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Cyclic duality between BV algebras
and BVmodules

Niels Kowalzig

Abstract. We show that if an operad is at the same time a cosimplicial ob-
ject such that the respective structure maps are compatible with the operadic
composition in a natural way, then one obtains a Gerstenhaber algebra struc-
ture on cohomology, and if the operad is cyclic, even that of a BV algebra.
In particular, if a cyclic opposite module over an operad with multiplication
is itself a cyclic operad that meets the cosimplicial compatibility conditions,
the cohomology of its cyclic dual turns into a BV algebra. This amounts to
conditions for when the cyclic dual of a BV module is endowed with a BV al-
gebra structure, a result we exemplify by looking at classical and less classical
(co)homology groups in Hopf algebra theory.
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Introduction
Higher structures, such as brackets and products on cohomology groups or

on cochain spaces only, extensively appear in many contexts in the fields of
algebra, geometry, topology and mathematical physics. For example, Batalin-
Vilkoviskiı̆ algebras, as special cases of Gerstenhaber algebras equipped with a
degree +1 differential whose bracket measures the failure of this differential to
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be a (graded) derivation of the cup product, were originally introduced in quan-
tum field theory to deal with path integrals in the presence of symmetries. In
algebraic topology, apart from their massive appearance in the aforementioned
study of higher structures on an abstract level, BV algebras (or their homotopy
versions) naturally emerge in applications to string topology, Poisson geometry,
algebraic deformation theory, and many more.

Aims and objectives. This article investigates, on a formal level, what was
observed on examples in [Ko3]: that for a pair composed by a BV (short for
Batalin-Vilkoviskiı̆) algebra and aBVmodule (see below) over it, their respective
cyclic duals turn these rôles around, that is to say, the BV module becomes a
BV algebra and the BV algebra one started with now yields a BV module over
the latter. Pairs formed by Gerstenhaber algebras (with BV algebras seen as
their stronger versions) and BV modules over these are known under the term
noncommutative differential or Cartan calculus, in the sense of Rinehart [Ri] or
Nest-Tamarkin-Tsygan [NeTs, TaTs, Ts].
More precisely, as shown in [Ko1], the datum of a cyclic unital oppositemod-

uleℳ over an operad 𝒪 with multiplication, that is, a sequence {ℳ(𝑛)}𝑛≥0 of
𝑘-modules equipped with a collection of maps

∙𝑖 ∶ 𝒪(𝑝)⊗ℳ(𝑛)→ℳ(𝑛 − 𝑝 + 1), 0 ≤ 𝑖 ≤ 𝑛 − 𝑝 + 1,
that are associative in a sense (see Definition 1.1 for full details) and compatible
with a degree preserving operator 𝑡, the cyclic operator, is sufficient to obtain on
the couple (𝒪,ℳ) the structure of a homotopy noncommutative differential cal-
culus: as an illustration, one might think of the chain complex computing Tor
groups over the cochain complex computing Ext groups in the realm of Hopf
algebras or Hopf algebroids, and hence for associative algebras in Hochschild
theory as well. A (homotopy) calculus implies, in particular, the existence of
certain (homotopy) structure maps such as a cap product as well as of a Lie de-
rivative onℳ along𝒪, which, up to homotopy terms, obey relations analogous
to those by Cartan known in classical differential geometry.
In such a situation, one might want to call (for reasons that are obvious from

the construction) the opposite moduleℳ a homotopy BV module over the op-
erad 𝒪. Descending to (co)homology, the groups 𝐻∙(ℳ) are, in this spirit,
called a BV module over 𝐻∙(𝒪) since this construction depends on the cyclic
operator 𝑡 or rather on the cyclic (Connes-Rinehart-Tsygan) boundary 𝐵 of de-
gree−1 induced by 𝑡, which is the dual construction to the+1 differential men-
tioned above appearing in BV algebras (sometimes, see [Get], denoted by ∆ but
𝐵 would be better-grounded, at least from this perspective).
Based on this construction, the pattern observed in [Ko3] with respect to the

cyclic dual, a duality notion originating from the self-duality of the cyclic cat-
egory [Co], by examining examples coming from Hopf algebroid theory was
quite remarkable: as a homotopy BV module, the graded 𝑘-module ℳ is, in
particular, a cyclic 𝑘-module the underlying simplicial structure of which is in-
duced by themultiplication datum in the operad𝒪. As such, it has a cyclic dual
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ℳ̂, which, by construction, comes with the structure of a cocyclic 𝑘-module,
inevitably induced again by the multiplication structure of the operad 𝒪; see
§1.3 for a brief account on cyclic duality and Lemma 1.5 for the specific situ-
ation under consideration here. In the examples under examination (think of
Cotor groups as cyclic duals to Tor groups), the graded 𝑘-module underlying
the cochain complex given by ℳ̂ forms itself an operad, and the respective co-
homology groups 𝐻∙(ℳ̂) turn out not only to be a Gerstenhaber but also a BV
algebra; to sum up, the cyclic dual of a (homotopy) BV module yields a (ho-
motopy) BV algebra. Formalising this to a general level is, as said, the main
motivation for the article at hand.
Adding, moreover, the assumption that the operad 𝒪 is not only multiplica-

tive but cyclic aswell, and hence yields a cocyclic 𝑘-module, too, one can pass to
the cyclic duals both for𝒪 andℳ and, as furthermore observed in op. cit., these
exchange their rôles: whereas before𝐻∙(ℳ)was a BVmodule over𝐻∙(𝒪) and
hence the pair

(
𝐻∙(𝒪), 𝐻∙(ℳ)

)
formed a noncommutative calculus, now, af-

ter passing to cyclic duals,𝐻∙(�̂�) defines a BVmodule over𝐻∙(ℳ̂), and hence
the couple

(
𝐻∙(ℳ̂), 𝐻∙(�̂�)

)
yields a noncommutative differential calculus as

well. As a concrete example, one should think of the pair (Ext,Tor) being trans-
formed into the pair (Cotor,Coext). Formalising this observation to a general
level as well in order to obtain a complete duality between BV algebras and BV
modules turns out to bemore intricate: this should be based, roughly speaking,
on a sort of coloured (two-sided) opposite action, as a collection of maps

𝒪(𝑝)⊗ℳ(𝑛)→ {ℳ(𝑛 − 𝑝 + 1) if 𝑝 < 𝑛,
𝒪(𝑝 − 𝑛 + 1) if 𝑛 < 𝑝,

with special attention to the case 𝑝 = 𝑛, such that not only both colours define
the respective structure of a (cyclic) left resp. right opposite module over an
operad but at the same time are also compatible with both underlying operadic
compositions on 𝒪 andℳ in a natural way. This approach is presently under
closer examination.

Main results. It is well-known that a (nonsymmetric) operad with multipli-
cation (in the category of 𝑘-modules) induces a cosimplicial structure whose
cohomology groups form a Gerstenhaber algebra [Ge, GeVo]; if the operad is
cyclic with compatible multiplication, then these, in particular, produce a BV
algebra structure [Me]. Here, the crucial observation is that these two results es-
sentially only depend on the fact that the cofaces and codegeneracies (induced
by the operad multiplication) are compatible in a natural way with the verti-
cal operadic composition, a property which we generalise in Definition 2.1 to
any cosimplicial structure, i.e., with respect to possibly preexistent cofaces and
codegeneracies not necessarily originating from an operadmultiplication. This
allows us to prove (we refer to the main text for notation and definitions) in
Corollaries 3.5 & 3.8:
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Theorem. The cohomology groups of a cosimplicial-compatible nonsymmetric
operad (in 𝑘-𝐌𝐨𝐝) form a Gerstenhaber algebra. If the operad is cyclic as well,
then this Gerstenhaber algebra is Batalin-Vilkoviskiı̆.

In more detail, this originates from a stronger result already on the level
of cochains, i.e., from a homotopy formula: let 𝒫 be a nonsymmetric operad
equipped with the structure of a cocyclic 𝑘-module (𝒫∙, 𝛿∙, 𝜎∙, 𝜏). Then defin-
ing 𝛿 as usual as the (alternating) sum over all cofaces, alongwith a cup product
resp. a cyclic boundary of degree −1,

𝑥 ∪ 𝑦 ∶= (𝛿0𝑦)◦1𝑥, 𝐵𝑥 ∶=
𝑝−1∑
𝑖=0

(−1)(𝑝−1)(𝑖−1)𝜏−𝑖−1(𝜎𝑝−1𝜏𝑥),

along with a higher 𝐵-operation in the form of a degree−2 homotopy operator,

𝑆𝑥𝑦 ∶=
𝑝−1∑
𝑖=1

𝑖∑
𝑗=1

(−1)(𝑞−1)𝑖+(𝑝+𝑞)𝑗+𝑝𝑞 𝜏−𝑗(𝜎𝑝−1𝜏𝑥)◦𝑝−𝑖+𝑗−1𝑦

for any 𝑥, 𝑦 of degree 𝑝 resp. 𝑞 on the normalised complex induced by 𝒫, the
Gerstenhaber bracket can be expressed as

{𝑥, 𝑦} = (−1)(𝑞−1)𝑝𝐵(𝑦 ∪ 𝑥) − (−1)𝑝𝐵𝑥 ∪ 𝑦 − (−1)𝑝(𝑞−1)𝐵𝑦 ∪ 𝑥
+ (−1)𝑝𝑞𝛿(𝑆𝑥𝑦) + (−1)𝑝𝑆𝛿𝑥𝑦 − (−1)𝑝𝑞𝑆𝑥𝛿𝑦
− (−1)𝑞𝛿(𝑆𝑦𝑥) + (−1)𝑝(𝑞−1)𝑆𝛿𝑦𝑥 − (−1)𝑝+𝑞𝑆𝑦𝛿𝑥,

that is, the bracket is generated by 𝐵 and the cup product up to homotopy.
A situation where this occurs is by considering the cyclic dual ℳ̂ of a cyclic

opposite module (ℳ, ∙𝑖, 𝑡) over an operad with multiplication (𝒪, 𝜇, 𝑒) as men-
tioned at the beginning, which becomes a cosimplicial 𝑘-module by means of
𝛿𝑖𝑥 = 𝑒∙𝑖𝑥 and 𝜎𝑗𝑥 = 𝜇∙𝑗𝑥, see Lemma 1.5 for details and notation. If ℳ̂ hap-
pens to be itself an operad that is cosimplicial and cocyclic-compatible, thenwe
can define, analogously to the above,

𝑥 ∪ 𝑦 ∶= (𝑒∙0𝑦)◦1𝑥, 𝐵𝑥 ∶=
𝑝−1∑
𝑖=0

(−1)(𝑝−1)(𝑖−1)𝑡𝑖(𝜇∙0𝑡𝑥),

along with

𝑆𝑥𝑦 ∶=
𝑝−1∑
𝑖=1

𝑖∑
𝑗=1

(−1)(𝑞−1)𝑖+(𝑝+𝑞)𝑗+𝑝𝑞 𝑡𝑗−1(𝜇∙0𝑡𝑥)◦𝑝−𝑖+𝑗−1𝑦

to obtain the analogue of the above homotopy formula for the respective Ger-
stenhaber bracket, which proves the existence of a BV structure on the coho-
mology groups𝐻∙(ℳ̂) of the cyclic dual of the cyclic opposite module. We can
therefore state in Proposition 3.4 & Theorem 3.6:

Theorem. If the cyclic dual of a cyclic opposite module over an operad withmul-
tiplication is itself a cosimplicial and cocyclic-compatible operad, then its coho-
mology groups carry the structure of a Batalin-Vilkoviskiı̆ algebra.
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In the final example section, see §4, we show how to deploy these general
constructions in order to show that both the cohomology groups Ext𝐻(𝑘, 𝑘) as
well as Cotor𝐻(𝑘, 𝑘) for a Hopf algebra over a commutative ring 𝑘 with involu-
tive antipode are not only Gerstenhaber algebras but, in particular, BV.

Notation and conventions. In all what follows, 𝑘 denotes a commutative
ring, sometimes a field, usually of characteristic zero; denote by 𝑘-𝐌𝐨𝐝 the cat-
egory of 𝑘-modules. As customary, unadorned tensor products (or Homs) are
meant to be over 𝑘. The term operad usually refers to nonsymmetric operads
in 𝑘-𝐌𝐨𝐝, see below.

1. Preliminaries
1.1. Operads, Gerstenhaber andBV algebras. The following is a brief sum-
mary of standard material needed in the sequel, and which can be found, for
example, in [Ge, GeVo, Ka, Get], or elsewhere. A (nonsymmetric) operad 𝒪 (in
the category of 𝑘-modules) is a sequence {𝒪(𝑛)}𝑛≥0 of 𝑘-moduleswith 𝑘-bilinear
operations ◦𝑖 ∶ 𝒪(𝑝)⊗𝒪(𝑞)→ 𝒪(𝑝 + 𝑞 − 1) for 𝑖 = 1,… , 𝑝, subject to:

𝜑◦𝑖𝜓 = 0 if 𝑝 < 𝑖 or 𝑝 = 0,

(𝜑◦𝑖𝜓)◦𝑗𝜒 =
⎧

⎨
⎩

(𝜑◦𝑗𝜒)◦𝑖+𝑟−1𝜓 if 𝑗 < 𝑖,
𝜑◦𝑖(𝜓◦𝑗−𝑖+1𝜒) if 𝑖 ≤ 𝑗 < 𝑞 + 𝑖,
(𝜑◦𝑗−𝑞+1𝜒)◦𝑖𝜓 if 𝑗 ≥ 𝑞 + 𝑖.

(1.1)

Call an operadunital if there is an element1 ∈ 𝒪(1) such that𝜑◦𝑖1 = 1◦1𝜑 = 𝜑
for all 𝜑 ∈ 𝒪(𝑝) and 𝑖 ≤ 𝑝, and call it with multiplication if there is an element
𝜇 ∈ 𝒪(2) plus an element 𝑒 ∈ 𝒪(0) such that 𝜇◦1𝜇 = 𝜇◦2𝜇 and 𝜇◦1𝑒 = 𝜇◦2𝑒 =
1.
An operad with multiplication (𝒪, 𝜇, 𝑒) turns into a cosimplicial 𝑘-module

with cofaces given by 𝛿0𝜑 ∶= 𝜇◦2𝜑, 𝛿𝑖𝜑 ∶= 𝜑◦𝑖𝜇 for 𝑖 = 1,… , 𝑝, and 𝛿𝑝+1𝜑 ∶=
𝜇◦1𝜑 for 𝜑 ∈ 𝒪(𝑝), together with the codegeneracies 𝜎𝑗𝜑 ∶= 𝜑◦𝑗+1𝑒 for 𝑗 =
0,… , 𝑝−1. This induces a cochain complex denoted again by𝒪 or𝒪∙ given by
𝒪𝑝 ∶= 𝒪(𝑝) in degree 𝑝, and with differential 𝛿∶ 𝒪(𝑝) → 𝒪(𝑝 + 1) defined,
as usual, by the alternating sum 𝛿 ∶= ∑𝑝+1

𝑖=0 (−1)
𝑖𝛿𝑖 over all cofaces, and with

cohomology𝐻∙(𝒪) ∶= 𝐻(𝒪∙, 𝛿).Moreover, one can form the cup product

𝜑 ⌣ 𝜓 ∶= (𝜇◦2𝜓)◦1𝜑 ∈ 𝒪(𝑝 + 𝑞) (1.2)

for 𝜑 ∈ 𝒪(𝑝) and 𝜓 ∈ 𝒪(𝑞), which turns (𝒪,⌣, 𝛿) into a dg algebra. Defining
the braces

𝜑{𝜓} ∶=
𝑝∑
𝑖=1
(−1)(𝑞−1)(𝑖−1)𝜑◦𝑖𝜓 ∈ 𝒪(𝑝 + 𝑞 − 1) (1.3)

finally allows for the construction of the (Gerstenhaber) bracket

{𝜑, 𝜓} ∶= 𝜑{𝜓} − (−1)(𝑝−1)(𝑞−1)𝜓{𝜑}. (1.4)
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Descending to cohomology leads to thewell-known fact, see [Ge], that the triple
(𝐻∙(𝒪),⌣, {⋅, ⋅}) forms a Gerstenhaber algebra over 𝑘. By this we mean, in gen-
eral, a 𝑘-algebra 𝑉 with a graded commutative product ∪ of degree zero, to-
gether with a graded Lie bracket {⋅, ⋅} of degree−1 such that the Leibniz identity

{𝑥, 𝑦 ∪ 𝑧} = {𝑥, 𝑦} ∪ 𝑧 + (−1)(𝑥−1)𝑦𝑦 ∪ {𝑥, 𝑧} (1.5)

holds for all 𝑥, 𝑦, 𝑧 ∈ 𝑉. Finally, a BV algebra, short for Batalin-Vilkoviskiı̆
algebra, is a Gerstenhaber algebra whose bracket is generated by a differential
𝐵 of degree −1 and the (cup) product, that is

{𝑥, 𝑦} = (−1)𝑥𝐵(𝑥 ∪ 𝑦) − (−1)𝑥𝐵𝑥 ∪ 𝑦 − 𝑥 ∪ 𝐵𝑦, (1.6)

see, for example, [Get, Prop. 1.2]. Alternatively, a BV algebra is a Gerstenhaber
algebra whose bracket measures, up to a sign, the failure of 𝐵 being a derivation
of the cup product. A (by now) fundamental result [Me] states that if an operad
𝒪 with multiplication is cyclic in the sense of Eq. (2.7), to be discussed later,
and if the cyclic operator is compatible with the multiplication as specified in
op. cit., then its cohomology 𝐻∙(𝒪) is not only a Gerstenhaber but moreover a
BV algebra.

