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Interpolation of toric varieties

Alicia Dickenstein, Sandra Di Rocco and Ragni Piene

Abstract. Let 𝑋 ⊂ ℙ𝑑 be an𝑚-dimensional variety in 𝑑-dimensional com-
plex projective space. Let 𝑘 be a positive integer such that the combinatorial
number

(𝑚+𝑘
𝑘

)
is smaller than or equal to 𝑑. Consider the following interpola-

tion problem: does there exist a variety 𝑌 ⊂ ℙ𝑑 of dimension strictly smaller
than

(𝑚+𝑘
𝑘

)
, with 𝑋 ⊂ 𝑌, such that the tangent space to 𝑌 at a point 𝑝 ∈ 𝑋 is

equal to the 𝑘th osculating space to 𝑋 at 𝑝, for almost all points 𝑝 ∈ 𝑋? In
this paper we consider this question in the toric setting. We prove that if 𝑋
is toric, then there is a unique toric variety 𝑌 solving the above interpolation
problem. We identify 𝑌 in the general case and we explicitly compute some
of its invariants when 𝑋 is a toric curve.

Contents

1. Introduction 1498
2. Toric interpolation 1501
3. Toric curves 1507
4. Normalizations and dual varieties 1511
References 1515

1. Introduction
When a problem can be modeled by polynomial equations, where their so-

lutions correspond to an algebraic variety, it often becomes important to deter-
mine the optimal variety that satisfies given constraints. The classical interpo-
lation problem in algebraic geometry is the following: find all plane curves of a
prescribed degree passing through a given set of points. More generally, one can
consider a class of varieties together with a collection of incidence conditions,
involving linear subspaces and possibly tangency or higher order osculating
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conditions, and ask for those varieties in the class that satisfy the given condi-
tions. This is both a theoretically and computationally challenging problem in
algebraic geometry and related fields.
A classical example in real differential geometry is the following [3, p. 56]:

Consider a space curve 𝐶. Find a space curve such that its osculating planes
are equal to the normal planes of 𝐶. The solution to this question is the evolute
of the curve 𝐶, namely the locus of its spherical curvature centers. The study
of osculating spaces to a space curve goes back at least to Monge and others in
the 18th century. For the case of curves in higher dimensional spaces, see [16].
The 𝑘th osculating space to an𝑚-dimensional variety 𝑋 ⊂ ℙ𝑑 at a point 𝑝 ∈

𝑋 is a linear space of dimension≤
(𝑚+𝑘

𝑘

)
−1 inℙ𝑑 that is tangent to𝑋 at 𝑝 to the

order 𝑘. The osculating space at 𝑝 ∈ 𝑋 of order 𝑘 = 1 is the embedded tangent
space, denoted by 𝑇𝑋,𝑝. Osculating spaces have been extensively studied in the
context of higher order dual varieties, see [17,18] for the general case and [5,6]
for the case of toric varieties. We refer to 2.2 for more details.
The kind of interpolation problemwe consider in this article is the following.

Fix a variety 𝑋 ⊂ ℙ𝑑 of dimension𝑚 in complex projective space of dimension
𝑑. Let 𝑘 be a positive integer satisfying

(𝑚+𝑘
𝑘

)
≤ 𝑑. Consider the set of all

varieties 𝑌 ⊂ ℙ𝑑 of dimension ≤
(𝑚+𝑘

𝑘

)
− 1 such that 𝑋 ⊂ 𝑌. We say that 𝑌

satisfies the 𝑘th interpolation condition with respect to 𝑋 – or that 𝑌 is a 𝑘th
interpolant of 𝑋 – if the embedded tangent space to 𝑌 at almost all points of 𝑋
is equal to the 𝑘th osculating space to 𝑋 at that point. A natural question is
then:

Determine the existence and uniqueness of a 𝑘th interpolant, and, if it exists,
explore methods for its construction.
In general, answers are expected to be challenging, particularly with regard

to uniqueness, as we are seeking a unique object that satisfies specific local
conditions. However, in the case of toric varieties, the rigidity imposed by the
torus action on the geometry allows us to provide a complete solution to the
problem.
If 𝑋 and 𝑌 are toric varieties and 𝑌 satisfies the 𝑘th interpolation condition

with respect to 𝑋, we call 𝑌 a 𝑘th toric interpolant of 𝑋.
A toric variety is a (not necessarily normal) algebraic variety containing an

algebraic torus as a Zariski open set and such that the multiplicative self-action
of the torus extends to the whole variety. Projective spaces are toric varieties
and the torus of ℙ𝑑 is the open subset 𝑇𝑑 of projective points with all nonzero
coordinates. The action of 𝑇𝑑 on ℙ𝑑 is given by coordinatewise multiplication,
that is, multiplication by a point (𝑡0 ∶ ⋯ ∶ 𝑡𝑑) ∈ 𝑇𝑑 is given by the diago-
nal matrix with diagonal entries (𝑡0,… , 𝑡𝑑). Equivariantly embedded projective
toric varieties 𝑋 ⊂ ℙ𝑑 of dimension 𝑚 not contained in a coordinate hyper-
plane are rational varieties parameterized by monomials with exponents in the
columns of a matrix 𝐴 ∈ ℤ(𝑚+1)×(𝑑+1) of rank𝑚, which give the weights of the
torus action in (3) below [9, Ch. 5, Prop. 1.5]. In this case, we denote as usual
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𝑋 = 𝑋𝐴. This configuration of column vectors lies on a hyperplane off the ori-
gin and so we will assume without loss of generality that the first coordinate of
each of these column vectors is equal to 1. In fact, 𝑋𝐴 is associated to the affine
equivalence class of 𝐴 by [9, Ch. 5, Prop. 1.2]. We refer the reader to Section 2,
where we recall with more detail this characterization, and we show in Theo-
rem 2.5 that the variety 𝑋𝐴 is completely determined by its embedded tangent
space 𝑇𝑋𝐴,(1∶⋯∶1).
Given 𝐴 ∈ ℤ(𝑚+1)×(𝑑+1) and a positive integer 𝑘, consider the matrix 𝐴(𝑘) in

ℤ(
𝑚+𝑘
𝑘 )×(𝑑+1) given in Definition 2.2, originally introduced in [5] in connection

with the study of higher order dual varieties of toric varieties. In Theorem 2.6,
we prove existence and unicity of toric interpolants, while providing an explicit
construction:

𝑌 ∶= 𝑋𝐴(𝑘) ⊂ ℙ𝑑 is the unique 𝑘th toric interpolant of 𝑋𝐴.

We explain that, thanks to the torus action, for𝑌 to be a 𝑘th toric interpolant
of 𝑋𝐴, it suffices that the tangent space to 𝑌 at one point 𝑝 ∈ 𝑋𝐴 ⊂ 𝑌 with all
nonzero coordinates, equals the 𝑘th osculating space to 𝑋𝐴 at 𝑝.
In Section 3, we analyze inmore detail the case of toric curves. Let us first re-

call the concept of cyclic polytopes associated to curves. The𝑚-moment curve
in ℝ𝑚+1 is defined by the image of the map 𝛼𝑚 ∶ ℝ → ℝ𝑚+1 sending 𝑡 to the
vector (1, 𝑡, 𝑡2,… , 𝑡𝑚). An 𝑚-dimensional cyclic polytope is defined as the con-
vex hull of the image, under themoment curve, of a finite number (at least two),
of ordered distinct points. It is known that all the images of these points by 𝛼𝑚
are vertices of the cyclic polytope, which has dimension 𝑚. Its combinatorial
structure is independent of the points chosen. Toric curves are associated to
matrices 𝐴 ∈ ℤ2×(𝑑+1) of the form

( 1 1 … 1 1
𝓁0 𝓁1 … 𝓁𝑑−1 𝓁𝑑

) ,

where we will always assume, without loss of generality, that 𝓁0 < 𝓁1 < ⋯ <
𝓁𝑑. We describe the degree and number of lattice points of the second inter-
polants of toric curves. All matrices𝐴(𝑘) arising from toric curves are positroids
(i.e., all their maximal minors are non-negative) and thus their convex hulls
define positive geometries in the sense of [1]. The columns of the matrices 𝐴(𝑘)

correspond to the vertices of a cyclic lattice polytope of dimension 𝑘. In the
case 𝑘 = 2 we consider the associated polygon and we compute its canonical
form. This is an example of a generalized tree amplituhedron of type𝒜𝑑+1,1,2(𝑍)
[1, 2] in the positive Grassmann variety 𝔾≥0

