, and at 𝜌0 as well. In particular, for any 𝜌 near
𝜌0, the slope can be computed as the ratio of 𝑖∗(𝑣𝜌 ⊗ 𝓁) and 𝑖∗(𝑣𝜌 ⊗ 𝑚) in
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𝑖∗(𝐻1(𝜕𝑀𝐾 , Ad ◦𝜌)). This actually makes sense for 𝜌 = 𝜌0 as well. An explicit
computation of the boundary operator

𝜕1∶ 𝐶2(𝜕𝑀𝐾 , Ad ◦𝜌0) → 𝐶1(𝜕𝑀𝐾 , Ad ◦𝜌0)

shows that the vector 𝑣𝜌0⊗𝓁−𝜏(𝜒0) 𝑣𝜌0⊗𝑚 belongs to im 𝜕2, and the equality

𝑣𝜌0 ⊗ 𝓁 = 𝜏(𝜒0) 𝑣𝜌0 ⊗𝑚

holds in𝐻1(𝜕𝑀𝐾 , Ad ◦𝜌0). This implies that the ratio of 𝑖∗(𝑣𝜌0⊗𝓁) and 𝑖∗(𝑣𝜌0⊗
𝑚) coincides with the modulus 𝜏(𝜒0). This proves the lemma, and achieves the
proof of Proposition 3.8. □

We end up this section with the following observation.

Proposition 3.13. Let 𝑋 ⊂ 𝑋(𝑀) be an irreducible component which contains
a non boundary-parabolic representation. If 𝜌 ∈ 𝑋 is a real representation

𝜌∶ 𝜋1(𝑀𝐾) → SL2(ℝ) or 𝜌∶ 𝜋1(𝑀𝐾) → SU(2),

then the slope is a real number inℝℙ1.

Proof. First assume that 𝜌 is non-boundary-parabolic. If 𝜌 is real, denoting by
Ad◦𝜌ℝ the action of 𝜌 on the Lie algebra 𝔰𝔩2(ℝ) (resp. 𝔰𝔲(2)) of SL2(ℝ) (resp.
SU(2)), then obviously the Lagrangian sub-space

𝒵(𝑀𝐾 , Ad ◦𝜌) ⊂ 𝐻1(𝜕𝑀𝐾 , Ad ◦𝜌)

is the complexification of the real Lagrangian sub-space 𝒵(𝑀𝐾 , Ad ◦𝜌ℝ) in the
real symplectic vector space 𝐻1(𝜕𝑀𝐾 , Ad ◦𝜌ℝ) and the slope of this real La-
grangian is the slope of its complexification, a real number. If 𝜌 is boundary-
parabolic and real, then it takes value into SL2(ℝ) and the proposition follows
from the definition of the modulus 𝜏. □

3.4. Slope and Reidemeister torsion. In this section we show that the slope
coincides with the “change of curve term” for the Reidemeister torsion as stated
in Proposition 1.4.

If 𝜌 is an irreducible representation in 𝑋(𝑀𝐾), we consider the torsion of
the complex 𝐶∗(𝑀𝐾 , Ad ◦𝜌) defined in Section 3.1. This complex is naturally
based from a cell decomposition of 𝑀𝐾 and a choice of a basis of 𝔰𝔩2(ℂ), but
not acyclic. The Reidemeister torsion is usually defined for acyclic complexes.
In the case we are considering, one needs to make some additional choices to
define it, namely a basis of each homology group𝐻∗(𝑀𝐾 , Ad ◦𝜌).
According to [18], one can still define the Reidemeister torsion of the cellular

complex𝐶∗(𝑀𝐾 , Ad ◦𝜌) for representations𝜌 in𝑅(𝑀𝐾) such that𝐻1(𝑀𝐾 , Ad ◦𝜌)
has dimension 1. For a given curve 𝛾 ∈ 𝜋1(𝜕𝑀𝐾), the representation 𝜌 is 𝛾-
regular if there exists a vector 𝑣𝜌 ∈ 𝔰𝔩2(ℂ) such that 𝑣𝜌⊗𝛾 spans𝐻1(𝑀𝐾 , Ad ◦𝜌).
In this case, since there is a natural choice of a basis of𝐻2(𝑀𝐾 , Ad ◦𝜌), the curve
𝛾 determines a homology basis of the complex 𝐶∗(𝑀𝐾 , Ad ◦𝜌) and the torsion
𝕋𝑀𝐾 ,𝛾(Ad ◦𝜌) ∈ ℂ∗ is defined. Note that this torsion depends only on the con-
jugacy class of 𝜌, as well as the property of being 𝛾-regular.
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Let 𝑋 ⊂ 𝑋(𝑀𝐾) the component containing 𝜒, the torsion function is the
rational function

𝕋𝑀𝐾 ,𝛾 ∶ 𝑋 ⟶ ℂ
defined as the Reidemeister torsion of the complex 𝐶∗(𝑀𝐾 , Ad ◦𝜌) if 𝜒 is 𝛾-
regular, and by 𝑇𝑀𝐾 ,𝛾(𝜒) = 0 otherwise.
We start with the following lemma, which provides the genuine setting to

define the Reidemeister torsion.