1.2. Oppositemodules and cyclic oppositemodules. In this subsectionwe
are going to recall oppositemodules over operads as introduced in [Ko1], which
differ from the customary operad modules by the fact that when acting with
the operad on it, trees become smaller, that is, the number of leaves is going
to be reduced, not increased. We remark here that passing to negative degrees
does not produce one notion out of the other; it is rather the 𝑘-linear dual that
mediates between the two notions. More precisely:

Definition 1.1. Let 𝒪 be a (unital) operad.
(i ) An opposite (unital, left) 𝒪-module consists of a family of 𝑘-modules

ℳ = {ℳ(𝑛)}𝑛≥0 endowed with 𝑘-linear operations
∙𝑖 ∶ 𝒪(𝑝)⊗ℳ(𝑛)→ℳ(𝑛 − 𝑝 + 1),

for 1 ≤ 𝑖 ≤ 𝑛 − 𝑝 + 1, 0 ≤ 𝑝 ≤ 𝑛, and defined to be zero if 𝑝 > 𝑛, such
that for 𝜑 ∈ 𝒪(𝑝), 𝜓 ∈ 𝒪(𝑞), and 𝑥 ∈ℳ(𝑛)

𝜑∙𝑖(𝜓∙𝑗𝑥) =
⎧

⎨
⎩

𝜓∙𝑗(𝜑∙𝑖+𝑞−1𝑥) if 𝑗 < 𝑖,
(𝜑◦𝑗−𝑖+1𝜓)∙𝑖𝑥 if 𝑗 − 𝑝 < 𝑖 ≤ 𝑗,
𝜓∙𝑗−𝑝+1(𝜑∙𝑖𝑥) if 1 ≤ 𝑖 ≤ 𝑗 − 𝑝,

(1.7)

1∙𝑖𝑥 = 𝑥 for 𝑖 = 0,… , 𝑛, (1.8)

holds for 𝑝, 𝑞, 𝑛 ≥ 0, and where for 𝑝 = 0 the relations (1.7) are un-
derstood without the middle line.

(ii ) An opposite 𝒪-module is called cyclic if there is an an extra 𝑘-linear
composition map

∙0∶ 𝒪(𝑝)⊗ℳ(𝑛)→ℳ(𝑛 − 𝑝 + 1), 0 ≤ 𝑝 ≤ 𝑛 + 1,
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defined to be zero if𝑝 > 𝑛+1, such that Eqs. (1.7)–(1.8) hold aswell for
the case 𝑖 = 0 or 𝑗 = 0, plus a degree-preservingmorphism 𝑡∶ ℳ(𝑛)→
ℳ(𝑛) for all 𝑛 ≥ 1 such that

𝑡(𝜑∙𝑖𝑥) = 𝜑∙𝑖+1𝑡(𝑥), 𝑖 = 0,… , 𝑛 − 𝑝, (1.9)

is true for 𝜑 ∈ 𝒪(𝑝) and 𝑥 ∈ℳ(𝑛), and such that, finally,

𝑡𝑛+1 = id (1.10)

holds onℳ(𝑛).

The following figure illustrates the idea of an opposite 𝒪-module:
0

𝑥

1 ⋯ 𝑖 ⋯ 𝑖+𝑝−1 ⋯ 𝑛

𝜑

Figure 1. The operation 𝜑∙𝑖𝑥 on opposite modules.

The next figure gives a graphical understanding of the condition (1.9) involving
the cyclic operator 𝑡 in case of a cyclic opposite 𝒪-module:

0

𝑥

⋯ 𝑖 ⋯ 𝑖+𝑝−1 ⋯ 𝑛−1

𝑛

𝜑

0

𝑥

⋯ 𝑖+1 ⋯ 𝑖+𝑝 ⋯ 𝑛−1

𝑛

𝜑

=

𝑡

𝑡

Figure 2. The relation 𝑡(𝜑∙𝑖𝑥) = 𝜑∙𝑖+1𝑡(𝑥).

In particular [Ko1, Prop. 3.5], if the operad in question is an operad with mul-
tiplication (𝒪, 𝜇, 𝑒), then a cyclic opposite 𝒪-moduleℳ turns into a cyclic 𝑘-
module via the cyclic operator 𝑡 and simplicial structure described by the faces
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𝑑𝑖 ∶ ℳ(𝑛)→ℳ(𝑛 − 1) and degeneracies 𝑠𝑗 ∶ ℳ(𝑛)→ℳ(𝑛 + 1) defined by
𝑑𝑖(𝑥) = 𝜇∙𝑖𝑥, 𝑖 = 0,… , 𝑛 − 1,
𝑑𝑛(𝑥) = 𝜇∙0𝑡(𝑥),
𝑠𝑗(𝑥) = 𝑒∙𝑗+1𝑥, 𝑗 = 0,… , 𝑛,

(1.11)

where 𝑥 ∈ℳ(𝑛). Observe that, as is the case for any cyclic 𝑘-module, one can
produce an extra degeneracy 𝑠−1 ∶= 𝑡 𝑠𝑛 which, in this construction, is given
precisely by 𝑒∙0− which has not been used so far in (1.11). Indeed,

𝑠−1(𝑥) = 𝑡 𝑠𝑛(𝑥) = 𝑡(𝑒∙𝑛+1𝑥)
= 𝑡(𝑒∙𝑛+1𝑡𝑛+1𝑥) = 𝑡𝑛+2(𝑒∙0𝑥) = 𝑒∙0𝑥,

(1.12)

where we used (1.10) in step three and (1.9) in the fourth.

1.3. Cyclic duality. An interesting feature of Connes’ cyclic category Λ is its
self-duality, that is to say,Λ = Λop, and therefore cyclic and cocyclic 𝑘-modules
can be turned one into the other, cf. [Co], which is not possible merely on the
simplicial level. However, there are infinitely many ways to do this due to the
autoequivalences of the cyclic category [Lo, 6.1.14 & E.6.1.5]. We shall mainly
use the following standard convention to go from cyclic to cocyclic 𝑘-modules.

Definition 1.2. The cyclic dual of a cyclic 𝑘-module𝑋∙ = (𝑋∙, 𝑑∙, 𝑠∙, 𝑡∙) is the
cocyclic 𝑘-module �̂�∙ ∶= (�̂�∙, 𝛿∙, 𝜎∙, 𝜏∙), where �̂�𝑛 ∶= 𝑋𝑛, and

𝛿𝑖 ∶= 𝑠𝑖−1∶ �̂�𝑛 → �̂�𝑛+1, 0 ≤ 𝑖 ≤ 𝑛 + 1,
𝜎𝑗 ∶= 𝑑𝑗 ∶ �̂�𝑛 → �̂�𝑛−1, 0 ≤ 𝑗 ≤ 𝑛 − 1,
𝜏𝑛 ∶= 𝑡−1𝑛 ∶ �̂�𝑛 → �̂�𝑛,

(1.13)

in degree 𝑛.

Remark 1.3. In case 𝑖 = 0, this prescription means that the zeroth coface is
given by the extra degeneracy 𝑠−1 = 𝑡 𝑠𝑛 as defined above. In examples, one
might encounter the situation in which the cyclic operator 𝑡 is not necessarily
invertible. In such a situation, among other possibilities, the following conven-
tion can be used:

𝛿𝑖 ∶= 𝑠𝑛−𝑖 ∶ �̂�𝑛 → �̂�𝑛+1, 0 ≤ 𝑖 ≤ 𝑛 + 1,
𝜎𝑗 ∶= 𝑑𝑛−𝑗 ∶ �̂�𝑛 → �̂�𝑛−1, 0 ≤ 𝑗 ≤ 𝑛 − 1,
𝜏𝑛 ∶= 𝑡𝑛 ∶ �̂�𝑛 → �̂�𝑛.

(1.14)

Note that in (1.13) the last face map 𝑑𝑛 is not used in the construction of the
cyclic dual, whereas in (1.14) the first zeroth facemap𝑑0 is not required: there is
one less codegeneracy on 𝜎𝑖 ∶ �̂�𝑛 → �̂�𝑛−1 than there are faces 𝑑𝑖 ∶ 𝑋𝑛 → 𝑋𝑛−1.
Conversely, in both cases there are not enough degeneracies to derive all coface
maps, which is where the extra degeneracy 𝑠−1 = 𝑡𝑠𝑛 ∶ 𝑋𝑛 → 𝑋𝑛+1 comes into
play.

Remark 1.4. Most of the time, both for chain or cochain complexes, we are
going to work on the respective normalised complexes. In the chain case, by
this we mean the quotient of the original complex by the (acyclic) subcomplex
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spanned by the images of the degeneracymaps of the simplicial 𝑘-module given
by Eqs. (1.11), that is, given by the cokernel of the degeneracy maps 𝑠𝑗. Sim-
ilarly, for the cochain complex defined by the cosimplicial 𝑘-module obtained
from Eqs. (1.13), one considers the intersection of the kernels of the codegen-
eracies 𝜎𝑗. In order not to overload our notation we will not distinguish in
notation a (co)chain complex from its normalised one.

Lemma 1.5. The cyclic dual ℳ̂ given by (1.13) of a cyclic opposite module (ℳ, 𝑡)
over an operad (𝒪, 𝜇, 𝑒) with multiplication becomes a cosimplicial 𝑘-module via
the following cofaces and codegeneracies:

𝛿𝑖𝑥 = 𝑒∙𝑖𝑥, 𝜎𝑗𝑥 = 𝜇∙𝑗𝑥, 0 ≤ 𝑖 ≤ 𝑛 + 1, 0 ≤ 𝑗 ≤ 𝑛 − 1, (1.15)

where 𝑥 ∈ ℳ(𝑛). Then,ℳ∙ ∶= ℳ(∙) becomes a cochain complex the standard
way by means of the coboundary 𝛿∶ ℳ̂𝑛 → ℳ̂𝑛+1,

𝛿𝑥 =
𝑛+1∑
𝑖=0

(−1)𝑖 𝑒∙𝑖𝑥, (1.16)

of degree +1, that is, the alternating sum over all cofaces. Moreover, by means of
the operator 𝐵∶ ℳ̂𝑛 → ℳ̂𝑛−1 of degree −1 given by

𝐵𝑥 =
𝑛−1∑
𝑖=0

(−1)(𝑛−1)(𝑖−1)𝑡𝑖(𝜇∙0𝑡𝑥) (1.17)

on thenormalised complex, one obtains the structure onamixed complex (ℳ̂, 𝛿, 𝐵),
that is, simultaneously a cochain and a chain complex such that

𝛿2 = 0, 𝐵2 = 0, 𝛿𝐵 + 𝐵𝛿 = 0
holds.

Proof. All statements are essentially automatic by the very construction of the
cyclic dual together with the fact that the identities (1.11) define the structure
of a simplicial 𝑘-module, and together with the operator 𝑡 even the structure
of a cyclic 𝑘-module. We only have to show that the explicit expression for 𝐵
corresponds to the customary Connes-Rinehart-Tsygan operator for cocyclic 𝑘-
modules. Indeed, with respect to the operators defined in (1.13) for the cyclic
dual, one has, on the normalised complex

𝐵𝑥 =
𝑛−1∑
𝑖=0

(−1)(𝑛−1)𝑖𝜏𝑖(𝜎−1𝑥),

following the standard way the cyclic boundary is constructed as for example
detailed in [Lo, 2.5.10] in its homological version. With 𝜎−1 ∶= 𝜎𝑛−1𝜏𝑛, this
amounts to

𝐵𝑥 =
𝑛−1∑
𝑖=0

(−1)(𝑛−1)𝑖𝜏𝑖(𝜎−1𝑥)

=
𝑛−1∑
𝑖=0

(−1)(𝑛−1)𝑖𝑡−𝑖
(
𝑑𝑛−1(𝑡−1𝑥)

)
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=
𝑛−1∑
𝑖=0

(−1)(𝑛−1)𝑖𝑡−𝑖(𝜇∙𝑛−1𝑡−1𝑥)

=
𝑛−1∑
𝑖=0

(−1)(𝑛−1)𝑖𝑡𝑛−𝑖(𝜇∙𝑛−1𝑡𝑛𝑥) =
𝑛−1∑
𝑖=0

(−1)(𝑛−1)(𝑖−1)𝑡𝑖(𝜇∙0𝑡𝑥)

by means of 𝑡𝑛+1𝑥 = 𝑥 in degree 𝑛 and by re-indexing 𝑖 ↦ 𝑛 − 𝑖 − 1 in the last
line; hence, Eq. (1.17) as claimed. □

Wenowhave all the necessary ingredients at hand to analyse the relationship
between cyclic duals and BV algebras.

2. Cyclic duality as tree reflexion
2.1. Cosimplicial andcocyclic compatibility. Let (𝒪, 𝜇, 𝑒) be an operadwith
multiplication in the sense specified in §1.1. Studying the proof in [Ge] why the
cohomology𝐻(𝒪) becomes a Gerstenhaber algebra with respect to the bracket
(1.4) and the cup product (1.2), one observes that this essentially hinges upon
the sort of associativity of the operadic vertical composition as in Eqs. (1.1), and,
in particular, upon the respective relations for the special elements 𝜇 ∈ 𝒪(2)
and 𝑒 ∈ 𝒪(0).
For example, from Eqs. (1.1) one deduces that for themultiplication element

𝜇 ∈ 𝒪(2) and 𝜙 ∈ 𝒪(𝑝), 𝜓 ∈ 𝒪(𝑞), as well as 1 ≤ 𝑗 ≤ 𝑝,
𝜇◦2(𝜙◦𝑗𝜓) = (𝜇◦2𝜙)◦𝑗+1𝜓,
(𝜙◦𝑗𝜓)◦𝑖𝜇 = (𝜙◦𝑖𝜇)◦𝑗+1𝜓 if 1 ≤ 𝑖 ≤ 𝑗 − 1,
(𝜙◦𝑗𝜓)◦𝑖𝜇 = 𝜙◦𝑗(𝜓◦𝑖−𝑗+1𝜇) if 𝑗 ≤ 𝑖 ≤ 𝑞 + 𝑗 − 1,
(𝜙◦𝑗𝜓)◦𝑖𝜇 = (𝜙◦𝑖−𝑞+1𝜇)◦𝑗𝜓 if 𝑞 + 𝑗 ≤ 𝑖 ≤ 𝑝 + 𝑞 − 1,
𝜇◦1(𝜙◦𝑗𝜓) = (𝜇◦1𝜙)◦𝑗𝜓,

(2.1)

holds, along with

(𝜙◦𝑗−1𝜇)◦𝑗𝜓 = 𝜙◦𝑗−1(𝜇◦2𝜓) if 2 ≤ 𝑗 ≤ 𝑝,
(𝜙◦𝑗𝜇)◦𝑗𝜓 = 𝜙◦𝑗(𝜇◦1𝜓) if 1 ≤ 𝑗 ≤ 𝑝,

(𝜇◦1𝜙)◦𝑝+1𝜓 = (𝜇◦2𝜓)◦1𝜙.
(2.2)

Analogous relations can be written down for the unit element 𝑒 ∈ 𝒪(0).
These identities now do not look too exciting stated this way, but become

more illuminating if recalling from §1.1 the cosimplicial structure of the se-
quence 𝒪 of 𝑘-modules, i.e.,

𝛿0𝜙 = 𝜇◦2𝜙, 𝛿𝑖𝜙 = 𝜙◦𝑖𝜇, 𝛿𝑝+1𝜙 = 𝜇◦1𝜙, 𝜎𝑗𝜙 = 𝜙◦𝑗+1𝑒, (2.3)

where 1 ≤ 𝑖 ≤ 𝑝 and 0 ≤ 𝑗 ≤ 𝑝 − 1. Rewriting the relations (2.1)–(2.2) there-
fore in terms of the identities (2.3) reveals a compatibility between the cofaces
and codegeneracies with the operadic composition, which is formalised (in the
same order as the above relations) in the subsequent Definition 2.1, and which
will be the starting point for the following considerations. The upshot of these
will be that any operad, not necessarily with multiplication, but nevertheless



1150 NIELS KOWALZIG

compatible in this sense with a given cosimplicial structure, induces a Gersten-
haber structure on cohomology, and in certain cases this structure is even that
of a BV algebra. Hence, combining (2.3) with (2.1) & (2.2), let us define:

Definition 2.1. Let 𝒫 be a (nonsymmetric) operad in 𝑘-𝐌𝐨𝐝, not necessarily
with multiplication.

