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Contraction property of Fock type space of
log-subharmonic functions in ℝ𝒎

David Kalaj

Abstract. We prove a contraction property of Fock type spaces ℒ𝑝
𝛼 of log-

subharmonic functions in ℝ𝑛. To prove the result, we demonstrate a certain
monotonic property of measures of the superlevel set of the function 𝑢(𝑥) =
|𝑓(𝑥)|𝑝𝑒−

𝛼
2
𝑝|𝑥|2 , provided that 𝑓 is a certain log-subharmonic function inℝ𝑚.

The result recover a contraction property of holomorphic functions in the
Fock space ℱ𝑝

𝛼 proved by Carlen in [Car1991].
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1. Introduction
Let 𝑚 ⩾ 1 and let ℝ𝑚 be the Euclidean space endowed with the Euclidean

norm: |𝑥| =
√
⟨𝑥, 𝑥⟩, where ⟨𝑥, 𝑦⟩ =

∑𝑚
𝑖=1 𝑥𝑖𝑦𝑖, and 𝑥 = (𝑥1,… , 𝑥𝑚), 𝑦 =

(𝑦1,… , 𝑦𝑛) ∈ ℝ𝑚. If 𝛼 > 0 and 𝑝 > 0 and𝑚 = 2𝑛 is an even integer, we define
the Fock space or Segal-Bargmann space ℱ𝑝

𝛼 (cf. [Bar62, Bar61, KZ2012]) of
entire holomorphic functions 𝑓 in ℂ𝑛 = ℝ2𝑛 so that:

‖𝑓‖𝑝𝑝,𝛼 ∶= 𝑐𝑝,𝛼 ∫
ℝ𝑚

|𝑓(𝑥)|𝑝𝑒−
𝛼
2
𝑝|𝑥|2𝑑𝐴(𝑥) <∞,

where

𝑐𝑝,𝛼 = (
𝛼𝑝
2𝜋 )

𝑚
2
, (1.1)
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and 𝑑𝐴(𝑥) is Lebesgue measure on ℝ𝑚. Note that 𝑐𝑝,𝛼𝑒
− 𝛼

2
𝑝|𝑥|2𝑑𝐴(𝑥) is the

Gaussian probabily measure in ℝ𝑚.
Assume now that𝑚 ∈ ℕ is an arbitrary integer. We say that a real twice dif-

ferentiable function 𝑓 defined in a domainΩ ⊂ ℝ𝑚 is subharmonic if ∆𝑓(𝑥) ⩾
0 for 𝑥 ∈ Ω. Here, ∆ is the Laplacian. This definition can also be extended
to not necessary double differentiable functions, by using the sub-mean value
property ([HK1976]). We say that amapping 𝑓 is log-subharmonic, if log |𝑓(𝑥)|
is subharmonic in Ω ⧵ 𝑓−1(0). We denote by ℒ𝑝

𝛼 the space of complex-valued,
real-analytic functionswhose absolute value is a log-subharmonic function, de-
fined inℝ𝑚, with a finite ‖𝑓‖𝑝,𝛼 norm as defined in (1). Here,𝑚 is an arbitrary
positive integer. Observe that for𝑚 = 2𝑛wehaveℱ𝑝

𝛼 ⊂ ℒ𝑝
𝛼: If𝑓 is holomorphic

in Ω, then |𝑓(𝑧)| is log-subharmonic. Indeed

∆ log |𝑓(𝑧)| =
𝑛∑

𝑘=1
∆𝑧𝑘 log |𝑓(𝑧)| = 0,

where 𝑧 = (𝑧1,… , 𝑧𝑛), and

∆𝑧𝑘 =
𝜕2

(𝜕𝑥𝑘 )2
+ 𝜕2

(𝜕𝑦𝑘 )2
,

𝑧𝑘 = 𝑥𝑘 + 𝑖𝑦𝑘 for 𝑘 = 1,… , 𝑛 and 𝑧 ∈ Ω ⧵ 𝑓−1(0).