Lemma 3.14. If 𝑋 has dimension one and contains the character of a scheme-
smooth representation 𝜌, then dim𝐻1(𝑀𝐾 , Ad ◦𝜌) = 1.

Proof. The proof of Lemma 3.14 follows from the isomorphism between
𝐻1(𝑀𝐾 , Ad ◦𝜌) and the Zariski tangent space of 𝑋(𝑀𝐾) at 𝜌, see [20, Theorem
1] . Scheme-smoothness implies that the Zariski tangent space is the actual
tangent space, which is one-dimensional because 𝑋 is. □

Note that scheme-smoothness is a Zariski open condition.
It turns out that the character variety 𝑋(𝑀𝐾) of a knot exterior is often one-

dimensional. This is the case if the knot is small (if it does not contains a closed
incompressible surface [7, Proposition 2.4]). This is also the case for any com-
ponent 𝑋 ⊂ 𝑋(𝑀𝐾) containing the character of a lift of the holonomy repre-
sentation 𝜌∶ 𝜋1(𝑀𝐾) → PSL2(ℂ), provided that the interior of 𝑀𝐾 admits a
hyperbolic structure.
The following proposition is the main result of this section.

Proposition 3.15. Let𝑋 ⊂ 𝑋(𝑀) be an irreducible one-dimensional component
which contains a scheme-smooth, non-boundary parabolic character. For all𝜒 ∈
𝑋 the following holds

𝑠𝐾(𝜒) =
𝕋𝑀𝐾 ,𝓁(𝜒)
𝕋𝑀𝐾 ,𝑚(𝜒)

.

We provide two different proofs of this result: one uses the natural definition
of the torsion while the other relies directly on some results on the torsion form
proved by the first author in [2].

3.4.1. Torsion and chain complexes. This section is devoted to the proof of
Proposition 3.15 by using the chain complex of 𝑀𝐾 . The proof is very similar
to [10, Theorem 3.21] or [10, Theorem 6.7]. We use the following technical
lemma.

Lemma 3.16. Let 𝛾 be a curve in 𝜋1(𝜕𝑀𝐾), and 𝜒 be an irreducible 𝛾-regular
character in𝑋(𝑀𝐾). There exists a Zariski open neighborhood of 𝜒 such that any
character in this neighborhood is irreducible and 𝛾-regular.

Proof. Note that being irreducible is a Zariski open condition, see Eq. (2). The
𝛾-regularity follows from lower semi-continuity of the rank of a linear map.
Indeed the dimension of𝐻1(𝑀𝐾 , Ad ◦𝜌) is upper semi-continuous. It is at least
one (the dimension of 𝑋) again because it is isomorphic to the Zariski tangent
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space hence it is locally constant equal to one. On the other hand, the rank
of the linear map 𝐻1(𝛾, Ad ◦𝜌) → 𝐻1(𝑀𝐾 , Ad ◦𝜌) sending 𝑣𝜌 ⊗ 𝛾 to itself is
lower semi-continuous. It is at most one (the dimension of 𝐻1(𝛾, Ad ◦𝜌) and
it cannot decrease on a neighborhood of 𝜒. We deduce that 𝐻1(𝛾, Ad ◦𝜌) →
𝐻1(𝑀𝐾 , Ad ◦𝜌) is an isomorphism on a Zariski open subset. □