(i ) The operad 𝒫 will be called cosimplicial-compatible if it is at the same
time a cosimplicial object (𝒫∙, 𝛿∙, 𝜎∙) in 𝑘-𝐌𝐨𝐝 such that the (partial,
vertical) operadic composition is compatible with cofaces and code-
generacies in the following way: for 𝑥 ∈ℳ(𝑝) and 𝑦 ∈ℳ(𝑞),

𝛿𝑖(𝑥◦𝑗𝑦) =
⎧

⎨
⎩

(𝛿𝑖𝑥)◦𝑗+1𝑦 if 0 ≤ 𝑖 ≤ 𝑗 − 1,
𝑥◦𝑗(𝛿𝑖−𝑗+1𝑦) if 𝑗 ≤ 𝑖 ≤ 𝑗 + 𝑞 − 1,
(𝛿𝑖−𝑞+1𝑥)◦𝑗𝑦 if 𝑗 + 𝑞 ≤ 𝑖 ≤ 𝑝 + 𝑞,

(2.4)

is supposed to hold for 1 ≤ 𝑗 ≤ 𝑝, along with

(𝛿𝑖𝑥)◦𝑗𝑦 =
⎧

⎨
⎩

𝑥◦𝑗−1(𝛿0𝑦) if 𝑖 = 𝑗 − 1, 2 ≤ 𝑗 ≤ 𝑝 + 1,
𝑥◦𝑗(𝛿𝑞+1𝑦) if 𝑖 = 𝑗, 1 ≤ 𝑗 ≤ 𝑝,
(𝛿0𝑦)◦1𝑥 if 𝑖 = 𝑗 = 𝑝 + 1,

(2.5)

and, as far as the codegeneracies are concerned,

𝜎𝑖(𝑥◦𝑗𝑦) =
⎧

⎨
⎩

(𝜎𝑖𝑥)◦𝑗−1𝑦 if 0 ≤ 𝑖 ≤ 𝑗 − 2,
𝑥◦𝑗(𝜎𝑖−𝑗+1𝑦) if 𝑗 − 1 ≤ 𝑖 ≤ 𝑗 + 𝑞 − 2,
(𝜎𝑖−𝑞+1𝑥)◦𝑗𝑦 if 𝑗 + 𝑞 − 1 ≤ 𝑖 ≤ 𝑝 + 𝑞 − 2,

(2.6)

is required to be true, where 2 ≤ 𝑗 ≤ 𝑝 in the first line, 1 ≤ 𝑗 ≤ 𝑝 in
the second, and 1 ≤ 𝑗 ≤ 𝑝 − 1 in the third.

(ii ) A cosimplicial-compatible operad𝒫 is called cocyclic-compatible if it is
a cocyclic object (𝒫∙, 𝛿∙, 𝜎∙, 𝜏) in𝑘-𝐌𝐨𝐝 that is cosimplicial-compatible
as above and, in addition, the partial operadic composition is compat-
ible with the cocyclic operator, i.e., if

𝜏(𝑥◦𝑗𝑦) = {𝜏𝑦◦𝑞𝜏𝑥 if 𝑗 = 1,
𝜏𝑥◦𝑗−1𝑦 if 2 ≤ 𝑗 ≤ 𝑝,

(2.7)

holds as well.

Remark 2.2. In case 𝑦 ∈ 𝒫(0), as before the middle relations in Eqs. (2.4) &
(2.6) have to be ignored. Together with 𝜏𝑛+1 = id in degree 𝑛, the relations
(2.7) precisely mean that (𝒫, 𝜏) is a cyclic operad as defined (with an opposite
convention) in [GetKa], but not necessarily a cyclic operad with multiplication
as introduced in [Me]. Hence, a cocyclic-compatible operad 𝒫 in 𝑘-𝐌𝐨𝐝 is a
cyclic operad with a cosimplicial structure (𝒫, 𝛿∙, 𝜎∙) that is compatible with
the operadic composition in the sense of Eqs. (2.4)–(2.6).
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2.2. Cosimplicial andcocyclic compatibility for the cyclic dual. With our
main objective in mind, let us apply Definition 2.1 to the cosimplicial and co-
cyclic 𝑘-module (ℳ̂, 𝛿∙, 𝜎∙, 𝜏) given by the cyclic dual of a cyclic opposite mod-
ule (ℳ, 𝑡) over an operad with multiplication (𝒪, 𝜇, 𝑒) as described in Lemma
1.5. By means of Eqs. (1.15), the cosimplicial compatibility conditions (2.4)–
(2.6) can be rewritten in terms of the multiplication structure (𝜇, 𝑒) of 𝒪 acting
on (ℳ, 𝑡). More precisely, with 𝑥 ∈ ℳ̂(𝑝) and 𝑦 ∈ ℳ̂(𝑞), condition (2.4) ex-
plicitly comes out as:

𝑒∙𝑖(𝑥◦𝑗𝑦) =
⎧

⎨
⎩

(𝑒∙𝑖𝑥)◦𝑗+1𝑦 if 0 ≤ 𝑖 ≤ 𝑗 − 1,
𝑥◦𝑗(𝑒∙𝑖−𝑗+1𝑦) if 𝑗 ≤ 𝑖 ≤ 𝑗 + 𝑞 − 1,
(𝑒∙𝑖−𝑞+1𝑥)◦𝑗𝑦 if 𝑗 + 𝑞 ≤ 𝑖 ≤ 𝑝 + 𝑞,

(2.8)

for 1 ≤ 𝑗 ≤ 𝑝, whereas condition (2.5) reads

(𝑒∙𝑖𝑥)◦𝑗𝑦 =
⎧

⎨
⎩

𝑥◦𝑗−1(𝑒∙0𝑦) if 𝑖 = 𝑗 − 1, 2 ≤ 𝑗 ≤ 𝑝 + 1,
𝑥◦𝑗(𝑒∙𝑞+1𝑦) if 𝑖 = 𝑗, 1 ≤ 𝑗 ≤ 𝑝,
(𝑒∙0𝑦)◦1𝑥 if 𝑖 = 𝑗 = 𝑝 + 1.

(2.9)

Finally, condition (2.6) can be stated by writing

𝜇∙𝑖(𝑥◦𝑗𝑦) =
⎧

⎨
⎩

(𝜇∙𝑖𝑥)◦𝑗−1𝑦 if 0 ≤ 𝑖 ≤ 𝑗 − 2,
𝑥◦𝑗(𝜇∙𝑖−𝑗+1𝑦) if 0 ≤ 𝑗 − 1 ≤ 𝑖 ≤ 𝑗 + 𝑞 − 2,
(𝜇∙𝑖−𝑞+1𝑥)◦𝑗𝑦 if 𝑗 + 𝑞 − 1 ≤ 𝑖 ≤ 𝑝 + 𝑞 − 2,

(2.10)

where 2 ≤ 𝑗 ≤ 𝑝 in line one, 1 ≤ 𝑗 ≤ 𝑝 in line two, and 1 ≤ 𝑗 ≤ 𝑝 − 1
in line three. Again, the middle lines in Eqs. (2.8) & (2.10) are not present in
case 𝑞 = 0, that is, for 𝑦 a zero cochain. From Eqs. (2.8)–(2.9), we can derive a
couple of identities, which will be stated in a partially redundant manner but
nevertheless quite convenient to have at hand in explicit computations: in fact,

(𝑒∙𝑖𝑥)◦𝑗𝑦 =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

(𝑒∙𝑞+1𝑦)◦𝑞+1𝑥 if 𝑖 = 0, 𝑗 = 1,
𝑒∙𝑖(𝑥◦𝑗−1𝑦) if 0 ≤ 𝑖 ≤ 𝑗 − 2, 2 ≤ 𝑗 ≤ 𝑝 + 1,
𝑥◦𝑗−1(𝑒∙0𝑦) if 𝑖 = 𝑗 − 1, 2 ≤ 𝑗 ≤ 𝑝 + 1,
𝑥◦𝑗(𝑒∙𝑞+1𝑦) if 𝑖 = 𝑗 ≠ 𝑝 + 1,
(𝑒∙0𝑦)◦1𝑥 if 𝑖 = 𝑗 = 𝑝 + 1,
𝑒∙𝑖+𝑞−1(𝑥◦𝑗𝑦) if 𝑗 + 1 ≤ 𝑖 ≤ 𝑝 + 1,

(2.11)

along with

𝑥◦𝑗(𝑒∙𝑖𝑦) =
⎧

⎨
⎩

(𝑒∙𝑗𝑥)◦𝑗+1𝑦 if 𝑖 = 0,
𝑒∙𝑖+𝑗−1(𝑥◦𝑗𝑦) if 1 ≤ 𝑖 ≤ 𝑞,
(𝑒∙𝑗𝑥)◦𝑗𝑦 if 𝑖 = 𝑞 + 1,

(2.12)
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for 1 ≤ 𝑗 ≤ 𝑝 everywhere. Moreover, Eq. (2.10) can be restated as:
𝑥◦𝑗(𝜇∙𝑖𝑦) = 𝜇∙𝑖+𝑗−1(𝑥◦𝑗𝑦), 1 ≤ 𝑖 ≤ 𝑞 − 1, 1 ≤ 𝑗 ≤ 𝑝,

(𝜇∙𝑖𝑥)◦𝑗𝑦 = {𝜇∙𝑖(𝑥◦𝑗+1𝑦) if 0 ≤ 𝑖 ≤ 𝑗 − 1, 1 ≤ 𝑗 ≤ 𝑝 − 1,
𝜇∙𝑖+𝑞−1(𝑥◦𝑗𝑦) if 1 ≤ 𝑗 ≤ 𝑖 ≤ 𝑝 − 1.

(2.13)

To conclude, the cyclic operad condition (2.7) with respect to the cyclic operator
𝜏 = 𝑡−1 can be rewritten as

𝑡(𝑥◦𝑗𝑦) = {𝑡𝑥◦𝑗+1𝑦 if 1 ≤ 𝑗 ≤ 𝑝 − 1,
𝑡𝑦◦1𝑡𝑥 if 𝑗 = 𝑝,

(2.14)

in terms of the original cyclic operator 𝑡 onℳ.

2.3. Graphical representation. In contrast to the more general relations in
Definition 2.1, the identities (2.8)–(2.13) can be pictured in quite an instructive
manner, which will also explain the term tree reflexion. As seen in Figure 1 on
page 1146, an oppositemoduleℳ over an operad𝒪 could be depicted as upside-
down trees to which (normally oriented) trees, as elements in the operad, are
plugged from below, in order to display the opposite action.
If the cyclic dual ℳ̂ is itself an operad, one might think of mirroring this pic-

ture along a horizontal line so that an element in the opposite module becomes
a tree with, in turn, the operad acting from above by upside-down trees. This,
in view of what was said in the introduction, is justified by the idea that for the
full picture one should rather pass to the cyclic duals of bothℳ and 𝒪.
Applying such a horizontal reflexion, we can illustrate, for example, the first

line in the relations (2.10):

=𝑝𝑗𝑖 + 1𝑖1 ⋯ ⋯ ⋯

𝑥

𝑦

⋯

𝜇
1 𝑞

𝑝𝑗 − 1𝑖 + 1𝑖1 ⋯ ⋯ ⋯

𝑥

𝑦

⋯

𝜇

1 𝑞

Figure 3. The relation 𝜇∙𝑖(𝑥◦𝑗𝑦) = (𝜇∙𝑖𝑥)◦𝑗−1𝑦.

This figure motivates to call the depicted relation a parallel associativity, while
an analogous picture for the middle line in (2.10) would be rightly called a se-
quential associativity, as is common for the operadic composition. However, it
is more interesting to represent the situation at the borders, i.e., for the cases
𝑖 = 𝑗 − 1 and 𝑖 = 𝑗 + 𝑞 − 1: the first one takes into account that the operation
𝜇∙0− cannot be depicted by an (upside-down) binary tree anymore but rather
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by a (normally oriented) truncated tree (which is not the unit element 𝑒 in the
multiplication structure of the operad). More precisely:

=𝑝𝑗𝑗 − 1⋯1 ⋯

𝑥

𝑦

⋯

𝜇
1 𝑞

𝑝𝑗𝑗 − 1⋯1 ⋯

𝑥

𝑦

⋯1 𝑞

Figure 4. The relation 𝜇∙𝑗−1(𝑥◦𝑗𝑦) = 𝑥◦𝑗(𝜇∙0𝑦).

The second border case mentioned above, where 𝑖 = 𝑗+𝑞−1, would look like:

=𝑝𝑗 + 1𝑗⋯1 ⋯

𝑥

𝑦

⋯

𝜇
1 𝑞

𝑝𝑗 + 1𝑗⋯1 ⋯

𝑥

𝑦
⋯

𝜇

1 𝑞

Figure 5. The relation 𝜇∙𝑗+𝑞−1(𝑥◦𝑗𝑦) = (𝜇∙𝑗𝑥)◦𝑗𝑦.

Observe that on the right hand side there is no further associativity that allows
to, e.g., isolate the composition of the first tree from above to the upside-down
one given by 𝜇, as this would rather involve the notion of PROPs.
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Analogous diagrams can be drawnwith respect to the unit element 𝑒 ∈ 𝒪(0),
which, in this spirit, acts from above as a truncated upside-down tree. For ex-
ample, the first line of the relations in (2.8) looks as expected:

=⋯𝑗⋯

𝑥

𝑖 − 1⋯

𝑦
1 ⋯ 𝑞

𝑖
𝑒

⋯ 𝑖 − 1 𝑖

𝑥

⋯ 𝑗 + 1 ⋯

𝑦
1 ⋯ 𝑞

𝑒
𝑝 𝑝11

Figure 6. The relation 𝑒∙𝑖(𝑥◦𝑗𝑦) = (𝑒∙𝑖𝑥)◦𝑗+1𝑦.

More curious are those cases in which the extra degeneracy 𝑒∙0− appears since
this involves the cyclic operator 𝑡, and hence a bending similar to Figure 2. For
example, the first line of (2.9) graphically comes out as:

=
𝑗 − 1

𝑦

1 ⋯ 𝑞 0 ⋯ 𝑞

𝑦

𝑒

𝑞 + 1

𝑒
1

𝑡

𝑥

1 ⋯ 𝑗 − 1 ⋯ 𝑝

𝑥

1 ⋯ 𝑗 ⋯ 𝑝

Figure 7. The relation (𝑒∙𝑗−1𝑥)◦𝑗𝑦 = 𝑥◦𝑗−1(𝑒∙0𝑦).

To conclude, let us still depict the third line in relation (2.9), which involves a
possibly unexpected flip between 𝑥 and 𝑦:
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=𝑝 + 1

𝑦

1 ⋯ 𝑞

𝑝 0 ⋯

𝑥

1 ⋯ 𝑝

𝑞

𝑦
𝑒

𝑞 + 1

𝑒
𝑥

1 ⋯ 1

𝑡

Figure 8. The relation (𝑒∙𝑝+1𝑥)◦𝑝+1𝑦 = (𝑒∙0𝑦)◦1𝑥.

At this point, the reader should not encounter any difficulties to picture all
remaining instances in Eqs. (2.8)–(2.13). We can therefore proceed to our main
objective in the subsequent section.

3. BV algebras as cyclic duals of BVmodules
In this section, we are going to prove the core theorem, i.e., that a cosimplicial-

compatible operad 𝒫 in the sense of Definition 2.1 yields a Gerstenhaber struc-
ture on its cohomology, and if the operad is cocyclic-compatible as well, then
this Gerstenhaber structure is, in particular, Batalin-Vilkoviskiı̆. We shall per-
form all proofs for the explicit cosimplicial operations (1.15) of the cyclic dual
of a cyclic opposite𝒪-moduleℳ, but it is clear from what was said in §2.2 that
the same proofs carry over to the general case as well.
To start with, let us discuss the cyclic dual analogue of the graded commuta-

tivity of the cup product up to homotopy as described in [Ge, Thm. 3].

