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Finite height subgroups of extended
admissible groups

Hoang Thanh Nguyen

Abstract. We give a characterization for finite height subgroups in rela-
tively hyperbolic groups by showing that a finitely generated, undistorted
subgroup𝐻 of a relatively hyperbolic group (𝐺, ℙ)has finite height if and only
𝐻∩𝑔𝑃𝑔−1 has finite height in 𝑔𝑃𝑔−1 for each conjugate of peripheral subgroup
in ℙ. Additionally, we prove that the concepts of finite height and strongly
quasiconvexity are equivalent within the class of extended admissible groups.
This class includes both the fundamental groups of non-geometric 3-mani-
folds and Croke-Kleiner admissible groups.
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1. Introduction
In the field of geometric group theory, one way to better understand the

structure of a group 𝐺 is to examine its subgroups. One can gain insight into
the ambient group by studying subgroups 𝐻 ≤ 𝐺 whose geometry reflects
that of 𝐺. One successful example of this approach is the study of quasicon-
vex subgroups of hyperbolic groups. It has been proven by Gitik, Mitra, Rips,
and Sageev in [12] that quasiconvex subgroups of hyperbolic groups have finite
height. Roughly speaking, finite height is a measure of how far a subgroup is
from being malnormal. It is useful in studying residual finiteness, cubulability
of hyperbolic groups, and relatively hyperbolic groups [1, 2, 15].

Definition 1.1 (Height). Let 𝐻 be a finitely generated subgroup of a finitely
generated group 𝐺. If 𝐻 is finite the height of 𝐻 is 0. Otherwise the height of
𝐻 in 𝐺 is the largest 𝑛 so that there are distinct cosets {𝑔1𝐻,… , 𝑔𝑛𝐻} so that the
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intersection
⋂𝑔𝑖𝐻𝑔−1𝑖 is infinite. If there is no largest 𝑛 we say the height is

infinite.

Definition 1.2. Let𝐻 ≤ 𝐺 be a pair of finitely generated groups, and let 𝒮 and
𝒜 be finite generating sets of 𝐺 and 𝐻 respectively. 𝐻 is called undistorted in
𝐺 if the inclusion map 𝐻 → 𝐺 induces a quasi-isometric embedding from the
Cayley graph Γ(𝐻,𝒜) into the Cayley graph Γ(𝐺, 𝒮).
We remark that undistorted subgroups are independent of the choice of finite

generating sets.

Our first result characterizes finite height subgroups in relatively hyperbolic
groups.

Theorem1.3. Let (𝐺, ℙ) be a finitely generated relatively hyperbolic group and𝐻
undistorted subgroup of𝐺. Then𝐻 has finite height in𝐺 if and only if𝐻∩𝑔𝑃𝑔−1
has finite height in 𝑔𝑃𝑔−1 for each conjugate 𝑔𝑃𝑔−1 of peripheral subgroup in ℙ.

Outside hyperbolic settings, quasiconvexity is not preserved under quasi-
isometry. This means that we can not define quasiconvex subgroups of a non-
hyperbolic group 𝐺 which are independent of the choice of finite generating
set for 𝐺. In [20], Tran introduces a theory regarding strongly quasiconvex sub-
groups of any finitely generated group. Strong quasiconvexity is independent
of the chosen finite generating set of the group, and it coincides with quasicon-
vexity when the group is hyperbolic.

Definition 1.4. Let 𝐺 be a finitely generated group and 𝐻 a subgroup of 𝐺.
We say 𝐻 is strongly quasiconvex in 𝐺 if for any 𝐿 ≥ 1, 𝐶 ≥ 0 there exists
𝑀 = 𝑀(𝐿, 𝐶) such that every (𝐿, 𝐶)–quasi-geodesic in 𝐺 with endpoints in 𝐻
is contained in the𝑀–neighborhood of𝐻

We remark that the term “Morse subgroup" often refers to the same con-
cept as strongly quasiconvex. For instance, the concept of strongly quasiconvex
has also been independently introduced by Genevois in [11] under the name
Morse subgroup. In many specific contexts, it is known that many subgroups
are strongly quasiconvex (or Morse). For example, in the context of relatively
hyperbolic groups, it has been shown that peripheral subgroups of relatively
hyperbolic groups [10] are Morse, and hyperbolically embedded subgroups are
Morse [18].
Tran in [20] generalizes the result of [12] by showing that strongly quasi-

convex subgroups in any finitely generated group have finite height. A natural
and reasonable question arises: is the converse true? That is, does finite height
imply strong quasiconvexity? If the answer is affirmative, then it would be pos-
sible to characterize the strongly quasi-convex subgroups of a finitely generated
group using solely group theoretic notions. A counter-example to the above
question is easy to find, for example, the fundamental group of a torus bundle
𝑀 over the circle with Anosov monodromy contains finite height subgroups
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that are not strongly quasiconvex [17]. The main result in [17] shows that hav-
ing finite height and strong quasiconvexity are equivalent for non-geometric 3-
manifold groups. In this paper, we extend this result to a newly introduced class
of groups called extended admissible groups [16]. Extended admissible groups
possess a graph of groups decomposition that generalizes any non-geometric
3-manifold and Croke–Kleiner admissible groups [6].
Herewe provide a brief discussion of extended admissible groups. For amore

detailed definition, please refer to Definition 4.1. Let𝑀 be a non-geometric 3-
manifold. The torus decomposition of 𝑀 yields a nonempty minimal union
𝒯 ⊂ 𝑀 of disjoint essential tori, unique up to isotopy, such that each compo-
nent𝑀𝑣 of𝑀∖𝒯, called a piece, is either Seifert fibered or hyperbolic. There is
an induced graph of groups decomposition 𝒢 of 𝜋1(𝑀) with underlying graph
Γ as follows. For each piece 𝑀𝑣, there is a vertex 𝑣 of Γ with vertex group
𝜋1(𝑀𝑣). For each torus 𝑇𝑒 ∈ 𝒯 contained in the closure of pieces 𝑀𝑣 and
𝑀𝑤, there is an edge 𝑒 of Γ between vertices 𝑣 and 𝑤. The associated edge
group is 𝜋1(𝑇𝑒) ≅ ℤ2 and the edge monomorphisms are the maps induced by
inclusion. Croke–Kleiner defined the class of admissible groups, which have
a graph of groups decomposition generalizing that of graph manifolds [6]. In
the extended admissible group, we allow any ℤ-by-hyperbolic group instead of
a Seifert fibered piece, and any toral relatively hyperbolic group instead of a
hyperbolic 3-manifold piece.
The following theorem generalizes the main result of [17], but with a com-

pletely different proof. It’s worth noting that the strategy employed in [17] is
not applicable in this more general setting.