2. Motivation and main results
Carlen, in his paper [Car1991] proved the following result:

Theorem 2.1. If 0 < 𝑝 < 𝑞 < ∞, then ℱ𝑝
𝛼 (ℂ𝑛) ⊂ ℱ𝑞

𝛼(ℂ𝑛) and the inclusion is
proper and continuous. Moreover

‖𝑓‖𝑞,𝛼 ≤ ‖𝑓‖𝑝,𝛼.

Theorem 2.1 is applied in [Car1991] to the coherent state transform in a new
proof of Wehrl’s entropy conjecture [LIEB1978]. In this paper, among other
results, we recover Theorem 2.1 and provide a proof that works for a more gen-
eral class of mappings, namely real analytic complex mappings whose absolute
value is a log-subharmonic function in ℝ𝑚 and belongs to the Fock-type space
ℒ𝑝
𝛼.
Let 𝑓 be a real analytic complex-valued function defined in the Euclidean

spaceℝ𝑚, such that 𝑣 = |𝑓| is a log-subharmonic function inℝ𝑚 and such that
𝑢(𝑥) = 𝑣(𝑥)𝑝𝑒−𝛼𝑝∕2|𝑥|2 is bounded and goes to 0 uniformly as |𝑥| → ∞. Then
the superlevel sets 𝐴𝑡 = {𝑥 ∶ 𝑢(𝑥) > 𝑡} for 𝑡 > 0 are compactly embedded in
ℝ𝑚 and thus have finite Lebesgue measure 𝜇(𝑡) = |𝐴𝑡|.
Those are the main results:

Theorem 2.2. Let 𝛼 > 0 and 𝑝 > 0 and assume that 𝑓 is a real analytic complex
valued function such that 𝑣 = |𝑓| ∶ ℝ𝑚 → [0,+∞) is a log-subharmonic func-
tion. Assume further that the function 𝑢(𝑥) = |𝑓(𝑥)|𝑝𝑒−

𝛼𝑝
2
|𝑥|2 is bounded and
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𝑢(𝑥) tends to 0 uniformly as |𝑥|→∞. Then the function

𝑔(𝑡) = 𝑡 exp [
𝛼𝑝(Γ(𝑚∕2))2∕𝑚

2𝜋 𝜇2∕𝑚(𝑡)] ,

is decreasing on the interval (0, 𝑡◦), where 𝑡◦ = max𝑥∈ℝ𝑚 𝑢(𝑥).

If 𝑓(𝑥) ≡ 1, the function 𝑔 turns out to be constant and this is an important
property of 𝑔.
The proof of this theorem ismostly based on themethods developed byNicola

and Tilli in [NT2022] (see also the subsequent papers where similar methods
are used: [KU2022], [KA2024], [RT2023], [KNOT2022], and [Fr2023]).
By using Theorem 2.2, we will prove the following theorem:

Theorem 2.3. Let 𝑝 > 0 and 𝛼 > 0. Let 𝐺 ∶ [0,∞) → ℝ be a convex function.
Then the maximum value of

∫
ℝ𝑚

𝐺(|𝑓(𝑥)|𝑝𝑒−
𝛼
2
𝑝|𝑥|2)𝑑𝐴(𝑥) (2.1)

is attained for

𝑓𝑎(𝑥) = 𝑒𝛼⟨𝑎,𝑥⟩−
𝛼
2
|𝑎|2 ,

where 𝑎 ∈ ℂ𝑛 is arbitrary, subject to the condition that 𝑓 ∈ ℒ𝑝
𝛼 and ‖𝑓‖𝑝,𝛼 = 1.

Applying Theorem 2.3 to the convex and increasing function𝐺(𝑡) = 𝑡𝑞∕𝑝, we
get the extension of theorem [Car1991, Theorem 2] by proving:

Theorem 2.4. For all 0 < 𝑝 < 𝑞 < ∞ and 0 < 𝛼 and for 𝑓 ∈ ℒ𝑝
𝛼(ℝ𝑚), we have

𝑓 ∈ ℒ𝑞
𝛼(ℝ𝑚) and

‖𝑓‖𝑞,𝛼 ≤ ‖𝑓‖𝑝,𝛼

with equality for 𝑓𝑎(𝑥) = 𝑒𝛼⟨𝑎,𝑥⟩−
𝛼
2
|𝑎|2 , where 𝑎 ∈ ℝ𝑚 is arbitrary.