1,3 = (ℙ2)≥0. Indeed, amplituhedra
are geometric objects studied in particle physics in relation to integral represen-
tations of scattering amplitudes and they are interesting mathematical objects
that naturally generalize cyclic polytopes. Our computations can be extended
to 𝑘th interpolants for any 𝑘, based on the description of the facets of combina-
torial cyclic polytopes [4]. In the standard case of the toric curveswith𝓁𝑖 = 𝑖 for
𝑖 = 0,… , 𝑑, we compute the degree of the second and the (𝑑−1)th interpolant.
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In Section 4, we describe the normalization of the second interpolant of a
toric curve. By computing the degree of its dual variety and the degree of the
dual variety of its normalization, we conclude that though the second inter-
polant is a linear projection of its normalization, it is not a general linear pro-
jection.

2. Toric interpolation
In this section, we recall some known facts about projective toric varieties

𝑋𝐴 associated to a matrix 𝐴 (2.1) and the notion of higher osculating spaces of
a projective variety (2.2). For toric varieties, we prove that hyperosculation of
order 𝑘 can be characterized by an associated matrix 𝐴(𝑘) naturally built from
𝐴. In Definition 2.4, we introduce the notion of 𝑘th (toric) interpolant, and
in Theorem 2.6, we prove that the 𝑘th toric interpolant of the equivariantly
embedded projective toric variety 𝑋𝐴 is unique and is equal to the toric variety
𝑋𝐴(𝑘) . Uniqueness is based on the basic result in Theorem 2.5.

2.1. Projective toric varieties. Let 𝐴 = {(1, 𝐚0),… , (1, 𝐚𝑑)} ⊂ ℤ𝑚+1 be a fi-
nite set of lattice points in an affine hyperplane off the origin. We denote also
by 𝐴 the (𝑚 + 1) × (𝑑 + 1)-matrix whose columns are given by the (1, 𝐚𝑗)’s.
Consider the map

𝜄𝐴 ∶ (ℂ∗)𝑚 → ℙ𝑑 defined by 𝐭 ∶= (𝑡1,… , 𝑡𝑚)↦ (𝐭𝐚0 ∶⋯ ∶ 𝐭𝐚𝑑), (1)

where 𝐭𝐚𝑗 =
∏

𝑖 𝑡
𝑎𝑖,𝑗
𝑖 . Note that if we consider instead the map

𝜄′𝐴 ∶ (ℂ
∗)𝑚+1 → ℙ𝑑 defined by (𝑡0, 𝐭)↦ (𝑡0𝐭𝐚0 ∶⋯ ∶ 𝑡0𝐭𝐚𝑑), (2)

we have that 𝜄𝐴(𝐭) = 𝜄′𝐴(𝑡0, 𝐭).
The projectively embedded toric variety 𝑋𝐴 ⊂ ℙ𝑑 associated with 𝐴 is de-

fined to be the Zariski closure of the image of 𝜄𝐴. This image is the torus 𝑋𝐴 ∩
{𝑥 ∈ ℙ𝑑 |𝑥𝑖 ≠ 0, 𝑖 = 0,… , 𝑑} of 𝑋𝐴 and it always contains the point

𝟏 ∶= (1 ∶ ⋯ ∶ 1) ∈ ℙ𝑑.

Also, 𝑋𝐴 = Orb(𝟏) is the closure of the orbit of the point 𝟏 by the diagonal
action

𝐭∗𝐴(𝑥0 ∶⋯ ∶ 𝑥𝑑) = (𝐭𝐚0𝑥0 ∶⋯ ∶ 𝐭𝐚𝐝𝑥𝑑). (3)

