New York Journal of Mathematics

New York J. Math. 30 (2024) 1293-1303.

Contraction property of Fock type space of log-subharmonic functions in \mathbb{R}^m

David Kalaj

ABSTRACT. We prove a contraction property of Fock type spaces \mathcal{L}^p_{α} of logsubharmonic functions in \mathbb{R}^n . To prove the result, we demonstrate a certain monotonic property of measures of the superlevel set of the function u(x) = $|f(x)|^p e^{-\frac{\alpha}{2}p|x|^2}$, provided that *f* is a certain log-subharmonic function in \mathbb{R}^m . The result recover a contraction property of holomorphic functions in the Fock space \mathcal{F}^p_{α} proved by Carlen in [Car1991].

CONTENTS

1.	Introduction	1293
2.	Motivation and main results	1294
3.	Proof of Theorem 2.2	1296
4.	Proof of Theorem 2.3	1298
5.	Additional properties of Fock space and proof of Theorem 2.7	1299
	Acknowledgments	1301
References		1302

1. Introduction

Let $m \ge 1$ and let \mathbb{R}^m be the Euclidean space endowed with the Euclidean norm: $|x| = \sqrt{\langle x, x \rangle}$, where $\langle x, y \rangle = \sum_{i=1}^m x_i y_i$, and $x = (x_1, \dots, x_m), y = (y_1, \dots, y_n) \in \mathbb{R}^m$. If $\alpha > 0$ and p > 0 and m = 2n is an even integer, we define the Fock space or Segal-Bargmann space \mathcal{F}^p_{α} (cf. [Bar62, Bar61, KZ2012]) of entire holomorphic functions f in $\mathbb{C}^n = \mathbb{R}^{2n}$ so that:

$$||f||_{p,\alpha}^p := c_{p,\alpha} \int_{\mathbb{R}^m} |f(x)|^p e^{-\frac{\alpha}{2}p|x|^2} dA(x) < \infty,$$

where

$$c_{p,\alpha} = \left(\frac{\alpha p}{2\pi}\right)^{\frac{m}{2}},\tag{1.1}$$

Received August 29, 2024.

²⁰¹⁰ Mathematics Subject Classification. Primary 30H20.

Key words and phrases. Holomorphic functions, isoperimetric inequality, Fock space, contraction.

and dA(x) is Lebesgue measure on \mathbb{R}^m . Note that $c_{p,\alpha}e^{-\frac{\alpha}{2}p|x|^2}dA(x)$ is the Gaussian probabily measure in \mathbb{R}^m .

Assume now that $m \in \mathbb{N}$ is an arbitrary integer. We say that a real twice differentiable function f defined in a domain $\Omega \subset \mathbb{R}^m$ is subharmonic if $\Delta f(x) \ge 0$ for $x \in \Omega$. Here, Δ is the Laplacian. This definition can also be extended to not necessary double differentiable functions, by using the sub-mean value property ([HK1976]). We say that a mapping f is log-subharmonic, if $\log |f(x)|$ is subharmonic in $\Omega \setminus f^{-1}(0)$. We denote by \mathcal{L}^p_{α} the space of complex-valued, real-analytic functions whose absolute value is a log-subharmonic function, defined in \mathbb{R}^m , with a finite $||f||_{p,\alpha}$ norm as defined in (1). Here, m is an arbitrary positive integer. Observe that for m = 2n we have $\mathcal{F}^p_{\alpha} \subset \mathcal{L}^p_{\alpha}$: If f is holomorphic in Ω , then |f(z)| is log-subharmonic. Indeed

$$\Delta \log |f(z)| = \sum_{k=1}^{n} \Delta_{z_k} \log |f(z)| = 0,$$

where $z = (z_1, \dots, z_n)$, and

$$\Delta_{z_k} = \frac{\partial^2}{(\partial_{x_k})^2} + \frac{\partial^2}{(\partial_{y_k})^2},$$

 $z_k = x_k + iy_k$ for k = 1, ..., n and $z \in \Omega \setminus f^{-1}(0)$.