Lemma 3.1. Let (ℳ, 𝜏) be a cyclic opposite module over an operad (𝒪, 𝜇, 𝑒)with
multiplication. If its cyclic dual ℳ̂ is at the same time a cosimplicial-compatible
operad with respect to the cosimplicial structure (1.15) induced by the opposite
𝒪-action, then for any 𝑥 ∈ ℳ̂(𝑝) and 𝑦 ∈ ℳ̂(𝑞) the cup product

𝑥 ∪ 𝑦 ∶= (𝑒∙0𝑦)◦1𝑥 (3.1)

on ℳ̂ is an associative and graded commutative product up to homotopy, i.e.,

𝑦 ∪ 𝑥 − (−1)𝑝𝑞𝑥 ∪ 𝑦 = (𝛿𝑥){𝑦} + (−1)𝑞−1𝑥{𝛿𝑦} − (−1)𝑞−1𝛿
(
𝑥{𝑦}

)
, (3.2)

where 𝛿 is the coboundary given in (1.16). Finally, the graded Leibniz rule
𝛿(𝑥 ∪ 𝑦) = 𝛿𝑥 ∪ 𝑦 + (−1)𝑝𝑥 ∪ 𝛿𝑦 (3.3)

holds, turning (ℳ̂,∪, 𝛿) into a dg algebra.
Remark 3.2. Observe that by means of Eq. (2.11), the cup product (3.1) can be
written in two ways:

𝑥 ∪ 𝑦 = (𝑒∙0𝑦)◦1𝑥 = (𝑒∙𝑝+1𝑥)◦𝑝+1𝑦, (3.4)
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as is the case for the cup product in an operad with multiplication.

Proof of Lemma 3.1. The associativity of the product (3.1) is easily seen by
applying Eqs. (2.8), (2.9), the composition axioms of an operad, as well as (1.7):

(𝑥 ∪ 𝑦) ∪ 𝑧 (3.1)= (𝑒∙0𝑧)◦1(𝑥 ∪ 𝑦)
(3.1)= (𝑒∙0𝑧)◦1

(
(𝑒∙0𝑦)◦1𝑥

)

(1.1)=
(
(𝑒∙0𝑧)◦1(𝑒∙0𝑦)

)
◦1𝑥

(2.12)=
((
𝑒∙1(𝑒∙0𝑧)

)
◦2𝑦

)
◦1𝑥

(1.7)=
((
𝑒∙0(𝑒∙0𝑧)

)
◦2𝑦

)
◦1𝑥

(2.11)=
(
𝑒∙0

(
(𝑒∙0𝑧)◦1𝑦

))
◦1𝑥

(3.1)=
(
𝑒∙0(𝑦 ∪ 𝑧)

)
◦1𝑥

(3.1)= 𝑥 ∪ (𝑦 ∪ 𝑧).

The homotopy relation (3.2) is proven by using the relations (2.8)–(2.13):

𝛿
(
𝑥{𝑦}

)

=
𝑝∑
𝑗=1

𝑝+𝑞∑
𝑖=0

(−1)(𝑞−1)(𝑗−1)+𝑖𝑒∙𝑖(𝑥◦𝑗𝑦)

=
𝑝∑
𝑗=1

𝑗−1∑
𝑖=0
(−1)(𝑞−1)(𝑗−1)+𝑖(𝑒∙𝑖𝑥)◦𝑗+1𝑦

+
𝑝∑
𝑗=1

𝑗+𝑞−1∑
𝑖=𝑗

(−1)(𝑞−1)(𝑗−1)+𝑖𝑥◦𝑗(𝑒∙𝑖−𝑗+1𝑦)

+
𝑝∑
𝑗=1

𝑝+𝑞∑
𝑖=𝑗+𝑞

(−1)(𝑞−1)(𝑗−1)+𝑖(𝑒∙𝑖−𝑞+1𝑥)◦𝑗𝑦

=
𝑝+1∑
𝑗=2

𝑗−2∑
𝑖=0
(−1)(𝑞−1)𝑗+𝑖(𝑒∙𝑖𝑥)◦𝑗𝑦 +

𝑝∑
𝑗=1

𝑞∑
𝑖=1
(−1)𝑞(𝑗−1)+𝑖𝑥◦𝑗(𝑒∙𝑖𝑦)

+
𝑝∑
𝑗=1

𝑝+1∑
𝑖=𝑗+1

(−1)(𝑞−1)𝑗+𝑖(𝑒∙𝑖𝑥)◦𝑗𝑦,

(3.5)

where in the third step we used re-indexing 𝑗 ↦ 𝑗 + 1 in the first, 𝑖 ↦ 𝑖 − 𝑗 + 1
in the second, and 𝑖 ↦ 𝑖−𝑞+1 in the third summand. Observe that the second
summand can be rewritten as

𝑝∑
𝑗=1

𝑞∑
𝑖=1
(−1)𝑞(𝑗−1)+𝑖𝑥◦𝑗(𝑒∙𝑖𝑦)

=𝑥{𝛿𝑦} −
𝑝∑
𝑗=1

(−1)𝑞(𝑗−1)𝑥◦𝑗(𝑒∙0𝑦) −
𝑝∑
𝑗=1

(−1)𝑞𝑗+1𝑥◦𝑗(𝑒∙𝑞+1𝑦),
(3.6)

whereas the first and the third summand in the last step of (3.5) are

𝑝+1∑
𝑗=2

𝑗−2∑
𝑖=0
(−1)(𝑞−1)𝑗+𝑖(𝑒∙𝑖𝑥)◦𝑗𝑦 +

𝑝∑
𝑗=1

𝑝+1∑
𝑖=𝑗+1

(−1)(𝑞−1)𝑗+𝑖(𝑒∙𝑖𝑥)◦𝑗𝑦,
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= (−1)𝑞−1(𝛿𝑥){𝑦} −
𝑝+1∑
𝑗=1

(−1)𝑞(𝑗−1)+1(𝑒∙𝑗𝑥)◦𝑗𝑦

−
𝑝+1∑
𝑗=1

(−1)𝑞(𝑗−1)(𝑒∙𝑗−1𝑥)◦𝑗𝑦

= (−1)𝑞−1(𝛿𝑥){𝑦} −
𝑝∑
𝑗=1

(−1)𝑞𝑗𝑥◦𝑗(𝑒∙𝑞+1𝑦) − (−1)𝑞(𝑝+1)(𝑒∙0𝑦)◦1𝑥 (3.7)

−
𝑝+1∑
𝑗=2

(−1)𝑞𝑗+1𝑥◦𝑗−1(𝑒∙0𝑦) − (−1)𝑞−1(𝑒∙𝑞+1𝑦)◦𝑞+1𝑥,

= (−1)𝑞−1(𝛿𝑥){𝑦} +
𝑝∑
𝑗=1

(−1)𝑞(𝑗−1)+1𝑥◦𝑗(𝑒∙𝑞+1𝑦) + (−1)𝑝𝑥𝑥 ∪ 𝑦

−
𝑝∑
𝑗=1

(−1)𝑞(𝑗−1)+1𝑥◦𝑗(𝑒∙0𝑦) − (−1)𝑞−1𝑦 ∪ 𝑥,

where we used (2.11) in the third step and re-indexing 𝑗 ↦ 𝑗 − 1, as well as
(3.1) and (3.4) in the last. Observe that the second and the fourth summand in
the last step of (3.7) are minus the second and third in (3.6). Hence, assembling
the three equations (3.5)–(3.7), we obtain

𝛿
(
𝑥{𝑦}

)
= 𝑥{𝛿𝑦} + (−1)𝑞−1(𝛿𝑥){𝑦} − (−1)𝑞−1

(
𝑦 ∪ 𝑥 − (−1)𝑝𝑞𝑥 ∪ 𝑦

)
,

as desired. Finally, to prove Eq. (3.3), one again splits the respective sum ac-
cording to the various cases in the relations (2.8) and uses, in particular, the
second line in (2.9) to fill in the missing terms:

𝛿(𝑥 ∪ 𝑦)
(1.16),(3.1)=

𝑝+𝑞+1∑
𝑘=0

(−1)𝑘𝑒∙𝑘
(
(𝑒∙0𝑦)◦1𝑥)

(2.8)=
(
𝑒∙0(𝑒∙0𝑦)

)
◦2𝑥 +

𝑝∑
𝑘=1

(−1)𝑘(𝑒∙0𝑦)◦1(𝑒∙𝑘𝑥)

+
𝑝+𝑞+1∑
𝑘=𝑝+1

(−1)𝑘
(
𝑒∙𝑘−𝑝+1(𝑒∙0𝑦)

)
◦1𝑥

(1.7)=
(
𝑒∙1(𝑒∙0𝑦)

)
◦2𝑥 +

𝑝∑
𝑘=1

(−1)𝑘(𝑒∙0𝑦)◦1(𝑒∙𝑘𝑥)

+
𝑝+𝑞+1∑
𝑘=𝑝+1

(−1)𝑘
(
𝑒∙0(𝑒∙𝑘−𝑝𝑦)

)
◦1𝑥

(2.9)=
𝑝∑
𝑘=0

(−1)𝑘(𝑒∙0𝑦)◦1(𝑒∙𝑘𝑥) +
𝑞+1∑
𝑘=1

(−1)𝑝+𝑘
(
𝑒∙0(𝑒∙𝑘𝑦)

)
◦1𝑥
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=
𝑝∑
𝑘=0

(−1)𝑘𝛿𝑘𝑥 ∪ 𝑦 + (−1)𝑝
𝑞+1∑
𝑘=1

(−1)𝑘𝑥 ∪ 𝛿𝑘𝑦

(2.9),(3.1)=
𝑝∑
𝑘=0

(−1)𝑘𝛿𝑘𝑥 ∪ 𝑦 + (−1)𝑝+1(𝑒∙0𝑦)◦1(𝑒∙𝑝+1𝑥)

−(−1)𝑝+1
(
𝑒∙1(𝑒∙0𝑦)

)
◦1𝑥 + (−1)𝑝

𝑞+1∑
𝑘=1

(−1)𝑘𝑥 ∪ 𝛿𝑘𝑦

(3.1)= 𝛿𝑥 ∪ 𝑦 + (−1)𝑝𝑥 ∪ 𝛿𝑦,

which is the right hand side in (3.3), and where we used re-indexing 𝑘 ↦ 𝑘− 𝑞
in step four. □

Lemma 3.3. With the same assumptions as in Lemma 3.1, one has

(𝑦 ∪ 𝑧){𝑥} = 𝑦{𝑥} ∪ 𝑧 + (−1)(𝑝−1)𝑞𝑦 ∪ 𝑧{𝑥} (3.8)

for any 𝑥 ∈ ℳ̂(𝑝), 𝑦 ∈ ℳ̂(𝑞), and any 𝑧 ∈ ℳ̂. Bracing the cup product from the
left instead, one obtains

𝑥{𝑦 ∪ 𝑧} = (−1)(𝑝−1)𝑟𝑥{𝑦} ∪ 𝑧 + 𝑦 ∪ 𝑥{𝑧}
+ (−1)(𝑞−1)𝑟𝛿

(
𝐹(𝑥, 𝑦, 𝑧)

)
+ (−1)𝑝+1𝐹(𝛿𝑥, 𝑦, 𝑧)

+ (−1)𝑝(𝑞−1)𝐹(𝑥, 𝛿𝑦, 𝑧) + (−1)(𝑝+𝑞)(𝑟−1)𝐹(𝑥, 𝑦, 𝛿𝑧),
(3.9)

where 𝐹 is defined by

𝐹(𝑥, 𝑦, 𝑧) ∶=
𝑝−1∑
𝑖=1

𝑝+𝑞−1∑
𝑗=𝑞+𝑖

(−1)(𝑞−1)(𝑖−1)+(𝑟−1)(𝑗−1)(𝑥◦𝑖𝑦)◦𝑗𝑧

as an element in ℳ̂(𝑝 + 𝑞 + 𝑟 − 2).

Proof. The first identity (3.8) is a simple and direct check using the defining
Equation (3.1) along with the relations (2.8) & (2.9). Checking (3.9) is less di-
rect, and much more tedious, but essentially still only relying on a double sum
yoga exploiting the same identities from Definition 2.1 resp. §2.2. Not being
substantially different from the proof technique applied in Lemma 3.1 resp. the
forthcoming central Theorem 3.6, we omit this here. □

The two preceding lemmata allow us to state:

Proposition 3.4. The cohomology groups of the cyclic dual ℳ̂ as in Lemma 3.1
with respect to the differential (1.16) form a Gerstenhaber algebra.

Proof. The product structure is given by the cup product (3.1), its graded com-
mutativity on cohomology following from (3.2), where all terms involving 𝛿
disappear; which, hence, results into

𝑥 ∪ 𝑦 = (−1)𝑝𝑞𝑦 ∪ 𝑥.
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The (Gerstenhaber) bracket, as for any operad, is defined bymeans of the graded
commutator of the braces,

{𝑥, 𝑦} ∶= 𝑥{𝑦} − (−1)(𝑝−1)(𝑞−1)𝑦{𝑥}
for 𝑥 ∈ ℳ̂(𝑝), 𝑦 ∈ ℳ̂(𝑞), see [Ge, Thm. 1], or Eq. (1.4) in §1.1, which guaran-
tees the (graded) antisymmetry and the (graded) Jacobi identity in a customary
way, see op. cit. for explicit details. Finally, on cohomology all terms involving 𝛿
in Eq. (3.9) as well disappear, and along with (3.8) assemble to

{𝑥, 𝑦 ∪ 𝑧} = {𝑥, 𝑦} ∪ 𝑧 + (−1)(𝑝−1)𝑞𝑦 ∪ {𝑥, 𝑧},
for any 𝑧 ∈ ℳ̂, that is, the Leibniz identity (1.5). Hence 𝐻∙(ℳ̂) ∶= 𝐻∙(ℳ̂, 𝛿)
turns into a Gerstenhaber algebra. □

Although all proofs in this section so far have been performed, due to our
principal objective, with respect to the cyclic dual ℳ̂ by explicitly using the re-
lations (2.8)–(2.14), it is clear that the same proofs can be carried out, mutatis
mutandis, by the analogous (and more general) relations (2.4)–(2.7) in Defini-
tion 2.1. Combining this observation with the fact that the associativity rela-
tions (1.7) for an opposite module over an operad (𝒪, 𝜇, 𝑒) applied to the el-
ements 𝜇 and 𝑒 are equivalent to the compatibility relations between cofaces
and codegeneracies of the cosimplicial 𝑘-module given by Eqs. (1.15), we can
immediately state:

Corollary 3.5. Let 𝒫 be a cosimplicial-compatible nonsymmetric operad in the
sense of Definition 2.1. Then its cohomology groups 𝐻(𝒫), induced by the cosim-
plicial structure, form a Gerstenhaber algebra.

* * *

The next level of complexity will be to add the cyclic operator in order to
promote the Gerstenhaber structures of Proposition 3.4 and Corollary 3.5, re-
spectively, to those of BV algebras:

Theorem 3.6. Let (𝒪, 𝜇, 𝑒) be an operad with multiplication. If the cyclic dual
ℳ̂ of a cyclic opposite 𝒪-module (ℳ, 𝑡) is at the same time a cosimplicial and
cocyclic-compatible operad in the sense of Definition 2.1, then the identity

{𝑥, 𝑦} = 𝑥{𝑦} − (−1)(𝑝−1)(𝑞−1)𝑦{𝑥}
= (−1)(𝑞−1)𝑝𝐵(𝑦 ∪ 𝑥) − (−1)𝑝𝐵𝑥 ∪ 𝑦 − (−1)𝑝(𝑞−1)𝐵𝑦 ∪ 𝑥
+ (−1)𝑝𝑞𝛿(𝑆𝑥𝑦) + (−1)𝑝𝑆𝛿𝑥𝑦 − (−1)𝑝𝑞𝑆𝑥𝛿𝑦
− (−1)𝑞𝛿(𝑆𝑦𝑥) + (−1)𝑝(𝑞−1)𝑆𝛿𝑦𝑥 − (−1)𝑝+𝑞𝑆𝑦𝛿𝑥

(3.10)

holds for all 𝑥 ∈ ℳ̂(𝑝) and 𝑦 ∈ ℳ̂(𝑞) on the normalised complex, where

𝛿𝑥 =
𝑝+1∑
𝑖=0

(−1)𝑖𝑒∙𝑖𝑥,

𝑥 ∪ 𝑦 = (𝑒∙0𝑦)◦1𝑥,
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𝐵𝑥 =
𝑝−1∑
𝑖=0

(−1)(𝑝−1)(𝑖−1)𝑡𝑖(𝜇∙0𝑡𝑥),

as introduced before, along with

𝑆𝑥𝑦 ∶=
𝑝−1∑
𝑖=1

𝑖∑
𝑗=1

(−1)(𝑞−1)𝑖+(𝑝+𝑞)𝑗+𝑝𝑞 𝑡𝑗−1(𝜇∙0𝑡𝑥)◦𝑝−𝑖+𝑗−1𝑦 (3.11)

as an element in ℳ̂(𝑝 + 𝑞 − 2).