Theorem 1.5 (Finite height ⟺ strongly quasiconvex). Let 𝐺 be an extended
admissible group. Suppose that 𝐻 is a finitely generated, undistorted subroup of
𝐺. Then𝐻 has finite height in 𝐺 if and only if𝐻 is strongly quasiconvex in 𝐺.

Acknowledgments. We would like to thank Wenyuan Yang and Hung Cong
Tran for their helpful conversations. The author was partially supported by
the National Key Program for the development of Mathematics in the period
from 2021 to 2030 under grant number B2024-CTT-04. We thank the referee for
careful reading of the paper and for suggestions that improved the exposition.

2. Preliminaries
In this section, we review some concepts in geometric group theory that will

be used throughout the paper.
We assume familiarity with Bass-Serre theory; see [19] for details. However,

to fix notation and terminology, we give some brief definitions.
We first establish some terminology regarding graphs. A graph Γ consists

of a set 𝑉Γ of vertices, a set 𝐸Γ of oriented edges, and maps 𝜄, 𝜏 ∶ 𝐸Γ → 𝑉Γ.
There is a fixed-point free involution 𝐸Γ → 𝐸Γ, taking an edge 𝑒 ∈ 𝐸Γ such
that 𝜄𝑒 = 𝑣 and 𝜏𝑒 = 𝑤 to an edge 𝑒 satisfying 𝜄𝑒 = 𝑤 and 𝜏𝑒 = 𝑣. We also write
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𝑒+ and 𝑒− to denote 𝜏𝑒 and 𝜄𝑒 respectively. An unoriented edge of Γ is the pair
{𝑒, 𝑒}.
Each connected graph can be identified with a metric space by equipping its

topological realization with the pathmetric in which each edge has length one.
A combinatorial path in 𝑋 is a path 𝑝 ∶ [0, 𝑛] → 𝑋 for some 𝑛 ∈ ℕ such that
for every integer 𝑖, 𝑝(𝑖) is a vertex, and 𝑝|[𝑖,𝑖+1] is either constant or traverses an
edge of 𝑋 at unit speed. Every geodesic between vertices of 𝑋 is necessarily a
combinatorial path.
Definition 2.1. A graph of groups 𝒢 = (Γ, {𝐺𝑣}, {𝐺𝑒}, {𝜏𝑒}) consists of the fol-
lowing data:

(1) a graph Γ, called the underlying graph,
(2) a group 𝐺𝑣 for each vertex 𝑣 ∈ 𝑉Γ, called a vertex group,
(3) a subgroup 𝐺𝑒 ≤ 𝐺𝑒− for each edge 𝑒 ∈ 𝐸Γ, called an edge group,
(4) an isomorphism 𝜏𝑒 ∶ 𝐺𝑒 → 𝐺𝑒 for each 𝑒 ∈ 𝐸Γ such that 𝜏−1𝑒 = 𝜏𝑒,

called an edge map.
The fundamental group 𝜋1(𝒢) of a graph of groups 𝒢 is as defined in [19].
We use the following notation for trees of spaces as in [7].

Definition 2.2. A tree of spaces 𝑋 ∶= 𝑋
(
𝑇, {𝑋𝑣}𝑣∈𝑉𝑇 , {𝑋𝑒}𝑒∈𝐸𝑇 , {𝛼𝑒}𝑒∈𝐸𝑇

)
con-

sists of:
(1) a simplicial tree 𝑇, called the base tree;
(2) a metric space 𝑋𝑣 for each vertex 𝑣 of 𝑇, called a vertex space;
(3) a subspace 𝑋𝑒 ⊆ 𝑋𝑒− for each oriented edge 𝑒 (with the initial vertex

denoted by 𝑒−) of 𝑇, called an edge space;
(4) maps 𝛼𝑒 ∶ 𝑋𝑒 → 𝑋𝑒 for each edge 𝑒 ∈ 𝐸𝑇, such that 𝛼𝑒◦𝛼𝑒 = id𝑋𝑒 and

𝛼𝑒◦𝛼𝑒 = id𝑋𝑒 .
We consider𝑋 as a metric space as follows: we take the disjoint union of all the
𝑋𝑣 and then, for all unoriented edges {𝑒, 𝑒} and every 𝑥 ∈ 𝑋𝑒, we attach a unit
interval between 𝑥 ∈ 𝑋𝑒 and 𝛼𝑒(𝑥) ∈ 𝑋𝑒. Each edge and vertex space can be
naturally identified with a subspace of 𝑋.
We typically omit the data 𝑋𝑣, 𝑋𝑒 and 𝛼𝑒 from the notation and write a tree

of spaces as the pair (𝑋, 𝑇), or simply as a space 𝑋. We consider 𝑋 as a metric
space by equipping it with the induced path metric. We now explain how to
associate a tree of spaces with a graph of finitely generated groups.
Let 𝒢 = (Γ, {𝐺𝑣}, {𝐺𝑒}, {𝜏𝑒}) be a graph of finitely generated groups. We recall

the associated Bass–Serre tree 𝑇 is constructed so that vertices (resp. edges) of
𝑇 correspond to left cosets of vertex (resp. edge) groups of 𝒢.
We now describe a tree of spaces 𝑋. For each 𝑥 ∈ 𝑉Γ ⊔ 𝐸Γ, we fix a finite

generating set 𝑆𝑥 of 𝐺𝑥, chosen such that 𝜏𝑒(𝑆𝑒) = 𝑆𝑒. We now define a graph
𝑊 with vertex set 𝑉Γ × 𝐺 and edge set

{((𝑣, 𝑔), (𝑣, 𝑔𝑠)) ∣ 𝑔 ∈ 𝐺, 𝑠 ∈ 𝑆𝑣}.
The components of𝑊 are in bijective correspondence with left cosets of vertex
groups of 𝒢, and hence with vertices of 𝑇. If 𝑣 ∈ 𝑉𝑇 corresponds to the coset
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𝑔𝐺𝑣, we define 𝑋𝑣 to be the component of𝑊 with vertex set {(𝑣, ℎ) ∣ ℎ ∈ 𝑔𝐺𝑣}.
We note that the component of𝑊 corresponding to a coset 𝑔𝐺𝑣 is isometric to
the Cayley graph of 𝐺𝑣 with respect to 𝑆𝑣.
Suppose 𝑒 ∈ 𝐸𝑇 corresponds to a coset 𝑔𝐺𝑒. By the definition of 𝑇, if 𝑣 = 𝑒−

and 𝑤 = 𝑒+, then 𝑣 ∶= 𝑒− and 𝑤̃ ∶= 𝑒+ correspond to the cosets 𝑔𝐺𝑣 and 𝑔𝐺𝑤.
We define the edge space 𝑋𝑒 to be

