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A criterion for double sliceness

Anthony Conway

Abstract. We describe a condition involving noncommutative Alexander
modules which ensures that a knot with Alexander module ℤ[𝑡±1]∕(𝑡−2)⊕
ℤ[𝑡±1]∕(𝑡−1−2) is topologically doubly slice. As an application, we show that
a satellite knot 𝑅𝜂(𝐾) is doubly slice if the pattern 𝑅 has Alexander module
ℤ[𝑡±1]∕(𝑡−2)⊕ℤ[𝑡±1]∕(𝑡−1−2) and satisfies this condition, and if the infection
curve 𝜂 ⊂ 𝑆3 ⧵ 𝑅 lies in the second derived subgroup 𝜋1(𝑆3 ⧵ 𝑅)(2).
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1. Introduction
A knot is slice if it bounds a locally flatly embedded disc in the 4-ball. The

construction of slice discs typically involves performing band moves on a knot,
resulting in a ribbon disc. In the topological category, applications of Freed-
man’s disc embedding theorem [23, 25, 1] lead to other less constructive re-
sults: for example, Freedman proved that Alexander polynomial one knots are
slice [23], and Friedl-Teichner found a condition guaranteeing the sliceness of
certain knots with Alexander polynomial (𝑡−2)(𝑡−1−2) [21]. For constructions
of slice links, we refer to [5, 6, 4, 8, 7, 2].
Alexander polynomial one knots are in fact doubly slice, meaning that they

arise as the equatorial cross-section of an unknotted locally flat 2-sphere in 𝑆4:
this can be seen by doubling Freedman’s disc and using that a 2-knot 𝑆 ⊂ 𝑆4
with knot group ℤ is topologically unknotted [23]. The aim of this article is
to describe a criterion for a knot 𝐾 with Alexander module ℤ[𝑡±1]∕(𝑡−2) ⊕
ℤ[𝑡±1]∕(𝑡−1−2) to be doubly slice (Theorem 1.1). We then investigate to what
extent this condition is necessary (Theorem 1.2) and apply it to satellite knots
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(Theorem 1.5). Our results rely heavily on [21]. We work in the topological
category.

1.1. Necessary and sufficient conditions for double sliceness. Given a
knot 𝐾 ⊂ 𝑆3, write 𝑀𝐾 for the 3-manifold obtained by 0-surgery on 𝐾, 𝜋 ∶=
𝜋1(𝑀𝐾) for the fundamental group of 𝑀𝐾 , and 𝒜𝐾 for the Alexander module
of 𝐾, i.e. the first homology group of the infinite cyclic cover of 𝑀𝐾 . We also
use 𝜋(0) ∶= 𝜋 and 𝜋(𝑖+1) ∶= [𝜋(𝑖), 𝜋(𝑖)] to denote the derived series of 𝜋. The
groups 𝒜𝐾 ≅ 𝜋(1)∕𝜋(2) and𝐻1(𝑀𝐾) = 𝜋∕𝜋(1) fit into the short exact sequence

1→ 𝒜𝐾 → 𝜋∕𝜋(2) → 𝐻1(𝑀𝐾)→ 1. (1)

Since 𝐻1(𝑀𝐾) ≅ ℤ is free, this sequence splits, leading to a group isomor-
phism 𝜋∕𝜋(2) ≅ ℤ⋉𝒜𝐾 .
Set Λ ∶= ℤ[𝑡±1] and assume that 𝒜𝐾 ≅ Λ∕(𝑡−2) ⊕ Λ∕(𝑡−1−2). If 𝑃 ⊂ 𝒜𝐾

is one of the two summands, then ℤ ⋉ 𝒜𝐾∕𝑃 ≅ ℤ ⋉ ℤ[ 1
2
] is isomorphic, as a

group, to the Baumslag-Solitar group

𝐺 ∶= ⟨𝑎, 𝑐 ∣ 𝑎𝑐𝑎−1 = 𝑐2⟩ = 𝐵𝑆(1, 2).

Consequently one can associate to the summand 𝑃 ⊂ 𝒜𝐾 , the epimorphism

𝜙𝑃 ∶ 𝜋 ↠ 𝜋∕𝜋(2) ≅ ℤ⋉𝒜𝐾 ↠ ℤ⋉𝒜𝐾∕𝑃 ≅ 𝐺.

Write 𝐻1(𝑀𝐾 ;ℤ[𝐺]𝜙𝑃) for the noncommutative Alexander module associated
to 𝜙𝑃, i.e. the first homology of the 𝐺-cover associated to 𝜙𝑃. As we note in
Lemma 2.2, the isomorphism type of this ℤ[𝐺]-module is independent of the
splitting of (1) and of the identification ofℤ⋉𝒜𝐾 with𝐺 = 𝐵𝑆(1, 2). It therefore
makes sense to say that 𝑃 satisfies the Ext condition if

Ext1ℤ[𝐺](𝐻1(𝑀𝐾 ;ℤ[𝐺]𝜙𝑃),ℤ[𝐺]) = 0.

Our main result gives an algebraic criterion for a knot 𝐾 to be doubly slice.

Theorem 1.1. Let 𝐾 be a knot with Alexander module

𝒜𝐾 ≅ Λ∕(𝑡−2)⊕ Λ∕(𝑡−1−2).

If both summands of𝒜𝐾 satisfy the Ext condition, then 𝐾 is doubly slice.

Knots with trivial Alexander module (i.e. Alexander polynomial one knots)
are doubly slice, so Theorem 1.1 can be thought of as an analogue of this result
when the Alexander module is Λ∕(𝑡−2)⊕Λ∕(𝑡−1−2). Another way of thinking
of Theorem 1.1 is as a doubly slice refinement of Friedl and Teichner’s theo-
rem [21] that, given a knot 𝐾, if there exists an epimorphism 𝜓∶ 𝜋1(𝑀𝐾)↠ 𝐺
with Ext1ℤ[𝐺](𝐻1(𝑀𝐾 ;ℤ[𝐺]𝜓),ℤ[𝐺]) = 0, then 𝐾 is 𝐺-homotopy ribbon. Here
a disc 𝐷 is called homotopy ribbon if the inclusion induced map 𝜋1(𝑆3 ⧵ 𝐾) →
𝜋1(𝐷4 ⧵𝐷) is surjective and𝐺-homotopy ribbon if, additionally, 𝜋1(𝐷4 ⧵𝐷) ≅ 𝐺.
We will refer to 𝜋1(𝐷4 ⧵ 𝐷) as the (disc) group of 𝐷 by analogy with classical
knot theory where 𝜋1(𝑆3 ⧵ 𝐾) is called the (knot) group of 𝐾. We emphasise
that the proof of Theorem 1.1 relies heavily on [21].
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Necessary and sufficient conditions are known for a knot𝐾 to be𝐺-homotopy
ribbon [22, Corollary 1.7] and, similarly, it is natural to wonder whether the
double Ext condition of Theorem 1.1 is necessary for double sliceness. Unfortu-
nately this is not the case: Proposition 4.9 describes a doubly slice knot 𝐾 that
has Alexander module𝒜𝐾 ≅ Λ∕(𝑡−2)⊕Λ∕(𝑡−1−2) but that does not satisfy the
double Ext condition. We nevertheless obtain the following converse.

Theorem 1.2. Let 𝐾 be a knot with Alexander module

𝒜𝐾 ≅ Λ∕(𝑡−2)⊕ Λ∕(𝑡−1−2).
The following statements are equivalent:

(1) The knot 𝐾 ⊂ 𝑆3 arises as the equatorial cross-section of a 2-sphere 𝑆 ⊂
𝑆4 = 𝐷4

1∪𝑆3𝐷
4
2 with𝜋1(𝑆

4⧵𝑆) ≅ ℤ, and the group of the disc𝐷𝑖 = 𝐷4
𝑖 ∩𝑆

is metabelian for 𝑖 = 1, 2.
(2) The summands of𝒜𝐾 both satisfy the Ext condition.

Here recall that a group Γ is metabelian if its second derived subgroup is
trivial, i.e. if Γ(2) = 1.

Proof of Theorem 1.1 assuming Theorem 1.2. Since we assumed that both
summands of 𝒜𝐾 satisfy the Ext condition, Theorem 1.2 implies that 𝐾 arises
as the equatorial cross-section of a 2-sphere 𝑆 = 𝐷1 ∪𝐾 𝐷2 ⊂ 𝑆4 that satisfies
𝜋1(𝑆4 ⧵ 𝑆) ≅ ℤ. A result of Freedman now implies that 𝑆 is topologically un-
knotted [23] thus showing that 𝐾 is doubly slice. □

Remark 1.3. We outline the proof of Theorem 1.2.
∙ We start with the (2) ⇒ (1) direction. Write 𝒜𝐷𝑖 = 𝐻1(𝐷4 ⧵ 𝐷𝑖; Λ) for
the Alexander module of the𝐷𝑖 and use 𝑃1, 𝑃2 to denote the summands
of 𝒜𝐾 . The first part of the proof consists of showing that {𝑃1, 𝑃2} =
{𝑃𝐷1 , 𝑃𝐷2}, where we write 𝑃𝐷𝑖 ∶= ker(𝒜𝐾 → 𝒜𝐷𝑖 ). This step does not
use the fact that the disc groups are metabelian; see Proposition 3.6.
The metabelian condition is used in the second step to show that the
𝐷𝑖 are 𝐺-homotopy ribbon; see Proposition 3.7. Once we know that the
discs are 𝐺-homotopy ribbon, it follows from [21, 22] that the 𝑃𝐷𝑖 (and
thus the 𝑃𝑖) satisfy the Ext condition for 𝑖 = 1, 2.