2. Motivation and main results

Carlen, in his paper [Car1991] proved the following result:

Theorem 2.1. If $0 , then <math>\mathcal{F}^p_{\alpha}(\mathbb{C}^n) \subset \mathcal{F}^q_{\alpha}(\mathbb{C}^n)$ and the inclusion is proper and continuous. Moreover

$$||f||_{q,\alpha} \le ||f||_{p,\alpha}.$$

Theorem 2.1 is applied in [Car1991] to the coherent state transform in a new proof of Wehrl's entropy conjecture [LIEB1978]. In this paper, among other results, we recover Theorem 2.1 and provide a proof that works for a more general class of mappings, namely real analytic complex mappings whose absolute value is a log-subharmonic function in \mathbb{R}^m and belongs to the Fock-type space \mathcal{L}^p_{α} .

Let *f* be a real analytic complex-valued function defined in the Euclidean space \mathbb{R}^m , such that v = |f| is a log-subharmonic function in \mathbb{R}^m and such that $u(x) = v(x)^p e^{-\alpha p/2|x|^2}$ is bounded and goes to 0 uniformly as $|x| \to \infty$. Then the superlevel sets $A_t = \{x : u(x) > t\}$ for t > 0 are compactly embedded in \mathbb{R}^m and thus have finite Lebesgue measure $\mu(t) = |A_t|$.

Those are the main results:

Theorem 2.2. Let $\alpha > 0$ and p > 0 and assume that f is a real analytic complex valued function such that $v = |f| : \mathbb{R}^m \to [0, +\infty)$ is a log-subharmonic function. Assume further that the function $u(x) = |f(x)|^p e^{-\frac{\alpha p}{2}|x|^2}$ is bounded and

u(x) tends to 0 uniformly as $|x| \rightarrow \infty$. Then the function

$$g(t) = t \exp\left[\frac{\alpha p(\Gamma(m/2))^{2/m}}{2\pi} \mu^{2/m}(t)\right],$$

is decreasing on the interval $(0, t_{\circ})$, where $t_{\circ} = \max_{x \in \mathbb{R}^m} u(x)$.

If $f(x) \equiv 1$, the function g turns out to be constant and this is an important property of g.

The proof of this theorem is mostly based on the methods developed by Nicola and Tilli in [NT2022] (see also the subsequent papers where similar methods are used: [KU2022], [KA2024], [RT2023], [KNOT2022], and [Fr2023]).

By using Theorem 2.2, we will prove the following theorem:

Theorem 2.3. Let p > 0 and $\alpha > 0$. Let $G : [0, \infty) \to \mathbb{R}$ be a convex function. *Then the maximum value of*

$$\int_{\mathbb{R}^m} G(|f(x)|^p e^{-\frac{\alpha}{2}p|x|^2}) dA(x)$$
(2.1)

is attained for

$$f_a(x) = e^{\alpha \langle a, x \rangle - \frac{\alpha}{2} |a|^2},$$

where $a \in \mathbb{C}^n$ is arbitrary, subject to the condition that $f \in \mathcal{L}^p_{\alpha}$ and $||f||_{p,\alpha} = 1$.

Applying Theorem 2.3 to the convex and increasing function $G(t) = t^{q/p}$, we get the extension of theorem [Car1991, Theorem 2] by proving:

Theorem 2.4. For all $0 and <math>0 < \alpha$ and for $f \in \mathcal{L}^{p}_{\alpha}(\mathbb{R}^{m})$, we have $f \in \mathcal{L}^{q}_{\alpha}(\mathbb{R}^{m})$ and

$$|f||_{q,\alpha} \le ||f||_{p,\alpha}$$

with equality for $f_a(x) = e^{\alpha \langle a, x \rangle - \frac{\alpha}{2} |a|^2}$, where $a \in \mathbb{R}^m$ is arbitrary.

Proof of Theorem 2.4. For $||f||_{p,\alpha} = N$, $||f/N||_{p,\alpha} = 1$ and from Theorem 2.3 we have

$$\int_{\mathbb{R}^m} |f(x)/N|^q e^{-\frac{\alpha}{2}q|x|^2} dA(x) \le \int_{\mathbb{R}^m} e^{-\frac{\alpha}{2}q|x|^2} dA(x) = 1/c_{q,\alpha}.$$

Thus,

$$c_{q,\alpha}\int_{\mathbb{R}^m}|f(x)|^q e^{-\frac{\alpha}{2}q|x|^2}dA(x)\leq N^q,$$

or what is the same

$$||f||_{q,\alpha} \le ||f||_{p,\alpha}.$$

The equality statement follows from the equality statement of Theorem 2.4, but can be proved by using the same approach as in the monograph of Zhu [KZ2012, Lemma 2.33]. \Box

DAVID KALAJ

Remark 2.5. The last theorem is an extension of Theorem 2.1. Moreover, its proof is different from the proof in [Car1991] and seems to be simpler. We refer to the paper [GKL2010] for some related inequalities for log-subharmonic functions in \mathbb{R}^n .