The variety 𝑋𝐴 is an affine invariant of the configuration 𝐴 and its dimen-
sion equals the affine dimension of 𝐴 [9, Prop. 1.2, Ch. 5]. As we mentioned in
the introduction, we will assume without loss of generality that all points in 𝐴
have first coordinate equal to 1, which implies that dim(𝐴) = rank(𝐴) − 1. We
will moreover assume, without loss of generality, that the matrix 𝐴 has maxi-
mal rank 𝑚 + 1, or equivalently, that the convex hull of the points 𝐚0,… , 𝐚𝑑 is
of maximal dimension𝑚. As we also mentioned, Proposition 1.5 in Chapter 5
of the book [9] by Gelfand, Kapranov and Zelevinsky shows that any projec-
tive toric variety with an equivariant embedding (that is, with a diagonal torus
action) and not contained in a coordinate hyperplane, is of the form 𝑋𝐴. The
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degree of the projective variety 𝑋𝐴 equals Vol(𝐴), the lattice volume of 𝐴 (cf.
Theorem 4.16 in [19]). Subtracting multiples of the first row from the other
rows, we can also assumewithout loss of generality that 𝐚0 = 𝟎. When the sub-
group ℤ𝐴 generated by 𝐚𝟎 = 0,… , 𝐚𝐝 equals ℤ𝑚, the lattice volume Vol(𝐴) of
𝐴 is defined as𝑚! times the Euclidean volume of the convex hull of the lattice
configuration 𝐴. Otherwise, it equals this quantity divided by the rank of the
quotient ℤ𝑚∕ℤ𝐴.
We present a very simple example:

Example 2.1. Consider the matrices

𝐴1 = (1 1 1 1
0 1 2 3) , 𝐴2 = (3 2 1 0

0 1 2 3) , 𝐴3 =
⎛
⎜
⎝

1 1 1 1
0 1 2 3
1 2 3 4

⎞
⎟
⎠
,

and 𝐴4 =
(
0 1 2 3

)
. The closure of the images by the corresponding maps

𝜄𝐴𝑗
, 𝑗 = 1, 3, 4, in (1), equals the same projective toric variety: the rational nor-

mal curve of degree 3 in ℙ3 cut out by the following equations:

{(𝑥0 ∶ 𝑥1 ∶ 𝑥2 ∶ 𝑥3) ∈ ℙ3 |𝑥21 − 𝑥0𝑥2 = 0, 𝑥22 − 𝑥1𝑥3 = 0, 𝑥0𝑥3 − 𝑥1𝑥2 = 0}.

See also Example 2.3 below.
Note that the columns of 𝐴1 are the injective image of the columns of 𝐴4

by the affine map 𝑚 ↦ (1, 𝑚). The matrix 𝐴3 has rank 2 and its columns
are the injective image of the columns of 𝐴1 by the linear map (𝑚1, 𝑚2) ↦
(𝑚1, 𝑚2, 𝑚1 +𝑚2).
The columns of the matrix 𝐴2 equal the image of the columns of 𝐴1 via the

linear map (𝑚1, 𝑚2) ↦ (3𝑚1 − 𝑚2, 𝑚2) and 𝐴2 = 𝑀𝐴1, where𝑀 ∈ GL(2,ℚ)
is the matrix

𝑀 = (3 −1
0 1 ) .

Indeed, the first row of 𝐴2 is not the all 1 vector, but (1,… , 1) is in the rowspan
of the matrix 𝐴2. This is clear since 𝑀−1𝐴2 = 𝐴1, It is easy to check, as we
remarked in (2), that the map 𝑗𝐴2

defined by 𝑗𝐴2
(𝑡0, 𝑡1) = (𝑡30 ∶ 𝑡

2
0𝑡1 ∶ 𝑡0𝑡

2
1 ∶ 𝑡

3
1)

verifies 𝑗𝐴2
(𝑡0, 𝑡1) = (1 ∶ 𝑠 ∶ 𝑠2 ∶ 𝑠3) = 𝜄𝐴1

(𝑠) for 𝑠 = 𝑡1∕𝑡0. Thus, 𝐴2 also gives
a rational parameterization of the rational normal curve of degree 3.
The vectors (1,−2, 1, 0), (0, 1,−2, 1), (1,−1,−1, 1) that we can read from the

exponents of the equations generate the kernel of the matrices 𝐴1, 𝐴2, 𝐴3, and
the space of affine relations among the columns of 𝐴1 (that is, elements of the
kernel that add up to 0). Note that it is not enough to select a basis of the kernel;
for instance if we omit the equation 𝑥0𝑥3 − 𝑥1𝑥2 = 0, the points in the line
{𝑥1 = 𝑥2 = 0} also satisfy the first two equations. Instead, any two of the
equations describe the variety outside the coordinate hyperplanes.