∙ Next we outline the proof of the (1) ⇒ (2) direction. Since 𝑃1 and 𝑃2
both satisfy theExt condition, we apply [21,22] to deduce that the knot𝐾
bounds 𝐺-homotopy ribbon discs with 𝑃𝐷𝑖 = 𝑃𝑖. Most of the proof is
then devoted to showing that the sphere 𝑆 = 𝐷1∪𝐾𝐷2 has knot groupℤ.
Note that 𝑆 is obtained as the union of two distinct discs with bound-
ary𝐾 whereas, for Alexander polynomial one knots, the 2-sphere is ob-
tained as a union of two isotopic discs.

In particular, the proof of Theorem 1.2 shows that if 𝐷1, 𝐷2 ⊂ 𝐷4 are two
𝐺-homotopy ribbon discs with boundary 𝐾 and 𝑃𝐷1 ≠ 𝑃𝐷2 , then the 2-sphere
𝐷1 ∪𝐾 𝐷2 ⊂ 𝑆4 is topologically unknotted. This leads to the following question
in the smooth category.
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Question 1.4. Let 𝐾 be a knot with Alexander module

𝒜𝐾 ≅ Λ∕(𝑡−2)⊕ Λ∕(𝑡−1−2).
If 𝐷1, 𝐷2 ⊂ 𝐷4 are smoothly embedded 𝐺-homotopy ribbon discs with bound-
ary 𝐾 and 𝑃𝐷1 ≠ 𝑃𝐷2 , is the topologically unknotted sphere 𝑆 = 𝐷1 ∪𝐾 𝐷2 neces-
sarily smoothly unknotted?

1.2. An application to doubly slicing satellite knots. Let 𝑅⊔𝜂 ⊂ 𝑆3 be a 2-
component link with 𝜂 an unknot and 𝑅 contained in the interior of the solid
torus 𝑉 = 𝑆3 ⧵ 𝜈(𝜂). Let 𝐾 ⊂ 𝑆3 be another knot and let ℎ∶ 𝑉 → 𝜈(𝐾) ⊂ 𝑆3
be an orientation preserving homeomorphism taking the core 𝑐 ⊂ 𝑉 to 𝐾 ⊂
𝜈(𝐾) and a 0-framed longitude of 𝑐 to a 0-framed longitude of 𝐾. The image
of 𝑅 under ℎ, denoted 𝑅𝜂(𝐾), is the satellite knot with pattern 𝑅, companion 𝐾,
infection curve 𝜂 and winding number 𝑛 = 𝓁𝑘(𝑅, 𝜂). When we write “let 𝑅 be a
pattern and 𝜂 ⊂ 𝑆3⧵𝑅 be an infection curve", it is understood that 𝜂 is unknotted
in 𝑆3.We will sometimes also say that 𝑅𝜂(𝐾) is obtained by infecting 𝑅 along 𝜂
as e.g. in [9].
If 𝑅 and 𝐾 are both doubly slice, then 𝑅𝜂(𝐾) is known to be doubly slice,

see e.g. [20, Proposition 3.4]. We apply Theorem 1.1 to show that when 𝒜𝑅 ≅
Λ∕(𝑡−2)⊕Λ∕(𝑡−1−2), there is a criterion on 𝑅 which ensures that 𝑅𝜂(𝐾) is dou-
bly slice for any knot 𝐾.

Theorem 1.5. Let 𝑅 be a pattern and let 𝜂 ⊂ 𝑆3 ⧵ 𝑅 be an infection curve that
lies in 𝜋1(𝑆3 ⧵ 𝑅)(2). If both summands of𝒜𝑅 = Λ∕(𝑡−2)⊕Λ∕(𝑡−1−2) satisfy the
Ext condition, then 𝑅𝜂(𝐾) is doubly slice for any knot 𝐾.

We describe an application of this result. Consider the knot ℛ𝑇1,𝑇2 obtained
fromℛ = 946 by satellite operations along the infections curves 𝛾1, 𝛾2 ⊂ 𝑆3 ⧵ℛ
illustrated in Figure 2 and companions untwisted Whitehead doublesWh(𝑇1)
andWh(𝑇2); either choice of clasp is acceptable. We denote by ℛ𝑇1,𝑇2(𝐾1, 𝐾2)
the outcome of performing two additional satellite operations along the curves
𝜂1, 𝜂2 illustrated in Figure 2 with companions 𝐾1 and 𝐾2. Proposition 4.8 ap-
plies Theorem1.5 to show thatℛ𝑇1,𝑇2(𝐾1, 𝐾2) is doubly slice for any𝑇1, 𝑇2, 𝐾1, 𝐾2.
It seems likely that there are choices of 𝑇1, 𝑇2, 𝐾1, 𝐾2 that ensureℛ𝑇1,𝑇2(𝐾1, 𝐾2)
is not smoothly slice (and thus not smoothly doubly slice), but we will not pur-
sue this question further.

Remark 1.6. It is likely that Theorem 1.5 can be also be proved by applying [8]
as follows. The conditions on 𝑅 ensure that it bounds𝐺-homotopy ribbon discs
𝐷1 and 𝐷2 [21]. Since 𝜂 lies in 𝜋1(𝑆3 ⧵ 𝑅)(2) and 𝐺 is metabelian, 𝜂 is triv-
ial in 𝜋1(𝐷4 ⧵ 𝐷𝑖) ≅ 𝐺. Applying [8, Corollary 1.6] to 𝐷1 and 𝐷2 leads to
slice discs 𝐷′

1 and 𝐷
′
2 for 𝑅𝜂(𝐾). It seems likely that a close inspection of [8,

proof of Theorem 1.5] would show that the 𝐷′
𝑖 are still 𝐺-homotopy ribbon and

that 𝐷′
1 ∪𝑅𝜂(𝐾) 𝐷

′
2 has knot group ℤ and therefore (by Freedman [23]) doubly

slices 𝑅𝜂(𝐾). I am grateful toMark Powell for suggesting this. It would be inter-
esting to explore whether other applications of [8] lead to further constructions
of doubly slice satellite links.
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Figure 1. On the left: the knot ℛ = 946 together with two
infections curves 𝛾1, 𝛾2 ⊂ 𝑆3 ⧵ ℛ. On the right: the knot
ℛ𝑇1,𝑇2 with the infection curves 𝜂1, 𝜂2 that we use to produce
ℛ𝑇1,𝑇2(𝐾1, 𝐾2).

Organisation. Section 2 contains some background results on twisted homol-
ogy, the Ext condition and 𝐺-homotopy ribbon discs. Section 3 is concerned
with the proof of Theorem 1.2 and Section 4 proves Theorem 1.5.

Conventions. Throughout this article, we work in the topological category.
Manifolds are assumed to be compact, connected, based and oriented; if aman-
ifold has a nonempty boundary, then the basepoint is assumed to be in the
boundary. We denote the exterior of a knot𝐾 ⊂ 𝑆3 by 𝐸𝐾 ∶= 𝑆3 ⧵𝜈(𝐾).We also
set Λ ∶= ℤ[𝑡±1] and 𝐺 ∶= 𝐵𝑆(1, 2). Given Laurent polynomials 𝑝, 𝑞 ∈ Λ we
write 𝑝 ≐ 𝑞 if 𝑝 = ±𝑡𝑘𝑞 for some 𝑘 ∈ ℤ.

Acknowledgments. This research was partially supported by the NSF grant
DMS−2303674. Thanks go to Mark Powell for comments on a draft of this pa-
per and to Lisa Piccirillo for heplful discussions. Finally, I am grateful to an
anonymous referee for helpful comments and in particular for a suggestion that
streamlined the proof of Theorem 3.8.

2. Background
This short section collects some background results on twisted homology,

the Ext condition and the classification of 𝐺-homotopy ribbon discs. Further
references on twisted homology include [3, 24, 14], whereas we refer to [21, 22,
12] for more context surrounding the Ext condition.

2.1. Twisted homology. In what follows, spaces are assumed to have the ho-
motopy type of a finite CW complex. Given a space 𝑋 and an epimorphism
𝜓∶ 𝜋1(𝑋)↠ Γ, we write 𝑋𝜓 for the Γ-cover associated to ker(𝜓) and

𝐻∗(𝑋;ℤ[Γ]𝜓) ∶= 𝐻∗(𝑋𝜓).

The left action of Γ on 𝑋𝜓 by deck transformations endows 𝐻∗(𝑋;ℤ[Γ]𝜓) with
the structure of a left ℤ[Γ]-module. Alternatively𝐻∗(𝑋;ℤ[Γ]𝜓) can be defined
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as the homology of ℤ[Γ]𝜓 ⊗ℤ[𝜋1(𝑋)] 𝐶∗(𝑋), a chain complex that is chain iso-
morphic to 𝐶∗(𝑋𝜓). Here we used 𝑋 → 𝑋 to denote the universal cover of 𝑋
and the rightℤ[𝜋1(𝑋)]-module structure onℤ[Γ]𝜓 is given by 𝛾 ⋅ 𝑔 = 𝛾𝜓(𝑔) for
𝛾 ∈ Γ and 𝑔 ∈ 𝜋1(𝑋). It is this latter definition of 𝐻∗(𝑋;ℤ[Γ]𝜓) that we will be
using most frequently.

Lemma 2.1. Given a space 𝑋 and an epimorphism 𝜓∶ 𝜋1(𝑋) ↠ Γ, a group
automorphism 𝜑∶ Γ→ Γ induces a ℤ[Γ]-isomorphism

𝐻∗(𝑋;ℤ[Γ]𝜓)
≅
,→ 𝐻∗(𝑋;ℤ[Γ]𝜑◦𝜓).

Proof. The lemma follows once one verifies that𝜑 induces awell defined chain
isomorphism

ℤ[Γ]𝜓 ⊗ℤ[𝜋1(𝑋)] 𝐶∗(𝑋)→ ℤ[Γ]𝜑◦𝜓 ⊗ℤ[𝜋1(𝑋)] 𝐶∗(𝑋).