Theorem 2.4 is a counterpart of a similar contraction property of Bergman spaces \mathbf{B}_{α}^{p} ([HKZ2000, p. 2]), proved by Kulikov in [KU2022] for holomorphic functions in the unit disk and for \mathcal{M} -log-subharmonic functions in the unit ball in \mathbb{R}^{n} by the author in [KA2024]. It is known that

$$\mathbf{B}^p_{\alpha} \subset \mathbf{B}^q_{\beta}, \quad \frac{p}{\alpha} = \frac{q}{\beta} = r, \quad p < q.$$

For n = 2, it was asked whether these embeddings are contractions; that is, whether the norm $||f||_{\mathbf{B}_{\alpha}^{r\alpha}}$ is decreasing in α . In the case of Bergman spaces, this question was asked by Lieb and Solovej [LiSo2021]. They proved that such contractivity implies their Wehrl-type entropy conjecture for the SU(1, 1) group. In the case of contractions from the Hardy spaces to the Bergman spaces, it was asked by Pavlović in [MP2014] and by Brevig, Ortega-Cerdà, Seip, and Zhao [BOSZ2018] concerning the estimates for analytic functions. The mentioned contraction property proved by Kulikov confirmes these conjectures. An interesting application of Kulikov result has been given by Melentijević in [PM2023].

We end this paper with the construction of a new normed Fock type space:

Definition 2.6 (Fock limit space). Let f be a holomorphic function in \mathbb{C}^n . Then for $\alpha > 0$ we say $f \in \mathcal{F}_{\alpha}$ if $f \in \bigcap_{p>0} \mathcal{F}_{\alpha}^p$. Then we define $\|f\|_{\alpha} := \inf_{p>0} \|f\|_{p,\alpha}.$

For $\alpha > 0$ define as in [KZ2012, eq. 2.2] the following Banach norm

$$||f||_{\infty,\alpha} := \operatorname{esssup}\{|f(z)|e^{-\frac{1}{2}|z|^2}, z \in \mathbb{C}^n\}.$$

Then, we prove

Theorem 2.7. For every $\alpha > 0$ we have

$$||f||_{\alpha} = ||f||_{\infty,\alpha}.$$

In particular $(\mathcal{F}_{\alpha}, \|\cdot\|_{\alpha})$ is a normed subspace of Banach space $\mathcal{F}_{\alpha}^{\infty}$.

3. Proof of Theorem 2.2

Proof of Theorem 2.2. We start with the formula

$$\mu(t) = |A_t| = \int_{A_t} dx = \int_t^{\max u} \int_{|u(x)|=\kappa} d\mathcal{H}^{m-1}(x) d\kappa.$$

Then we get

$$-\mu'(t) = \int_{u=t} |\nabla u|^{-1} d\mathcal{H}^{m-1}(x)$$
(3.1)

along with the claim that $\{x : u(x) = t\} = \partial A_t$ and that this set is a smooth hypersurface for almost all $t \in (0, t_\circ)$. Here, $dS = d\mathcal{H}^{m-1}$ is m-1 dimensional Hausdorff measure. These assertions follow the proof of [NT2022, Lemma 3.2]. We point out that, since u is real analytic, then it is a well-known fact from measure theory that the level set $\{x : u(x) = t\}$ has a zero measure ([MI2020]), and this is equivalent to the fact that the μ is continuous.

Following the approach from [NT2022], our next step is to apply the Cauchy–Schwarz inequality to the m - 1 dimensional measure of ∂A_t :

$$|\partial A_t|^2 = \left(\int_{\partial A_t} dS\right)^2 \le \int_{\partial A_t} |\nabla u|^{-1} dS \int_{\partial A_t} |\nabla u| dS.$$
(3.2)

Let $\nu = \nu(x)$ be the outward unit normal to ∂A_t at a point *x*. Note that, ∇u is parallel to ν , but directed in the opposite direction. Thus, we have $|\nabla u| = -\langle \nabla u, \nu \rangle$. Also, we note that since for $x \in \partial A_t$ we have u(x) = t, we obtain for $x \in \partial A_t$ that

$$\frac{|\nabla u(x)|}{t} = \frac{|\nabla u(x)|}{u} = \left\langle \nabla \log u(x), \nu \right\rangle.$$