{(𝑣, ℎ) ∣ ℎ ∈ 𝑔𝐺𝑒} ⊆ 𝑋𝑣.
The attaching map 𝛼𝑒 ∶ 𝑋𝑒 → 𝑋𝑤̃ is defined by 𝛼𝑒 ∶ (𝑣, ℎ) ↦ (𝑤, 𝑔𝜏𝑒(𝑔−1ℎ)),
where 𝜏𝑒 ∶ 𝐺𝑒 → 𝐺𝑒 ≤ 𝐺𝑤 is the edge map of 𝒢. Finally, we equip each 𝑋𝑒
with the word metric with respect to 𝑆𝑒. (More precisely, we require that the

map𝑋𝑒
(𝑣,ℎ)↦𝑔−1ℎ
,,,,,,,,,,→ 𝐺𝑒 is an isometry when𝐺𝑒 is equipped with the wordmetric

with respect to 𝑆𝑒.)

Definition 2.3. Given a graph of finitely generated groups 𝒢, the tree of spaces
𝑋 constructed above is the tree of spaces associated with the graph of groups 𝒢.

The tree of spaces𝑋 is a proper geodesicmetric space (see Lemma2.13 of [7]).
The natural action of 𝐺 on𝑊 (fixing the 𝑉Γ factor) induces an action of 𝐺 on
𝑋. Applying the Milnor-Schwarz lemma we deduce:

Proposition 2.4 (Section 2.5 of [7]). Suppose 𝐺, 𝑇, and 𝑋 are as above. Then
there exists a quasi-isometry 𝑓 ∶ 𝐺 → 𝑋 and 𝐴 ≥ 0 such that

𝑑Haus (𝑓 (𝑔𝐺𝑥) , 𝑋𝑥̃) ≤ 𝐴
for all 𝑥̃ ∈ 𝑉𝑇 ⊔ 𝐸𝑇, where 𝑥̃ corresponds to the coset 𝑔𝐺𝑥.

3. Characterization of finite height subgroups in relatively
hyperbolic groups
In this section, we are going to prove Theorem 1.3.
The notion of relatively hyperbolic groups can be formulated from a number

of equivalent ways. Here we shall present a quick definition due to Bowditch
[5].
Let 𝐺 be a finitely generated group with a finite collection of subgroups ℙ.

Fixing a finite generating set 𝑆 for 𝐺, we consider the corresponding Cayley
graph Γ(𝐺, 𝑆) equipped with path metric 𝑑𝑆 and we denote by |𝑔|𝑆 = 𝑑𝑆(1, 𝑔)
for the word length.
Denote by 𝒫 = {𝑔𝑃 ∶ 𝑔 ∈ 𝐺, 𝑃 ∈ ℙ} the collection of peripheral cosets.

Let 𝐺̂(𝒫) be the coned-off Cayley graph obtained from Γ(𝐺, 𝑆) as follows. A
cone point denoted by 𝑐(𝑃) is added for each peripheral coset 𝑃 ∈ 𝒫 and is
joined by half edges to each element in 𝑃. The union of two half edges at a
cone point is called a peripheral edge. Denote by 𝑑𝑆 the induced path metric
after coning-off. The pair (𝐺, ℙ) is said to be relatively hyperbolic if the coned-
off Cayley graph 𝐺̂(𝒫) is hyperbolic and fine: any edge is contained in finitely
many simple circles with uniformly bounded length.
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Lemma 3.1. [20, Proposition 3.7] Assuming 𝑃 is a finitely generated subgroup
of a finitely generated group 𝐺. Let 𝑆 be a finite generating set of 𝐺 and𝑈 a finite
generating set of 𝑃 such that 𝑈 is a subset of 𝑆. If 𝑃 is strongly quasiconvex in 𝐺
then for any 𝐾 ≥ 1, 𝐿 ≥ 0 there is a constant 𝐶 > 0 depending on 𝐾, 𝐿 such that
the following holds. If 𝛾 ∶ [0,∞) → Γ(𝐺, 𝑆) is a continuous (𝐾, 𝐿)–quasigeodesic
ray that lies in some finite neighborhood of Γ(𝑃,𝑈), then there is 𝑡 > 0 such that
𝛾|[𝑡,∞) lies in the 𝐶–neighborhood of Γ(𝑃,𝑈).

In [20, Proposition 3.7], the statement is for geodesic rays 𝛾, but a similar
proof also holds when 𝛾 is a continuous (𝐾, 𝐿)-quasigeodesic ray. We leave the
details to the reader.
To prove Theorem 1.3, we also need the following lemma.

Lemma 3.2. Let𝐻 be a finitely generated, undistorted subgroup of a finitely gen-
erated group 𝐺, and 𝑃 be a strongly quasiconvex subgroup of 𝐺. Let 𝑆 be a finite
generating set of 𝐺 and𝑈 a finite generating set of𝐻 such that𝑈 is a subset of 𝑆.
Then there is a constant 𝐶 > 0 such that

∀𝑔 ∈ 𝐺, if𝐻 ∩ 𝑔𝑃𝑔−1 is infinite⟹𝑑𝑆(𝐻, 𝑔𝑃) ≤ 𝐶

Proof. Since 𝑈 is a subset of 𝑆, we consider the Cayley graph Γ(𝐺, 𝑆) of 𝐺
contains the Cayley graph Γ(𝐻,𝑈) of 𝐻 as a subgraph. Since 𝐻 is an undis-
torted subgroup of𝐺, the inclusionmap 𝑖 ∶ Γ(𝐻,𝑈) → Γ(𝐺, 𝑆) is a (𝐾, 𝐿)–quasi-
isometric embedding for some 𝐾 ≥ 1 and 𝐿 ≥ 0.
Let 𝑔 ∈ 𝐺 so that 𝐻 ∩ 𝑔𝑃𝑔−1 is infinite. We choose {ℎ𝑖} as a sequence of