This chain map is well defined because 𝛾 ⊗ 𝑔𝜎 and 𝛾𝜓(𝑔)⊗ 𝜎 are mapped to
the same element, namely 𝜑(𝛾)𝜑(𝜓(𝑔))⊗ 𝜎. □

2.2. The Ext condition. Given a knot 𝐾, write𝑀𝐾 for the closed 3-manifold
obtained by 0-framed surgery on 𝐾, 𝜋 ∶= 𝜋1(𝑀𝐾) for the fundamental group
of 𝑀𝐾 , ab∶ 𝜋𝐾 ↠ 𝐻1(𝑀𝐾) ≅ ℤ for abelianisation, and 𝒜𝐾 = 𝐻1(𝑀𝐾 ; Λ) for
the Alexander module of 𝐾. Writing 𝜋(0) ∶= 𝜋 and 𝜋(𝑘) ∶= [𝜋(𝑘−1), 𝜋(𝑘−1)]
when 𝑘 ≥ 1 for the derived series of 𝜋, recall from the introduction that the
groups 𝒜𝐾 ≅ 𝜋(1)∕𝜋(2) and𝐻1(𝑀𝐾) ≅ 𝜋∕𝜋(1) fit into the short exact sequence

1→ 𝒜𝐾 → 𝜋∕𝜋(2)
ab
,,→ 𝐻1(𝑀𝐾)→ 1. (2)

Since 𝐻1(𝑀𝐾) ≅ ℤ is free, this short exact sequence splits. The choice of a
splitting 𝜃∶ ℤ → 𝜋∕𝜋(2) amounts to the choice of (the homotopy class of) a
meridian 𝜇𝐾 ∈ 𝜋1(𝑀𝐾) as one can then set 𝜃(𝑛) ∶= [𝜇𝑛𝐾]. One then verifies

that 𝜗∶ 𝜋∕𝜋(2)
≅
,→ ℤ ⋉ 𝒜𝐾 , 𝑔 ↦ (ab(𝑔), [𝑔𝜇−ab(𝑔)𝐾 ]) is an isomorphism. Here,

the action of ℤ on 𝒜𝐾 ≅ 𝜋(1)∕𝜋(2) is by 𝑛 ⋅ 𝑥 = 𝜇𝑛𝐾𝑥𝜇
−𝑛
𝐾 where 𝑛 ∈ ℤ and 𝑥 ∈

𝒜𝐾 . When we consider the semidirect productℤ⋉𝒜𝐾 , it is with respect to this
action.
Given a submodule 𝑃 ≤ 𝒜𝐾 , write Γ for the group underlying ℤ ⋉ 𝒜𝐾∕𝑃.

The choice of a splitting of (2) and of an identification of ℤ ⋉ 𝒜𝐾∕𝑃 with Γ
gives rise to an epimorphism

𝜙𝑃 ∶ 𝜋 ↠ 𝜋∕𝜋(2)
≅,𝜗
,,,→ ℤ⋉𝒜𝐾 ↠ ℤ⋉𝒜𝐾∕𝑃 ≅ Γ.

The next lemma will allow us to define the Ext condition mentioned in the
introduction.

Lemma 2.2. Given a knot 𝐾 and a submodule 𝑃 ≤ 𝒜𝐾 , the isomorphism type of
the ℤ[Γ]-module 𝐻1(𝑀𝐾 ;ℤ[Γ]𝜙𝑃) depends neither on the splitting of (2) used to
identify 𝜋∕𝜋(2) with ℤ⋉𝒜𝐾 nor on the automorphism of Γ used to identifyℤ⋉
𝒜𝐾∕𝑃 with Γ.
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In particular the condition

Ext1ℤ[Γ](𝐻1(𝑀𝐾 ;ℤ[Γ]𝜙𝑃),ℤ[Γ]) = 0

only depends on the knot 𝐾 and on the submodule 𝑃.

Proof. Let 𝜃1, 𝜃2∶ ℤ→ 𝜋∕𝜋(2) be two splittings of (2) and write

𝜗1, 𝜗2∶ 𝜋∕𝜋(2) → ℤ⋉𝒜𝐾

for the resulting isomorphisms. It is proved in [18, Lemma 3.5] that there exists
an automorphism 𝜑 of ℤ⋉ 𝒜𝐾 that restricts to the identity on 𝒜𝐾 and makes
the following square commute:

𝜋∕𝜋(2)
𝜗1 //

=
��

ℤ⋉𝒜𝐾
𝜑
��

𝜋∕𝜋(2)
𝜗2 // ℤ⋉𝒜𝐾 .

Since 𝜑 restricts to the identity on 𝒜𝐾 , it takes 𝑃 to itself and therefore de-
scends to an isomorphism ℤ ⋉ 𝒜𝐾∕𝑃 → ℤ ⋉ 𝒜𝐾∕𝑃. A choice of isomor-
phisms 𝜈1, 𝜈2∶ ℤ ⋉ 𝒜𝐾∕𝑃 ≅ Γ then leads to an automorphism 𝜑Γ∶ Γ → Γ
that makes the following diagram commute:

𝜋 //

=
��

𝜙𝑃

))𝜋∕𝜋(2)
𝜗1,≅
//

=��

ℤ⋉𝒜𝐾 //

𝜑,≅
��

ℤ⋉𝒜𝐾∕𝑃 𝜈1,≅
//

𝜑,≅
��

Γ
𝜑Γ,≅
��

𝜋 //

𝜙′𝑃

55𝜋∕𝜋(2)
𝜗2,≅ // ℤ⋉𝒜𝐾 // ℤ⋉𝒜𝐾∕𝑃

𝜈2,≅ // Γ.

Since the automorphism 𝜑Γ∶ Γ → Γ satisfies 𝜑Γ◦𝜙𝑃 = 𝜙′𝑃, the first assertion
now follows from Lemma 2.1:

𝐻1(𝑀𝐾 ;ℤ[Γ]𝜙𝑃) ≅ 𝐻1(𝑀𝐾 ;ℤ[Γ]𝜑Γ◦𝜙𝑃) = 𝐻1(𝑀𝐾 ;ℤ[Γ]𝜙′𝑃).

The second assertion follows from thefirst because theExt functor is contravari-
ant in its first variable. □

Lemma 2.2 justifies the following definition.

Definition 2.3. Given a knot𝐾, a submodule 𝑃 ⊂ 𝒜𝐾 satisfies the Ext condition
if

Ext1ℤ[Γ](𝐻1(𝑀𝐾 ;ℤ[Γ]𝜙𝑃),ℤ[Γ]) = 0,

where Γ ∶= ℤ⋉𝒜𝐾∕𝑃.
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2.3. The classification of 𝑮-homotopy ribbon discs. Set 𝐺 ∶= 𝐵𝑆(1, 2).
The combination of [21] and [22] gives the classification of 𝐺-homotopy rib-
bon discs for a knot 𝐾 up to isotopy rel. boundary. When 𝐾 has Alexander
module 𝒜𝐾 ≅ Λ∕(𝑡−2)⊕ Λ∕(𝑡−1−2) [22, Theorem 1.6 and Remark 1.8] proves
that𝐺-homotopy-ribbon discs for𝐾 are in bijective correspondence with the el-
ements of {𝑃1, 𝑃2} ∶= {Λ∕(𝑡−2)⊕0, 0⊕Λ∕(𝑡−1−2)} that satisfy the Ext condition.
This set can have cardinality 0, 1 or 2: all three scenarios arise [22, Subsection
1.4].
The bijection is explicit: it maps a 𝐺-homotopy-ribbon disc 𝐷 ⊂ 𝐷4 with

boundary 𝐾 to the submodule 𝑃𝐷 = ker(𝒜𝐾 → 𝒜𝐷) where 𝒜𝐷 = 𝐻1(𝐷4 ⧵
𝜈(𝐷); Λ) denotes the Alexander module of 𝐷. Setting 𝑁𝐷 ∶= 𝐷4 ⧵ 𝜈(𝐷), an
equivalent perspective (taken in [12]) is to think of the bijection as mapping
𝐷 to the inclusion induced map 𝜋1(𝑀𝐾) ↠ 𝜋1(𝑁𝐷) ≅ 𝐺 considered up to
post-composition with an automorphisms of 𝐺. In particular, for 𝑃𝑖 as above,
there exists a 𝐺-homotopy ribbon disc 𝐷𝑖 ⊂ 𝐷4 with boundary 𝐾 such that 𝜙𝑃𝑖
and 𝜋1(𝑀𝐾) ↠ 𝜋1(𝑁𝐷) agree up to post-composition with an automorphism
of 𝐺.

3. The necessary and sufficient conditions
The goal of this section is to prove Theorem 1.2 from the introduction. In

Subsection 3.1 we collect some technical results that will be used in Subsec-
tion 3.2 to prove Theorem 1.2.

3.1. Preliminary lemmas. This section records two technical results (Propo-
sitions 3.6 and 3.7) that will be needed to prove the (2) ⇒ (1) direction of Theo-
rem1.2. Throughout this section, wewrite𝑁𝐷 ∶= 𝐷4⧵𝜈(𝐷) and𝑋𝑆 ∶= 𝑆4⧵𝜈(𝑆)
for the exterior of discs and spheres respectively. We also continue writing
Λ ∶= ℤ[𝑡±1] and 𝐺 ∶= 𝐵𝑆(1, 2).
Following [18], we say that a disc 𝐷 is Λ-homology ribbon if the inclusion

induced homomorphism 𝒜𝐾 → 𝒜𝐷 is surjective. The following lemma is im-
plicit in [17, Proposition 2.10] (see also [18, Lemma 3.3]) but we provide the
argument as it is short.