Proof of Theorem 2.4. For ‖𝑓‖𝑝,𝛼 = 𝑁, ‖𝑓∕𝑁‖𝑝,𝛼 = 1 and from Theorem 2.3
we have

∫
ℝ𝑚

|𝑓(𝑥)∕𝑁|𝑞𝑒−
𝛼
2
𝑞|𝑥|2𝑑𝐴(𝑥) ≤ ∫

ℝ𝑚
𝑒−

𝛼
2
𝑞|𝑥|2𝑑𝐴(𝑥) = 1∕𝑐𝑞,𝛼.

Thus,

𝑐𝑞,𝛼 ∫
ℝ𝑚

|𝑓(𝑥)|𝑞𝑒−
𝛼
2
𝑞|𝑥|2𝑑𝐴(𝑥) ≤ 𝑁𝑞,

or what is the same
‖𝑓‖𝑞,𝛼 ≤ ‖𝑓‖𝑝,𝛼.

The equality statement follows from the equality statement of Theorem 2.4, but
can be proved by using the same approach as in themonograph of Zhu [KZ2012,
Lemma 2.33]. □
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Remark 2.5. The last theorem is an extension of Theorem 2.1. Moreover, its proof
is different from the proof in [Car1991] and seems to be simpler. We refer to the
paper [GKL2010] for some related inequalities for log-subharmonic functions in
ℝ𝑛.

Theorem 2.4 is a counterpart of a similar contraction property of Bergman
spaces 𝐁𝑝𝛼 ([HKZ2000, p. 2]), proved by Kulikov in [KU2022] for holomorphic
functions in the unit disk and for ℳ−log-subharmonic functions in the unit
ball in ℝ𝑛 by the author in [KA2024]. It is known that

𝐁𝑝𝛼 ⊂ 𝐁𝑞𝛽,
𝑝
𝛼 =

𝑞
𝛽
= 𝑟, 𝑝 < 𝑞.

For 𝑛 = 2, it was asked whether these embeddings are contractions; that is,
whether the norm ‖𝑓‖𝐁𝑟𝛼𝛼 is decreasing in 𝛼. In the case of Bergman spaces, this
question was asked by Lieb and Solovej [LiSo2021]. They proved that such con-
tractivity implies theirWehrl-type entropy conjecture for the 𝑆𝑈(1, 1) group. In
the case of contractions from the Hardy spaces to the Bergman spaces, it was
asked by Pavlović in [MP2014] and by Brevig, Ortega-Cerdà, Seip, and Zhao
[BOSZ2018] concerning the estimates for analytic functions. The mentioned
contraction property proved by Kulikov confirmes these conjectures. An inter-
esting application of Kulikov result has been given byMelentijević in [PM2023].
We end this paper with the construction of a new normed Fock type space:

Definition 2.6 (Fock limit space). Let 𝑓 be a holomorphic function inℂ𝑛. Then
for 𝛼 > 0 we say 𝑓 ∈ ℱ𝛼 if 𝑓 ∈

⋂

𝑝>0
ℱ𝑝
𝛼 . Then we define

‖𝑓‖𝛼 ∶= inf
𝑝>0

‖𝑓‖𝑝,𝛼.

For 𝛼 > 0 define as in [KZ2012, eq. 2.2] the following Banach norm

‖𝑓‖∞,𝛼 ∶= esssup{|𝑓(𝑧)|𝑒−
𝛼
2
|𝑧|2 , 𝑧 ∈ ℂ𝑛}.

Then, we prove

Theorem 2.7. For every 𝛼 > 0 we have

‖𝑓‖𝛼 = ‖𝑓‖∞,𝛼.