Now the second integral on the right-hand side of (3.2) can be evaluated by Gauss's divergence theorem:

$$\int_{\partial A_t} |\nabla u| |dS| = -t \int_{A_t} \operatorname{div} \left(\nabla \log u(x) \right) dA(x)$$
$$= -t \int_{A_t} \Delta \log u(x) dA(x).$$

Now we plug $u = |f(x)|^p e^{-\frac{\alpha}{2}p|x|^2}$, and calculate

$$-t\Delta\log(|f(x)|^p e^{-\frac{\alpha}{2}p|x|^2}) = -(pt\Delta\log v - t\frac{\alpha}{2}p\Delta|x|^2) \le 0 + mt\alpha p.$$

By using (3.1) and (3.2), we obtain

$$\begin{aligned} |\partial A_t|^2 &\leq (-\mu'(t)) \int_{\partial A_t} |\nabla u| dS \\ &\leq -mt\alpha p\mu'(t)\mu(t). \end{aligned}$$

Now we use the isoperimetric inequality for the space:

$$|\partial A_t|^2 \ge \pi m^2 |A_t|^{\frac{2(m-1)}{m}} (\Gamma(m/2))^{-\frac{2}{m}},$$

which implies that

$$mt\alpha p\mu'(t)\mu(t) + m^2 \pi \mu(t)^{\frac{2(m-1)}{m}} \left(\Gamma(m/2)\right)^{-\frac{2}{m}} \le 0$$
(3.3)

with equality in (3.3) if and only if $v(x) = e^{\alpha \langle x, a \rangle - \frac{\alpha}{2} |a|^2}$ because in that case A_t is a ball centered at *a*. So,

$$M(t) := \alpha p \mu'(t) \mu(t)^{\frac{2-m}{m}} + \frac{m\pi \left(\Gamma(m/2)\right)^{-\frac{2}{m}}}{t} \le 0.$$
(3.4)

Since $\mu(t^{\circ}) = 0$, we obtain that

$$G(t) = \int_{t_o}^t M(t)dt = m\pi(\Gamma(m/2))^{-2/m}\log\frac{t}{t_o} + \frac{m}{2}\alpha p\mu^{\frac{2}{m}}(t)$$

is a non-increasing function for $0 \le t < t_{\circ}$.

In the case $v(x) \equiv e^{\alpha \langle a, x \rangle - \frac{\alpha}{2} |a|^2}$, $t_o = 1$ and $\mu(t_o) = 0$. Moreover,

$$g(t) := \exp(G(t)) = t \exp\left[\frac{\alpha p(\Gamma(m/2))^{2/m}}{2\pi} \mu^{2/m}(t)\right]$$

is non-increasing for $0 \le t < t_{\circ}$.

Remark 3.1. *Note that for the function* $f(x) \equiv 1$ *or*

$$f(x) = e^{-\frac{\alpha}{2}|a|^2} e^{\alpha \langle a, x \rangle}$$

for a fixed a, everywhere in the proof above we have equalities for all values of p and α . Moreover in this case the maximum of u(x) is equal to 1 and achieved for x = a.

4. Proof of Theorem 2.3

We need the following lemma:

Lemma 4.1. [KA2024] Assume that Φ , Ψ are positive increasing functions and *g* positive non-increasing such that

$$\int_0^{t_o} \Phi(g(t)/t) \, dt = \int_0^{t_o} \Phi(1/t) \, dt = c.$$

Then

$$\int_0^{t_\circ} \Phi(g(t)/t) \Psi(t) dt \le \int_0^{t_\circ} \Phi(1/t) \Psi(t) dt.$$

As in [KU2022, KA2024] where is treated Bergman version of this theorem, we restrict ourselves to the only nontrivial case $\lim_{t\to 0^+} G(t) = 0$. Let $\mu(t) = \mu(\{x : u(x) > t\})$ be the Lebesgue measure in \mathbb{R}^m , where $u(x) = |f(x)|^p e^{-\frac{\alpha p}{2}|x|^2}$. Applying Theorem 2.2 to f, we get that the function

$$g(t) = t \exp\left[\frac{\alpha(\Gamma(m/2))^{2/m}}{2\pi}\mu^{2/m}(t)\right],$$

is decreasing on $(0, t_{\circ})$ with $t_{\circ} = \max_{x \in \mathbb{R}^{m}} u(x)$. Proposition 5.1 below ensures the existence of t_{\circ} .