Proof of Proposition 3.15. Let 𝜒 be an irreducible, scheme-smooth, and non
boundary-parabolic character, and let 𝜌 be a representation in𝑅(𝑀𝐾)with char-
acter 𝜒. We first assume that 𝜌 is 𝓁 and 𝑚-regular, that is for 𝑣 ∈ 𝔰𝔩2(ℂ) an
Ad◦𝜌𝜕-invariant vector, both 𝑣 ⊗ 𝓁 and 𝑣 ⊗ 𝑚 provide a basis of the space
𝐻1(𝑀𝐾 , Ad ◦𝜌).
The calculation of the torsions 𝕋𝑀𝐾 ,𝓁(𝜒) and 𝕋𝑀𝐾 ,𝑚(𝜒) involves different

choices of homology basis of 𝐶∗(𝑀𝐾 , Ad ◦𝜌). By [18, Proposition 3.18], the
bases of𝐻2(𝑀𝐾 , Ad ◦𝜌) are determined by the fundamental class of𝐻2(𝜕𝑀𝐾 ; ℂ)
and can be chosen to be the same. Hence, if 𝑏1 is a basis of im(𝜕1), the ratio of
torsions corresponding to the choice of𝑚 or of 𝓁 is reduced to

𝕋𝑀𝐾 ,𝓁(𝜒)
𝕋𝑀𝐾 ,𝑚(𝜒)

=
det(𝑏1 ⊕ (𝑣 ⊗ 𝓁), 𝑐1)
det(𝑏1 ⊕ (𝑣 ⊗𝑚), 𝑐1)

.

In parallel, consider the affine equation in 𝐶1(𝑀𝐾 , Ad ◦𝜌):

𝑦 𝑏1 + 𝑥 𝑣 ⊗𝑚 = 𝑣 ⊗ 𝓁,

with at least a solution 𝑦 = 0 and 𝑥 = 𝑠𝐾(𝜌). The Cramer determinants ex-
pressed in the common basis 𝑐1 show that 𝑠𝐾(𝜌) coincides with the ratio of tor-
sions.
If there exists a character in𝑋 which is 𝓁-regular and a character in𝑋 which

is 𝑚-regular, then Proposition 3.15 holds on the whole component 𝑋 by
Lemma 3.16.
Assume that 𝑋 contains only characters that are not (say) 𝓁-regular. Since

the map 𝐻1(𝜕𝑀𝐾 , Ad ◦𝜌) → 𝐻1(𝑀𝐾 , Ad ◦𝜌) is not trivial (by Lemma 3.4), it is
onto on a Zariski open subset𝑈 ∈ 𝑋, again because𝐻1(𝑀𝐾 , Ad ◦𝜌) has dimen-
sion one generically. Thus all characters in𝑈must be𝑚-regular, and it follows
from the definition that the slope and the quotient of torsions are identically
zero on𝑋. A similar argument works replacing 𝓁 by𝑚 and zero by infinity. □

3.4.2. The torsion form. In this paragraph, we present an alternative proof
of Proposition 3.15. We follow a slightly different point of view on the torsion,
as a volume form on the character variety. The following lemma asserts that
the cotangent space of the character variety [20, Section 8] is isomorphic to the
first Ad◦𝜌-twisted homology group.

Lemma 3.17. Let 𝜒 be an irreducible character in 𝑋(𝑀𝐾), and a representation
𝜌 with character 𝜒. Let 𝑇∗𝜒𝑋(𝑀𝐾) be the Zariski tangent space of 𝑋(𝑀𝐾) at 𝜒.
There is a natural isomorphism

𝐻1(𝑀𝐾 , Ad ◦𝜌) ≃ 𝑇∗𝜒𝑋(𝑀𝐾).
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Moreover, if 𝜒 is not boundary-parabolic, then

𝐻1(𝜕𝑀𝐾 , Ad ◦𝜌) ≃ 𝑇∗𝑟(𝜒)𝑋(𝜕𝑀𝐾).

The proof of Lemma 3.17 follows from [20, Theorem 1]. Note that through
the isomorphism, the space 𝒵(𝐾,Ad ◦𝜌) is the Zariski conormal bundle of
𝑟(𝑋(𝑀𝐾)) in 𝑋(𝜕𝑀𝐾).
If 𝑋 ⊂ 𝑋(𝑀𝐾) is a one-dimensional component of the character variety

which contains a scheme-smooth character, the first author proved in [2, Propo-
sition 5.1] that the torsion form can be written as

tor(𝑀𝐾) =
1

𝕋𝑀𝐾 ,𝓁
𝑟∗ (𝑑𝐿𝐿 ) = 1

𝕋𝑀𝐾 ,𝑚
𝑟∗ (𝑑𝑀𝑀 ) (6)

where 𝑟∗ is the cotangent map

𝑟∗∶ 𝑇∗𝑋(𝜕𝑀𝐾)⟶ 𝑇∗𝑋(𝑀𝐾).

Proof of Proposition 3.15. By Eq. (6), the ratio of torsions can be written as
𝕋𝑀𝐾 ,𝓁

𝕋𝑀𝐾 ,𝑚
=

𝑟∗(𝑑𝐿∕𝐿)
𝑟∗(𝑑𝑀∕𝑀)

.