2.2. Osculating spaces. Let 𝑋 ⊂ ℙ𝑑 be a projective algebraic variety of di-
mension𝑚. Consider the sheafℒ ∶= 𝒪ℙ𝑑(1)|𝑋 , and let𝒫𝑘

𝑋(ℒ) denote the sheaf
of 𝑘th order principal parts of ℒ [16, § 6, p. 492]. Recall that the rank of 𝒫𝑘

𝑋(ℒ)
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at a smooth point 𝑝 ∈ 𝑋 is
(𝑚+𝑘

𝑘

)
. Indeed, the fiber 𝒫𝑘

𝑋(ℒ)𝑝 at a point 𝑝 ∈ 𝑋 is
isomorphic to the vector space𝒪𝑋,𝑝∕𝔪𝑘+1

𝑋,𝑝 , where𝔪𝑋,𝑝 ⊂ 𝒪𝑋,𝑝 is the maximal
ideal in the local ring of𝑋 at 𝑝. Principal parts bundles play a crucial role in the
study of projective duality and differential properties of projective embeddings,
see [10, IV.A., pp. 341–346; IV.D., pp. 359–365].
Assume that 𝑈 ⊂ 𝑋 has a parameterization

𝐭 ∶= (𝑡1, 𝑡2,… , 𝑡𝑚)↦ (𝑥0(𝐭) ∶⋯ ∶ 𝑥𝑑(𝐭)).
Then, the 𝑘th jet map

𝑗𝑘 ∶ 𝒪𝑑+1
𝑋 → 𝒫𝑘

𝑋(ℒ)
restricted to 𝑈 is given by the matrix

𝐴(𝑘)(𝐭) ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑥0(𝐭) 𝑥1(𝐭) ⋯ 𝑥𝑑(𝐭)
𝜕𝑥0(𝐭)
𝜕𝑡1

𝜕𝑥1(𝐭)
𝜕𝑡1

⋯ 𝜕𝑥𝑑(𝐭)
𝜕𝑡1

⋮ ⋮ ⋮ ⋮
𝜕𝑥0(𝐭)
𝜕𝑡𝑚

𝜕𝑥1(𝐭)
𝜕𝑡𝑚

⋯ 𝜕𝑥𝑑(𝐭)
𝜕𝑡𝑚

𝜕2𝑥0(𝐭)
𝜕𝑡21

𝜕2𝑥1(𝐭)
𝜕𝑡21

⋯ 𝜕2𝑥𝑑(𝐭)
𝜕𝑡21

𝜕2𝑥0(𝐭)
𝜕𝑡1𝜕𝑡2

𝜕2𝑥1(𝐭)
𝜕𝑡1𝜕𝑡2

⋯ 𝜕2𝑥𝑑(𝐭)
𝜕𝑡1𝜕𝑡2

⋮ ⋮ ⋮ ⋮
𝜕𝑘𝑥0(𝐭)
𝜕𝑡𝑘𝑚

𝜕𝑘𝑥1(𝐭)
𝜕𝑡𝑘𝑚

⋯ 𝜕𝑘𝑥𝑑(𝐭)
𝜕𝑡𝑘𝑚

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4)

where 𝜕𝑗

𝜕𝑡𝑗𝑖
denotes the Hasse derivative, that is, 1

𝑗!
times the standard derivative.

Given amatrix𝐴wewill denote by rowspan(𝐴) the subspace ofℂ𝑑+1 spanned
by the row vectors of 𝐴. The 𝑘th osculating space to 𝑋 at a point corresponding
to 𝐭 is the linear space

ℙ(rowspan(𝐴(𝑘)(𝐭))).

2.3. Thematrices𝑨(𝒌). Wenowconstructmatrices𝐴(𝑘) describing thehigher
osculating spaces of a toric variety 𝑋𝐴 at 𝟏 = (1 ∶ ⋯ ∶ 1). For any 𝑘, the 𝑘th
osculating spaces at the points 𝜄𝐴(𝐭) = 𝐭∗𝐴𝟏 in the torus of 𝑋𝐴 are translated by
this action (defined in (3)).
We also construct matrices denoted by 𝐴(𝑘); the matrices 𝐴(𝑘) and 𝐴(𝑘) will

define the same projective toric variety.