In particular (ℱ𝛼, ‖ ⋅ ‖𝛼) is a normed subspace of Banach spaceℱ∞
𝛼 .

3. Proof of Theorem 2.2
Proof of Theorem 2.2. We start with the formula

𝜇(𝑡) = |𝐴𝑡| = ∫
𝐴𝑡

𝑑𝑥 = ∫
max 𝑢

𝑡
∫
|𝑢(𝑥)|=𝜅

𝑑ℋ𝑚−1(𝑥)𝑑𝜅.

Then we get

−𝜇′(𝑡) = ∫
𝑢=𝑡

|∇𝑢|−1𝑑ℋ𝑚−1(𝑥) (3.1)



CONTRACTION PROPERTY OF FOCK TYPE SPACE OF LOG-SUB FUNCTIONS 1297

along with the claim that {𝑥 ∶ 𝑢(𝑥) = 𝑡} = 𝜕𝐴𝑡 and that this set is a smooth
hypersurface for almost all 𝑡 ∈ (0, 𝑡◦). Here, 𝑑𝑆 = 𝑑ℋ𝑚−1 is𝑚−1 dimensional
Hausdorffmeasure. These assertions follow the proof of [NT2022, Lemma 3.2].
We point out that, since 𝑢 is real analytic, then it is a well-known fact from
measure theory that the level set {𝑥 ∶ 𝑢(𝑥) = 𝑡} has a zero measure ([MI2020]),
and this is equivalent to the fact that the 𝜇 is continuous.
Following the approach from [NT2022], our next step is to apply the Cauchy–

Schwarz inequality to the𝑚 − 1 dimensional measure of 𝜕𝐴𝑡:

|𝜕𝐴𝑡|2 = (∫
𝜕𝐴𝑡

𝑑𝑆)
2

≤ ∫
𝜕𝐴𝑡

|∇𝑢|−1𝑑𝑆 ∫
𝜕𝐴𝑡

|∇𝑢|𝑑𝑆. (3.2)

Let 𝜈 = 𝜈(𝑥) be the outward unit normal to 𝜕𝐴𝑡 at a point 𝑥. Note that, ∇𝑢
is parallel to 𝜈, but directed in the opposite direction. Thus, we have |∇𝑢| =
− ⟨∇𝑢, 𝜈⟩. Also, we note that since for 𝑥 ∈ 𝜕𝐴𝑡 we have 𝑢(𝑥) = 𝑡, we obtain for
𝑥 ∈ 𝜕𝐴𝑡 that

|∇𝑢(𝑥)|
𝑡 =

|∇𝑢(𝑥)|
𝑢 =

⟨
∇ log𝑢(𝑥), 𝜈

⟩
.

Now the second integral on the right-hand side of (3.2) can be evaluated by
Gauss’s divergence theorem:

∫
𝜕𝐴𝑡

|∇𝑢||𝑑𝑆| = −𝑡 ∫
𝐴𝑡

div (∇ log𝑢(𝑥))𝑑𝐴(𝑥)

= −𝑡 ∫
𝐴𝑡

∆log𝑢(𝑥)𝑑𝐴(𝑥).

Now we plug 𝑢 = |𝑓(𝑥)|𝑝𝑒−
𝛼
2
𝑝|𝑥|2 , and calculate

−𝑡∆ log(|𝑓(𝑥)|𝑝𝑒−
𝛼
2
𝑝|𝑥|2) = −(𝑝𝑡∆ log 𝑣 − 𝑡 𝛼2𝑝∆|𝑥|

2) ≤ 0 +𝑚𝑡𝛼𝑝.

By using (3.1) and (3.2), we obtain

|𝜕𝐴𝑡|2 ≤ (−𝜇′(𝑡)) ∫
𝜕𝐴𝑡

|∇𝑢|𝑑𝑆.

≤ −𝑚𝑡𝛼𝑝𝜇′(𝑡)𝜇(𝑡).