For $f \equiv 1$, g is a constant function equal to 1. Then,

$$\mu(t) = \left(\frac{2\pi}{\alpha(\Gamma(m/2))^{2/m}}\log\frac{g(t)}{t}\right)^{\frac{m}{2}}.$$

1298

We assume that $||f||_{p,\alpha} = 1$, that is

$$I_1 = c_{p,\alpha} \int_0^{t_{\circ}} \mu(t) dt = c_{p,\alpha} \int_0^{t_{\circ}} \left(\frac{2\pi}{\alpha (\Gamma(m/2))^{2/m}} \log \frac{g(t)}{t} \right)^{m/2} dt = 1.$$

Now the integral in (2.1) can be rewritten as

$$I_2 = c_{p,\alpha} \int_0^{t_\circ} \left(\frac{2\pi}{\alpha(\Gamma(m/2))^{2/m}} \log \frac{g(t)}{t} \right)^{m/2} G'(t) dt.$$

Then, by Lemma 4.1, by taking $\Phi(s) = c_{p,\alpha} \left(\frac{2\pi}{\alpha(\Gamma(m/2))^{2/m}} \log s \right)^{\frac{m}{2}}$ and $\Psi(t) = G'(t)$, the maximum of I_2 under $I_1 = 1$ is attained for $g \equiv 1$.

5. Additional properties of Fock space and proof of Theorem 2.7

Now we prove the following proposition used in the proof of our main result.

Proposition 5.1. Assume that f is a real-analytic log-subharmonic function in \mathbb{R}^m belonging to the Fock type space. Then for every x,

$$|f(x)|^{p}e^{-\frac{\alpha_{p}}{2}|x|^{2}} \leq c_{p,\alpha} \int_{\mathbb{R}^{m}} |f(y)|^{p}e^{-\frac{\alpha_{p}}{2}|y|^{2}} dA(y).$$
(5.1)

Moreover,

$$\lim_{|x| \to \infty} |f(x)| e^{-\frac{\alpha}{2}|x|^2} = 0.$$
 (5.2)

Notice that (5.1) extends [KZ2012, Theorem 2.7] and the relation (5.2) extends corresponding relation in [KZ2012, p. 38].

Proof. Let $g(y) = |f(x + y)|^p e^{-\alpha p \langle (y+x), x \rangle}$. Now use the mean value property to the log-subharmonic function *g* (it is also subharmonic).

$$|g(0)| \leq c_{p,\alpha} \int_{\mathbb{R}^m} |g(y)| e^{-\frac{\alpha p}{2}|y|^2} dA(y).$$

Then, we have

$$g(0) = |f(x)|^p e^{-\alpha p|x|^2} \le c_{p,\alpha} \int_{\mathbb{R}^m} f^p(y+x) e^{-\frac{\alpha}{2}p\langle (x+y), x \rangle} e^{-\frac{\alpha p}{2}|y|^2} dA(y).$$

Therefore,

$$|f(x)|^p e^{-\alpha p|x|^2} \le c_{p,\alpha} \int_{\mathbb{R}^m} f^p(y) e^{-\alpha p\langle y,x\rangle} e^{-\frac{\alpha p}{2}|y-x|^2} dA(y).$$

So,

$$|f(x)|^{p}e^{-\frac{\alpha p}{2}|x|^{2}} \leq c_{p,\alpha} \int_{\mathbb{R}^{m}} f^{p}(y)e^{-\frac{\alpha p}{2}|y|^{2}} dA(y).$$

DAVID KALAJ

Now, to prove (5.2), we use the following inequality, which is also a consequence of the sub-mean value property of subharmonic functions. Let $B_1(x) = \{y \in \mathbb{R}^m : |y - x| < 1\}$. Then for every subharmonic function *g*, we have

$$|g(0)| \leq \frac{n}{\omega_n} \int_{B_1(0)} |g(y)| dA(y).$$

Thus,

$$|g(0)|e^{-\frac{\alpha p}{2}} \le \frac{n}{\omega_n} \int_{B_1(0)} |g(y)|e^{-\frac{\alpha p}{2}|y|^2} dA(y).$$
(5.3)