Lemma 3.1. If a knot 𝐾 ⊂ 𝑆3 is the equatorial cross-section of a sphere 𝑆 =
𝐷1 ∪𝐾 𝐷2 ⊂ 𝑆4 with 𝜋1(𝑋𝑆) ≅ ℤ, then

(1) the discs 𝐷1 and 𝐷2 are Λ-homology ribbon;
(2) the inclusions 𝑃𝐷1 , 𝑃𝐷2 ⊂ 𝒜𝐾 induce an isomorphism 𝑃𝐷1 ⊕ 𝑃𝐷2

≅
,→ 𝒜𝐾 .

Proof. Since 𝜋1(𝑋𝑆) ≅ ℤ we deduce that 𝐻1(𝑋𝑆; Λ) = 0 = 𝐻3(𝑋𝑆; Λ) = 0 and
that 𝐻2(𝑋𝑆; Λ) is free [26, Lemma 3.2]. On the other hand, since 𝜒(𝑋𝑆) = 0, it
follows that𝐻2(𝑋𝑆; Λ) is Λ-torsion. We therefore conclude that𝐻2(𝑋𝑆; Λ) = 0.
TheMayer-Vietoris sequence for the decomposition𝑋𝑆 = 𝑁𝐷1∪𝑆3⧵𝜈(𝐾)𝑁𝐷2 then
shows that the inclusions induce an isomorphism

( 𝑖𝐷1
𝑖𝐷2

)
∶ 𝒜𝐾

≅
,→ 𝒜𝐷1 ⊕𝒜𝐷2 .
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This implies in particular that 𝑖𝐷1 and 𝑖𝐷2 are surjective, i.e. that the 𝐷𝑖 are Λ-
homology ribbon. A quick verification then shows that these inclusions induce

isomorphisms 𝑖𝐷2 ∶ 𝑃𝐷1
≅
,→ 𝒜𝐷2 and 𝑖𝐷1 ∶ 𝑃𝐷2

≅
,→ 𝒜𝐷1 . The lemma now follows

readily. □

Lemma 3.1 shows that the properties of Λ-homology ribbon discs are rele-
vant to the study of doubly slice knots. We start by describing a conditionwhich
ensures that a Λ-homology ribbon disc is in fact homotopy ribbon.

Proposition 3.2. AΛ-homology ribbon disc𝐷 with metabelian disc group is ho-
motopy ribbon.

Proof. Set𝜋𝐾 ∶= 𝜋1(𝑀𝐾) and𝜋𝐷 ∶= 𝜋1(𝑁𝐷), write𝒜𝐾 and𝒜𝐷 for theAlexan-
der modules of 𝐾 and 𝐷 respectively, and consider the following commutative
diagram in which the rows are exact:

1 // 𝒜𝐾 //

����

𝜋𝐾∕𝜋
(2)
𝐾

ab //

𝜋1(𝜄)��

ℤ //

≅ 𝐻1(𝜄)
��

1

1 // 𝒜𝐷 // 𝜋𝐷∕𝜋
(2)
𝐷

ab // ℤ // 1.

Both rows split because ℤ is free. A splitting 𝜃𝐾 ∶ ℤ → 𝜋𝐾∕𝜋
(2)
𝐾 of the top row

then defines a splitting 𝜃𝐷 ∶ ℤ → 𝜋𝐷∕𝜋
(2)
𝐷 of the bottom row via the formula

𝜃𝐷 ∶= 𝜋1(𝜄)◦𝑠𝐾◦𝐻1(𝜄)−1. More explicitly, if 𝜃𝐾(𝑛) = [𝜇𝑛𝐾] for some meridian
𝜇𝐾 ∈ 𝜋1(𝑀𝐾), then 𝜃𝐷(𝑛) = [𝜇𝑛𝐷] where 𝜇𝐷 ∈ 𝜋1(𝑁𝐷) is a meridian that
satisfies 𝜋1(𝜄)(𝜇𝐾) = 𝜇𝐷 . A rapid verification shows that the resulting iso-
morphisms 𝜗𝐾 ∶ 𝜋𝐾∕𝜋

(2)
𝐾 → ℤ ⋉ 𝒜𝐾 , 𝑔 ↦ (ab(𝑔), [𝑔𝜇−ab(𝑔)𝐾 ]) and 𝜋𝐷∕𝜋

(2)
𝐷 →

ℤ⋉𝒜𝐷, 𝑔 ↦ (ab(𝑔), [𝑔𝜇−ab(𝑔)𝐷 ]) then make the following diagram commute:

𝜋𝐾 // //

𝜋1(𝜄)
��

𝜋𝐾∕𝜋
(2)
𝐾

𝜗𝐾 ,≅ //

𝜋1(𝜄)��

ℤ⋉𝒜𝐾

����
𝜋𝐷

= // 𝜋𝐷∕𝜋
(2)
𝐷

𝜗𝐷 ,≅ // ℤ⋉𝒜𝐷 .

The bottom left arrow is an equality because we assumed that 𝜋(2)𝐷 = 1. The
right arrow is surjective because 𝐷 is Λ-homology ribbon. The commutativity
of this diagram implies that the leftmost map labelled 𝜋1(𝜄) is surjective i.e.
that 𝐷 is homotopy ribbon. □

The next lemma records some additional facts about Λ-homology ribbon
discs.

Lemma 3.3. If 𝐷 is a Λ-homology ribbon disc, then
(1) the submodule 𝑃𝐷 ≤ 𝒜𝐾 fits into the short exact sequence

0→ 𝑃𝐷 → 𝒜𝐾 → 𝒜𝐷 → 0; (3)
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(2) 𝑃𝐷 has projective dimension at most 1 as a Λ-module, and is torsion free
as an abelian group.

Proof. Since 𝐷 is Λ-homology ribbon, we deduce that 𝐻1(𝑁𝐷, 𝜕𝑁𝐷; Λ) = 0.
The first assertion now follows by considering the long exact sequence of the
pair (𝑁𝐷, 𝜕𝑁𝐷). We prove the second assertion. Since 𝒜𝐾 is Λ-torsion and ad-
mits a square presentation matrix [16], its projective dimension is at most 1.
Since Λ has global dimension 2, we deduce that 𝒜𝐷 has projective dimension
at most 2. The exact sequence from (3) now implies that 𝑃𝐷 has projective di-
mension at most 1, for if 𝑉 is a Λ-module, then the exact sequence

0← Ext3Λ(𝒜𝐷, 𝑉)⏟⎴⎴⏟⎴⎴⏟
=0

← Ext2Λ(𝑃𝐷, 𝑉)← Ext2Λ(𝒜𝐾 , 𝑉)⏟⎴⎴⏟⎴⎴⏟
=0

← Ext2Λ(𝒜𝐷, 𝑉)← …

implies that Ext𝑖Λ(𝑃𝐷, 𝑉) = 0 for 𝑖 ≥ 2. Finally, the fact that 𝑃𝐷 ≤ 𝒜𝐾 is ℤ-
torsion free follows because 𝒜𝐾 is ℤ-torsion free [16, Proposition 3.5]. □

Remark 3.4. It is tempting to conjecture that if a torsion Λ-module 𝑃 is ℤ-
torsion free, admits a square presentation matrix and satisfies Ord(𝑃) ≐ 𝑡−2,
then 𝑃 ≅ Λ∕(𝑡−2). This would simplify the remainder of this section as well as
imply that if a doubly slice knot has Alexander polynomial (𝑡−2)(𝑡−1−2), then
it necessarily has Alexander module 𝒜𝐾 ≅ Λ∕(𝑡−2)⊕ Λ∕(𝑡−1−2).

Lemma 3.5. Let𝐾 be a knotwithAlexandermodule𝒜𝐾 ≅ Λ∕(𝑡−2)⊕Λ∕(𝑡−1−2),
and let 𝐷 be a Λ-homology ribbon disc with boundary 𝐾.

(1) If Ord(𝑃𝐷) ≐ 𝑡−2, then 𝑃𝐷 ⊂ Λ∕(𝑡−2)⊕ 0.
(2) If Ord(𝑃𝐷) ≐ 𝑡−1−2, then 𝑃𝐷 ⊂ 0⊕ Λ∕(𝑡−1−2).

Proof. We only prove the first assertion as the argument for the second is anal-
ogous. Wefirst claim that ifOrd(𝑃𝐷) ≐ 𝑡−2, then 𝑡−2 annihilates𝑃𝐷 . Lemma3.3
implies that 𝑃𝐷 is torsion and has projective dimension 1, and therefore admits
a square presentationmatrix. It is known that if a torsionΛ-module𝐻 admits a
square presentation matrix, then Ord(𝐻) annihilates𝐻 [15, Remark 2 on page
31]. Thus Ord(𝑃𝐷) ≐ 𝑡−2 annihilates 𝑃𝐷, as claimed.
The lemma now follows from the same argument as in [22, proof of Lemma

4.3 (2)]. We repeat the details for the reader’s convenience. Given ([𝑝1], [𝑝2]) ∈
𝑃𝐷 ≤ 𝒜𝐾 , our aim is to prove that [𝑝2] = 0 ∈ Λ∕(𝑡−1−2). Using the claim, we
deduce that (𝑡−2)([𝑝1], [𝑝2]) = 0 and in particular [(𝑡−2)𝑝2] = 0 in Λ∕(𝑡−1−2).
This implies that (𝑡−2)𝑝2 = (𝑡−1−2)𝑥 for some 𝑥 ∈ Λ. Since Λ is an UFD
and since (𝑡−2) and (𝑡−1−2) are coprime, we deduce that 𝑝2 = (𝑡−1−2)𝑧 for
some 𝑧 ∈ Λ. It follows that [𝑝2] = 0 ∈ Λ∕(𝑡−1−2) as required. □

What follows is the first main technical proposition of this section.