If 𝜒 is a non boundary-parabolic character, the character variety 𝑋(𝜕𝑀𝐾) is dif-
feomorphic to (ℂ∗)2 in a neighborhood of 𝑟(𝜒). A local chart of 𝑋(𝜕𝑀𝐾) is
given by taking 𝔩,𝔪 ∈ ℂ satisfying exp 𝔩 = 𝐿 and exp𝔪 = 𝑀. The latter ratio
of torsions can be written

𝕋𝑀𝐾 ,𝓁

𝕋𝑀𝐾 ,𝑚
=

𝑟∗(𝑑 𝔩)
𝑟∗(𝑑𝔪)

.

Lemma 3.17 implies that the cotangent map

𝑟∗∶ 𝑇∗𝑟(𝜒)𝑋(𝜕𝑀𝐾)⟶ 𝑇∗𝜒𝑋(𝑀𝐾)

coincides with the homomorphism in homology:

𝐻1(𝜕𝑀𝐾 , Ad ◦𝜌)⟶ 𝐻1(𝑀𝐾 , Ad ◦𝜌),

thus by Lemma 3.4 the range of the map 𝑟∗ is one-dimensional, and the images
of the elements 𝑑 𝔩, 𝑑𝔪 are collinear. It turns out that the ratio 𝑟∗(𝑑 𝔩)

𝑟∗(𝑑𝔪)
coincides

with the slope by its very definition.
Finally, the formula extends to the entirety of 𝑋 since irreducible and non

boundary-parabolic characters are Zariski dense in 𝑋. □

3.5. Compute the slope. In this section we compute the slope 𝑠𝐾(𝜌) when
𝜌 is an irreducible non-boundary parabolic representation, with Fox calculus,
similarly to [10]. Note that for the boundary-parabolic case, the slope can be
computed directly from the representation using Proposition 3.8.
Consider a presentation of the knot group

𝜋1(𝑀𝐾) =
⟨
𝑥1, … , 𝑥𝑝 ∣ 𝑟1, … , 𝑟𝑞

⟩
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obtained from a Wirtinger presentation. We also assume that 𝑚 = 𝑥1 is the
preferred meridian and add the preferred longitude 𝓁 = 𝑥2, with the relation
[𝑚, 𝓁] = 1. Consider the complex of ℤ[𝜋1(𝑀𝐾)]-modules

𝑆∗ ∶= 𝑆2 𝑆1 𝑆0
𝜕1 𝜕0

where

𝑆2 =
𝑞⨁

𝑗=1
ℤ[𝜋1(𝑀𝐾)]� 𝑟𝑗, 𝑆1 =

𝑝⨁

𝑗=1
ℤ[𝜋1(𝑀𝐾)]� 𝑑𝑥𝑖, 𝑆0 = ℤ[𝜋1(𝑀𝐾)]

and 𝑑𝑥𝑖 is a formal generator corresponding to 𝑥𝑖. Let 𝜕∕𝜕𝑥𝑖 ∶ ℤ[𝜋1(𝑀𝐾)] →
ℤ[𝜋1(𝑀𝐾)] denote the Fox derivatives. For every 𝑖 ∈ {1, … , 𝑝} and 𝑗 ∈ {1, … , 𝑞}
the boundary operators are defined by

𝜕1 ∶ 𝑟𝑗 ⟼𝑑𝑟𝑗, 𝜕0 ∶ 𝑑𝑥𝑖 ⟼𝑥𝑖,

where 𝑑𝑤 is the Fox differential of the word 𝑤 ∈ 𝜋1(𝑀𝐾):

𝑑𝑤 ∶=
𝑝∑

𝑖=1

𝜕𝑤
𝜕𝑥𝑖

𝑑𝑥𝑖 ∈ 𝑆1.

Now consider the Ad◦𝜌-twisted chain complex 𝑆∗(𝜌) ∶= 𝔰𝔩2(ℂ)�ℤ[𝜋1(𝑀𝐾)] 𝑆∗,
where elements of𝔰𝔩2 are identifiedwith line vectors inℂ3. The (Ad◦𝜌-twisted)
Alexander matrix of𝑀𝐾 associated with the presentation is the matrix of 𝜕1(𝜌),
with coefficients in ℂ and given by the blockwise definition:

((Ad ◦𝜌) (
𝜕𝑟𝑖
𝜕𝑥𝑗

))
1≤𝑖≤𝑞, 1≤𝑗≤𝑝

The computation of the slope using 𝑆∗(𝜌) is achieved with the following re-
sult:

Proposition 3.18. If 𝜌 is irreducible and non-boundary parabolic, then there
exist 𝑎, 𝑏 ∈ ℂ and an Ad◦𝜌𝜕-invariant vector 𝑣𝜌 ∈ 𝔰𝔩2(ℂ) such that

im (𝜕1(𝜌)) ∩
⟨
𝑣𝜌 � 𝑑𝓁, 𝑣𝜌 � 𝑑𝑚

⟩
=
⟨
𝑎 (𝑣𝜌 � 𝑑𝓁) + 𝑏 (𝑣𝜌 � 𝑑𝑚)

⟩

and the slope is 𝑠𝐾(𝜌) = − 𝑏
𝑎
.

Proof. Set a base point 𝑝 on 𝜕𝑀𝐾 . Following Crowell [8], the homology space
𝐻1(𝑆∗(𝜌)) is isomorphic to𝐻1(𝑀𝐾 , 𝑝, Ad ◦𝜌). The sub-complex 𝑆∗(𝜌𝜕) defined
by considering only the generators 𝑥1 = 𝑚, 𝑥2 = 𝓁 and the relation [𝑚, 𝓁] = 1
computes the space 𝐻1(𝜕𝑀𝐾 , 𝑝; Ad ◦𝜌) as well. There are natural identifica-
tions

𝐻1 (𝜕𝑀𝐾 , 𝑝; Ad ◦𝜌) = 𝐻1(𝜕𝑀𝐾 , Ad ◦𝜌)
𝐻1(𝜕𝑀𝐾 , 𝑝; Ad ◦𝜌) ↪ 𝐻1(𝜕𝑀𝐾 , Ad ◦𝜌)
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and the following diagram commutes:

𝑆1(𝜌𝜕) 𝑆1(𝜌)

𝐻1(𝜕𝑀𝐾 , Ad ◦𝜌) 𝐻1(𝑀𝐾 , Ad ◦𝜌) 𝐻1(𝑀𝐾 , 𝑝, Ad ◦𝜌)

ℎ𝜕𝑀𝐾 ℎ
𝑖∗

where ℎ and ℎ𝜕𝑀𝐾
are the quotient maps.

Let 𝑢 ∈ 𝔰𝔩2(ℂ) be an Ad◦𝜌-invariant vector and 𝛾 ∈ 𝜋1(𝑀𝐾). Any element
𝑢�𝛾 of𝐻1(𝜕𝑀𝐾 , Ad ◦𝜌) can be lifted to 𝑢�𝑑𝑤 in 𝑆1(𝜌𝜕). Since 𝜌 is admissible,
there exists𝑎, 𝑏 ∈ ℂ such that𝒵(𝐾,Ad ◦𝜌) = ker 𝑖∗ =

⟨
𝑎 (𝑣𝜌 � 𝓁) + 𝑏 (𝑣𝜌 �𝑚)

⟩
.

Then 𝑎 (𝑣𝜌 � 𝑑𝓁) + 𝑏 (𝑣𝜌 � 𝑑𝑚) ∈ ker(ℎ) = im (𝜕1(𝜌)).
Reciprocally, suppose that there exists complex numbers 𝑎, 𝑏 ∈ ℂ such that

𝑑𝑧 ∶= 𝑎 (𝑣𝜌 � 𝑑𝓁) + 𝑏 (𝑣𝜌 � 𝑑𝑚) is a non-zero vector belonging to im (𝜕1(𝜌)).
Then ℎ𝜕𝑀𝐾

(𝑑𝑧) = 𝑎 (𝑣𝜌�𝓁)+𝑏 (𝑣𝜌�𝑚)must be non-zero since (𝑣𝜌�𝓁, 𝑣𝜌�𝑚)
is a free basis of 𝐻1(𝜕𝑀𝐾 , Ad ◦𝜌). However, ℎ(𝑑𝑧) = 𝑖∗

(
ℎ𝜕𝑀𝐾

(𝑑𝑧)
)
= 0; hence

ℎ𝜕𝑀𝐾
(𝑑𝑧) ∈ ker 𝑖∗. Since ker 𝑖∗ is one-dimensional, then ker 𝑖∗ =

⟨
ℎ𝜕𝑀𝐾

(𝑑𝑧)
⟩
,

and the slope is − 𝑏
𝑎
. □

Example 3.19. The trefoil knot. Let𝑇 be the exterior of the right-handed trefoil
knot, with group 𝜋1(𝑀𝐾) = ⟨𝑢, 𝑣 ∣ 𝑢𝑣𝑢 = 𝑣𝑢𝑣⟩. Any irreducible representation
is conjugate to 𝜌 with