By applying the previous inequality for $g(y) = |f(x + y)|^p e^{-\alpha p \langle (y+x), x \rangle}$, we obtain from (5.3) that

$$\begin{split} |f(x)|^{p} e^{-\alpha p|x|^{2}} e^{-\frac{\alpha p}{2}} &\leq \frac{n}{\omega_{n}} \int_{B_{1}(0)} |f(x+y)|^{p} e^{-\alpha p \langle (y+x), x \rangle} e^{-\frac{\alpha p}{2}|y|^{2}} dA(y) \\ &= \frac{n}{\omega_{n}} \int_{B_{1}(x)} |f(y)|^{p} e^{-\alpha p \langle y, x \rangle} e^{-\frac{\alpha p}{2}|y-x|^{2}} dA(y) \\ &= \frac{n}{\omega_{n}} e^{-\frac{\alpha p}{2}|x|^{2}} \int_{B_{1}(x)} |f(y)|^{p} e^{-\frac{\alpha p}{2}|y|^{2}} dA(y). \end{split}$$

Thus,

$$|f(x)|^{p}e^{-\frac{\alpha p}{2}|x|^{2}}e^{-\frac{\alpha p}{2}} \leq \frac{n}{\omega_{n}}\int_{B_{1}(x)}|f(y)|^{p}e^{-\frac{\alpha p}{2}|y|^{2}}dA(y).$$

Since $f \in \mathcal{L}^p_{\alpha}$, it follows that

$$\lim_{|x|\to\infty}\frac{n}{\omega_n}\int_{B_1(x)}|f(y)|^p e^{-\frac{\alpha p}{2}|y|^2}dA(y)=0.$$

This implies (5.2).

It follows from the following lemma that $||f||_{\alpha}$ is a norm on \mathcal{F}_{α} . Theorem 2.7 is a direct application of the following lemma

Lemma 5.2. *a)* If $f, g \in \mathcal{F}_{\alpha}$, then $||f + g||_{\alpha} \leq ||f||_{\alpha} + ||g||_{\alpha}$. *b)* For every $\alpha > 0$ and $f \in \mathcal{F}_{\alpha}$ and $x \in \mathbb{C}^{m}$ we have $|f(x)|e^{-\frac{\alpha}{2}|x|^{2}} \leq ||f||_{\alpha}$. *c)* For every $\alpha > 0$ and $f \in \mathcal{F}_{\alpha}$, $||f||_{\alpha} = \sup_{x \in \mathbb{C}^{n}} \left(|f(x)|e^{-\frac{\alpha}{2}|x|^{2}} \right)$.

Proof. Let us restrict ourselves to the case n = 1. The general case is a trivial modification of this case.

a) Let $f,g \in \mathcal{F}_{\alpha}$. Then for every $\alpha > 0$, $f,g \in \mathcal{F}_{\alpha}^{p}$ and by the triangle inequality for the norm in \mathcal{F}_{α}^{p} we obtain

$$\begin{split} \|f + g\|_{\alpha} &= \lim_{p \to \infty} \|f + g\|_{p,\alpha} \\ &\leq \lim_{p \to \infty} \|f\|_{p,\alpha} + \lim_{p \to \infty} \|g\|_{p,\alpha} \\ &= \|f\|_{\alpha} + \|g\|_{\alpha}. \end{split}$$

b) This follows from Proposition 5.1.

c) It follows from (5.1) that

$$|f(x)|e^{-\frac{\alpha}{2}|x|^2} \le ||f||_{p,\alpha}$$

By letting $p \to \infty$ we obtain

$$|f(x)|e^{-\frac{\alpha}{2}|x|^2} \le ||f||_{\alpha}.$$

Thus,

ess sup
$$|f(x)|e^{-\frac{\alpha}{2}|x|^2} \le ||f||_{\alpha}$$
.

To prove the converse, fix an R > 0 and assume first that f = P is a polynomial. Then

$$||P||_{p,\alpha}^{p} = \int_{|x| \le R} |P(x)|^{p} e^{-\frac{\alpha}{2}p|x|^{2}} dx + \int_{|x| > R} |P(x)|^{p} e^{-\frac{\alpha}{2}p|x|^{2}} dx.$$

Moreover, for sufficiently large R

$$I(R) := \int_{|x|>R} |P(x)|^p e^{-\frac{\alpha}{2}p|x|^2} dx \le c_P \int_{|x|>R} |z|^{n_P p} e^{-\frac{\alpha}{2}p|x|^2} dx$$

and the last expression is smaller than $||F||_{\infty,\alpha}^p$. In fact, the last expression tends to zero as $R \to \infty$. Therefore,

$$||P||_{p,\alpha} \leq (||P||_{\infty,\alpha}^p R^n \omega_n + ||P||_{\infty,\alpha}^p)^{1/p},$$

where ω_n is the meausre of the unit sphere. Thus,

$$||P||_{\alpha} = \lim_{p \to \infty} ||P||_{p,\alpha} \le ||P||_{\infty,\alpha}.$$