distinct group elements in𝐻∩𝑔𝑃𝑔−1. For each 𝑖 let 𝛼𝑖 be a geodesic in Γ(𝐻,𝑈)
connecting the identity and ℎ𝑖. Therefore, 𝛼𝑖 is a (𝐾, 𝐿)–quasi-geodesic in the
Cayley graph Γ(𝐺, 𝑆) since the inclusion Γ(𝐻,𝑈) → Γ(𝐺, 𝑆) is a (𝐾, 𝐿)-quasi-
isometric embedding.
Since 𝑃 is a strongly quasiconvex subgroup of 𝐺, there exists 𝑀 = 𝑀(𝐾, 𝐿)

such that every (𝐾, 𝐿)–quasi-geodesic in Γ(𝐺, 𝑆) with endpoints in 𝑃 is con-
tained in the 𝑀–neighborhood of 𝑃. Note that the endpoints of 𝛼𝑖 both lie in
the |𝑔|𝑆–neighborhood of the left coset 𝑔𝑃, and hence the path 𝛼𝑖 lies in the
𝐶1–neighborhood of 𝑔𝑃 with respect to the metric 𝑑𝑆 for some constant 𝐶1 only
depend on 𝐾, 𝐿,𝑀(𝐾, 𝐿) and |𝑔|𝑆.
Applying Arzela–Ascoli Theorem to the proper metric space Γ(𝐻,𝑈) and

the collection of geodesics {𝛼𝑖} in Γ(𝐻,𝑈), we obtain a sub-sequence of {𝛼𝑖}
converges in the compact-open topology to a geodesic ray 𝛼 in the Cayley graph
Γ(𝐻,𝑈)which also lies in the𝐶1–neighborhood of 𝑔𝑃with respect to themetric
𝑑𝑆 (as 𝛼𝑖 does so).
Since Γ(𝐻,𝑈) is included in Γ(𝐺, 𝑆) as a (𝐾, 𝐿)-quasi-isometric embedding,

we know that 𝛼 is also a (𝐾, 𝐿)-quasi-geodesic ray in Γ(𝐺, 𝑆). As 𝛼 belongs to
the 𝐶1–neighborhood of 𝑔𝑃 with respect to the metric 𝑑𝑆, we then can apply
Lemma 3.1 to conclude that there exists a value of 𝑡 such that 𝛼|[𝑡,∞) lies in the
𝐶-neighborhood of 𝑔𝑃 where 𝐶 is also the constant given by Lemma 3.1 which
is independent with 𝐶1. This indicates that 𝑑𝑆(𝐻, 𝑔𝑃) ≤ 𝐶. □
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Proof of Theorem 1.3. The implication [⟹] follows from Proposition 2.2 in
[17]. For the rest of the proof, we are going to verify the implication [⟸].
Assume that the subgroup 𝐻 ∩ 𝑔𝑃𝑔−1 has finite height in 𝑔𝑃𝑔−1 for each con-
jugate 𝑔𝑃𝑔−1 of peripheral subgroup in ℙ. We would like to show that 𝐻 has
finite height in 𝐺.
Pick finite generating sets 𝑆, 𝑇 for𝐺 and𝐻 respectively so that𝑇 is a subset of

𝑆. [10, Lemma 4.15 and Theorem A.1] implies that each conjugate of a periph-
eral subgroup inℙ is strongly quasiconvex, and hence we can apply Lemma 3.2
to each 𝑃 ∈ ℙ to obtain a constant 𝐶 as in Lemma 3.2 . Since there are finitely
many peripheral subgroups in ℙ, we can also enlarge 𝐶 so that Lemma 3.2 ap-
plies to all peripheral subgroups 𝑃 ∈ ℙ.
To show𝐻 has finite height in 𝐺, we must show that there is a uniform con-

stant 𝑁 so that whenever there are distinct left cosets 𝑔1𝐻, 𝑔2𝐻,⋯ , 𝑔𝑛𝐻 with⋂𝑛
𝑖=1 𝑔𝑖𝐻𝑔

−1
𝑖 is infinite then 𝑛 ≤ 𝑁. This uniform constant 𝑁 will be defined

explicitly during the proof. We’ll consider the following cases.
Case 1: The subgroup

⋂𝑛
𝑖=1 𝑔𝑖𝐻𝑔

−1
𝑖 is not contained in any conjugate of a

peripheral subgroup.
Using [13, Theorem 1.5] and [14, Corollary 8.5], we can find a positive con-

stant 𝐷 that is independent of 𝑛 and the choices of 𝑔𝑖 so that the ball of radius
𝐷 about the identity in the Cayley graph Γ(𝐺, 𝑆) intersects every left coset 𝑔𝑖𝐻.
Therefore, the number 𝑛 is bounded above by the number of group elements of
a ball with a radius of 𝐷 in the Cayley graph Γ(𝐺, 𝑆).
Case 2: The subgroup

⋂𝑛
𝑖=1 𝑔𝑖𝐻𝑔

−1
𝑖 is contained within a conjugate 𝑔𝑃𝑔−1 of

a peripheral subgroup 𝑃 ∈ ℙ.
Consider the closed ball 𝐵(1, 𝐶) in the Cayley graph Γ(𝐺, 𝑆). For each 𝑧 ∈

𝐵(1, 𝐶) ∩𝐺, by our assumption, 𝑧𝐻𝑧−1 ∩𝑃 has finite height in 𝑃, and hence let
us denote the height of 𝑧𝐻𝑧−1 ∩ 𝑃 in 𝑃 by 𝑛𝑧. Define

𝑁 ∶=
∑

𝑧∈𝐵(1,𝐶)∩𝐺
𝑛𝑧

This constant is well-defined since 𝐵(1, 𝐶) ∩ 𝐺 is finite.
Claim: 𝑛 ≤ 𝑁.
For each 𝑖 ∈ {1, 2, … , 𝑛}, we let 𝑘𝑖 ∶= 𝑔−1𝑔𝑖. Then 𝑘1𝐻, 𝑘2𝐻,… , 𝑘𝑛𝐻 are

distinct left cosets and
⋂𝑘𝑖𝐻𝑘−1𝑖 is an infinite subgroup in 𝑃. Additionally, the

subgroup𝐻 ∩ 𝑘−1𝑖 𝑃𝑘𝑖 is infinite. According to Lemma 3.2, we have
𝑑𝑆(𝐻, 𝑘−1𝑖 𝑃) < 𝐶

Thus, there is a group element 𝑧𝑖 with |𝑧𝑖|𝑆 < 𝐶 such that 𝑘𝑖 ∈ 𝑃𝑧𝑖𝐻.
For each group element 𝑧 in 𝐵(1, 𝐶) ∩ 𝐺, we define