Proposition 3.6. If a knot 𝐾 is the equatorial cross-section of a sphere 𝑆 =
𝐷1 ∪𝐾 𝐷2 ⊂ 𝑆4 with 𝜋1(𝑋𝑆) ≅ ℤ and𝒜𝐾 ≅ Λ∕(𝑡−2)⊕ Λ∕(𝑡−1−2), then

{𝑃𝐷1 , 𝑃𝐷2} = {Λ∕(𝑡−2)⊕ 0, 0⊕ Λ∕(𝑡−1−2)}
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and, for 𝑖 = 1, 2, there is a group isomorphism

𝜋𝐷𝑖∕𝜋
(2)
𝐷𝑖

≅ 𝐵𝑆(1, 2).

Proof. Lemma 3.3 implies that the inclusions induce an isomorphism 𝑃𝐷1 ⊕
𝑃𝐷2 ≅ 𝒜𝐾 . It follows that {Ord(𝑃𝐷1),Ord(𝑃𝐷2)} ≐ {𝑡−2, 𝑡−1−2}.We can assume
without loss of generality thatOrd(𝑃𝐷1) ≐ 𝑡−2 andOrd(𝑃𝐷2) ≐ 𝑡−1−2. We prove
that 𝑃𝐷1 = Λ∕(𝑡−2)⊕ 0; the proof for the second summand is entirely similar.
The argument is a slight modification of [22, proof of Lemma 4.3 (2)]. Set

𝑃1 ∶= Λ∕(𝑡−2)⊕0 and 𝑃2 ∶= 0⊕Λ∕(𝑡−1−2). Lemma 3.5 implies that 𝑃𝐷1 ⊂ 𝑃1.
Using the short exact sequence from Lemma 3.3 we have

𝒜𝐷1 ≅ 𝒜𝐾∕𝑃𝐷1 = 𝑃1∕𝑃𝐷1 ⊕ 𝑃2.

Note that Ord(𝑃𝐷1) ≐ 𝑡−2 ≐ Ord(𝑃1). As Λℚ ∶= Λ⊗ℤ ℚ is a PID, we deduce
that 𝑃1∕𝑃𝐷1 ⊗ℤ ℚ = 0. It follows that 𝑃1∕𝑃𝐷1 is ℤ-torsion, so either 𝒜𝐷1 is
ℤ-torsion or 𝑃1∕𝑃𝐷1 = 0.
Using the short exact sequence from Lemma 3.3 and the fact that 𝒜𝐾 is ℤ-

torsion free [16, Proposition 3.5], we deduce that 𝒜𝐷1 is ℤ-torsion free. It fol-
lows that 𝑃1∕𝑃𝐷1 = 0 and therefore 𝑃𝐷1 = 𝑃1. The same argument shows that
𝑃𝐷2 = 𝑃2.
Finally we show that 𝜋𝐷𝑖∕𝜋

(2)
𝐷𝑖

≅ 𝐵𝑆(1, 2).We already saw in (the proof of)

Lemma 3.1 that the inclusions induce isomorphisms 𝑖𝐷2 ∶ 𝑃𝐷1
≅
,→ 𝒜𝐷2 and

𝑖𝐷1 ∶ 𝑃𝐷2
≅
,→ 𝒜𝐷1 . It follows that 𝒜𝐷𝑖 ≅ ℤ[ 1

2
] and so 𝜋𝐷𝑖∕𝜋

(2)
𝐷𝑖

≅ ℤ ⋉ 𝒜𝐷𝑖 ≅
𝐵𝑆(1, 2) as required. This concludes the proof of the proposition. □

Finally, we derive our second technical proposition.

Proposition 3.7. Let 𝐾 be a knot with Alexander module 𝒜𝐾 ≅ Λ∕(𝑡−2) ⊕
Λ∕(𝑡−1−2). If 𝐾 is the equatorial cross-section of a sphere 𝑆 = 𝐷1 ∪𝐾 𝐷2 ⊂ 𝑆4
with 𝜋1(𝑁𝐷𝑖 ) metabelian for 𝑖 = 1, 2 and 𝜋1(𝑋𝑆) ≅ ℤ, then the discs 𝐷1, 𝐷2 are
𝐺-homotopy ribbon.

Proof. Proposition 3.6 implies that𝜋1(𝑁𝐷𝑖 )∕𝜋1(𝑁𝐷𝑖 )
(2) ≅ 𝐺. Sincewe assumed

that the 𝜋1(𝑁𝐷𝑖 ) are metabelian, it follows that 𝜋1(𝑁𝐷𝑖 ) ≅ 𝐺. Again using that
the 𝜋1(𝑁𝐷𝑖 ) are metabelian, the combination of Lemma 3.1 and Proposition 3.2
implies that the 𝐷𝑖 are homotopy ribbon. □

3.2. Proof of the main theorem. We prove Theorem 1.2 from the introduc-
tion.

Theorem3.8. Let𝐾 be a knotwithAlexandermodule𝒜𝐾 ≅ Λ∕(𝑡−2)⊕Λ∕(𝑡−1−2).
The following statements are equivalent:

(1) The knot 𝐾 ⊂ 𝑆3 arises as the equatorial cross-section of a 2-sphere 𝑆 ⊂
𝑆4 = 𝐷4

1∪𝑆3𝐷
4
2 with𝜋1(𝑆

4⧵𝑆) ≅ ℤ, and the group of the disc𝐷𝑖 = 𝐷4
𝑖 ∩𝑆

is metabelian for 𝑖 = 1, 2.
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(2) The summands 𝑃1 = Λ∕(𝑡−2)⊕ 0 and 𝑃2 = 0⊕ Λ∕(𝑡−1−2) of 𝒜𝐾 both
satisfy the Ext condition.

Proof. We prove that (2) ⇒ (1). Assume that the summands 𝑃1 and 𝑃2 both
satisfy the Ext condition. Set𝜋𝐾 ∶= 𝜋1(𝑀𝐾) and fix a splitting 𝜃∶ ℤ→ 𝜋𝐾∕𝜋

(2)
𝐾

of the short exact sequence in (1). As explained in Section 2.2, this splitting
leads to an isomorphism 𝜗𝐾 ∶ 𝜋𝐾∕𝜋

(2)
𝐾 → ℤ ⋉ 𝒜𝐾 and we can then consider

the epimorphisms

𝜙𝑃1 ∶ 𝜋𝐾
𝑝
↠ 𝜋𝐾∕𝜋

(2)
𝐾

𝜗𝐾 ,≅,,,,→ ℤ⋉𝒜𝐾
proj1,,,,→ ℤ⋉𝒜𝐾∕𝑃1 = ℤ⋉ 𝑃2,

𝜙𝑃2 ∶ 𝜋𝐾
𝑝
↠ 𝜋𝐾∕𝜋

(2)
𝐾

𝜗𝐾 ,≅,,,,→ ℤ⋉𝒜𝐾
proj2,,,,→ ℤ⋉𝒜𝐾∕𝑃2 = ℤ⋉ 𝑃1.

Technically speaking,𝜙𝑃𝑖 depends on the choice of the splitting 𝜃∶ ℤ→ 𝜋𝐾∕𝜋
(2)
𝐾

but the Ext condition only depends on 𝑃𝑖 and 𝐾; recall Lemma 2.2. As we re-
called in Section 2.3, the Ext condition ensures the existence of 𝐺-homotopy
ribbon discs 𝐷1 and 𝐷2 with boundary 𝐾 and such that the inclusion induced
map 𝜋1(𝑀𝐾) → 𝜋1(𝑁𝐷𝑖 ) agrees with 𝜙𝑃𝑖 for 𝑖 = 1, 2 up to an automorphism of
𝐺 = 𝐵𝑆(1, 2). In order to cut down on notation we will omit these automor-
phisms from the notation and allow ourselves to identify 𝜋1(𝑁𝐷1) with ℤ⋉ 𝑃2
(resp. 𝜋1(𝑁𝐷2) with ℤ ⋉ 𝑃1) and 𝜙𝑃𝑖 with 𝜋1(𝑀𝐾) → 𝜋1(𝑁𝐷𝑖 ) for 𝑖 = 1, 2. We
also set 𝐸𝐾 ∶= 𝑆3 ⧵ 𝜈(𝐾).
Since 𝐺 = 𝐵𝑆(1, 2) is metabelian, 𝐷1 and 𝐷2 have metabelian disc groups

and the proof reduces to showing that the 2-sphere 𝑆 = 𝐷1 ∪𝐾 𝐷2 ⊂ 𝑆4 has
infinite cyclic knot group.
With the notation introduced up to this point, we obtain the following com-

mutative diagram in which all unlabelled maps are inclusion induced, except
for the bottom maps that are defined by combining idℤ with the apppropriate
canonical projection:

𝜋1(𝑁𝐷1)

=
��

𝜋1(𝐸𝐾)oo //

����

𝜋1(𝑁𝐷2)

=
��

𝜋1(𝑁𝐷1)

=
��

𝜋𝐾oo //

𝑝
����

𝜋1(𝑁𝐷2)

=
��

𝜋1(𝑁𝐷1)∕𝜋1(𝑁𝐷1)
(2)

≅𝜗𝐷1
��

𝜋𝐾∕𝜋
(2)
𝐾

oo

≅ 𝜗𝐾
��

// 𝜋1(𝑁𝐷2)∕𝜋1(𝑁𝐷2)
(2)

≅ 𝜗𝐷2
��

ℤ⋉𝒜𝐷1

≅
��

ℤ⋉𝒜𝐾
proj1oo

≅
��

proj2 // ℤ⋉𝒜𝐷2

≅
��

ℤ⋉ 𝑃2 ℤ⋉ (𝑃1 ⊕ 𝑃2)oo // ℤ⋉ 𝑃1.
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Van Kampen’s theorem implies that 𝜋1(𝑋𝑆) is isomorphic to the pushout of the
top row. Since each of the outer vertical maps is an isomorphism and each of
the central vertical maps is either a surjection or an isomorphism, this pushout
is isomorphic to the push out of the bottom row.1 Since the push out of the
bottom row is isomorphic toℤ, we conclude that 𝜋1(𝑋𝑆) ≅ ℤ, as required. This
concludes the proof that (2) ⇒ (1).