Now we use the isoperimetric inequality for the space:

|𝜕𝐴𝑡|2 ⩾ 𝜋𝑚2|𝐴𝑡|
2(𝑚−1)

𝑚 (Γ(𝑚∕2))−
2
𝑚 ,

which implies that

𝑚𝑡𝛼𝑝𝜇′(𝑡)𝜇(𝑡) +𝑚2𝜋𝜇(𝑡)
2(𝑚−1)

𝑚 (Γ(𝑚∕2))−
2
𝑚 ≤ 0 (3.3)

with equality in (3.3) if and only if 𝑣(𝑥) = 𝑒𝛼⟨𝑥,𝑎⟩−
𝛼
2
|𝑎|2 because in that case 𝐴𝑡

is a ball centered at 𝑎. So,

𝑀(𝑡) ∶= 𝛼𝑝𝜇′(𝑡)𝜇(𝑡)
2−𝑚
𝑚 +

𝑚𝜋 (Γ(𝑚∕2))−
2
𝑚

𝑡 ≤ 0. (3.4)
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Since 𝜇(𝑡◦) = 0, we obtain that

𝐺(𝑡) = ∫
𝑡

𝑡◦
𝑀(𝑡)𝑑𝑡 = 𝑚𝜋(Γ(𝑚∕2))−2∕𝑚 log 𝑡

𝑡◦
+ 𝑚

2 𝛼𝑝𝜇
2
𝑚 (𝑡)

is a non-increasing function for 0 ≤ 𝑡 < 𝑡◦.
In the case 𝑣(𝑥) ≡ 𝑒𝛼⟨𝑎,𝑥⟩−

𝛼
2
|𝑎|2 , 𝑡◦ = 1 and 𝜇(𝑡◦) = 0. Moreover,

𝑔(𝑡) ∶= exp(𝐺(𝑡)) = 𝑡 exp [
𝛼𝑝(Γ(𝑚∕2))2∕𝑚

2𝜋 𝜇2∕𝑚(𝑡)]

is non-increasing for 0 ≤ 𝑡 < 𝑡◦.
□

Remark 3.1. Note that for the function 𝑓(𝑥) ≡ 1 or

𝑓(𝑥) = 𝑒−
𝛼
2
|𝑎|2𝑒𝛼⟨𝑎,𝑥⟩,

for a fixed 𝑎, everywhere in the proof above we have equalities for all values of 𝑝
and 𝛼. Moreover in this case the maximum of 𝑢(𝑥) is equal to 1 and achieved for
𝑥 = 𝑎.

4. Proof of Theorem 2.3
We need the following lemma:

Lemma 4.1. [KA2024] Assume that Φ,Ψ are positive increasing functions and
𝑔 positive non-increasing such that

∫
𝑡◦

0
Φ (𝑔(𝑡)∕𝑡)𝑑𝑡 = ∫

𝑡◦

0
Φ (1∕𝑡)𝑑𝑡 = 𝑐.

Then

∫
𝑡◦

0
Φ (𝑔(𝑡)∕𝑡) Ψ(𝑡)𝑑𝑡 ≤ ∫

𝑡◦

0
Φ (1∕𝑡) Ψ(𝑡)𝑑𝑡.

As in [KU2022, KA2024] where is treated Bergman version of this theorem,
we restrict ourselves to the only nontrivial case lim𝑡→0+ 𝐺(𝑡) = 0. Let 𝜇(𝑡) =
𝜇({𝑥 ∶ 𝑢(𝑥) > 𝑡}) be theLebesguemeasure inℝ𝑚, where𝑢(𝑥) = |𝑓(𝑥)|𝑝𝑒−

𝛼𝑝
2
|𝑥|2 .