𝐼𝑧 = {𝑢1, 𝑢2,⋯ , 𝑢𝑚}
be the set of elements in {𝑘1, 𝑘2,⋯ , 𝑘𝑛} such that each 𝑢𝑖 is an element in the
double coset 𝑃𝑧𝐻.
Note that the set 𝐼𝑧 may be empty for 𝑧 ∈ 𝐵(1, 𝐶) ∩ 𝐺 but 𝐼𝑧𝑖 is non-empty

since it contains 𝑘𝑖. We observe that𝑚 ≤ 𝑛𝑧. Indeed, for each 𝑖 ∈ {1, 2, … ,𝑚},
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since 𝑢𝑖 ∈ 𝑃𝑧𝐻, there are ℎ𝑖 ∈ 𝐻 and 𝑝𝑖 ∈ 𝑃 such that 𝑢𝑖 = 𝑝𝑖𝑧ℎ𝑖. Therefore,
𝑢𝑖𝐻𝑢−1𝑖 ∩ 𝑃 = (𝑝𝑖𝑧ℎ𝑖)𝐻(𝑝𝑖𝑧ℎ𝑖)−1 ∩ 𝑃 = 𝑝𝑖(𝑧𝐻𝑧−1 ∩ 𝑃)𝑝−1𝑖

Note that 𝑝1(𝑧𝐻𝑧−1 ∩ 𝑃), 𝑝2(𝑧𝐻𝑧−1 ∩ 𝑃),⋯ , 𝑝𝑚(𝑧𝐻𝑧−1 ∩ 𝑃) are distinct left
cosets. To see this, suppose that 𝑝𝑖(𝑧𝐻𝑧−1 ∩𝑃) = 𝑝𝑗(𝑧𝐻𝑧−1 ∩𝑃), then 𝑝−1𝑖 𝑝𝑗 ∈
𝑧𝐻𝑧−1. This means that 𝑢−1𝑖 𝑢𝑗 = ℎ−1𝑖 𝑧−1𝑝−1𝑖 𝑝𝑗𝑧ℎ𝑗 is a group element in 𝐻.
Thus, 𝑢𝑖𝐻 = 𝑢𝑗𝐻, which implies that 𝑖 = 𝑗 because 𝑢𝑖, 𝑢𝑗 are elements in
{𝑘1, 𝑘2, … , 𝑘𝑛} and 𝑘1𝐻, 𝑘2𝐻,… , 𝑘𝑛𝐻 are distinct left cosets. Additionally, the
subgroup ⋂

𝑝𝑖(𝑧𝐻𝑧−1 ∩ 𝑃)𝑝−1𝑖 =
⋂

(𝑢𝑖𝐻𝑢−1𝑖 ∩ 𝑃)
contains the subgroup

⋂𝑘𝑖𝐻𝑘−1𝑖 , and hence
⋂𝑝𝑖(𝑧𝐻𝑧−1 ∩ 𝑃)𝑝−1𝑖 is infinite.

Since 𝑛𝑧 is the height of 𝑧𝐻𝑧−1 ∩ 𝑃 in 𝑃, it follows that
|𝐼𝑧| = 𝑚 ≤ 𝑛𝑧

For each 𝑥 ∈ ⋃
𝑧∈𝐵(1,𝐶)∩𝐺 𝐼𝑧, pick a 𝑧 so that 𝑥 ∈ 𝐼𝑧, and hence 𝑥 = 𝑘𝑖 for

some 𝑘𝑖 ∈ 𝐼𝑧. We then consider

𝜁 ∶
⋃

𝑧∈𝐵(1,𝐶)∩𝐺
𝐼𝑧 → {1, 2, … , 𝑛}

by sending 𝑥 to 𝑖. As this map is surjective, it follows that

𝑛 ≤ ||||
⋃

𝑧∈𝐵(1,𝐶)∩𝐺
𝐼𝑧
|||| ≤

∑

𝑧∈𝐵(1,𝐶)∩𝐺

||||𝐼𝑧
|||| ≤

∑

𝑧∈𝐵(1,𝐶)∩𝐺
𝑛𝑧 = 𝑁

The Claim is proved; thus,𝐻 is a finite height subgroup of 𝐺. □

4. Finite height subgroups in extended admissible groups
We will first recall the definition of extended admissible groups introduced

in [16].

Definition 4.1. A group 𝐺 is an extended admissible group if it is the funda-
mental group of a graph of groups 𝒢 such that:

(1) The underlying graph Γ of 𝒢 is a connected finite graphwith at least one
edge, and every edge group is virtually ℤ2.

(2) Each vertex group 𝐺𝑣 is one of the following two types:
(a) Type 𝒮: 𝐺𝑣 contains an infinite cyclic normal subgroup 𝑍𝑣 ⊲ 𝐺𝑣,

such that the quotient 𝑄𝑣 ∶= 𝐺𝑣∕𝑍𝑣 is a non-elementary hyper-
bolic group. We call 𝑍𝑣 and 𝑄𝑣 the kernel and hyperbolic quotient
of 𝐺𝑣 respectively.

(b) Typeℋ: 𝐺𝑣 is hyperbolic relative to a collectionℙ𝑣 of virtuallyℤ2-
subgroups, where all edge groups incident to 𝐺𝑣 are contained in
ℙ𝑣, and𝐺𝑣 doesn’t split relative toℙ𝑣 over a subgroup of an element
of ℙ𝑣.

(3) For each vertex group 𝐺𝑣, if 𝑒, 𝑒′ ∈ Link(𝑣) and 𝑔 ∈ 𝐺𝑣, then 𝑔𝐺𝑒𝑔−1 is
commensurable to 𝐺𝑒′ if and only if both 𝑒 = 𝑒′ and 𝑔 ∈ 𝐺𝑒.



1228 HOANG THANH NGUYEN

(4) For every edge group 𝐺𝑒 such that 𝐺𝑒− and 𝐺𝑒+ are vertex groups of type
𝒮, the subgroup generated by 𝜏𝑒(𝑍𝑒+ ∩𝐺𝑒) and 𝑍𝑒− ∩𝐺𝑒 has finite index
in 𝐺𝑒.

Definition 4.2. An extended admissible group 𝐺 is called an admissible group
if it has no vertex group of typeℋ.

Below are some examples of extended admissible groups.