We now prove the converse. We assume that𝐾 arises as the equatorial cross-
section of a 2-sphere 𝑆 = 𝐷1 ∪𝐾 𝐷2 with 𝐷1, 𝐷2 ⊂ 𝐷4 two discs with metabelian
disc groups and 𝜋1(𝑋𝑆) ≅ ℤ. Our goal is to prove that the summands of 𝒜𝐾 ≅
Λ∕(𝑡−2) ⊕ Λ∕(𝑡−1−2) satisfy the Ext condition. Using the assumption on 𝒜𝐾
and the fact that 𝜋1(𝑋𝑆) ≅ ℤ, Proposition 3.6 implies that

{𝑃𝐷1 , 𝑃𝐷2} = {Λ∕(𝑡−2)⊕ 0, 0⊕ Λ∕(𝑡−1−2)} =∶ {𝑃1, 𝑃2}.

Since we assumed that the disc groups are metabelian, Proposition 3.7 implies
that 𝐷1 and 𝐷2 are 𝐺-homotopy ribbon. Since 𝐷1 and 𝐷2 are 𝐺-homotopy rib-
bon, we know from [22, Theorem 1.6] that the submodules 𝑃𝐷1 and 𝑃𝐷2 satisfy
the Ext condition. It follows that 𝑃1 and 𝑃2 also satisfy the Ext condition. This
concludes the proof of the theorem. □

4. Satellite knots
Continuing with the notation from Section 1.2, we write 𝑅𝜂(𝐾) for the satel-

lite knotwith pattern𝑅 ⊂ 𝑆3, infection curve 𝜂 ⊂ 𝑆3⧵𝜈𝑅 =∶ 𝐸𝑅 and companion
𝐾. In Section 4.1 we prove Theorem 1.5 whereas in Section 4.2, we prove that
the double Ext condition from Theorem 1.1 is not necessary for a knot 𝐽 with
𝒜𝐽 ≅ Λ∕(𝑡−2)⊕ Λ∕(𝑡−1−2) to be doubly slice.

4.1. An application of Theorem 1.1. We prove Theorem 1.5 from the intro-
duction which gives conditions on a pattern 𝑅 with𝒜𝑅 ≅ Λ∕(𝑡−2)⊕Λ∕(𝑡−1−2)
so that 𝑅𝜂(𝐾) is doubly slice for every companion 𝐾.

1Given pushout squares

𝐴1
𝑓2 //

𝑓3 ��

𝐴2

𝑔2��
𝐴3

𝑔3 // 𝐴4

𝐵1
𝑓′2 //

𝑓′3 ��

𝐵2
𝑔′2��

𝐵3
𝑔′3 // 𝐵4,

and a commutative diagram

𝐴2

≅𝜑2
��

𝐴1

����

𝑓2oo 𝑓3 // 𝐴3

≅ 𝜑3
��

𝐵2 𝐵1
𝑓′2oo 𝑓′3 // 𝐵3,

a verification involving the universal property of pushouts ensures that 𝐴2

𝑔′2◦𝜑2,,,,,→ 𝐵4
𝑔′3◦𝜑3←,,,,, 𝐴3 is

a pushout of 𝐴2
𝑓2←,, 𝐴1

𝑓3,,→ 𝐴3.
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Construction 4.1. We construct a degree one map 𝑓∶ 𝑀𝑅𝜂(𝐾) → 𝑀𝑅. The
0-framed surgery of 𝑅𝜂(𝐾) decomposes as 𝑀𝑅𝜂(𝐾) = 𝑀𝑅 ⧵ 𝜈(𝜂) ∪ 𝐸𝐾 where
the gluing identifies the 0-framed longitude of 𝐾 with a meridian of 𝜂 and a
meridian of𝐾with (a 0-framed longitude of) 𝜂. These identifications determine
a homeomorphism 𝜕𝐸𝐾 → 𝜕𝜈(𝜂). Thinking of 𝜈(𝜂) as an unknot exterior, this
homeomorphism extends to a degree one map 𝑓0∶ 𝐸𝐾 → 𝜈(𝜂); see e.g. [13,
Construction 7.1] for details. This map 𝑓0 can be combined with the identity
map on𝑀𝑅 ⧵ 𝜈(𝜂) to obtain the required degree one map

𝑓 = id∪𝑓0∶ 𝑀𝑅𝜂(𝐾) → 𝑀𝑅.

Technically speaking, [13, Construction 7.1] shows that 𝑓0 combines with the
identity map on 𝐸𝑅 ⧵ 𝜈(𝜂) to yield a degree one map 𝐸𝑅𝜂(𝐾) → 𝐸𝑅. This is
equivalent to noting that 𝑓 has degree one because, for any knot 𝐽, excision and
the fact that 𝐸𝐽 is a homology circle imply that 𝐻3(𝐸𝐽 , 𝜕𝐸𝐽) ≅ 𝐻3(𝑀𝐽 , 𝐸𝐽) ≅
𝐻3(𝑀𝐽).

Remark 4.2. Since 𝑓 has degree one, it induces a surjection on fundamental
groups. In particular if 𝜓∶ 𝜋1(𝑀𝑅)↠ Γ is an epimorphism, then so is 𝜓◦𝑓∗.

The following result is essentially contained in [21, Lemma 6.2]. Under the
appropriate assumptions, the statement of [21, Lemma 6.2] does not describe

an explicit isomorphism 𝐻1(𝑀𝑅𝜂(𝐾);ℤ[Γ]𝜓◦𝑓∗)
≅
,→ 𝐻1(𝑀𝑅;ℤ[Γ]𝜓) but a close

look at the proof shows that it is induced by 𝑓; we recall the relevant details.

Lemma4.3. Themap𝑓∶ 𝑀𝑅𝜂(𝐾) → 𝑀𝑅 induces an isomorphism𝐻1(𝑀𝑅𝜂(𝐾))→
𝐻1(𝑀𝑅) onhomology and, givenan epimorphism𝜓∶ 𝜋1(𝑀𝑅)↠ Γ, if either𝜓(𝜂) =
1 or ∆𝐾 ≐ 1, then 𝑓 induces a ℤ[Γ]-isomorphism

𝑓∗∶ 𝐻1(𝑀𝑅𝜂(𝐾);ℤ[Γ]𝜓◦𝑓∗)
≅
,→ 𝐻1(𝑀𝑅;ℤ[Γ]𝜓).

Proof. By construction, themap 𝑓 takes ameridian of 𝑅𝜂(𝐾) to ameridian of 𝑅
and therefore induces an isomorphism on first homology.
The second assertion will be proved by comparing the Mayer-Vietoris se-

quences for the decompositions 𝑀𝑅𝜂(𝐾) = 𝑀𝑅 ⧵ 𝜈(𝜂) ∪ 𝐸𝐾 and 𝑀𝑅 = 𝑀𝑅 ⧵
𝜈(𝜂) ∪ 𝜈(𝜂) and applying the 5-lemma.
We proceed with the details. Consider the following commutative diagram

in which the rows are exact, with the top (resp. bottom) row having coefficients
in ℤ[Γ]𝜓◦𝑓∗ (resp. ℤ[Γ]𝜓):

𝐻1(𝜕𝐸𝐾) //

𝑓∗ ,≅��

𝐻1(𝑀𝑅 ⧵ 𝜈(𝜂))⊕𝐻1(𝐸𝐾) //

𝑓∗��

𝐻1(𝑀𝑅𝜂 (𝐾)) //

𝑓∗��

𝐻0(𝜕𝐸𝐾) //

𝑓∗ ,≅��

𝐻0(𝑀𝑅 ⧵ 𝜈(𝜂))⊕𝐻1(𝐸𝐾)
𝑓∗��

𝐻1(𝜕𝜈(𝜂)) // 𝐻1(𝑀𝑅 ⧵ 𝜈(𝜂))⊕𝐻1(𝜈(𝜂)) // 𝐻1(𝑀𝑅) // 𝐻0(𝜕𝜈(𝜂)) // 𝐻0(𝑀𝑅 ⧵ 𝜈(𝜂))⊕𝐻1(𝜈(𝜂)).

Here we used that 𝑓∶ 𝜕𝐸𝐾 → 𝜕𝜈(𝜂) is an homeomorphism and that, by defini-
tion of 𝑓 = id∪𝑓0, we know that 𝑓∗∶ 𝐻∗(𝑀𝑅𝜂(𝐾),ℤ[Γ]𝜓◦𝑓∗) → 𝐻∗(𝑀𝑅;ℤ[Γ]𝜓)
is an isomorphism. In order to apply the 5-lemma we therefore prove that if
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either 𝜓(𝜂) = 1 or ∆𝐾 ≐ 1, then 𝑓∶ 𝐸𝐾 → 𝜈(𝜂) induces an isomorphism on
𝐻𝑖(−;ℤ[Γ]) for 𝑖 = 0, 1.
Assume that 𝜓(𝜂) = 1. Since (a 0-framed longitude of) 𝜂 is identified with

a meridian 𝜇𝐾 of 𝐾 in 𝑀𝑅𝜂(𝐾), we have 𝜓◦𝑓∗(𝜇𝐾) = 1. It follows that 𝑋 ∈
{𝜈(𝜂), 𝐸𝐾} is endowed with the trivial coefficient system and therefore

𝐻∗(𝑋;ℤ[Γ]) ≅ 𝐻∗(𝑋)⊗ℤ ℤ[Γ]).