Applying Theorem 2.2 to 𝑓, we get that the function

𝑔(𝑡) = 𝑡 exp [
𝛼(Γ(𝑚∕2))2∕𝑚

2𝜋 𝜇2∕𝑚(𝑡)] ,

is decreasing on (0, 𝑡◦) with 𝑡◦ = max𝑥∈ℝ𝑚 𝑢(𝑥). Proposition 5.1 below ensures
the existence of 𝑡◦.
For 𝑓 ≡ 1, 𝑔 is a constant function equal to 1.
Then,

𝜇(𝑡) = (
2𝜋

𝛼(Γ(𝑚∕2))2∕𝑚
log

𝑔(𝑡)
𝑡 )

𝑚
2

.
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We assume that ‖𝑓‖𝑝,𝛼 = 1, that is

𝐼1 = 𝑐𝑝,𝛼 ∫
𝑡◦

0
𝜇(𝑡)𝑑𝑡 = 𝑐𝑝,𝛼 ∫

𝑡◦

0
(

2𝜋
𝛼(Γ(𝑚∕2))2∕𝑚

log
𝑔(𝑡)
𝑡 )

𝑚∕2

𝑑𝑡 = 1.

Now the integral in (2.1) can be rewritten as

𝐼2 = 𝑐𝑝,𝛼 ∫
𝑡◦

0
(

2𝜋
𝛼(Γ(𝑚∕2))2∕𝑚

log
𝑔(𝑡)
𝑡 )

𝑚∕2

𝐺′(𝑡)𝑑𝑡.

Then, by Lemma 4.1, by taking Φ(𝑠) = 𝑐𝑝,𝛼 (
2𝜋

𝛼(Γ(𝑚∕2))2∕𝑚
log 𝑠)

𝑚
2
and Ψ(𝑡) =

𝐺′(𝑡), the maximum of 𝐼2 under 𝐼1 = 1 is attained for 𝑔 ≡ 1.

5. Additional properties of Fock space and proof of Theorem 2.7
Nowwe prove the following proposition used in the proof of ourmain result.

Proposition 5.1. Assume that 𝑓 is a real-analytic log-subharmonic function in
ℝ𝑚 belonging to the Fock type space. Then for every 𝑥,

|𝑓(𝑥)|𝑝𝑒−
𝛼𝑝
2
|𝑥|2 ≤ 𝑐𝑝,𝛼 ∫

ℝ𝑚
|𝑓(𝑦)|𝑝𝑒−

𝛼𝑝
2
|𝑦|2𝑑𝐴(𝑦). (5.1)

Moreover,

lim
|𝑥|→∞

|𝑓(𝑥)|𝑒−
𝛼
2
|𝑥|2 = 0. (5.2)

Notice that (5.1) extends [KZ2012, Theorem 2.7] and the relation (5.2) ex-
tends corresponding relation in [KZ2012, p. 38].

Proof. Let 𝑔(𝑦) = |𝑓(𝑥 + 𝑦)|𝑝𝑒−𝛼𝑝⟨(𝑦+𝑥),𝑥⟩. Now use the mean value property
to the log-subharmonic function 𝑔 (it is also subharmonic).

|𝑔(0)| ≤ 𝑐𝑝,𝛼 ∫
ℝ𝑚

|𝑔(𝑦)|𝑒−
𝛼𝑝
2
|𝑦|2𝑑𝐴(𝑦).

Then, we have

𝑔(0) = |𝑓(𝑥)|𝑝𝑒−𝛼𝑝|𝑥|2 ≤ 𝑐𝑝,𝛼 ∫
ℝ𝑚

𝑓𝑝(𝑦 + 𝑥)𝑒−
𝛼
2
𝑝⟨(𝑥+𝑦),𝑥⟩𝑒−

𝛼𝑝
2
|𝑦|2𝑑𝐴(𝑦).

Therefore,

|𝑓(𝑥)|𝑝𝑒−𝛼𝑝|𝑥|2 ≤ 𝑐𝑝,𝛼 ∫
ℝ𝑚

𝑓𝑝(𝑦)𝑒−𝛼𝑝⟨𝑦,𝑥⟩𝑒−
𝛼𝑝
2
|𝑦−𝑥|2𝑑𝐴(𝑦).