Definition 2.2. Let 𝐴 ∈ ℤ(𝑚+1)×(𝑑+1) with column vectors (1, 𝐚𝑗), 𝑗 = 0,…𝑑,
and 𝑘 ∈ ℕ. We define the associatedmatrix𝐴(𝑘) as follows. Wewill add

(𝑚+𝑘
𝑘

)
−

(𝑚 + 1) new rows to 𝐴 in its lower part. We order the vectors {𝐢 = (𝑖1,… , 𝑖𝑚) ∈
ℤ𝑚
≥0 | 2 ≤ |𝐢| ≤ 𝑘}, with lexicographic order with 0 < 1 <⋯ < 𝑚 and use them

to label these rows. The entry in the matrix 𝐴(𝑘) in the 𝑗th column and the 𝐢th
row is the integer 𝑎𝑖11,𝑗⋯ 𝑎𝑖𝑚𝑚,𝑗. When all the coefficients of 𝐴 are nonnegative,
we define another associatedmatrix𝐴(𝑘) as follows. Again, we add

(𝑚+𝑘
𝑘

)
−(𝑚+
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1) new (ordered) rows to𝐴 in its lower part labeled by the vectors 𝐢 = (𝑖1,… , 𝑖𝑚).
The entry in the matrix 𝐴(𝑘) in the 𝑗th column and the 𝐢th row is the integer(𝐚𝑗
𝐢

)
∶=

(𝑎1,𝑗
𝑖1

)
⋯
(𝑎𝑚,𝑗
𝑖𝑚

)
.

Since
(𝑎
𝑖

)
= 𝑎(𝑎−1)…(𝑎−𝑖+1)

𝑖!
for any positive integer 𝑎 ≥ 𝑖, it is straightforward

to see that for any 𝑘 there exists an integer matrix𝑀𝑘 such that𝐴(𝑘) = 𝑀𝑘 ⋅𝐴(𝑘)

with det(𝑀𝑘) =
∏

2≤|𝐢|≤𝑘 𝑖1! … 𝑖𝑚!. By [5, 2.2], the projective linear space

ℙ(rowspan(𝐴(𝑘))) = ℙ(rowspan(𝐴(𝑘)))

equals the 𝑘th osculating space of 𝑋𝐴 at the point 𝟏. This is easily seen by con-
sidering the parameterization 𝜄𝐴 to construct the matrix 𝐴(𝑘)(𝐭) in (4). Evaluat-
ing at 𝐭 = 𝟏, we get the matrix 𝐴(𝑘).

Example 2.3. Let 𝑑 ∈ ℕ and let 𝐴 be the matrix

𝐴𝑑 = ( 1 1 1 1 ⋯ 1
0 1 2 3 ⋯ 𝑑 ) .

When 𝑘 = 2, we have

𝐴(2)
𝑑 =

⎛
⎜
⎜
⎝

1 1 1 1 ⋯ 1
0 1 2 3 ⋯ 𝑑
0 0 1 3 ⋯ 𝑑(𝑑−1)

2

⎞
⎟
⎟
⎠

, 𝐴(2)
𝑑 =

⎛
⎜
⎝

1 1 1 1 ⋯ 1
0 1 2 3 ⋯ 𝑑
0 1 4 9 ⋯ 𝑑2

⎞
⎟
⎠
,

and 𝐴(2)
𝑑 = 𝑀2 ⋅ 𝐴

(2)
𝑑 , where𝑀2 ∈ GL(3,ℚ) is the matrix

𝑀2 =
⎛
⎜
⎝

1 0 0
0 1 0
0 1 2

⎞
⎟
⎠
.

Consider the rational parameterizations of 𝑋𝐴(2)
𝑑
= 𝑋𝐴(2)

𝑑
from (ℂ∗)2 to ℙ𝑑 ∶

𝜄𝐴(2)
𝑑
∶ (𝑡1, 𝑡2)↦ (1 ∶ 𝑡1 ∶ 𝑡21𝑡2 ∶⋯ ∶ 𝑡𝑑1 𝑡

𝑑(𝑑−1)
2

2 ),

𝜄𝐴(2)
𝑑
∶ (𝑠1, 𝑠2)↦ (1 ∶ 𝑠1𝑠2 ∶ 𝑠21𝑠

4
2 ∶⋯ ∶ 𝑠𝑑1 𝑠

𝑑2
2 ),

and let 𝜑𝑀2
∶ (ℂ∗)2 → (ℂ∗)2 be the 2 ∶ 1-map 𝑠 ↦ (𝑠1𝑠2, 𝑠22). Then, it is

straightforward to check that 𝜄𝐴(2)
𝑑
= 𝜄𝐴(2)

𝑑
◦𝜑𝑀2

. We could also consider the first
rows of the matrices and get a parameterization of the same (projective) variety

from (ℂ∗)3 to ℙ𝑑, given by the map 𝜄′𝐴(𝑡0, 𝑡1, 𝑡2) = (𝑡0 ∶ 𝑡0𝑡1 ∶⋯ ∶ 𝑡0𝑡𝑑1 𝑡
𝑑(𝑑−1)

2
2 ).