Example 4.3. (1) (3-manifold groups) The fundamental group of a com-
pact, orientable, irreducible 3-manifold𝑀with empty or toroidal bound-
ary is an extended admissible group. Seifert fibered and hyperbolic
pieces correspond to type 𝒮 and ℋ vertex respectively. Fundamental
groups of graph manifolds are admissible groups.

(2) (Torus complexes) Let 𝑛 ≥ 3 be an integer. Let 𝑇1, 𝑇2, … , 𝑇𝑛 be a fam-
ily of flat two-dimensional tori. For each 𝑖, we choose a pair of simple
closed geodesics 𝑎𝑖 and 𝑏𝑖 such that length(𝑏𝑖) = length(𝑎𝑖+1), identi-
fying 𝑏𝑖 and 𝑎𝑖+1 and denote the resulting space by 𝑋. The space 𝑋 is
a graph of spaces with 𝑛 − 1 vertex spaces 𝑉𝑖 ∶= 𝑇𝑖 ∪ 𝑇𝑖+1∕{𝑏𝑖 = 𝑎𝑖+1}
(with 𝑖 ∈ {1, … , 𝑛 − 1}) and 𝑛 − 2 edge spaces 𝐸𝑖 ∶= 𝑉𝑖 ∩ 𝑉𝑖+1.
The fundamental group 𝐺 = 𝜋1(𝑋) has a graph of groups structure

where each vertex group is the fundamental group of the product of a
figure eight and 𝑆1. Vertex groups are isomorphic to 𝐹2 × ℤ and edge
groups are isomorphic to 𝜋1(𝐸𝑖) ≅ ℤ2. The generators [𝑎𝑖], [𝑏𝑖] of the
edge group 𝜋1(𝐸𝑖) each map to a generator of either a ℤ or 𝐹2 factor of
𝐹2 × ℤ. It is clear that with this graph of groups structure, 𝜋1(𝑋) is an
admissible group.

(3) Admissible groups in the sense of Croke-Kleiner [6]. Croke–Kleiner
defined a more restrictive notion of an admissible group, where they
also assume each edge group 𝐺𝑒 is isomorphic to ℤ2 and each infinite
cyclic 𝑍𝑣 ⊲ 𝐺𝑣 is central.

4.1. Finite height subgroups in admissible groups. In this section, we are
going to prove the following.

Proposition 4.4 (Finite height ⟺ strongly quasiconvex). A finitely gener-
ated subgroup in an admissible group has finite height if and only if it is strongly
quasiconvex.

To prove Proposition 4.4we need several lemmas. Assume𝐺 is an admissible
group with its Bass-Serre tree 𝑇, and let𝑋 be the associated tree of spaces for 𝒢.
Lemma 4.5. Each finite height subgroup𝐻 of vertex group𝐺𝑣 of𝐺must be finite
or have finite index in 𝐺𝑣.
Proof. We assume that 𝐻 is an infinite subgroup of 𝐺𝑣. Recall that 𝐺𝑣 is a
𝑍𝑣-by-hyperbolic group. Let 𝐾 ≤ 𝐺𝑣 be the subgroup of index at most two
centralizing 𝑍𝑣. By [17, Proposition 2.2 (1)],𝐻 ∩𝐾 has finite height in 𝐾. As 𝐾
is a group with infinite center, it follows from [17, Proposition 2.3] that 𝐻 ∩ 𝐾
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is either finite or it has finite index in 𝐾, and hence 𝐻 is either finite or it has
finite index in 𝐺𝑣 since 𝐾 has finite index in 𝐺𝑣. □

Lemma 4.5 combineswith [17, Proposition 2.6] yield to the following lemma.

Lemma 4.6. If a finitely generated subgroup 𝐻 of infinite index of 𝐺 has finite
height then the intersection of 𝐻 with any conjugate of a vertex group of 𝐺 must
be finite.

Letℬ be the collection of left cosets of vertex groups of 𝐺. Let𝐻 be a finitely
generated subgroup of infinite index of 𝐺 and has finite height in 𝐺. Fix a gen-
erating set 𝑆 of𝐺, and we define a function 𝑓𝑆 ∶ [0,∞) → [0,∞) as follows. For
any 𝑟 ≥ 0,

𝑓𝑆(𝑟) ∶= max
{
diam

(
𝒩𝑟(𝐻) ∩ 𝐵

)
| 𝐵 ∈ ℬ and 𝐵 ∩ 𝐵𝑆(𝑒, 𝑟) ≠ ∅

)}

Lemma 4.7. The map 𝑓𝑆 is well-defined and
diam(𝒩𝑟(𝐻) ∩ 𝑔𝐺𝑣) ≤ 𝑓𝑆(𝑟)

for any left coset of a vertex group 𝐺𝑣 in 𝐺.

Proof. Firstly, we show that 𝑓𝑆 is well-defined. Indeed, if 𝐵 is an element in
the collection ℬ then 𝐵 is a left coset 𝑔𝐺𝑣 for some vertex group 𝐺𝑣 and for
some group element 𝑔 in 𝐺. By [13, Proposition 9.4] there exists a constant
𝑟′ = 𝑟′(𝑟, 𝐻, 𝑔𝐺𝑣) such that

𝒩𝑟(𝐻) ∩𝒩𝑟(𝑔𝐺𝑣) ⊂ 𝒩𝑟′(𝐻 ∩ 𝑔𝐺𝑣𝑔−1)
According to Lemma 4.6, the intersection 𝐻 ∩ 𝑔𝐺𝑣𝑔−1 is finite, and thus

𝒩𝑟′(𝐻 ∩ 𝑔𝐺𝑣𝑔−1) and𝒩𝑟(𝐻) ∩𝒩𝑟(𝑔𝐺𝑣) are finite. As𝒩𝑟(𝐻) ∩ 𝐵 is a subset of
𝒩𝑟(𝐻) ∩𝒩𝑟(𝑔𝐺𝑣), it follows that

diam(𝒩𝑟(𝐻) ∩ 𝐵) < ∞
Since there are only finitely many elements in the collection ℬ that have a
nonempty intersection with the closed ball 𝐵𝑆(𝑒, 𝑟), it follows that 𝑓𝑆(𝑟) is a
constant in [0,∞).
Now we will prove that

diam
(
𝒩𝑟(𝐻) ∩ 𝑔𝐺𝑣

)
≤ 𝑓𝑆(𝑟)

for any left coset of a vertex group 𝐺𝑣 in 𝐺.
Indeed, denote 𝐵 ∶= 𝑔𝐺𝑣. If 𝑑𝑆(𝐻, 𝐵) > 𝑟, then𝒩𝑟(𝐻)∩𝐵 is empty and then

its diameter is zero and less than or equal 𝑓𝑆(𝑟). We now assume 𝑑𝑆(𝐻, 𝐵) ≤ 𝑟.
Then there are ℎ ∈ 𝐻 and 𝑏 ∈ 𝐵 such that 𝑑𝑆(ℎ, 𝑏) ≤ 𝑟. Denote 𝜁 ∶= ℎ−1𝑔 and
consider the left coset𝐴 ∶= 𝜁𝐺𝑣. As 𝜁 ∈ 𝐵𝑆(𝑒, 𝑟), it follows that𝐴∩𝐵𝑆(𝑒, 𝑟) ≠ ∅.
Thus, we have

diam
(
𝒩𝑟(𝐻) ∩ 𝐴

)
≤ 𝑓𝑆(𝑟)