So,

|𝑓(𝑥)|𝑝𝑒−
𝛼𝑝
2
|𝑥|2 ≤ 𝑐𝑝,𝛼 ∫

ℝ𝑚
𝑓𝑝(𝑦)𝑒−

𝛼𝑝
2
|𝑦|2𝑑𝐴(𝑦).
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Now, to prove (5.2), we use the following inequality, which is also a conse-
quence of the sub-mean value property of subharmonic functions. Let 𝐵1(𝑥) =
{𝑦 ∈ ℝ𝑚 ∶ |𝑦 − 𝑥| < 1}. Then for every subharmonic function 𝑔, we have

|𝑔(0)| ≤ 𝑛
𝜔𝑛

∫
𝐵1(0)

|𝑔(𝑦)|𝑑𝐴(𝑦).

Thus,

|𝑔(0)|𝑒−
𝛼𝑝
2 ≤ 𝑛

𝜔𝑛
∫
𝐵1(0)

|𝑔(𝑦)|𝑒−
𝛼𝑝
2
|𝑦|2𝑑𝐴(𝑦). (5.3)

By applying the previous inequality for 𝑔(𝑦) = |𝑓(𝑥 + 𝑦)|𝑝𝑒−𝛼𝑝⟨(𝑦+𝑥),𝑥⟩, we
obtain from (5.3) that

|𝑓(𝑥)|𝑝𝑒−𝛼𝑝|𝑥|2𝑒−
𝛼𝑝
2 ≤ 𝑛

𝜔𝑛
∫
𝐵1(0)

|𝑓(𝑥 + 𝑦)|𝑝𝑒−𝛼𝑝⟨(𝑦+𝑥),𝑥⟩𝑒−
𝛼𝑝
2
|𝑦|2𝑑𝐴(𝑦)

= 𝑛
𝜔𝑛

∫
𝐵1(𝑥)

|𝑓(𝑦)|𝑝𝑒−𝛼𝑝⟨𝑦,𝑥⟩𝑒−
𝛼𝑝
2
|𝑦−𝑥|2𝑑𝐴(𝑦)

= 𝑛
𝜔𝑛

𝑒−
𝛼𝑝
2
|𝑥|2 ∫

𝐵1(𝑥)
|𝑓(𝑦)|𝑝𝑒−

𝛼𝑝
2
|𝑦|2𝑑𝐴(𝑦).

Thus,

|𝑓(𝑥)|𝑝𝑒−
𝛼𝑝
2
|𝑥|2𝑒−

𝛼𝑝
2 ≤ 𝑛

𝜔𝑛
∫
𝐵1(𝑥)

|𝑓(𝑦)|𝑝𝑒−
𝛼𝑝
2
|𝑦|2𝑑𝐴(𝑦).

Since 𝑓 ∈ ℒ𝑝
𝛼, it follows that

lim
|𝑥|→∞

𝑛
𝜔𝑛

∫
𝐵1(𝑥)

|𝑓(𝑦)|𝑝𝑒−
𝛼𝑝
2
|𝑦|2𝑑𝐴(𝑦) = 0.

This implies (5.2). □

It follows from the following lemma that ‖𝑓‖𝛼 is a norm onℱ𝛼. Theorem 2.7
is a direct application of the following lemma

Lemma 5.2. a) If 𝑓, 𝑔 ∈ ℱ𝛼, then ‖𝑓 + 𝑔‖𝛼 ≤ ‖𝑓‖𝛼 + ‖𝑔‖𝛼.
b) For every 𝛼 > 0 and 𝑓 ∈ ℱ𝛼 and 𝑥 ∈ ℂ𝑚 we have |𝑓(𝑥)|𝑒−

𝛼
2
|𝑥|2 ≤ ‖𝑓‖𝛼.

c) For every 𝛼 > 0 and 𝑓 ∈ ℱ𝛼, ‖𝑓‖𝛼 = sup𝑥∈ℂ𝑛 (|𝑓(𝑥)|𝑒
− 𝛼

2
|𝑥|2) .