Proof. The homotopy formula (3.10) is proven by a meticulous analysis of all
appearing terms, which are subsequently shown to equal all out by means of
an enhanced double sum yoga plus numerous summation re-indexings. We are
going to prove this only for the case𝑝, 𝑞 ≥ 1, the case of two zero cochains being
trivial, whereas the case for either 𝑝 = 0 or 𝑞 = 0 is similar to what follows, but
(much) simpler.
Let us therefore develop all terms in Eq. (3.10) by using the relations (2.8)–

(2.14). To start with,

(−1)𝑝(𝑞−1)𝐵(𝑦 ∪ 𝑥)
(3.1)= (−1)𝑝(𝑞−1)𝐵

(
(𝑒∙0𝑥)◦1𝑦

)

(1.17)=
𝑝+𝑞−1∑
𝑖=0

(−1)𝑝𝑞+(𝑝−1)𝑖+1 𝑡𝑖
(
𝜇∙0𝑡

(
(𝑒∙0𝑥)◦1𝑦)

))

(2.14),(1.9)=
𝑝+𝑞−1∑
𝑖=0

(−1)𝑝𝑞+(𝑝−1)𝑖+1 𝑡𝑖
(
𝜇∙0

(
(𝑒∙1𝑡𝑥)◦2𝑦)

))

(1.7),(2.10)=
𝑝+𝑞−1∑
𝑖=0

(−1)𝑝𝑞+(𝑝−1)𝑖+1 𝑡𝑖(𝑡𝑥◦1𝑦)

(2.14)=
𝑝−1∑
𝑖=0

(−1)𝑝𝑞+(𝑝−1)𝑖+1 𝑡𝑖+1𝑥◦𝑖+1𝑦 +
𝑝+𝑞−1∑
𝑖=𝑝

(−1)𝑝𝑞+(𝑝−1)𝑖+1 𝑡𝑖(𝑡𝑥◦1𝑦)

(2.14)=
𝑝∑
𝑖=1
(−1)𝑝𝑞+(𝑝−1)(𝑖−1)+1 𝑡𝑖𝑥◦𝑖𝑦 +

𝑞−1∑
𝑖=0
(−1)𝑝𝑞+(𝑝−1)𝑖+1 𝑡𝑝+𝑖(𝑡𝑥◦1𝑦)

(2.14)=
𝑝∑
𝑖=1
(−1)𝑝𝑞+(𝑝−1)𝑖+𝑝 𝑡𝑖𝑥◦𝑖𝑦 +

𝑞−1∑
𝑖=0
(−1)𝑝𝑞+(𝑝−1)𝑖+1 𝑡𝑖(𝑡𝑦◦1𝑡𝑝+1𝑥)

(2.14),(1.10)=
𝑝∑
𝑖=1
(−1)𝑝𝑞+(𝑝−1)𝑖+𝑝 𝑡𝑖𝑥◦𝑖𝑦 +

𝑞∑
𝑖=1
(−1)𝑝𝑞+(𝑝−1)𝑖+𝑝 𝑡𝑖𝑦◦𝑖𝑥.

=∶ (1) + (2).

Hence, up to signs, the relation (3.10) is symmetric in 𝑥 and 𝑦 and it shall turn
out that (with the respective signs) the brace 𝑥{𝑦} is generated by the terms (1)
along with 𝐵𝑥 ∪ 𝑦, 𝛿(𝑆𝑥𝑦), 𝑆𝛿𝑥𝑦, as well as 𝑆𝑥𝛿𝑦; whereas 𝑦{𝑥} is given by the
terms with 𝑥 and 𝑦 exchanged. This implies that we only have to prove half of
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the homotopy formula, the other part being completely analogous. In fact,

−(−1)𝑝𝐵𝑥 ∪ 𝑦 (3.1),(1.17)=
𝑝−1∑
𝑖=0

(−1)(𝑝−1)𝑖 (𝑒∙0𝑦)◦1𝑡𝑖(𝜇∙0𝑡𝑥)

(2.9)=
𝑝−1∑
𝑖=0

(−1)(𝑝−1)𝑖
(
𝑒∙𝑝𝑡𝑖(𝜇∙0𝑡𝑥)

)
◦𝑝𝑦

(1.9)=
𝑝∑
𝑖=1
(−1)(𝑝−1)(𝑖−1) 𝑡𝑖−1

(
𝑒∙𝑝−𝑖+1(𝜇∙0𝑡𝑥)

)
◦𝑝𝑦

=∶ (3),
while, using a somewhat unconventional but nevertheless self-explanatoryway
of writing sums, one decomposes:

(−1)𝑝𝑞𝛿(𝑆𝑥𝑦)
(3.11),(1.16)=

𝑝−1∑
𝑖=1

𝑖∑
𝑗=1

𝑝+𝑞−1∑
𝑘=0

(−1)𝑞(𝑖−𝑗)+𝑖+𝑝𝑗+𝑘 𝑒∙𝑘
(
𝑡𝑗−1(𝜇∙0𝑡𝑥)◦𝑝−𝑖+𝑗−1𝑦

)

=
( 𝑝−1∑
𝑖=1

𝑖∑
𝑗=1

𝑝−𝑖+𝑗−2∑
𝑘=0

+
𝑝−1∑
𝑖=1

𝑖∑
𝑗=1

𝑝+𝑞−𝑖+𝑗−2∑
𝑘=𝑝−𝑖+𝑗−1

+
𝑝−1∑
𝑖=1

𝑖∑
𝑗=1

𝑝+𝑞−1∑
𝑘=𝑝+𝑞−𝑖+𝑗−1

)

(−1)𝑞(𝑖−𝑗)+𝑖+𝑝𝑗+𝑘 𝑒∙𝑘
(
𝑡𝑗−1(𝜇∙0𝑡𝑥)◦𝑝−𝑖+𝑗−1𝑦

)

=∶ (4) + (5) + (6).
On these three terms let us apply (2.8) and subsequent re-indexing if need be,
the outcome of which being:

(4) (2.8)=
𝑝−1∑
𝑖=1

𝑖∑
𝑗=1

𝑝−𝑖+𝑗−2∑
𝑘=0

(−1)𝑞(𝑖−𝑗)+𝑖+𝑝𝑗+𝑘
(
𝑒∙𝑘𝑡𝑗−1(𝜇∙0𝑡𝑥)

)
◦𝑝−𝑖+𝑗𝑦

=∶ (4i),
as well as

(6)
(2.8)=

𝑝−1∑
𝑖=1

𝑖∑
𝑗=1

𝑝+𝑞−1∑
𝑘=𝑝+𝑞−𝑖+𝑗−1

(−1)𝑞(𝑖−𝑗)+𝑖+𝑝𝑗+𝑘
(
𝑒∙𝑘−𝑞+1𝑡𝑗−1(𝜇∙0𝑡𝑥)

)
◦𝑝−𝑖+𝑗−1𝑦

=
𝑝−1∑
𝑖=1

𝑖∑
𝑗=1

𝑝∑
𝑘=𝑝−𝑖+𝑗

(−1)𝑞(𝑖−𝑗)+𝑖+𝑝𝑗+𝑘+1
(
𝑒∙𝑘𝑡𝑗−1(𝜇∙0𝑡𝑥)

)
◦𝑝−𝑖+𝑗−1𝑦

=∶ (6i),
along with

(5) (2.8)=
𝑝−1∑
𝑖=1

𝑖∑
𝑗=1

𝑞∑
𝑘=1

(−1)𝑞(𝑖−𝑗)+(𝑝−1)𝑗+𝑝+𝑘 𝑡𝑗−1(𝜇∙0𝑡𝑥)◦𝑝−𝑖+𝑗−1(𝑒∙𝑘𝑦)

=∶ (5i).
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Next, note that (5i) appears with opposite sign as a summand in the next term
in the homotopy formula (3.10):

−(−1)𝑝𝑞𝑆𝑥𝛿𝑦
(3.11),(1.16)=

𝑝−1∑
𝑖=1

𝑖∑
𝑗=1

𝑞+1∑
𝑘=0

(−1)𝑞(𝑖−𝑗)+(𝑝−1)𝑗+𝑝+𝑘 𝑡𝑗−1(𝜇∙0𝑡𝑥)◦𝑝−𝑖+𝑗−1(𝑒∙𝑘𝑦)

(2.9)= −(5i) +
𝑝−1∑
𝑖=1

𝑖∑
𝑗=1

(−1)𝑞(𝑖−𝑗)+(𝑝−1)𝑗+𝑝 𝑡𝑗−1(𝜇∙0𝑡𝑥)◦𝑝−𝑖+𝑗−1(𝑒∙0𝑦)

+
𝑝−1∑
𝑖=1

𝑖∑
𝑗=1

(−1)𝑞(𝑖−𝑗+1)+(𝑝−1)(𝑗−1) 𝑡𝑗−1(𝜇∙0𝑡𝑥)◦𝑝−𝑖+𝑗−1(𝑒∙𝑞+1𝑦).

Thus, the triple sum (5i) disappears, whereas on the last two summands above
apply (2.9) to obtain:

𝑝−1∑
𝑖=1

𝑖∑
𝑗=1

(−1)𝑞(𝑖−𝑗)+(𝑝−1)𝑗+𝑝 𝑡𝑗−1
(
𝑒∙𝑝−𝑖+𝑗−1𝑡𝑗−1(𝜇∙0𝑡𝑥)

)
◦𝑝−𝑖+𝑗𝑦

+
𝑝−1∑
𝑖=1

𝑖∑
𝑗=1

(−1)𝑞(𝑖−𝑗+1)+(𝑝−1)(𝑗−1) 𝑡𝑗−1
(
𝑒∙𝑝−𝑖+𝑗−1𝑡𝑗−1(𝜇∙0𝑡𝑥)

)
◦𝑝−𝑖+𝑗−1𝑦

=∶ (4ii) + (7),
where one observes that one can reassemble (4i) and (4ii) and afterwards de-
compose differently as

(4i) + (4ii)

=
𝑝−1∑
𝑖=1

𝑖∑
𝑗=1

𝑝−𝑖+𝑗−1∑
𝑘=0

(−1)𝑞(𝑖−𝑗)+𝑖+𝑝𝑗+𝑘
(
𝑒∙𝑘𝑡𝑗−1(𝜇∙0𝑡𝑥)

)
◦𝑝−𝑖+𝑗𝑦

=
( 𝑝−1∑
𝑖=1

𝑖∑
𝑗=1

𝑗−1∑
𝑘=0

+
𝑝−1∑
𝑖=1

𝑖∑
𝑗=1

𝑝−𝑖+𝑗−1∑
𝑘=𝑗

)

(−1)𝑞(𝑖−𝑗)+𝑖+𝑝𝑗+𝑘
(
𝑒∙𝑘𝑡𝑗−1(𝜇∙0𝑡𝑥)

)
◦𝑝−𝑖+𝑗𝑦

=∶ (4iii) + (4iv).
As a next step, let us isolate the summands 𝑗 = 𝑖 and 𝑗 = 𝑖 − 1 in (4iii):

(4iii) =
𝑝−1∑
𝑖=3

𝑖−2∑
𝑗=1

𝑗−1∑
𝑘=0

(−1)𝑞(𝑖−𝑗)+𝑖+𝑝𝑗+𝑘
(
𝑒∙𝑘𝑡𝑗−1(𝜇∙0𝑡𝑥)

)
◦𝑝−𝑖+𝑗𝑦

+
𝑝−1∑
𝑖=1

𝑖−1∑
𝑘=0

(−1)(𝑝−1)𝑖+𝑘
(
𝑒∙𝑘𝑡𝑖−1(𝜇∙0𝑡𝑥)

)
◦𝑝𝑦

+
𝑝−1∑
𝑖=2

𝑖−2∑
𝑘=0

(−1)𝑞+𝑝(𝑖−1)+𝑖+𝑘
(
𝑒∙𝑘𝑡𝑖−2(𝜇∙0𝑡𝑥)

)
◦𝑝−1𝑦

=∶ (4v) + (4vi) + (4vii),
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and continue by isolating the summand 𝑗 = 𝑖 in the triple sum (4iv) as well:

(4iv) =
𝑝−1∑
𝑖=2

𝑖−1∑
𝑗=1

𝑝−𝑖+𝑗−1∑
𝑘=𝑗

(−1)𝑞(𝑖−𝑗)+𝑖+𝑝𝑗+𝑘
(
𝑒∙𝑘𝑡𝑗−1(𝜇∙0𝑡𝑥)

)
◦𝑝−𝑖+𝑗𝑦

+
𝑝−1∑
𝑖=1

𝑝−1∑
𝑘=𝑖

(−1)(𝑝−1)𝑖+𝑘
(
𝑒∙𝑘𝑡𝑖−1(𝜇∙0𝑡𝑥)

)
◦𝑝𝑦

=∶ (4viii) + (4ix).
The last summand that appears in the homotopy formula (3.10) that has to be
considered is (−1)𝑝𝑆𝛿𝑥𝑦, which, using 𝑡(𝑒∙𝑝+1𝑥) = 𝑒∙0𝑥 for 𝑥 ∈ ℳ(𝑝), that is,
Eq. (1.12), can be expressed by means of Eqs. (1.9) and (1.7) as:

(−1)𝑝𝑆𝛿𝑥𝑦
(3.11),(1.16)=

𝑝∑
𝑖=1

𝑖∑
𝑗=1

𝑝+1∑
𝑘=0

(−1)𝑞(𝑖−𝑗+1)+𝑖+(𝑝−1)𝑗+𝑘+𝑝(𝑞−1) 𝑡𝑗−1
(
𝜇∙0𝑡(𝑒∙𝑘𝑥)

)
◦𝑝−𝑖+𝑗𝑦

=
𝑝∑
𝑖=1

𝑖∑
𝑗=1

𝑝∑
𝑘=1

(−1)𝑞(𝑖−𝑗+1)+𝑖+(𝑝−1)𝑗+𝑘+𝑝(𝑞−1) 𝑡𝑗−1
(
𝜇∙0𝑡(𝑒∙𝑘𝑥)

)
◦𝑝−𝑖+𝑗𝑦

+
𝑝∑
𝑖=1

𝑖∑
𝑗=1

(−1)𝑞(𝑖−𝑗+1)+𝑖+(𝑝−1)𝑗+𝑝(𝑞−1) 𝑡𝑗𝑥◦𝑝−𝑖+𝑗𝑦

+
𝑝∑
𝑖=1

𝑖∑
𝑗=1

(−1)𝑞(𝑖−𝑗+1)+𝑖+(𝑝−1)𝑗+𝑝𝑞−1 𝑡𝑗−1𝑥◦𝑝−𝑖+𝑗𝑦

=∶ (8) + (9) + (10).
Closely checking, the last two summands partially cancel by re-indexing the
sums first by 𝑖 ↦ 𝑖 − 1, 𝑗 → 𝑗 − 1, and then by 𝑖 ↦ 𝑝 − 𝑖 + 1:

(9) + (10)

=
𝑝−1∑
𝑖=1

𝑖∑
𝑗=1

(−1)𝑞(𝑖−𝑗+1)+𝑖+(𝑝−1)𝑗+𝑝(𝑞−1) 𝑡𝑗𝑥◦𝑝−𝑖+𝑗𝑦

+
𝑝∑
𝑗=1

(−1)(𝑝−1)(𝑗−1)+𝑝𝑞 𝑡𝑗𝑥◦𝑗𝑦

+
𝑝∑
𝑖=2

𝑖∑
𝑗=2

(−1)𝑞(𝑖−𝑗+1)+𝑖+(𝑝−1)𝑗+𝑝𝑞−1 𝑡𝑗−1𝑥◦𝑝−𝑖+𝑗𝑦

+
𝑝∑
𝑖=1
(−1)(𝑞−1)(𝑝−𝑖) 𝑥◦𝑝−𝑖+1𝑦

=
𝑝∑
𝑗=1

(−1)(𝑝−1)(𝑗−1)+𝑝𝑞 𝑡𝑗𝑥◦𝑗𝑦 +
𝑝∑
𝑖=1
(−1)(𝑞−1)(𝑖−1)𝑥◦𝑖𝑦

=∶ (9i) + (10i),
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and one observes that not only (1) = −(9i), but in particular

(10i) = 𝑥{𝑦} (3.12)

is the brace that constitutes ‘the first half’ of the Gerstenhaber bracket {𝑥, 𝑦} in
Eq. (3.10). We continue by using (1.7) and (1.9) on the various summands of
(8) and subsequently isolating the summand 𝑖 = 𝑗, as well as afterwards inside
the latter isolating the summand for which 𝑘 = 𝑝 − 𝑖 + 1:

(8) (1.7),(1.9)=
𝑝∑
𝑖=1

𝑖∑
𝑗=1

𝑝∑
𝑘=1

(−1)𝑞(𝑖−𝑗)+(𝑝−1)𝑗+𝑖+𝑘+1 𝑡𝑗−1
(
𝑒∙𝑘(𝜇∙0𝑡𝑥)

)
◦𝑝−𝑖+𝑗𝑦

=
𝑝∑
𝑖=2

𝑖−1∑
𝑗=1

𝑝∑
𝑘=1

(−1)𝑞(𝑖−𝑗)+(𝑝−1)𝑗+𝑖+𝑘+1 𝑡𝑗−1
(
𝑒∙𝑘(𝜇∙0𝑡𝑥)

)
◦𝑝−𝑖+𝑗𝑦

+
𝑝−1∑
𝑖=1

𝑝−𝑖∑
𝑘=1

(−1)𝑝𝑖+𝑘+1 𝑡𝑖−1
(
𝑒∙𝑘(𝜇∙0𝑡𝑥)

)
◦𝑝𝑦

+
𝑝∑
𝑖=1
(−1)(𝑝−1)(𝑖−1)+1 𝑡𝑖−1

(
𝑒∙𝑝−𝑖+1(𝜇∙0𝑡𝑥)

)
◦𝑝𝑦

+
𝑝∑
𝑖=2

𝑝∑
𝑘=𝑝−𝑖+2

(−1)𝑝𝑖+𝑘+1 𝑡𝑖−1
(
𝑒∙𝑘(𝜇∙0𝑡𝑥)

)
◦𝑝𝑦

=∶ (8i) + (8ii) + (8iii) + (8iv).