𝜌(𝑢) = (𝑀 1
0 𝑀−1) , 𝜌(𝑣) = (𝑀

−1 0
−1 𝑀)

where𝑀 ∈ ℂ. If 𝓁 = 𝑣𝑢𝑣−1𝑢𝑣𝑢−3 is the preferred longitude with correspond-
ing meridian𝑚 = 𝑢, we obtain

𝜌(𝓁) =
(
−𝑀−6 𝑀5+𝑀3+𝑀+𝑀−1+𝑀−3+𝑀−5

0 −𝑀6

)
.

Whenever 𝑀 ≠ ±1, the vector 𝑣𝜌 =
(
0, 1, 1

𝑀−𝑀−1

)
is right Ad◦𝜌𝜕-invariant.

By Section 3.5, the Alexander matrix (acting on the right on the coefficients)
whose row-space is generating im (𝜕1) is given by

⎛
⎜
⎜
⎝

0 0 0 1 0 0 −𝑀−2 0 0
0 0 0 0 1 0 −𝑀−1 −1 0
0 0 0 0 0 1 1 2𝑀 −𝑀2

−1 0 0 −2(2−𝑀−2) 0 0 1+𝑀−2 0 0
0 −1 0 2𝑀−1 −2 0 𝑀−1 2 0
0 0 −1 −2 −4𝑀 2𝑀2−4 −1 −2𝑀 𝑀2+1

𝔰𝔩2(ℂ)� 𝑑𝓁 𝔰𝔩2(ℂ)� 𝑑𝑚 𝔰𝔩2(ℂ)� 𝑑𝑣

𝑑𝑟1

𝑑𝑟2

⎞
⎟
⎟
⎠

where 𝑟1 is 𝑢𝑣𝑢 = 𝑣𝑢𝑣 and 𝑟2 is the longitude definition. By Proposition 3.18,
the space 𝒵(𝑀𝐾 , Ad ◦𝜌) has generator(

0, 1, 1
𝑀−𝑀−1

, 0, 6, 6
𝑀−𝑀−1

, 0, 0, 0
)

in the 2-dimensional subspace spanned by
{(
0, 1, 1

𝑀−𝑀−1
, 0, 0, 0, 0, 0, 0

)
,
(
0, 0, 0, 0, 1, 1

𝑀−𝑀−1
, 0, 0, 0

)}
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and the slope is 𝑠𝑇(Ad ◦𝜌) = −6. In particular it does not depend on 𝜌.

Example 3.20. The figure-eight knot. Let 𝐾 be the figure-eight knot. There
is a unique component 𝑋 ⊂ 𝑋(𝑀𝐾) containing irreducible characters (see for
instance [2, Examples 1.6.2 and 5.5]). This component is a plane curve given
by the equation

{2𝑥2 + 𝑦2 − 𝑥2𝑦 − 𝑦 − 1 = 0} ⊂ ℂ2,
where𝑥 it the coordinate function given by𝜒 ↦ 𝜒(𝑚). Note that the coordinate
function of the longitude is 𝜒 ↦ 𝜒(𝓁) = 𝑥4−5𝑥2+2. Using [18, Théorème 4.1
(ii)] and Proposition 3.15 we compute

𝑠𝐾(𝑥, 𝑦)2 =
𝑥2 − 4

(𝑥4 − 5𝑥2 + 2)2 − 4
(4𝑥3 − 10𝑥)2 =

4(2𝑥2 − 5)2

(𝑥2 − 5)(𝑥2 − 1)

Expanding the denominator with the relation 𝑥2 = 𝑦2−𝑦−1
𝑦−2

, we obtain, up to
sign

𝑠𝐾(𝑥, 𝑦) = ±
2(2𝑥2 − 5)(𝑦 − 2)
(𝑦 − 1)(𝑦 − 3)

.

4. Slope and 𝑨-polynomial
In this section, we express the slope function in terms of the 𝐴-polynomial

of the knot. As mentioned in Section 2.3, 𝑟(𝑋)might have 0-dimensional com-
ponents but they are omitted in the definition of the 𝐴-polynomial.