Thus, if f is a polynomial, then

$$||f||_{\alpha} = ||f||_{\infty,\alpha}.$$
 (5.4)

 \square

Further, if *f* is not a polynomial and $\epsilon > 0$ is arbitrary, then for p = 2, there exists a polynomial *P* so that $||P - f||_{p,\alpha} < \epsilon$. Moreover,

$$||f||_{\alpha} \le ||P||_{\alpha} + ||f - P||_{\alpha} = ||P||_{\infty,\alpha} + ||f - P||_{\alpha} \le ||P||_{\alpha} + \epsilon.$$

Since ϵ is arbitrary, we conclude that (5.4) hold for every function $f \in \mathcal{F}_{\alpha}$.

Remark 5.3. One can ask, given a holomorphic function f, when this

$$\lim_{p\to 0} \|f\|_{\alpha,p}$$

exists. The answer is that limit is infinity except for the case when $f \equiv \text{const}$, so we cannot produce a Hardy type space for holomorphic mappings in \mathbb{C}^n .

Acknowledgments. After I proved my main results, Kehe Zhu directed me to the reference by Carlen [Car1991], for which I am thankful. I am also grateful to Djordjije Vujadinovic for his valuable insights and discussions on the topic.

DAVID KALAJ

References

- [Bar62] BARGMANN, VALENTINE. Remarks on a Hilbert space of analytic functions. Proc. Nat. Acad. Sci. USA 48 (1962), 199–204. MR0133009, Zbl 0149.09601, doi: 10.1002/cpa.3160200102. 1293
- [Bar61] BARGMANN, VALENTINE. On a Hilbert space of analytic functions and an associated integral transform. Part II. A family of related function spaces. Application to distribution theory. *Comm. Pure Appl. Math.* **20** (1967), 1–101. MR0201959, Zbl 0107.09102, doi: 10.1002/cpa.3160140303. 1293
- [BOSZ2018] BREVIG, OLE FREDRIK; ORTEGA-CERDÀ, JOAQUIM; SEIP, KRISTIAN; ZHAO, JING. Contractive inequalities for Hardy spaces. *Funct. Approx. Comment. Math.* 59 (2018), no. 1, 41–56. MR3858278, Zbl 1405.30054, arXiv:1706.00738, doi:10.7169/facm/1680.1296
- [Car1991] CARLEN, ERIC A. Some integral identities and inequalities for entire functions and their application to the coherent state transform. J. Funct. Anal. 97 (1991), no. 1, 231–249. MR1105661, Zbl 0743.46018, doi: 10.1016/0022-1236(91)90022-W. 1293, 1294, 1295, 1296, 1301
- [Fr2023] FRANK, RUPERT L. Sharp inequalities for coherent states and their optimizers. *Adv. Nonlinear Stud.* 23 (2023), no. 1, Paper No. 20220050, 28 pp. MR4580699, Zbl 1515.81154, arXiv:2210.14798, doi: 10.1515/ans-2022-0050. 1295
- [GKL2010] GRACZYK, PIOTR; KEMP, TODD; LOEB, JEAN-JACQUES. Hypercontractivity for logsubharmonic functions. J. Funct. Anal. 258 (2010), no. 6, 1785–1805. MR2578455, Zbl 1186.60011, arXiv:0802.4260, doi: 10.1016/j.jfa.2009.08.014. 1296
- [HK1976] HAYMAN, WALTER K.; KENNEDY, PATRICK B. Subharmonic functions. I. London Mathematical Society Monographs, 9. Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976. xvii+284 pp. MR0460672, Zbl 0419.31001. 1294
- [HKZ2000] HEDENMALM, HAAKAN; KORENBLUM, BORIS; ZHU, KEHE. Theory of Bergman spaces. Graduate Texts in Mathematics, 199. Springer-Verlag, New York, 2000. x+286 pp. ISBN:0-387-98791-6 MR1758653, Zbl 0955.32003, doi:10.1007/978-1-4612-0497-8. 1296
- [KA2024] 1295, 1296, 1298
 KALAJ, DAVID. Contraction property of certain classes of log –*M*-subharmonic functions in the unit ball. *J. Funct. Anal.* 286, no. 1, (2024) Paper No. 110203, 29 pp. MR4655699, Zbl 1528.32050, arXiv:2207.02054, doi:10.1016/j.jfa.2023.110203.
- [KU2022] KULIKOV, ALEKSEI. Functionals with extrema at reproducing kernels. Geom. Funct. Anal. 32 (2022), no. 4, 938–949. MR4472587, Zbl 1502.30151, arXiv:2203.12349, doi: 10.1007/s00039-022-00608-5. 1295, 1296, 1298
- [KNOT2022] KULIKOV, ALEKSEI; NICOLA, FABIO; ORTEGA-CERDÀ, JOAQUIM; TILLI, PAOLO. A monotonicity theorem for subharmonic functions on manifolds. Preprint, 2022. arXiv:2212.14008. 1295
- [LIEB1978] LIEB, ELLIOTT H. Proof of an entropy conjecture of Wehrl. *Comm. Math. Phys.* **62** (1978), no. 1, 35–41. MR0506364, Zbl 0385.60089, doi: 10.1007/BF01940328. 1294
- [LiSo2021] LIEB, ELLIOTT H.; SOLOVEJ, JAN PHILIP. Wehrl-type coherent state entropy inequalities for SU(1, 1) and its AX + B subgroup. Partial differential equations, spectral theory, and mathematical physics—the Ari Laptev anniversary volume, 301–314. EMS Ser. Congr. Rep. EMS Press, Berlin, 2021. ISBN:978-3-98547-007-5 MR4331821, Zbl 1480.81064, arXiv:1906.00223, doi: 10.4171/ECR/18-1/18. 1296
- [PM2023] MELENTIJEVIĆ, PETAR. Hypercontractive inequalities for weighted Bergman spaces. Bull. Lond. Math. Soc. 55 (2023), no. 6, 2611–2616. MR4689542, Zbl 1532.30016, arXiv:2211.03655, doi: 10.1112/blms.12883. 1296
- [MI2020] MITYAGIN, BORIS S. The zero set of a real analytic function. *translated from Mat. Zametki* **107** (2020), no. 3, 473–475; *Math. Notes* **107** (2020), no. 3-4, 529–530.