Since 𝑏 ∈ 𝐵 = 𝑔𝐺𝑣 = ℎ𝜁𝐺𝑣 = ℎ𝐴 and ℎ𝒩𝑟(𝐻) = 𝒩𝑟(𝐻), we have that
𝒩𝑟(𝐻) ∩ 𝐵 = ℎ

(
𝒩𝑟(𝐻) ∩ 𝐴

)
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Therefore,
diam

(
𝒩𝑟(𝐻) ∩ 𝐵

)
= diam(𝒩𝑟(𝐻) ∩ 𝐴) ≤ 𝑓𝑆(𝑟)

The claim is proved. □

We are now ready for the proof of Proposition 4.4.

Proof of Proposition 4.4. If 𝐻 is strongly quasiconvex in 𝐺 then 𝐻 has finite
height in𝐺 by [20, Theorem 1.2]. For the rest of the proof, we are going to prove
the converse implication. We will also assume that 𝐻 is an infinite index in 𝐺,
otherwise, it is obvious.
Let 𝑆 be a finite generating set of 𝐺 and 𝑈 a finite generating set of 𝐻 such

that 𝑈 is a subset of 𝑆, and hence the Cayley graph Γ(𝐺, 𝑆) of 𝐺 contains the
Cayley graph Γ(𝐻,𝑈) of𝐻 as a subgraph.
By Lemma 4.6, we have that 𝐻 ∩ 𝑔𝐺𝑣𝑔−1 is finite for all vertex 𝑣 in 𝑉𝑇. It

follows that 𝐻 acts properly on the Bass-Serre tree 𝑇 and the stabilizer in 𝐻 of
each vertex in 𝑇 is finite. Hence, it follows from [9, Theorem 7.51] that there
exists a finite index subgroup 𝐾 of𝐻 such that 𝐾 is a free group.
Fix a vertex 𝑣0 in the Bass-Serre tree 𝑇 projecting to a vertex 𝑣 in the under-

lying graph of 𝐺, and considering the vertex space 𝑋𝑣0 of the tree of spaces 𝑋
which we identify with the Cayley graph of 𝐺𝑣. Fix a basepoint 𝑜 in 𝑋𝑣0 which
is the identity element of 𝐺𝑣. Recall that 𝐺 acts on the tree of spaces 𝑋, we thus
consider the orbit map

𝜉 ∶ 𝐺 → (𝑋, 𝑜)
which is a quasi-isometry by Proposition 2.4.
Let {𝛾1, 𝛾2, … , 𝛾𝑠} be a finite generating set of the free group 𝐾. We note that

𝛾𝑖 is not conjugate into any vertex group of 𝐺. For each 𝑖 ∈ {1, 2, … , 𝑠}, let
𝛾𝑠+𝑖 = 𝛾−1𝑖 and let 𝓁𝑖 be a combinatorial path in𝑋 connecting 𝑜 to 𝜉(𝛾𝑖) = 𝛾𝑖(𝑜),
and let 𝓁𝑠+𝑖 ∶= 𝓁𝑖.
We define 𝑌 as the subspace of 𝑋 which is the union of combinatorial paths

𝑔(𝓁𝑖) with 𝑔 ∈ 𝐾, 1 ≤ 𝑖 ≤ 2𝑠, i.e,

𝑌 ∶=
⋃

𝑔∈𝐾, 𝑖∈{1,…,2𝑠}
𝑔𝓁𝑖

Then𝑌 and𝐾(𝑜) are within a finite Hausdorff distance. It also follows from the
construction of 𝑌 and Lemma 4.7 (for 𝑟 = 1) that there exists a constant 𝛿 > 0
such that for each vertex 𝑣, edge 𝑒 in 𝑇 then

diam
(
𝑌 ∩ 𝑋𝑣

)
≤ 𝛿 and diam

(
𝑌 ∩ 𝑋𝑒

)
≤ 𝛿

Note that 𝐺 acts acylindrically on its Bass-Serre tree 𝑇 by [16, Lemma 2.9].
Let us consider the action of 𝐻 on 𝑇 which is induced by the action of 𝐺 on 𝑇.
By [3, Theorem 1.5], to see 𝐻 is strongly quasiconvex in 𝐺, it suffices to show
that the orbit map

𝜏∶ 𝐻 → 𝑇
given by ℎ ↦ ℎ(𝑣0) is a quasi-isometric embedding.
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Let ℎ be a nontrivial element in𝐻. Let 𝑒1 ⋅ 𝑒2⋯𝑒𝑡 be the combinatorial path
in the Bass-Serre tree 𝑇 connecting 𝑣0 to ℎ(𝑣0). Let 𝑣𝑖 be the endpoint of 𝑒𝑖.
Recall that 𝛿 > 0 is the constantwhere diam

(
𝑌∩𝑋𝑣

)
≤ 𝛿 and diam

(
𝑌∩𝑋𝑒

)
≤

𝛿 for each vertex 𝑣, edge 𝑒 in 𝑇. Also recall that in the tree of spaces𝑋, for every
𝑥 ∈ 𝑋𝑒 we attach a unit interval between 𝑥 ∈ 𝑋𝑒 and 𝛼𝑒(𝑥) ∈ 𝑋𝑒. Hence in the
tree of spaces 𝑋, we can find a sequence of points 𝑥𝑖 ∈ 𝑋𝑒𝑖 ∩𝑌, 𝑥̄𝑖 ∈ 𝑋𝑒𝑖 ∩𝑌 on
edge spaces 𝑋𝑒𝑖 , 𝑋𝑒𝑖 with 1 ≤ 𝑖 ≤ 𝑡 − 1 such that