Theorem 4.1. Let 𝑋 ⊂ 𝑋(𝑀𝐾) be an irreducible component such that 𝑟(𝑋) has
dimension 1. For all 𝜒 ∈ 𝑋 with 𝑟(𝜒) = (𝐿,𝑀), the following holds

𝑠𝐾(𝜒) = −𝑀𝐿 ⋅
𝜕𝑀𝐴(𝐿,𝑀)
𝜕𝐿𝐴(𝐿,𝑀)

,

where 𝐴(𝐿,𝑀) = 𝐴𝐾(𝐿,𝑀) and 𝜕𝐿 and 𝜕𝑀 are the partial derivatives.

Remark 4.2. Combining Proposition 3.15with [18, Corollaire 4.9], the result of
Theorem 4.1 follows directly, up to sign, in the case where 𝑋 has itself dimen-
sion 1. We resolve those two issues. Moreover Theorem 4.1 does not require
the characters in 𝑋 to be scheme-reduced, and the factors of the 𝐴-polynomial
might have multiplicities greater than 1.

Proof. From Lemma 3.17 it follows that the Lagrangian 𝒵(𝑀𝐾 , Ad ◦𝜌) generi-
cally identifies with the Zariski conormal bundle of 𝑟(𝑋(𝑀𝐾)) inside 𝑋(𝜕𝑀𝐾).
Picking local coordinates 𝔩 = log 𝐿,𝔪 = log𝑀 around 𝑟(𝜒), the kernel of the
cotangent map is generated by

𝑑𝐴(𝑒𝔩, 𝑒𝔪) = 𝜕𝔩𝐴(𝑒𝔩, 𝑒𝔪)𝑑𝔩 + 𝜕𝔪𝐴(𝑒𝔩, 𝑒𝔪)𝑑𝔪
in ℂ2 = ⟨𝑑𝔩, 𝑑𝔪⟩. Using the chain rule, we obtain that it is generated by the
vector

(𝐿
𝜕𝐴(𝑀, 𝐿)

𝜕𝐿
,𝑀

𝜕𝐴(𝑀, 𝐿)
𝜕𝑀

)

and the proposition follows. □
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Remark 4.3. Let 𝑇 be the right-handed trefoil knot, with𝐴𝑇(𝐿,𝑀) = 1+𝐿𝑀6.
Theorem 4.1 gives

𝑠𝑇 = −𝑀𝐿 ⋅ 6𝑀
5𝐿

𝑀6 = −6.

Compare to Example 3.19.

5. The slope at an ideal point
In this sectionwe prove Theorem 1.5. The context of this result is thework of

Culler–Shalen (see for instance [19]) which associates incompressible surfaces
in𝑀𝐾 to ideal points of curves of 𝑋(𝑀𝐾).
Let 𝑋 ⊂ 𝑋(𝑀𝐾) be an irreducible component whose image 𝑟(𝑋) = 𝑌 is a

curve in𝑋(𝜕𝑀𝐾), defined as the zero locus of an irreducible factor𝑃 of𝐴𝐾(𝐿,𝑀).
Its function ring is usually denoted by ℂ[𝑌] = ℂ[𝐿,𝑀]∕(𝑃), and its function
field is ℂ(𝑌) = Frac(ℂ[𝑌]).
To any point 𝑦 in 𝑌 one can associate a discrete valuation 𝑣 on the mul-

tiplicative group ℂ(𝑌)∗ in the field ℂ(𝑌) of rational functions on 𝑌. A dis-
crete valuation 𝑣∶ ℂ(𝑌)∗ → ℤ is a group epimorphism satisfying 𝑣(𝑓 + 𝑔) ≥
min(𝑣(𝑓), 𝑣(𝑔)). The valuation associated to a smooth point 𝑦 is simply themap

𝑓 ⟼ 𝑣𝑦(𝑓) = ord𝑦 𝑓
given the vanishing order of𝑓 at the point 𝑦. More generally, the smooth projec-
tivemodel𝑌 of𝑌 is smooth compact curve bi-rational to𝑌, canonically defined
up to isomorphism, and the points of𝑌 are bijectively associated to discrete val-
uations on the function field ℂ(𝑌) ≃ ℂ(𝑌).
An ideal point 𝑦 of 𝑌 is a point added “at infinity” in the smooth projective

model 𝑌, it corresponds to a valuation 𝑣𝑦 on ℂ(𝑌) such that not every regular
function 𝑓 ∈ ℂ[𝑌] has non-negative valuation 𝑣𝑦(𝑓). In other words, some
regular functions (at least one) should have poles at 𝑦.
In [9], Marc Culler and Peter Shalen gave a procedure to construct an in-

compressible surface Σ in 𝑀𝐾 from the data of an ideal point 𝑥 in a sub-curve
𝐶 of 𝑋(𝑀𝐾) together with the valuation 𝑣𝑥 ∶ ℂ(𝐶)∗ → ℤ. Not any ideal point
𝑥 ∈ 𝑋(𝑀𝐾) yields an ideal point 𝑦 = 𝑟(𝑥) ∈ 𝑋(𝜕𝑀𝐾).
In this special case, the ideal point 𝑦 in 𝑌 gives an incompressible surface in