One notices that (8iii) = −(3), so this term cancels out with −(−1)𝑝 𝐵𝑥 ∪ 𝑦. On
the other hand, using (1.9) again and re-indexing 𝑘 ↦ 𝑘 + 𝑖 − 1, one computes

(8ii) (1.9)=
𝑝−1∑
𝑖=1

𝑝−𝑖∑
𝑘=1

(−1)𝑝𝑖+𝑘+1
(
𝑒∙𝑘+𝑖−1𝑡𝑖−1(𝜇∙0𝑡𝑥)

)
◦𝑝𝑦

=
𝑝−1∑
𝑖=1

𝑝−1∑
𝑘=𝑖

(−1)(𝑝−1)𝑖+𝑘+1
(
𝑒∙𝑘𝑡𝑖−1(𝜇∙0𝑡𝑥)

)
◦𝑝𝑦

= −(4ix),

which therefore disappear. In a similar way, but taking (1.12) into account, and
re-indexing twice,

(8iv) (1.9),(1.12)=
𝑝∑
𝑖=2

𝑖−2∑
𝑘=0

(−1)(𝑝−1)𝑖+𝑘+1
(
𝑒∙𝑘𝑡𝑖−2(𝜇∙0𝑡𝑥)

)
◦𝑝𝑦

= −(4vi),

so these terms cancel out as well. To elaborate on (8i), we (unfortunately) have
to split the sum again so as to (as we tacitly did for (8iv) as well) take the flip over
into account, i.e., the fact that, for an element 𝑧 ∈ℳ(𝑝− 1), one has 𝑡(𝑒∙𝑘𝑧) =
𝑒∙𝑘+1𝑡𝑧 up to 𝑘 = 𝑝 − 1 but 𝑡(𝑒∙𝑝𝑧) = 𝑒∙0𝑧. Correspondingly, when applying
the higher powers 𝑡𝑗−1 to 𝑒∙𝑘𝑧, at the point 𝑘 > 𝑝− (𝑗 − 1) one needs to restart
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from the extra compositionmap 𝑒∙0𝑧 again. Taking this into consideration, and
after multiple re-indexing 𝑖 ↦ 𝑖−1, 𝑗 ↦ 𝑗−1, and 𝑘 ↦ 𝑘+𝑗−1, one computes

(8i) (1.9)=
( 𝑝∑
𝑖=2

𝑖−1∑
𝑗=1

𝑝−𝑗+1∑
𝑘=1

+
𝑝∑
𝑖=2

𝑖−1∑
𝑗=1

𝑝∑
𝑘=𝑝−𝑗+2

)

(−1)𝑞(𝑖−𝑗)+(𝑝−1)𝑗+𝑖+𝑘+1 𝑡𝑗−1
(
𝑒∙𝑘(𝜇∙0𝑡𝑥)

)
◦𝑝−𝑖+𝑗𝑦

=
𝑝∑
𝑖=2

𝑖−1∑
𝑗=1

𝑝−𝑗+1∑
𝑘=1

(−1)𝑞(𝑖−𝑗)+(𝑝−1)𝑗+𝑖+𝑘+1
(
𝑒∙𝑘+𝑗−1𝑡𝑗−1(𝜇∙0𝑡𝑥)

)
◦𝑝−𝑖+𝑗𝑦

+
𝑝∑
𝑖=3

𝑖−1∑
𝑗=2

𝑗−2∑
𝑘=0

(−1)𝑞(𝑖−𝑗)+𝑝(𝑗−1)+𝑖+𝑘
(
𝑒∙𝑘𝑡𝑗−2(𝜇∙0𝑡𝑥)

)
◦𝑝−𝑖+𝑗𝑦

=
𝑝−1∑
𝑖=1

𝑖∑
𝑗=1

𝑝∑
𝑘=𝑗

(−1)𝑞(𝑖−𝑗)+𝑝𝑗+𝑖+𝑘+1
(
𝑒∙𝑘𝑡𝑗−1(𝜇∙0𝑡𝑥)

)
◦𝑝−𝑖+𝑗−1𝑦

+
𝑝∑
𝑖=3

𝑖−1∑
𝑗=2

𝑗−2∑
𝑘=0

(−1)𝑞(𝑖−𝑗)+𝑝(𝑗−1)+𝑖+𝑘
(
𝑒∙𝑘𝑡𝑗−2(𝜇∙0𝑡𝑥)

)
◦𝑝−𝑖+𝑗𝑦

=∶ (8v) + (8vi).
One then has, by splitting up the summand for which 𝑗 = 𝑖−1 from the second
term above,

(8vi) =
𝑝∑
𝑖=4

𝑖−2∑
𝑗=2

𝑗−2∑
𝑘=0

(−1)𝑞(𝑖−𝑗)+𝑝𝑗+𝑖+𝑘
(
𝑒∙𝑘𝑡𝑗−2(𝜇∙0𝑡𝑥)

)
◦𝑝−𝑖+𝑗𝑦

+
𝑝∑
𝑖=3

𝑖−3∑
𝑘=0

(−1)𝑞+(𝑝−1)𝑖+𝑘
(
𝑒∙𝑘𝑡𝑖−3(𝜇∙0𝑡𝑥)

)
◦𝑝−1𝑦,

which, by re-indexing 𝑖 ↦ 𝑖 − 1, 𝑗 ↦ 𝑗 − 1 in the first summand resp. 𝑖 ↦ 𝑖 − 1
in the second, is seen to cancel out with (4v) resp. (4vii).
At this point, we are left to deal with the terms (2), (4viii), (6i), (7), and (8v).

For the last four one has:

(8v) + (6i)

=
𝑝−1∑
𝑖=1

𝑖∑
𝑗=1

𝑝−𝑖+𝑗−1∑
𝑘=𝑗

(−1)𝑞(𝑖−𝑗)+𝑝𝑗+𝑖+𝑘+1
(
𝑒∙𝑘𝑡𝑗−1(𝜇∙0𝑡𝑥)

)
◦𝑝−𝑖+𝑗−1𝑦

=
𝑝−2∑
𝑖=1

𝑖∑
𝑗=1

𝑝−𝑖+𝑗−2∑
𝑘=𝑗

(−1)𝑞(𝑖−𝑗)+𝑝𝑗+𝑖+𝑘+1
(
𝑒∙𝑘𝑡𝑗−1(𝜇∙0𝑡𝑥)

)
◦𝑝−𝑖+𝑗−1𝑦

+
𝑝−1∑
𝑖=1

𝑖∑
𝑗=1

(−1)𝑞(𝑖−𝑗+1)+(𝑝−1)(𝑗−1)+1
(
𝑒∙𝑝−𝑖+𝑗−1𝑡𝑗−1(𝜇∙0𝑡𝑥)

)
◦𝑝−𝑖+𝑗−1𝑦

= −(4viii) − (7),
where the equality with respect to the first summand is obtained by re-indexing
𝑖 ↦ 𝑖 − 1 again. The only remaining term is now (2), which, in a (up to signs)
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totally symmetric way cancels by an analogous and equally long computation
regarding the terms where 𝑦 precedes 𝑥 in the homotopy formula (3.10), which
we, understandably, omit; but which, exactly as in (3.12), produces the ‘second
half’ of the Gerstenhaber bracket, i.e., the brace −(−1)(𝑝−1)(𝑞−1)𝑦{𝑥}. This proves
the relation (3.10) and therefore concludes the proof. □

As an immediate consequence one has:

Corollary 3.7. Under the assumptions of Theorem 3.6, the cyclic dual of a cyclic
opposite module (ℳ, 𝜏) induces a cochain complex (ℳ̂∙, 𝛿) the cohomology of
which is a BV algebra.

Proof. This is, in a standard way, a direct consequence of the homotopy for-
mula (3.10) just proven combined with the homotopy relation (3.2): on coho-
mology, all terms that involve the differential 𝛿 disappear, and Eq. (3.10) re-
duces to

{𝑥, 𝑦} = (−1)(𝑞−1)𝑝𝐵(𝑦 ∪ 𝑥) − (−1)𝑝𝐵𝑥 ∪ 𝑦 − (−1)𝑝(𝑞−1)𝐵𝑦 ∪ 𝑥, (3.13)

whereas from (3.2) one derives 𝑥∪𝑦 = (−1)𝑝𝑞𝑦∪𝑥 and 𝐵𝑦∪𝑥 = (−1)𝑝(𝑞−1)𝑥∪𝐵𝑦
on cohomology. With this, Eq. (3.13) turns into

{𝑥, 𝑦} = (−1)𝑝𝐵(𝑥 ∪ 𝑦) − (−1)𝑝𝐵𝑥 ∪ 𝑦 − 𝑥 ∪ 𝐵𝑦,
which is the customary BV relation as quoted in Eq. (1.6). □

Generalising this result in the spirit of Corollary 3.5, we conclude:

Corollary 3.8. Let 𝒫 be a cosimplicial and cocyclic-compatible nonsymmetric
operad in the sense of Definition 2.1. Then the cohomology groups𝐻(𝒫), obtained
from the cosimplicial structure, form a BV algebra.

Proof. Analogously to what was said right above Corollary 3.5, the proof of
Theorem 3.6 does not depend on the precise form of the cofaces and codegen-
eracies, but on three things only: first, again on the fact that the associativ-
ity relations (1.7) are equivalent to the compatibility relations between cofaces
and codegeneracies in the cosimplicial 𝑘-module given by Eqs. (1.15); second,
on the relations (2.8)–(2.13), which are simply the relations (2.4)–(2.6) for this
specific situation; plus, third, the cyclic compatibility (1.9) for a cyclic oppo-
site module over an operad with multiplication (𝒪, 𝜇, 𝑒)with respect to the two
special elements 𝜇 and 𝑒 only. Let us show that these amount to the identi-
ties required for a cocyclic module to hold (see, for example, [Lo, §6]) when
considering the cofaces and codegeneracies as in (1.15), along with the cocyclic
operator 𝜏 = 𝑡−1. Rewriting, by means of 𝑡𝑛+1 = id in degree 𝑛, the relation
(1.9) for 𝜏 and 𝜙 = 𝜇 or 𝜙 = 𝑒, one obtains

𝜏(𝜇∙𝑖𝑥) = 𝜇∙𝑖−1𝜏𝑥 for 1 ≤ 𝑖 ≤ 𝑛 − 1,
𝜏(𝑒∙𝑖𝑥) = 𝑒∙𝑖−1𝜏𝑥 for 1 ≤ 𝑖 ≤ 𝑛 + 1,

andwith (1.15) it follows that 𝜏𝜎𝑖 = 𝜎𝑖−1𝜏 for 1 ≤ 𝑖 ≤ 𝑛−1 aswell as 𝜏𝛿𝑖 = 𝛿𝑖−1𝜏
for 1 ≤ 𝑖 ≤ 𝑛 + 1, which are the compatibility conditions in a cocyclic module
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for 𝑖 ≠ 0. We are left with checking

𝜏𝜎0(𝑥) = 𝑡−1(𝜇∙0𝑥) = 𝑡𝑛−1(𝜇∙0𝑥) = 𝜇∙𝑛−1𝑡𝑛−1𝑥 = 𝜇∙𝑛−1𝑡−2𝑥 = 𝜎𝑛−1𝜏2(𝑥)

for 𝑥 ∈ℳ(𝑛), and likewise one computes

𝜏𝛿0(𝑥) = 𝑡−1(𝑒∙0𝑥) = 𝑡𝑛+1(𝑒∙0𝑥) = 𝑒∙𝑛+1𝑥 = 𝛿𝑛+1(𝑥).

Hence, what we in addition used in the proof of Theorem 3.6 were the respec-
tive compatibility relations for a cocyclic 𝑘-module in disguise, so to speak. This
makes it clear that one can rewrite the entire proof of Theorem 3.6 in a more
general setting for any operad 𝒫 in 𝑘-𝐌𝐨𝐝 that is also a cocyclic 𝑘-module re-
specting the cosimplicial and cocyclic compatibilities of Definition 2.1. □

4. Examples
Concrete examples where one can observe the statements proven above that

motivated to develop this formal approach were given in [Ko3] in the con-
text of Hopf algebroids. We shall give a short summary in the more restricted
context of Hopf algebras since properly introducing the many technical details
involved in Hopf algebroid theory would go beyond the scope of the general
level of this note. However, observe that only the latter allow to include the
case of Hochschild cohomology for an associative algebra 𝐴 when looking for
Gerstenhaber or BV algebra structures since the respective cohomology groups
Ext𝐴e(𝐴,𝐴) can only be seen as a cohomology theory over a certain Hopf alge-
broid, but not over a Hopf algebra.
Standing assumption in this section, let (𝐻, 𝑘, 𝜇, 𝜂,∆, 𝜀, 𝑆) be a Hopf algebra

over 𝑘 (with characteristic zero if need be), where 𝜇 and ∆ denote its product
resp. coproduct, 𝜂 and 𝜀 its unit resp. counit, and finally 𝑆 an involutive an-
tipode, that is, 𝑆2 = id. The customary Sweedler notation for the coproduct will
be used throughout and elements in tensor powers will be (most of the time)
written as 𝑛-tuples separated by commata instead of denoting them by nota-
tionally clumsier tensor chains. Ultimately, recall that the category 𝐻-𝐌𝐨𝐝 of
left𝐻-modules is monoidal a fact that is reflected by the diagonal left𝐻-action,
denoted

ℎ # (𝑚⊗𝑚′) ∶= ℎ(1)𝑚⊗ ℎ(2)𝑚′, 𝑚 ∈ 𝑀, 𝑚′ ∈ 𝑀′, ℎ ∈ 𝐻, (4.1)

for two objects𝑀,𝑀′ ∈ 𝐻-𝐌𝐨𝐝 with action written by juxtaposition.

4.1. 𝐂𝐨𝐭𝐨𝐫 acting on 𝐂𝐨𝐞𝐱𝐭 with 𝐄𝐱𝐭 as a resulting BV algebra. Let us
briefly apply the results in [Ko3, §6] to see how the chain complex computing
Coext-groups can be seen as a cyclic oppositemodule over the cochain complex
computingCotor-groups considered as an operadwithmultiplication, and then
understand how the cyclic dual turns into a BV algebra in the spirit of the pre-
ceding sections. For details on the mentioned cohomology groups as derived
functors of the cohomomorphism functor with respect to contramodules resp.
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the cotensor functor with respect to comodules, see op. cit., §3.3 resp. §3.2, in
the context needed here, or [Po] for the general theory. Set

𝒪(𝑝) ∶= 𝐻⊗𝑝, ℳ(𝑛) ∶= Hom(𝐻⊗𝑛, 𝑘), (4.2)

where in degree zero we put 𝒪(0) ∶= ℳ(0) ∶= 𝑘. The operadic structure
on 𝒪 has been described, possibly first, in [GeSch, p. 65]; we do not need the
explicit (partial) compositions here but only the fact that it is an operad with
multiplication with the three distinguished elements (𝜇,1, 𝑒) =

(
1⊗ 1, 1𝐻 , 1𝑘).