Proof. Let us restrict ourselves to the case 𝑛 = 1. The general case is a trivial
modification of this case.
a) Let 𝑓, 𝑔 ∈ ℱ𝛼. Then for every 𝛼 > 0, 𝑓, 𝑔 ∈ ℱ𝑝

𝛼 and by the triangle
inequality for the norm in ℱ𝑝

𝛼 we obtain
‖𝑓 + 𝑔‖𝛼 = lim

𝑝→∞
‖𝑓 + 𝑔‖𝑝,𝛼

≤ lim
𝑝→∞

‖𝑓‖𝑝,𝛼 + lim
𝑝→∞

‖𝑔‖𝑝,𝛼

= ‖𝑓‖𝛼 + ‖𝑔‖𝛼.
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b) This follows from Proposition 5.1.
c) It follows from (5.1) that

|𝑓(𝑥)|𝑒−
𝛼
2
|𝑥|2 ≤ ‖𝑓‖𝑝,𝛼.

By letting 𝑝 →∞ we obtain

|𝑓(𝑥)|𝑒−
𝛼
2
|𝑥|2 ≤ ‖𝑓‖𝛼.

Thus,
ess sup |𝑓(𝑥)|𝑒−

𝛼
2
|𝑥|2 ≤ ‖𝑓‖𝛼.

To prove the converse, fix an 𝑅 > 0 and assume first that 𝑓 = 𝑃 is a polynomial.
Then

‖𝑃‖𝑝𝑝,𝛼 = ∫
|𝑥|≤𝑅

|𝑃(𝑥)|𝑝𝑒−
𝛼
2
𝑝|𝑥|2𝑑𝑥 + ∫

|𝑥|>𝑅
|𝑃(𝑥)|𝑝𝑒−

𝛼
2
𝑝|𝑥|2𝑑𝑥.

Moreover, for sufficiently large 𝑅

𝐼(𝑅) ∶= ∫
|𝑥|>𝑅

|𝑃(𝑥)|𝑝𝑒−
𝛼
2
𝑝|𝑥|2𝑑𝑥 ≤ 𝑐𝑃 ∫

|𝑥|>𝑅
|𝑧|𝑛𝑃𝑝𝑒−

𝛼
2
𝑝|𝑥|2𝑑𝑥

and the last expression is smaller than ‖𝐹‖𝑝∞,𝛼. In fact, the last expression tends
to zero as 𝑅 →∞. Therefore,

‖𝑃‖𝑝,𝛼 ≤ (‖𝑃‖𝑝∞,𝛼𝑅𝑛𝜔𝑛 + ‖𝑃‖𝑝∞,𝛼)1∕𝑝,
where 𝜔𝑛 is the meausre of the unit sphere. Thus,

‖𝑃‖𝛼 = lim
𝑝→∞

‖𝑃‖𝑝,𝛼 ≤ ‖𝑃‖∞,𝛼.

Thus, if 𝑓 is a polynomial, then

‖𝑓‖𝛼 = ‖𝑓‖∞,𝛼. (5.4)

Further, if 𝑓 is not a polynomial and 𝜖 > 0 is arbitrary, then for 𝑝 = 2, there
exists a polynomial 𝑃 so that ‖𝑃 − 𝑓‖𝑝,𝛼 < 𝜖. Moreover,

‖𝑓‖𝛼 ≤ ‖𝑃‖𝛼 + ‖𝑓 − 𝑃‖𝛼 = ‖𝑃‖∞,𝛼 + ‖𝑓 − 𝑃‖𝛼 ≤ ‖𝑃‖𝛼 + 𝜖.

Since 𝜖 is arbitrary, we conclude that (5.4) hold for every function 𝑓 ∈ ℱ𝛼.
□

Remark 5.3. One can ask, given a holomorphic function 𝑓, when this

lim
𝑝→0

‖𝑓‖𝛼,𝑝

exists. The answer is that limit is infinity except for the case when 𝑓 ≡ 𝑐𝑜𝑛𝑠𝑡, so
we cannot produce a Hardy type space for holomorphic mappings in ℂ𝑛.
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