Since 𝑓∶ 𝐸𝐾 → 𝜈(𝜂) induces an isomorphism on ℤ-homology, it then also in-
duces an isomorphism on ℤ[Γ]-homology.
We now drop the assumption on 𝜓(𝜂). The composition

𝜋1(𝐸𝐾)→ 𝜋1(𝑀𝑅𝜂(𝐾))
𝑓
,→ 𝜋1(𝑀𝑅)

factors through 𝜋1(𝜈(𝜂)) ≅ ℤ. It follows that for 𝑋 ∈ {𝜈(𝜂), 𝐸𝐾}, the coefficient
system factors through abelianisation and therefore

𝐻∗(𝑋;ℤ[Γ]) ≅ 𝐻∗(𝑋; Λ⊗Λ ℤ[Γ]).

Since ∆𝐾 ≐ 1we have𝐻1(𝐸𝐾 ; Λ) = 0. It follows that for𝑋 ∈ {𝜈(𝜂), 𝐸𝐾}we have
𝐻𝑖(𝑋; Λ) = 0 for 𝑖 = 1, 2 and the universal coefficient spectral sequence shows
that𝐻0(𝑋;ℤ[Γ]) ≅ 𝐻0(𝑋; Λ)⊗Λℤ[Γ] and𝐻1(𝑋;ℤ[Γ]) ≅ TorΛ1 (𝐻0(𝑋; Λ),ℤ[Γ]).
As 𝑓∶ 𝐸𝐾 → 𝜈(𝜂) induces an isomorphism on 𝐻0(−; Λ), it therefore also in-
duces an isomorphism on𝐻𝑖(−;ℤ[Γ]) for 𝑖 = 0, 1.
Thus if either 𝜓(𝜂) = 1 or ∆𝐾 ≐ 1, then we can apply the 5-lemma to the

aforementioned commutative diagram of Mayer-Vietoris exact sequences and
deduce that 𝑓∶ 𝑀𝑅𝜂(𝐾) → 𝑀𝑅 induces an isomorphism on 𝐻1(−;ℤ[Γ]). This
concludes the proof of the lemma. □

Continuing with the notation introduced above, but additionally setting
𝜋𝑅 ∶= 𝜋1(𝑀𝑅) and 𝜋𝑅𝜂(𝐾) ∶= 𝜋1(𝑀𝑅𝜂(𝐾)), the next lemma serves to relate the
coefficient systems on𝑀𝑅 and𝑀𝑅𝜂(𝐾).

Lemma 4.4. Assume that 𝒜𝑅 ≅ Λ∕(𝑡−2) ⊕ Λ∕(𝑡−1−2). Let 𝑃 ⊂ 𝒜𝑅 be one
of the two summands and let 𝜂 ⊂ 𝑆3 ⧵ 𝑅 be a winding number zero infection
curve. The map 𝑓∶ 𝑀𝑅𝜂(𝐾) → 𝑀𝑅 from Construction 4.1 gives rise to a group
automorphism 𝑓𝐺∗ ∶ 𝐺 → 𝐺 that makes the following diagram commute:

𝜋𝑅𝜂(𝐾)
𝜙𝑓−1∗ (𝑃)

// //

𝑓∗
��

𝐺

𝑓𝐺∗
��

𝜋𝑅
𝜙𝑃 // // 𝐺.

Proof. Since 𝜂 haswinding number zero, it belongs to the kernel of the abelian-
isation map ab∶ 𝜋𝑅 ↠ ℤ. Lemma 4.3 applied with 𝜓 = ab implies that 𝑓
induces an isomorphism on first homology and on the Alexander modules. It
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follows that 𝑓 also induces an isomorphism on the second derived quotients:

1 // 𝒜𝑅𝜂(𝐾)
//

𝑓∗≅
��

𝜋𝑅∕𝜋
(2)
𝑅𝜂(𝐾)

//

𝑓∗≅ ��

𝐻1(𝑀𝑅𝜂(𝐾))

𝑓∗≅
��

// 1

1 // 𝒜𝑅 // 𝜋𝑅∕𝜋
(2)
𝑅

// 𝐻1(𝑀𝑅) // 1.

(4)

Choose meridians 𝜇𝑅 ∈ 𝜋𝑅 and 𝜇𝑅𝜂(𝐾) ∈ 𝜋𝑅𝜂(𝐾) such that 𝑓∗(𝜇𝑅) = 𝜇𝑅𝜂(𝐾).
These choices lead to splittings of the rows in this diagram and to isomorphisms
𝜗𝑅 ∶ 𝜋𝑅∕𝜋

(2)
𝑅 → ℤ⋉ 𝒜𝑅 and 𝜗𝑅𝜂(𝐾)∶ 𝜋𝑅𝜂(𝐾)∕𝜋

(2)
𝑅𝜂(𝐾)

→ ℤ⋉ 𝒜𝑅𝜂(𝐾) that fit into
the following commutative diagram:

𝜋𝑅𝜂(𝐾) //

𝑓∗
��

𝜋𝑅𝜂(𝐾)∕𝜋
(2)
𝑅𝜂(𝐾)

𝜗𝑅𝜂 (𝐾),≅ //

𝑓∗≅ ��

ℤ⋉𝒜𝑅𝜂(𝐾)
//

𝑓∗≅
��

ℤ⋉𝒜𝑅𝜂(𝑃)∕𝑓
−1
∗ (𝑃)

𝑓∗≅
��

𝜋𝑅 // 𝜋𝑅∕𝜋
(2)
𝑅

𝜗𝑅 ,≅ // ℤ⋉𝒜𝑅 // ℤ⋉𝒜𝑅∕𝑃.

Since we assumed that 𝒜𝑅 ≅ Λ∕(𝑡−2) ⊕ Λ∕(𝑡−1−2), the two rightmost terms
are isomorphic to 𝐺 = 𝐵𝑆(1, 2) (as abelian groups) and this is how we define
the automorphism 𝑓𝐺∗ . This concludes the proof of the lemma. □

Note that 𝑓𝐺∗ depends on the choice of splittings of the rows in (4) and on the
choice of the identification of the righmost terms in the previous diagram with
𝐺. These choices do not affect the remainder of the argument.
The following proposition is similar to [21, Proposition 7.4].

Proposition 4.5. Let 𝑅 be a pattern with𝒜𝑅 ≅ Λ∕(𝑡−2)⊕Λ∕(𝑡−1−2), let 𝑃 ⊂ 𝒜𝑅
be one of the two summands, and let 𝜂 ⊂ 𝑆3⧵𝑅 be awinding number zero infection
curve. Assume that either 𝜙𝑃(𝜂) = 1 or ∆𝐾 ≐ 1. If 𝑃 ≤ 𝒜𝑅 satisfies the Ext
condition, then 𝑓−1∗ (𝑃) ≤ 𝒜𝑅𝜂(𝐾) satisfies the Ext condition.

Proof. Lemma 2.1 implies that the automorphism 𝑓𝐺∗ ∶ 𝐺 → 𝐺 in Lemma 4.4
induces an isomorphism

𝐻1(𝑀𝑅𝜂(𝐾);ℤ[𝐺]𝜙𝑓−1∗ (𝑃)
) ≅ 𝐻1(𝑀𝑅𝜂(𝐾);ℤ[𝐺]𝑓𝐺∗ ◦𝜙𝑓−1∗ (𝑃)

).

Here note that Lemma4.4 applies becausewe assumed that 𝜂 haswinding num-
ber zero. Since 𝜙𝑃◦𝑓∗ = 𝑓𝐺∗ ◦𝜙𝑓−1∗ (𝑃), we obtain the following sequence of iso-
morphisms:

𝐻1(𝑀𝑅𝜂(𝐾);ℤ[𝐺]𝜙𝑓−1∗ (𝑃)
)
≅
,→ 𝐻1(𝑀𝑅𝜂(𝐾);ℤ[𝐺]𝑓𝐺∗ ◦𝜙𝑓−1∗ (𝑃)

)
=
,→ 𝐻1(𝑀𝑅𝜂(𝐾);ℤ[𝐺]𝜙𝑃◦𝑓∗)
≅,𝑓∗,,,,→ 𝐻1(𝑀𝑅;ℤ[𝐺]𝜙𝑃).

The last isomorphism comes from Lemma 4.3; this lemma applies because we
assumed that either 𝜙𝑃(𝜂) = 1 or ∆𝐾 ≐ 1.
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The Ext functor is contravariant in the first variable, so we obtain an isomor-
phism

Ext1ℤ[𝐺](𝐻1(𝑀𝑅;ℤ[𝐺]𝜙𝑃),ℤ[𝐺])
≅
,→ Ext1ℤ[𝐺](𝐻1(𝑀𝑅𝜂(𝐾);ℤ[𝐺]𝜙𝑓−1∗ (𝑃)

),ℤ[𝐺]).

Since 𝑃 satisfies the Ext condition, the left hand side is trivial and therefore so
is the right hand side. This shows that 𝑓−1∗ (𝑃) satisfies the Ext condition and
thus concludes the proof of the proposition. □

We are now ready to prove Theorem 1.5 from the introduction. We recall the
statement for the reader’s convenience.

Theorem 4.6. Let 𝑅 be a pattern and 𝜂 ⊂ 𝑆3 ⧵ 𝑅 be an infection curve that lies
in 𝜋1(𝑆3 ⧵ 𝑅)(2). If both summands of𝒜𝑅 = Λ∕(𝑡−2)⊕Λ∕(𝑡−1−2) satisfy the Ext
condition, then 𝑅𝜂(𝐾) is doubly slice for any 𝐾.