Specialising Lemma 6.1 & Theorem 6.2 in [Ko3] to the Hopf algebra case, we
extract from there:

Proposition 4.1. For all 1 ≤ 𝑖 ≤ 𝑛 − 𝑝 + 1 and 0 ≤ 𝑝 ≤ 𝑛, the operations

∙𝑖 ∶ 𝒪(𝑝)⊗ℳ(𝑛)→ℳ(𝑛 − 𝑝 + 1),

given by, for any (ℎ1,… , ℎ𝑝) ∈ 𝒪(𝑝) and 𝜙 ∈ℳ(𝑛),
(
(ℎ1,… , ℎ𝑝)∙𝑖𝜙

)
(𝑔1,… , 𝑔𝑛−𝑝+1) ∶= 𝜙

(
𝑔1,… , 𝑔𝑖 # (ℎ1,… , ℎ𝑝),… , 𝑔𝑛−𝑝+1

)
,

where 𝑔𝑗 ∈ 𝐻, and declared to be zero if 𝑝 > 𝑛, along with
(
1𝑘∙𝑖𝜙

)
(𝑔1,… , 𝑔𝑛+1) ∶= 𝜙

(
𝑔1,… , 𝜀(𝑔𝑖),… , 𝑔𝑛+1

)

for elements in 𝒪(0)=𝑘 and 1≤ 𝑖≤𝑛 + 1, induce onℳ the structure of a unital
opposite 𝒪-module. Moreover, defining an extra operation

(
(ℎ1,… , ℎ𝑝)∙0𝜙

)
(𝑔1,… , 𝑔𝑛−𝑝+1) = 𝜙

(
𝑆ℎ1 # (ℎ2,… , ℎ𝑝, 𝑔1,… , 𝑔𝑛−𝑝+1)

)
,

declared to be zero if 𝑝 > 𝑛 + 1, along with the cyclic operator

(𝑡𝜙)(𝑔1,… , 𝑔𝑛) = 𝜙
(
𝑆𝑔1 # (𝑔2,… , 𝑔𝑛, 1)

)
, (4.3)

turns the opposite 𝒪-moduleℳ into a cyclic one in the sense of Definition 1.1.

In particular, ℳ becomes a 𝑘-simplicial module, and a short computation
reveals the faces and degeneracies. Putting as a shorthand 𝑥 ∶= (𝑔1,… , 𝑔𝑛−1)
and 𝑦 ∶= (𝑔1,… , 𝑔𝑛+1) for 𝑔𝑗 ∈ 𝐻, one obtains:

(𝑑0𝜙)(𝑥) = (𝜇∙0𝜙)(𝑥) = 𝜙(1, 𝑔1,… , 𝑔𝑛−1),
(𝑑𝑖𝜙)(𝑥) = (𝜇∙𝑖𝜙)(𝑥) = 𝜙(𝑔1,… ,∆𝑔𝑖,… , 𝑔𝑛−1),
(𝑑𝑛𝜙)(𝑥) = (𝜇∙0𝑡𝜙)(𝑥) = 𝜙(𝑔1,… , 𝑔𝑛−1, 1),
(𝑠𝑗𝜙)(𝑦) = (𝑒∙𝑗+1𝜙)(𝑦) = 𝜙

(
𝑔1,… , 𝑔𝑗𝜀(𝑔𝑗+1),… , 𝑔𝑛+1

)
,

(4.4)

for 1 ≤ 𝑖 ≤ 𝑛 − 1 and 0 ≤ 𝑗 ≤ 𝑛, where 𝜙 ∈ℳ(𝑛). This allows to compute the
extra degeneracy by means of

(𝑠−1𝜙)(𝑦) = (𝑒∙0𝜙)(𝑦) = 𝑡
(
𝑒∙𝑛+1𝜙

)
(𝑦) = 𝜙

(
𝑆𝑔1 # (𝑔2,… , 𝑔𝑛+1)

)
. (4.5)
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According to Definition 1.2, one can then form the cyclic dual ℳ̂ as a cochain
complex induced by the following cofaces and codegeneracies:

(𝛿0𝜙)(𝑦) = 𝜙
(
𝑆𝑔1 # (𝑔2,… , 𝑔𝑛+1)

)
,

(𝛿𝑖𝜙)(𝑦) = 𝜙
(
𝑔1,… , 𝑔𝑖−1𝜀(𝑔𝑖),… , 𝑔𝑛+1

)
, 1 ≤ 𝑖 ≤ 𝑛 + 1,

(𝜎0𝜙)(𝑥) = 𝜙(1, 𝑔1,… , 𝑔𝑛−1),
(𝜎𝑗𝜙)(𝑥) = 𝜙(𝑔1,… ,∆𝑔𝑗,… , 𝑔𝑛−1), 1 ≤ 𝑗 ≤ 𝑛 − 1,

(4.6)

which, in addition, yields a cocyclic 𝑘-module when adding the inverse of (4.3),

(𝑡−1𝜙)(𝑔1,… , 𝑔𝑛) = 𝜙
(
𝑆𝑔𝑛 # (1, 𝑔1,… , 𝑔𝑛−1)

)
(4.7)

in degree 𝑛. As a consequence, one can prove:

Lemma 4.2. The cyclic dual ℳ̂ of the sequenceℳ = {ℳ(𝑛)}𝑛≥0 of 𝑘-modules,
whereℳ(𝑛) = Hom(𝐻⊗𝑛, 𝑘), with respect to the cyclic 𝑘-module defined by the
relations (4.3) and (4.4), yields a cochain complex computing Ext∙𝐻(𝑘, 𝑘). Defin-
ing on ℳ̂ the partial operadic composition

(𝜙◦𝑗𝜓)(𝑧)

∶=

⎧
⎪
⎨
⎪
⎩

𝜙
(
𝜓(𝑔1,… , 𝑔𝑞−1, 𝑔𝑞(1))𝑔

𝑞
(2), 𝑔

𝑞+1,… , 𝑔𝑝+𝑞−1
)

if 𝑗 = 1,
𝜙
(
𝑔1,… , 𝑔𝑗−2, 𝑔𝑗−1(1) 𝜓

(
𝑆𝑔𝑗−1(2) # (𝑔𝑗,… , 𝑔𝑗+𝑞−2, 𝑔𝑗+𝑞−1(1) )

)
,

𝑔𝑗+𝑞−1(2) , 𝑔𝑗+𝑞,… , 𝑔𝑝+𝑞−1
) if 2 ≤ 𝑗 ≤ 𝑝,

(4.8)

for 𝜙 ∈ ℳ̂(𝑝), 𝜓 ∈ ℳ̂(𝑞), and 𝑧 ∶= (𝑔1,… , 𝑔𝑝+𝑞−1), one obtains on ℳ̂ the
structure of a cosimplicial and cocyclic-compatible operad in 𝑘-𝐌𝐨𝐝.

Remark 4.3. If 𝜓 is a 0-cochain, with Hom(𝐻⊗0, 𝑘) ≃ 𝑘 one puts 𝜓 = 1𝑘, and
Eq. (4.8) has to be read as (𝜙◦11𝑘)(𝑔1,… , 𝑔𝑝−1) ∶= 𝜙(1, 𝑔1,… , 𝑔𝑝−1) along with
(𝜙◦𝑗1𝑘)(𝑔1,… , 𝑔𝑝−1) ∶= 𝜙(𝑔1,… ,∆𝑔𝑗−1,… , 𝑔𝑝−1) for all 2 ≤ 𝑗 ≤ 𝑝.

Proof of Lemma 4.2. That the cochain complex induced by Eqs. (4.6) com-
putes Ext∙𝐻(𝑘, 𝑘) directly follows by specialising [Ko3, §5] to Hopf algebras and
trivial coefficients combining themwith a cochain isomorphism obtained from
a higher order Hopf-Galois (resp. translation) map, the details of which being
omitted here.
That the partial compositions (4.8) yield an operadic structure in the sense

of §1.1, or, more concretely, fulfil the relations (1.1) is a somewhat longish but
standard check using the properties of an antipode along with 𝑆 = 𝑆−1 in this
case, similar to the computations that follow below.
Next, we prove that the vertical composition (4.8) is cosimplicial-compatible

with respect to the cosimplicial operators in Eqs. (4.6) in the sense of Definition
2.1. This is equally straightforward; we will therefore only check a few of them
in order to illustrate the computations involved. For example, for 𝑖 = 0 and
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2 ≤ 𝑗 ≤ 𝑝, one has
(
𝛿0(𝜙◦𝑗𝜓)

)
(𝑔1,… , 𝑔𝑝+𝑞) = (𝜙◦𝑗𝜓)

(
𝑆𝑔1 # (𝑔2,… , 𝑔𝑝+𝑞)

)

= (𝜙◦𝑗𝜓)
(
𝑆𝑔1(3) # (𝑔2,… , 𝑔𝑗), 𝑆𝑔1(2) # (𝑔𝑗+1,… , 𝑔𝑗+𝑞),

𝑆𝑔1(1) # (𝑔𝑗+𝑞+1,… , 𝑔𝑝+𝑞)
)

= 𝜙
(
𝑆𝑔1(4) # (𝑔2,… , 𝑔𝑗−1, 𝑔𝑗(1))𝜓

(
𝑆(𝑆𝑔1(3)𝑆𝑔

𝑗
(2)) # 𝑆𝑔1(2) # (𝑔𝑗+1,… ,

… , 𝑔𝑗+𝑞−1, 𝑔𝑗+𝑞(1) )
)
, 𝑆𝑔1(1) # (𝑔𝑗+𝑞(2) , 𝑔

𝑗+𝑞+1,… , 𝑔𝑝+𝑞)
)

= 𝜙
(
𝑆𝑔1(2) # (𝑔2,… , 𝑔𝑗−1, 𝑔𝑗(1))𝜓

(
𝑆𝑔𝑗(2) # (𝑔𝑗+1,… , 𝑔𝑗+𝑞−1, 𝑔𝑗+𝑞(1) )

)
,

𝑆𝑔1(1) # (𝑔𝑗+𝑞(2) , 𝑔
𝑗+𝑞+1,… , 𝑔𝑝+𝑞)

)

= 𝛿0𝜙
(
𝑔1,… , 𝑔𝑗−1, 𝑔𝑗(1)𝜓

(
𝑆𝑔𝑗(2) # (𝑔𝑗+1,… , 𝑔𝑗+𝑞−1, 𝑔𝑗+𝑞(1) )

)
,

𝑔𝑗+𝑞(2) , 𝑔
𝑗+𝑞+1,… , 𝑔𝑝+𝑞

)

=
(
(𝛿0𝜙)◦𝑗+1𝜓

)(
𝑔1,… , 𝑔𝑝+𝑞

)
,

and similarly (but easier) for 𝑗 = 1, as well as for the cases 1 ≤ 𝑖 ≤ 𝑗 − 1. This
proves the first line in (2.4), the other two being left to the reader, along with all
relations in (2.5). Let us, however, still check the middle line in (2.6): to begin
with, let 𝑗 − 1 < 𝑖 < 𝑗 + 𝑞 − 2 and 2 ≤ 𝑗 ≤ 𝑝. We have:

(
𝜎𝑖(𝜙◦𝑗𝜓)

)
(𝑔1,… , 𝑔𝑝+𝑞−2)

= (𝜙◦𝑗𝜓)
(
𝑔1,… ,∆𝑔𝑖,… , 𝑔𝑝+𝑞)

)

= 𝜙
(
𝑔1,… , 𝑔𝑗−2, 𝑔𝑗−1(1) 𝜓

(
𝑆𝑔𝑗−1(2) # (𝑔𝑗,… ,∆𝑔𝑖,… , 𝑔𝑗+𝑞−2, 𝑔𝑗+𝑞−1(1) )

)
,

𝑔𝑗+𝑞−1(2) , 𝑔𝑗+𝑞,… , 𝑔𝑝+𝑞−2
)

= 𝜙
(
𝑔1,… , 𝑔𝑗−2, 𝑔𝑗−1(1)

(
𝜎𝑖−𝑗+1𝜓

)(
𝑆𝑔𝑗−1(2) # (𝑔𝑗,… , 𝑔𝑗+𝑞−2, 𝑔𝑗+𝑞−1(1) )

)
,

𝑔𝑗+𝑞−1(2) , 𝑔𝑗+𝑞,… , 𝑔𝑝+𝑞−2
)

=
(
𝜙◦𝑗(𝜎𝑖−𝑗+1𝜓)

)(
𝑔1,… , 𝑔𝑝+𝑞−2

)
.

The case of 𝑖 = 𝑗 + 𝑞 − 1 follows easily. As for the case 𝑖 = 𝑗 − 1,
(
𝜎𝑗−1(𝜙◦𝑗𝜓)

)
(𝑔1,… , 𝑔𝑝+𝑞−2)

= (𝜙◦𝑗𝜓)
(
𝑔1,… ,∆𝑔𝑗−1,… , 𝑔𝑝+𝑞)

)

= 𝜙
(
𝑔1,… , 𝑔𝑗−2, 𝑔𝑗−1(1) 𝜓

(
𝑆𝑔𝑗−1(2) # (𝑔𝑗−1(3) , 𝑔

𝑗,… , 𝑔𝑗+𝑞−2, 𝑔𝑗+𝑞−1(1) )
)
,

𝑔𝑗+𝑞−1(2) , 𝑔𝑗+𝑞,… , 𝑔𝑝+𝑞−2
)

= 𝜙
(
𝑔1,… , 𝑔𝑗−2, 𝑔𝑗−1(1) 𝜓

(
1, 𝑆𝑔𝑗−1(2) # (𝑔𝑗,… , 𝑔𝑗+𝑞−2, 𝑔𝑗+𝑞−1(1) )

)
,

𝑔𝑗+𝑞−1(2) , 𝑔𝑗+𝑞,… , 𝑔𝑝+𝑞−2
)
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= 𝜙
(
𝑔1,… , 𝑔𝑗−2, 𝑔𝑗−1(1)

(
𝜎0𝜓

)(
𝑆𝑔𝑗−1(2) # (𝑔𝑗,… , 𝑔𝑗+𝑞−2, 𝑔𝑗+𝑞−1(1) )

)
,

𝑔𝑗+𝑞−1(2) , 𝑔𝑗+𝑞,… , 𝑔𝑝+𝑞−2
)

=
(
𝜙◦𝑗(𝜎0𝜓)

)(
𝑔1,… , 𝑔𝑝+𝑞−2

)
.

Similar computations can be made for 𝑗 = 1, which proves the middle line in
(2.6), the explicit check of the other two again being omitted. Let us conclude
by verifying (2.7), that is, that ℳ̂ is a cyclic operad with respect to 𝜏 = 𝑡−1 as in
(4.7). One directly sees for 2 ≤ 𝑗 ≤ 𝑝 and 𝜙 ∈ ℳ̂(𝑝), 𝜓 ∈ ℳ̂(𝑞) that

(
𝑡−1(𝜙◦𝑗𝜓)

)
(𝑔1,… , 𝑔𝑝+𝑞−1)

= (𝜙◦𝑗𝜓)
(
𝑆𝑔𝑝+𝑞−1 # (1, 𝑔1,… , 𝑔𝑝+𝑞−2)

)

= 𝜙
(
𝑆𝑔𝑝+𝑞−1(4) # (1, 𝑔1,… , 𝑔𝑗−3, 𝑔𝑗−2(1) )𝜓

(
𝑆(𝑆𝑔𝑝+𝑞−1(3) 𝑔𝑗−2(2) ) # 𝑆𝑔𝑝+𝑞−1(2) # (𝑔𝑗−1,

… , 𝑔𝑗+𝑞−3, 𝑔𝑗+𝑞−2(1) )
)
, 𝑆𝑔𝑝+𝑞−1(1) # (𝑔𝑗+𝑞−2(2) , 𝑔𝑗+𝑞−1,… , 𝑔𝑝+𝑞−2)

)

= 𝜙
(
𝑆𝑔𝑝+𝑞−1(2) # (1, 𝑔1,… , 𝑔𝑗−3, 𝑔𝑗−2(1) )𝜓

(
𝑆𝑔𝑗−2(2) # (𝑔𝑗−1,… , 𝑔𝑗+𝑞−3, 𝑔𝑗+𝑞−2(1) )

)
,

𝑆𝑔𝑝+𝑞−1(1) # (𝑔𝑗+𝑞−2(2) , 𝑔𝑗+𝑞−1,… , 𝑔𝑝+𝑞−2)
)

= 𝜙
(
𝑆𝑔𝑝+𝑞−1(2) #

(
1, 𝑔1,… , 𝑔𝑗−3, 𝑔𝑗−2(1) 𝜓

(
𝑆𝑔𝑗−2(2) # (𝑔𝑗−1,… , 𝑔𝑗+𝑞−3, 𝑔𝑗+𝑞−2(1) )

)
,

𝑔𝑗+𝑞−2(2) , 𝑔𝑗+𝑞−1,… , 𝑔𝑝+𝑞−2
))

= (𝑡−1𝜙)
(
𝑔1,… , 𝑔𝑗−3, 𝑔𝑗−2(1) 𝜓

(
𝑆𝑔𝑗−2(2) # (𝑔𝑗−1,… , 𝑔𝑗+𝑞−3, 𝑔𝑗+𝑞−2(1) )

)
,

𝑔𝑗+𝑞−2(2) , 𝑔𝑗+𝑞−1,… , 𝑔𝑝+𝑞−1
)

= (𝑡−1𝜙◦𝑗−1𝜓)(𝑔1,… , 𝑔𝑝+𝑞−1),
and likewise for the case 𝑗 = 1, which the first line in Eqs. (2.7). This concludes
the proof. □

Wrapping up, all conditions in Theorem 3.6 are met for the pair (𝒪,ℳ) de-
fined in (4.2), which therefore results in the following conclusion:

Corollary 4.4. The cohomology groups Ext∙𝐻(𝑘, 𝑘) for a Hopf algebra 𝐻 with
involutive antipode constitute a BV algebra.