𝑀𝐾 of a particular kind: as observed in [7, Proposition 3.1], the incompressible
surface Σmust have non-empty boundary 𝜕Σ ⊂ 𝜕𝑀𝐾 . The curve 𝜕Σ is a finite
union of parallel circles in 𝜕𝑀𝐾 and uniquely determines a boundary slope in
ℚ ∪ {∞}: the slope of 𝑎𝓁 + 𝑏𝑚 in𝐻1(𝜕𝑀𝐾 ; ℤ) is the rational number

𝑏
𝑎
.

On the other hand, the Newton polygon of 𝐴𝐾(𝐿,𝑀) =
∑

𝑖,𝑗 𝑎𝑖,𝑗𝐿
𝑖𝑀𝑗 is the

convex hull in ℂ2 of the points {(𝑖, 𝑗) ∈ ℤ2 ∣ 𝑎𝑖,𝑗 ≠ 0}. It is a convex polygon of
ℂ2 with integral vertices, whose sides have a slope in ℚ ∪ {∞}. In [7], Culler,
Cooper, Gillet, Long and Shalen proved the following result:

Theorem 5.1. [7, Theorem 3.4] The slopes of the sides of the Newton polygon of
the𝐴-polynomial𝐴𝐾(𝐿,𝑀) are boundary slopes of incompressible surfaces in𝑀𝐾
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which correspond to ideal points of one-dimensional components of 𝑟∗(𝑋(𝑀𝐾)) in
𝑋(𝜕𝑀𝐾).

Our next statement (Theorem 1.5 in the introduction) states that the slope
invariant studied in this paper coincides with the slopes of [7] at ideal points.

Theorem 5.2. Let 𝑦 be an ideal point in a one-dimensional component 𝑌 of the
𝐴-polynomial. Then the value of the slope function at the ideal point 𝑦 equalsmi-
nus the boundary slope of an incompressible surface corresponding to 𝑦 orminus
the slope of the corresponding side of the Newton polygon of the 𝐴-polynomial.

Proof. The coordinate functions 𝐿,𝑀 define rational functions on𝑌, in partic-
ular their valuations 𝑣𝑦(𝐿) and 𝑣𝑦(𝑀) are well-defined. Since 𝑦 is an ideal point
and 𝐿,𝑀 generate the coordinate ring ℂ[𝑌] of the curve 𝑌, at least one of this
valuation must be negative, and at least one of these coordinate functions must
have a pole at 𝑦.

Claim. The value of 𝑠𝐾 at the ideal point 𝑦 is
𝑣𝑦(𝐿)

𝑣𝑦(𝑀)
.

Proof of the claim. From the proof of Proposition 3.15, we deduce that the
value of the slope at 𝑦 is given by

𝑠𝐾(𝑦) = lim
(𝐿,𝑀)→𝑦

𝑟∗(𝑑𝐿∕𝐿)
𝑟∗(𝑑𝑀∕𝑀)

.

The following argument is an algebraic analogue of taking Taylor expansion of
the functions 𝐿 and 𝑀 around the ideal point 𝑦. We pick 𝑡 a local coordinate
around 𝑦. It is characterized by 𝑣𝑦(𝑡) = 1, and we can write

𝐿 = 𝑢1𝑡𝑣𝑦(𝐿)

for 𝑢1 ∈ ℂ(𝑌), 𝑣𝑦(𝑢1) = 0, and similarly

𝑀 = 𝑢2𝑡𝑣𝑦(𝑀)

for 𝑢2 ∈ ℂ(𝑌), 𝑣𝑦(𝑢2) = 0. Moreover, near 𝑦 it follows that

𝑟∗(𝑑𝐿∕𝐿)
𝑟∗(𝑑𝑀∕𝑀)

=
𝑣𝑦(𝐿)∕𝑡
𝑣𝑦(𝑀)∕𝑡

=
𝑣𝑦(𝐿)
𝑣𝑦(𝑀)

and the claim follows. □

Now Theorem 1.5 follows directly from the claim, because it is proven in [7,
Proposition 3.1] that the quantity − 𝑣𝑦(𝐿)

𝑣𝑦(𝑀)
is the boundary slope of an incom-

pressible surface corresponding to 𝑦. □
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