Proof. We verify that 𝑅𝜂(𝐾) has Alexander module Λ∕(𝑡−2)⊕ Λ∕(𝑡−1−2) and
that its summands satisfy the Ext condition. Since 𝜂 ∈ 𝜋1(𝐸𝑅)(2), it lies in
𝜋1(𝐸𝑅)(1) i.e. 𝜂 belongs to the kernel of the abelianisation map ab∶ 𝜋1(𝐸𝑅) ↠
ℤ. It follows that 𝜂 ∈ ker(ab∶ 𝜋1(𝑀𝑅) ↠ ℤ) and we can therefore apply
Lemma4.3with𝜓 = ab to deduce that𝑓∶ 𝑀𝑅𝜂(𝐾) → 𝑀𝑅 induces aΛ-isomorph-
ism on the Alexander modules:

𝑓∗∶ 𝒜𝑅𝜂(𝐾)
≅
,→ 𝒜𝑅 ≅ Λ∕(𝑡−2)⊕ Λ∕(𝑡−1−2).

Use 𝑃1 and 𝑃2 to denote the summands of 𝒜𝑅 so that 𝑓−1∗ (𝑃1) and 𝑓−1∗ (𝑃2) are
the summands of 𝒜𝑅𝜂(𝐾). By definition, 𝜙𝑃𝑖 factors through 𝜋1(𝑀𝑅)∕𝜋1(𝑀𝑅)(2)

and thus vanishes on the second derived subgroup of 𝜋1(𝑀𝑅). In particular we
have 𝜙𝑃𝑖 (𝜂) = 1. Since both summands 𝑃1, 𝑃2 of 𝒜𝑅 satisfy the Ext condition
and 𝜙𝑃1(𝜂) = 1 = 𝜙𝑃2(𝜂), Proposition 4.5 ensures that 𝑓

−1
∗ (𝑃1) and 𝑓−1∗ (𝑃2) also

satisfy the Ext condition. Theorem 1.1 implies that 𝑅𝜂(𝐾) is doubly slice. □

We apply this theorem to a concrete example.

Construction 4.7. Consider the knot ℛ = 946 together with the infection
curves 𝛾1 and 𝛾2 illustrated on the left of Figure 2 and write ℛ(𝐽1, 𝐽2) for the
satellite knot obtained by infecting ℛ along 𝛾1, 𝛾2 with respective companions
𝐽1 and 𝐽2. The knotℛ(𝐽1, 𝐽2) is illustrated on the right hand side of Figure 2. For
𝑖 = 1, 2 write𝑊𝑖 ∶= Wh(𝑇𝑖) for an untwisted Whitehead double of a knot 𝑇𝑖
(with either choice of clasp) and setℛ𝑇1,𝑇2 ∶= ℛ(𝑊1,𝑊2). Finally consider the
curves 𝜂1, 𝜂2 ⊂ 𝑆3 ⧵ℛ𝑇1,𝑇2 depicted in Figure 3 and writeℛ𝑇1,𝑇2(𝐾1, 𝐾2) for the
knot obtained by infecting ℛ𝑇1,𝑇2 along 𝜂1, 𝜂2 with respective companions 𝐾1
and 𝐾2.

Proposition 4.8. The knotℛ𝑇1,𝑇2(𝐾1, 𝐾2) is doubly slice for any knots 𝑇1, 𝑇2,𝐾1,
and 𝐾2.
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Figure 2. On the left: the knot ℛ ∶= 946 with the infections
curves 𝛾1, 𝛾2; on the right: the satellite knot ℛ(𝐽1, 𝐽2) obtained
by infecting ℛ along the curves 𝛾1, 𝛾2 with respective compan-
ions 𝐽1, 𝐽2.

 

i

j

 

ii

j

Figure 3. On the left: the knot ℛ𝑇1,𝑇2 together with the in-
fection curves 𝜂1, 𝜂2; on the right: the same knot but with the
infection curves 𝜂′1, 𝜂

′
2.

Proof. We abbreviate ℛ𝑇1,𝑇2 by 𝑅. We claim that the 𝜂𝑖 lie in the second de-
rived subgroup of 𝜋1(𝑀𝑅) for 𝑖 = 1, 2. It suffices to prove that 𝜂𝑖 ∈ 𝜋1(𝐸𝑅)(2)
where 𝐸𝑅 ∶= 𝑆3 ⧵ 𝜈(𝑅). Next note that the 𝜂𝑖 are homotopic in 𝐸𝑅 to the curves
𝜂′𝑖 illustrated on the right of Figure 3. We will therefore argue that the 𝜂

′
𝑖 lie in

𝜋1(𝐸𝑅)(2). Since Whitehead doubling is a winding number zero satellite oper-
ator, the image of any curve 𝜂 ⊂ 𝐸𝑇𝑖 under the inclusion 𝐸𝑇𝑖 ⊂ 𝐸𝑊𝑖

has link-
ing number zero with 𝑊𝑖 and thus the image of the map 𝜋1(𝐸𝑇𝑖 ) → 𝜋1(𝐸𝑊𝑖

)
lies in the commutator subgroup of 𝜋1(𝐸𝑊𝑖

). The same argument shows that
the image of the inclusion induced map 𝜋1(𝐸𝑊𝑖

) → 𝜋1(𝐸𝑅) lies in the com-
mutator subgroup of 𝜋1(𝐸𝑅). Since 𝜂′𝑖 belongs to the image of the composi-
tion 𝜋1(𝐸𝑇𝑖 ) → 𝜋1(𝐸𝑊𝑖

) → 𝜋1(𝐸𝑅), we deduce that it belongs to 𝜋1(𝐸𝑅)(2) and
thus so does 𝜂𝑖, proving the claim.
Since 𝑅 is obtained from ℛ = 946 by winding number zero satellite opera-

tions, Lemma 4.3 implies that 𝒜𝑅 ≅ 𝒜ℛ ≅ Λ∕(𝑡−2)⊕ Λ∕(𝑡−1−2). Since the𝑊𝑖
have trivial Alexander polynomial, Lemma 4.3 implies that 𝐻1(𝑀𝑅;ℤ[𝐺]) ≅
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𝐻1(𝑀ℛ;ℤ[𝐺]). Since both summands of 𝒜ℛ satisfy the Ext condition and the
𝑊𝑖 haveAlexander polynomial one, Proposition 4.5 shows that both summands
of 𝒜𝑅 satisfy the Ext condition.
Since both summands of 𝒜𝑅 satisfy the Ext condition and 𝜂1 ∈ 𝜋1(𝑀𝑅)(2),

(the proof of) Theorem 4.6 shows that both summands of𝒜𝑅𝜂1 (𝐾1)
≅ Λ∕(𝑡−2)⊕

Λ∕(𝑡−1−2) satisfy the Ext condition. One can then verify that 𝜂2 ∈ 𝜋1(𝑀𝑅)(2)
remains in the second derived subgroup of 𝜋1(𝑀𝑅𝜂1 (𝐾1)

): for example because
𝑅𝜂1(𝐾1) can be thought of as satellite knot with companion𝑊2, allowing one
to repeat the argument given in the first paragraph of this proof. Finally since
𝒜𝑅𝜂1 (𝐾1)

≅ Λ∕(𝑡−2)⊕ Λ∕(𝑡−1−2) and ℛ𝑇1,𝑇2(𝐾1, 𝐾2) is a satellite knot with pat-
tern 𝑅𝜂1(𝐾1) and infection curve 𝜂2 ∈ 𝜋1(𝑀𝑅𝜂1 (𝐾1)

)(2), a second application of
Theorem 4.6 shows that ℛ𝑇1,𝑇2(𝐾1, 𝐾2) is doubly slice for any knot 𝐾2. □

The reason for considering the infection curves 𝜂1, 𝜂2 instead of the curves
𝜂′1, 𝜂

′
2 is that if one used the latter, then the knotℛ

𝑇1,𝑇2(𝐾1, 𝐾2)would be isotopic
toℛ(Wh(𝑇1#𝐾1),Wh(𝑇2#𝐾2))which is already known to be doubly slice since
both ℛ and Whitehead doubles are doubly slice.

4.2. The double Ext condition is not necessary for double sliceness. We
continue with the notation from the previous section, namely, ℛ denotes 946
and ℛ(𝐽1, 𝐽2) denotes the knot illustrated on the right of Figure 2.

Proposition 4.9. The knot 𝐾 ∶= ℛ(ℛ,ℛ) has Alexander module
𝒜𝐾 ≅ Λ∕(𝑡−2)⊕ Λ∕(𝑡−1−2)

and is doubly slice, but its summands do not satisfy the Ext condition.

Proof. We recalled that a satellite knot is doubly slice if both the pattern and
the companion are doubly slice; see e.g. [20, Proposition 3.4] for a proof. Since
ℛ = 946 is doubly slice, we deduce that the knot 𝐾 = ℛ(ℛ,ℛ) is doubly slice.
Since𝐾 is obtained by awinding number zero satellite operation on a knot with
Alexander module Λ∕(𝑡−2) ⊕ Λ∕(𝑡−1−2), we deduce from Lemma 4.3 that its
Alexander module is also Λ∕(𝑡−2)⊕ Λ∕(𝑡−1−2).
If either of the summands of 𝒜𝐾 satisfied the Ext condition, then by [22, 21]

𝐾 would be 𝐺-homotopy ribbon. This would contradict [21, Proposition 7.7]
according to which ℛ(𝐽1, 𝐽2) is not 𝐺-homotopy ribbon if ∆𝐽1 ≠ 1 and ∆𝐽2 ≠ 1.
Note that [21, Proposition 7.7] refers to ℛ as being 61 but as explained in the
erratum [10], it is actually 946. □
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