𝑑𝑋(𝑥𝑖, 𝑥̄𝑖) ≤ 2𝛿 + 1

For notational purposes, let us denote 𝑥̄0 ∶= 𝑜 and 𝑥𝑡 ∶= ℎ(𝑜). Hence we have

𝑑𝑋(𝑥0, 𝑥1) ≤ 𝛿 and 𝑑𝑋(𝑥̄𝑡−1, 𝑥𝑡) ≤ 𝛿

As 𝑌 and 𝐾(𝑜) are within a finite Hausdorff distance, let Λ > 0 be such a
finite constant, and thus𝑌 is a subset of theΛ–neighborhood of𝐾(𝑜). It follows
that for each 1 ≤ 𝑖 ≤ 𝑡 − 1, there exists a group element ℎ𝑖 ∈ 𝐾 ≤ 𝐻 such that

𝑑𝑋(𝑥𝑖, ℎ𝑖(𝑜)) ≤ Λ

As the orbit map 𝜉 ∶ 𝐺 → (𝑋, 𝑜) is a quasi-isometric embedding, routine argu-
ments yield a constant 𝐿 depending on the quasi-isometric constant of the orbit
map 𝜉, 𝛿, Λ such that

𝑑𝑆(1, ℎ1) ≤ 𝐿, 𝑑𝑆(ℎ𝑖, ℎ𝑖+1) ≤ 𝐿, 𝑑𝑆(ℎ𝑡−1, ℎ) ≤ 𝐿

As 𝐻 is a finitely generated subgroup of 𝐺, the cardinality |𝐻 ∩ 𝐵𝐺(1, 𝐿)| is
finite, and hence there is a constant 𝐶 = 𝐶(𝐿) such that with respect to the
metric 𝑑𝑈 on𝐻 we have

𝑑𝑈(1, ℎ1) ≤ 𝐶, 𝑑𝑈(ℎ𝑖, ℎ𝑖+1) ≤ 𝐶, 𝑑𝑈(ℎ𝑡−1, ℎ) ≤ 𝐶

As a consequence, we have

𝑑𝑈(1, ℎ) ≤ 𝑑𝑈(1, ℎ1) +
𝑡−2∑

𝑖=1
𝑑𝑈(ℎ𝑖, ℎ𝑖+1) + 𝑑𝑈(ℎ𝑡−1, ℎ)

≤ 𝑡𝐶 = 𝐶𝑑𝑇(𝑣0, ℎ(𝑣0))

On the other hand, since the orbit map of any isometric action is Lipschitz (see
[4, Lemma I.8.18]), we have that the orbit map 𝜏∶ 𝐻 → 𝑇 is a Lipschitz map.
In particular, there exists a uniform constant 𝐵 such that

𝑑𝑇(𝑣0, ℎ(𝑣0)) ≤ 𝐵 + 𝐵𝑑𝑈(1, ℎ)

Therefore, we can conclude that the orbitmap 𝜏∶ 𝐻 → 𝑇 is a quasi-isometric
embedding. By [3, Theorem 1.5],𝐻 is strongly quasiconvex in 𝐺. □
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4.2. Finite height subgroups in extended admissible groups. Let𝐺 be an
extended admissible group with graph of groups 𝒢 and underlying graph Γ. By
the normal form theorem, for each connected subgraph Γ′ of Γ, there is a sub-
group 𝐺Γ′ ≤ 𝐺 which is the fundamental group of the graph of groups with
underlying graph Γ′, and with vertex, edge groups, and edge monomorphisms
coming from 𝒢. Let Λ be the full subgraph of Γ with vertex set {𝑣 ∈ 𝑉Γ ∣
𝒢𝑣 is type 𝒮}. For each component Γ′ of Λ, we say that 𝐺Γ′ is

(1) amaximal admissible component if Γ′ contains an edge;
(2) an isolated type 𝒮 vertex group if Γ′ consists of a single vertex of type 𝒮.

is a subgroup 𝐺Γ′ ≤ 𝐺 for some connected component Γ′ of Λ.

Proposition 4.8. Let𝐺 be an extended admissible groupwith the graph of groups
structure 𝒢 such that it contains at least one vertex group of typeℋ. Suppose 𝐻
is a undistorted subgroup of 𝐺. Then 𝐻 has finite height in 𝐺 if and only if 𝐻 is
strongly quasiconvex in 𝐺.

Proof. [⟹]: Let 𝐺1, ..., 𝐺𝑘 be the maximal admissible components and iso-
lated vertex pieces of type 𝒮 of an extended admissible group 𝐺. Let 𝐺𝑒1 , … , 𝐺𝑒𝑚
be the edge groups so that both its associated vertex groups 𝐺(𝑒𝑖)± are of typeℋ,
and let 𝑇1, … , 𝑇𝓁 be groups in

⋃ℙ𝑣 which are not edge groups of 𝐺. By Com-
bination Theorem of relatively hyperbolic groups [8, Theorem 0.1] we have 𝐺
is hyperbolic relative to

ℙ = {𝐺𝑖}𝑘𝑖=1 ∪ {𝐺𝑒𝑠 }
𝑚
𝑠=1 ∪ {𝑇𝑖}

𝓁
𝑖=1

By Theorem 1.3,𝐻∩𝑔𝑃𝑔−1 has finite height in 𝑔𝑃𝑔−1 for each conjugate 𝑔𝑃𝑔−1
of peripheral subgroup in ℙ. If 𝑃 is either 𝐺𝑒𝑠 or 𝑇𝑖 which are virtually ℤ

2 then
𝐻 ∩ 𝑔𝑃𝑔−1 is either finite or has finite index in 𝑔𝑃𝑔−1, and hence 𝐻 ∩ 𝑔𝑃𝑔−1 is
strongly quasiconvex in 𝑔𝑃𝑔−1. If 𝑃 is 𝐺𝑖 for some 𝑖, then𝐻 ∩ 𝑔𝑃𝑔−1 is strongly
quasiconvex in 𝑔𝑃𝑔−1 by Proposition 4.4. In other words, we have shown that
𝐻 ∩ 𝑔𝑃𝑔−1 is strongly quasiconvex in 𝑔𝑃𝑔−1 for each conjugate 𝑔𝑃𝑔−1 of each
peripheral subgroup in ℙ. By [20, Theorem 1.9], 𝐻 is strongly quasiconvex in
𝐺.
[⟸]: Strongly quasiconvex subgroups always have finite height by [20, The-

orem 1.2]. □

Proof of Theorem 1.5. The proof is a combination of Propositions 4.4 and 4.8.
□
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