MR4070868, Zbl 1442.26039, arXiv:1512.07276, doi: 10.1134/S0001434620030189. 1297

- [NT2022] NICOLA, FABIO; TILLI, PAOLO. The Faber–Krahn inequality for the short-time Fourier transform. *Invent. Math.* 230 (2022), no. 1, 1–30. MR4480144, Zbl 1497.42024, arXiv:2106.03423, doi: 10.1007/s00222-022-01119-8. 1295, 1297
- [RO1978] OSSERMAN, ROBERT. The isoperimetric inequality. Bull. Amer. Math. Soc. 84 (1978), no. 6, 1182–1238. MR0500557, Zbl 0411.52006, doi: 10.1090/S0002-9904-1978-14553-4
- [MP2014] PAVLOVIĆ, MIROSLAV, Function classes on the unit disc—an introduction. 2nd edition. De Gruyter Stud. Math., 52. *De Gruyter, Berlin*, 2019. xv+553 pp. ISBN:978-3-11-062844-9;
 ISBN:978-3-11-063085-5;
 ISBN:978-3-11-062865-4. MR4321142, Zbl 1441.30002, doi: 10.1515/9783110630855. 1296
- [RT2023] RAMOS, JOÃO P. G.; TILLI, PAOLO. A Faber–Krahn inequality for wavelet transforms. Bull. Lond. Math. Soc. 55 (2023), no. 4, 2018–2034. MR4623699, Zbl 1525.42038, arXiv:2205.07998, doi: 10.1112/blms.12833. 1295
- [KZ2012] ZHU, KEHE. Analysis on Fock spaces. Graduate Texts in Mathematics, 263. Springer, New York, 2012. x+344 pp. ISBN:978-1-4419-8800-3. MR2934601, Zbl 1262.30003, doi: 10.1007/978-1-4419-8801-0.

(David Kalaj) UNIVERSITY OF MONTENEGRO, FACULTY OF NATURAL SCIENCES AND MATHE-MATICS, CETINJSKI PUT B.B. 81000 PODGORICA, MONTENEGRO davidk@ucg.ac.me

This paper is available via http://nyjm.albany.edu/j/2024/30-57.html.