See, however, the comments made in Remark 4.8.

4.2. 𝐄𝐱𝐭 acting on 𝐓𝐨𝐫 with 𝐂𝐨𝐭𝐨𝐫 as a resulting BV algebra. The preced-
ing subsection can be (linearly) dualised to the case inwhich the chain complex
computing Tor-groups can be seen as a cyclic oppositemodule over the cochain
complex computing Ext-groups, considered as an operad with multiplication.
Then, in an essentially analogous way, one can understand how the cyclic dual,
being Cotor in this case as the derived functor of the cotensor product, turns
into a BV algebra. This time, set

𝒪(𝑝) ∶= Hom(𝐻⊗𝑝, 𝑘), ℳ(𝑛) ∶= 𝐻⊗𝑛, (4.9)
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where in degree zero 𝒪(0) ∶= ℳ(0) ∶= 𝑘 as before. Again, we do not need
the explicit composition maps on 𝒪 but only the fact that it is an operad with
multiplication, with in this case (𝜇,1, 𝑒) =

(
𝜀◦𝜇, 𝜀, id𝑘). Specialising Theorem

6.2 in [Ko1] to the Hopf algebra case and trivial coefficients, we obtain:

Proposition 4.5. For all 1 ≤ 𝑖 ≤ 𝑛 − 𝑝 + 1 and 0 ≤ 𝑝 ≤ 𝑛, the operations

∙𝑖 ∶ 𝒪(𝑝)⊗ℳ(𝑛)→ℳ(𝑛 − 𝑝 + 1),

given by, for any 𝜙 ∈ 𝒪(𝑝) and (ℎ1,… , ℎ𝑛) ∈ℳ(𝑛),
𝜙∙𝑖(ℎ1,… , ℎ𝑛)
∶=

(
ℎ1,… , ℎ𝑖−1, 𝜙(ℎ𝑖(1),… , ℎ

𝑖+𝑝−1
(1) )ℎ𝑖(2)⋯ℎ𝑖+𝑝−1(2) , ℎ𝑖+𝑝,… , ℎ𝑛

)
,

declared to be zero if 𝑝 > 𝑛, along with

1𝑘∙𝑖(ℎ1,… , ℎ𝑛) ∶= (ℎ1,… , ℎ𝑖−1, 1𝐻 , ℎ𝑖,… , ℎ𝑛)

for elements in𝒪(0) = 𝑘 and 1 ≤ 𝑖 ≤ 𝑛+1, induce onℳ the structure of a unital
opposite 𝒪-module. Moreover, defining the extra operation

𝜙∙0(ℎ1,… , ℎ𝑛) =
(
𝜙
(
ℎ1(1),… , ℎ

𝑝−1
(1) , 𝑆(ℎ

1
(2)⋯ℎ𝑝−1(1) )

)
ℎ𝑝,… , ℎ𝑛

)
,

declared to be zero if 𝑝 > 𝑛 + 1, along with the cyclic operator

𝑡(ℎ1,… , ℎ𝑛) =
(
𝑆(ℎ1(2)⋯ℎ𝑛−1(2) ℎ

𝑛), ℎ1(1),… , ℎ
𝑛−1
(1)

)
(4.10)

turns the opposite 𝒪-moduleℳ into a cyclic one in the sense of Definition 1.1.

In particular,ℳ becomes a 𝑘-simplicial module, and again a short compu-
tation reveals the faces and degeneracies:

𝑑0(ℎ1,… , ℎ𝑛) = 𝜇∙0(ℎ1,… , ℎ𝑛) =
(
𝜀(ℎ1)ℎ2,… , ℎ𝑛

)
,

𝑑𝑖(ℎ1,… , ℎ𝑛) = 𝜇∙𝑖(ℎ1,… , ℎ𝑛) = (ℎ1,… , ℎ𝑖ℎ𝑖+1,… , ℎ𝑛),
𝑑𝑛(ℎ1,… , ℎ𝑛) = 𝜇∙0𝑡(ℎ1,… , ℎ𝑛) =

(
ℎ1,… , ℎ𝑛−1𝜀(ℎ𝑛)

)
,

𝑠𝑗(ℎ1,… , ℎ𝑛) = 𝑒∙𝑗+1(ℎ1,… , ℎ𝑛) = (ℎ1,… , ℎ𝑗, 1𝐻 , ℎ𝑗+1,… , ℎ𝑛),

(4.11)

for 1 ≤ 𝑖 ≤ 𝑛−1 and 0 ≤ 𝑗 ≤ 𝑛, which permits to compute the extra degeneracy:

𝑠−1(ℎ1,… , ℎ𝑛) = 𝑒∙0(ℎ1,… , ℎ𝑛)
= 𝑡

(
𝑒∙𝑛+1(ℎ1,… , ℎ𝑛)

)
=
(
𝑆(ℎ1(2)⋯ℎ𝑛(2)), ℎ

1
(1),… , ℎ

𝑛
(1)
)
.

(4.12)

The cyclic dual ℳ̂, considered as a cochain complex by using the prescriptions
of Eqs. (1.13), is hence induced by the following cofaces and codegeneracies:

𝛿0(ℎ1,… , ℎ𝑛) =
(
𝑆(ℎ1(2)⋯ℎ𝑛(2)), ℎ

1
(1),… , ℎ

𝑛
(1)
)
,

𝛿𝑖(ℎ1,… , ℎ𝑛) = (ℎ1,… , ℎ𝑖−1, 1𝐻 , ℎ𝑖,… , ℎ𝑛), 1 ≤ 𝑖 ≤ 𝑛 + 1,
𝜎0(ℎ1,… , ℎ𝑛) =

(
𝜀(ℎ1)ℎ2,… , ℎ𝑛

)
,

𝜎𝑗(ℎ1,… , ℎ𝑛) = (ℎ1,… , ℎ𝑗ℎ𝑗+1,… , ℎ𝑛), 1 ≤ 𝑗 ≤ 𝑛 − 1,

(4.13)
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which describes a cocyclic 𝑘-module when adding the inverse of (4.10) to it,
𝑡−1(ℎ1,… , ℎ𝑛) =

(
ℎ2(1),… , ℎ

𝑛
(1), 𝑆(ℎ

1ℎ2(2)⋯ℎ𝑛(2))
)

(4.14)

in degree 𝑛. All that is missing is now the cosimplicial and cocyclic-compatible
operadic composition on ℳ̂:

Lemma 4.6. The cyclic dual ℳ̂ ofℳ = {ℳ(𝑛)}𝑛≥0, whereℳ(𝑛) = 𝐻⊗𝑛, with re-
spect to the cyclic 𝑘-module structure defined by the Eqs. (4.10) and (4.11), yields a
cochain complex that computesCotor∙𝐻(𝑘, 𝑘). Defining on ℳ̂ the partial operadic
composition

𝑥◦𝑗𝑦 = {
(𝑔1,… , 𝑔𝑞−1, 𝑔𝑞ℎ1, ℎ2,… , ℎ𝑝) if 𝑗 = 1,(
ℎ1,… , ℎ𝑗−1𝑆(𝑔1(2)⋯ 𝑔𝑞(2)), 𝑔

1
(1),… , 𝑔

𝑞
(1)ℎ

𝑗,… , ℎ𝑝
)

if 2 ≤ 𝑗 ≤ 𝑝,
(4.15)

for 𝑥 ∶= (ℎ1,… , ℎ𝑝) ∈ ℳ̂(𝑝) and 𝑦 ∶= (𝑔1,… , 𝑔𝑞) ∈ ℳ̂(𝑞), one obtains on ℳ̂
the structure of a cosimplicial and cocyclic-compatible operad in 𝑘-𝐌𝐨𝐝.

Proof. Quite analogous to the proof of Lemma 4.2, restricting the content of
[Ko3, §3.2] to Hopf algebras and trivial coefficients, again using a cochain iso-
morphism obtained from a higher order Hopf-Galois map, results in the fact
that the cochain complex obtained from Eqs. (4.13) computes Cotor∙𝐻(𝑘, 𝑘). It
also follows by routine computations that the partial compositions (4.15) define
an operadic structure on ℳ̂. Again, that the so-defined operad is cosimplicial-
compatible with respect to the cosimplicial operators in Eqs. (4.13), will be car-
ried out in a few cases only. As an example, let us check the third line in (2.5):
to this end, let 𝑖 = 𝑗 = 𝑝 + 1. One has

(𝛿𝑝+1𝑥)◦𝑝+1𝑦
= (ℎ1,… , ℎ𝑝, 1)◦𝑝+1(𝑔1,… , 𝑔𝑞)
=
(
ℎ1,… , ℎ𝑝−1, ℎ𝑝𝑆(𝑔1(2)⋯ 𝑔𝑞(2)), 𝑔

1
(1),… , 𝑔

𝑞
(1)
)

=
(
𝑆(𝑔1(2)⋯ 𝑔𝑞(2)), 𝑔

1
(1),… , 𝑔

𝑞
(1)
)
◦1(ℎ1,… , ℎ𝑝)

= (𝛿0𝑦)◦1𝑥,
and similarly for all other relations concerning the cofaces 𝛿𝑖. Let us, neverthe-
less, still explicitly prove one of the relations in (2.6) to exemplify the behaviour
of the codegeneracies. In case 1 ≤ 𝑗 ≤ 𝑝 and 𝑗−1 < 𝑖 ≤ 𝑗+𝑞−2, one computes

𝜎𝑖(𝑥◦𝑗𝑦)
= 𝜎𝑖

(
ℎ1,… , ℎ𝑗−1𝑆(𝑔1(2)⋯ 𝑔𝑞(2)), 𝑔

1
(1),… , 𝑔

𝑞
(1)ℎ

𝑗,… , ℎ𝑝
)

=
(
ℎ1,… , ℎ𝑗−1𝑆(𝑔1(2)⋯ 𝑔𝑞(2)), 𝑔

1
(1),… , 𝑔

𝑖−𝑗+1
(1) 𝑔𝑖−𝑗+2(1) ,… , 𝑔𝑞(1)ℎ

𝑗,… , ℎ𝑝
)

=
(
ℎ1,… , ℎ𝑗−1𝑆(𝑔1(2)⋯ 𝑔𝑞(2)), 𝑔

1
(1),… , 𝑔

𝑖−𝑗+1
(1) 𝑔𝑖−𝑗+2(1) ,… , 𝑔𝑞(1)ℎ

𝑗,… , ℎ𝑝
)

= (ℎ1,… , ℎ𝑝)◦𝑗(𝑔1,… , 𝑔𝑖−𝑗+1𝑔𝑖−𝑗+2,… , 𝑔𝑞)
= 𝑥◦𝑗(𝜎𝑖−𝑗+1𝑦),
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and similarly for the case 𝑖 = 𝑗 + 𝑞 − 2, the only interesting instance being of
what happens at the border 𝑖 = 𝑗 − 1. Using 𝑆2 = id, one has:

𝜎𝑗−1(𝑥◦𝑗𝑦)
= 𝜎𝑗−1

(
ℎ1,… , ℎ𝑗−1𝑆(𝑔1(2)⋯ 𝑔𝑞(2)), 𝑔

1
(1),… , 𝑔

𝑞
(1)ℎ

𝑗,… , ℎ𝑝
)

=
(
ℎ1,… , ℎ𝑗−1𝑆(𝑔1(2)⋯ 𝑔𝑞(2))𝑔

1
(1), 𝑔

2
(1),… , 𝑔

𝑞
(1)ℎ

𝑗,… , ℎ𝑝
)

=
(
ℎ1,… , ℎ𝑗−1𝑆(𝑔2(2)⋯ 𝑔𝑞(2)), 𝜀(𝑔

1)𝑔2(1),… , 𝑔
𝑞
(1)ℎ

𝑗,… , ℎ𝑝
)

= (ℎ1,… , ℎ𝑝)◦𝑗
(
𝜀(𝑔1)𝑔2,… , 𝑔𝑞

)

= 𝑥◦𝑗(𝜎0𝑦),
which finishes the proof of the middle line in relations (2.6). Let us conclude
by checking the cyclic operad condition (2.7) with respect to 𝜏 = 𝑡−1 given in
(4.14). For 𝑥, 𝑦 ∈ ℳ̂ as above, one computes

𝑡−1(𝑥◦1𝑦)
= 𝑡−1

(
(ℎ1,… , ℎ𝑝)◦1(𝑔1,… , 𝑔𝑞)

)

= 𝑡−1(𝑔1,… , 𝑔𝑞ℎ1,… , ℎ𝑝)

=
(
𝑔2(1),… , 𝑔

𝑞−1
(1) , 𝑔

𝑞
(1)ℎ

1
(1), ℎ

2
(1),… , ℎ

𝑝
(1), 𝑆(𝑔

1𝑔2(2)⋯ 𝑔𝑞(2)ℎ
1
(2)⋯ℎ𝑝(2))

)

=
(
𝑔2(1),… , 𝑔

𝑞−1
(1) , 𝑔

𝑞
(1)ℎ

1
(1), ℎ

2
(1),… , ℎ

𝑝
(1), 𝑆(ℎ

1
(2)⋯ℎ𝑝(2))𝑆(𝑔

1𝑔2(2)⋯ 𝑔𝑞(2))
)

=
(
𝑔2(1),… , 𝑔

𝑞−1
(1) , 𝑔

𝑞
(1)𝑆

(
ℎ2(2)⋯ℎ𝑝(2)𝑆(ℎ

1ℎ2(3)⋯ℎ𝑝(3))(2)
)
, ℎ2(1),… , ℎ

𝑝
(1),

𝑆(ℎ1ℎ2(3)⋯ℎ𝑝(3))(1)𝑆(𝑔
1𝑔2(2)⋯ 𝑔𝑞(2))

)

=
(
𝑔2(1),… , 𝑔

𝑞
(1), 𝑆(𝑔

1𝑔2(2)⋯ 𝑔𝑞(2))
)
◦𝑞
(
ℎ2(1),… , ℎ

𝑝
(1), 𝑆(ℎ

1ℎ2(2)⋯ℎ𝑝(2))
)

= 𝑡−1𝑦◦𝑞𝑡−1𝑥,
and likewise for the cases 2 ≤ 𝑗 ≤ 𝑞. Hence, Eqs. (2.7) are true, which con-
cludes the proof. □

As in the preceding example, again all conditions in Theorem 3.6 are met for
the pair (𝒪,ℳ) defined in (4.9), and therefore we can state:
Corollary 4.7. The cohomology groups Cotor∙𝐻(𝑘, 𝑘) for a Hopf algebra 𝐻 with
involutive antipode constitute a BV algebra.

Remark 4.8. The existence of BV structures as stated in Corollaries 4.4 & 4.7
has been observed before: alternatively, the BV structure on Cotor-groups can
be obtained by defining the structure of a cyclic operad with multiplication on
the relevant cochain complex. This has been dealt with first in [Me], and can
be constructed in an essentially analogous way for Ext-groups, see [Ko2].
As hinted at at the beginning of this example section, the two preceding sub-

sections can be generalised not only to Hopf algebroids but also more general
coefficients than the ground ring 𝑘 can be considered, see [Ko3] for a detailed
account. The Gerstenhaber algebra structure, e.g., on Ext-groups essentially
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asks for (braided commutative resp. cocommutative) monoids resp. comonoids
in the monoidal centre of left𝐻-modules as coefficients, see [FioKo] for quite a
general approach in extension categories in the spirit of Schwede [Sch], whereas
for Cotor-groups one deals, in a similar way, with the monoidal category of left
𝐻-comodules. A cyclic operator 𝜏 on the complexes computingExt (resp.Cotor)
with values in more general coefficients, however, requires these to be objects
not in a monoidal centre but rather in a bimodule category centre. This is to say,
a centre construction when considering the categories of left 𝐻-modules resp.
𝐻-comodules as bimodule categories over its respective opposite by means of a
left and right (sort of) adjoint action induced by the respective internal left and
right homs: see [Ko4] for an approach in the framework of Hopf algebroids.
How these two properties fit together to produce BV structures on cohomology
with general coefficients, i.e., objects being simultaneously monoidally central
and bimodule central is an open question currently under examination.
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