As noted above, the tangent space at 𝟏 to the variety 𝑋𝐴(2)
𝑑

= 𝑋𝐴(2)
𝑑
equals

the second osculating space of 𝑋𝐴 at 𝟏. The standard cyclic polygon defined by
𝑑 + 1 points 𝛼𝑑(𝑗), 𝑗 = 0,… , 𝑑, on the moment curve in the plane is in general
presented with vertices equal to the points given by the columns of the matrix
𝐴(2)
𝑑 , but 𝜄𝐴(2)

𝑑
is 1 ∶ 1 while 𝜄𝐴(2)

𝑑
is 2 ∶ 1.
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2.4. The toric interpolant. We define 𝑘th toric interpolants for any 𝑘 ∈ ℕ
and we show in Theorem 2.6 that a toric interpolant always exists and that it is
unique.

Definition 2.4. Let 𝑋𝐴 ⊂ ℙ𝑑 be a projective toric variety and 𝑘 ≥ 1 a natural
number.

(1) We say that a projective toric variety 𝑋𝐵 is a 𝑘th toric interpolant of 𝑋𝐴
at 𝐩 ∈ 𝑋𝐴 if 𝑋𝐴 ⊂ 𝑋𝐵 and the tangent space to 𝑋𝐵 at the point 𝐩 ∈ 𝑋𝐴
is equal to the 𝑘th osculating space to 𝑋𝐴 at 𝐩.

(2) We say that 𝑋𝐵 is a 𝑘th toric interpolant of 𝑋𝐴 if 𝑋𝐵 is a 𝑘th toric inter-
polant of 𝑋𝐴 at almost all points 𝐩 ∈ 𝑋𝐴.

We start by showing the basic result that a projective toric embedding 𝑋𝐴 ↪
ℙ𝑑 is completely determined by the tangent space at the point 𝟏 ∈ 𝑋𝐴 ⊂ ℙ𝑑.

Theorem 2.5. Let 𝐴 ∈ ℤ(𝑚+1)×(𝑑+1) be such that rowspan(𝐴) ⊂ ℝ𝑑+1 is a sub-
space of dimension 𝑚 + 1 containing the vector (1,… , 1) ∈ ℝ𝑑+1. Then, the fol-
lowing statements hold:

(i) Given another matrix 𝐴′ ∈ ℤ(𝑚+1)×(𝑑+1) such that rowspan(𝐴′) has di-
mension𝑚 + 1 and contains the vector (1,… , 1) ∈ ℝ𝑑+1, then 𝑋𝐴 = 𝑋𝐴′

if and only if rowspan(𝐴) = rowspan(𝐴′).
(ii) The embedded tangent space to𝑋𝐴 at 𝟏 ∈ 𝑋𝐴 ⊂ ℙ𝑑 is the projectivization

ℙ(rowspan(𝐴)⊗ℝ ℂ).
Moreover, let𝐿 be a linear subspace inℝ𝑑+1 of dimension𝑚+1which is defined

overℚ and contains the point (1,… , 1). Consider the projectivizationℙ(𝐿ℂ) ⊂ ℙ𝑑
of its extension 𝐿ℂ ∶= 𝐿 ⊗ℝ ℂ. There exists a unique equivariantly embedded
toric variety 𝑋𝐴 ⊂ ℙ𝑑 such that ℙ(𝐿ℂ) is the embedded tangent space 𝑇𝑋𝐴,𝟏 of
𝑋𝐴 at 𝟏. Indeed, it is enough to take any matrix 𝐴 ∈ ℤ(𝑚+1)×(𝑑+1) such that
𝐿 = rowspan(𝐴).

Proof. If rowspan(𝐴)= rowspan(𝐴′)we have that 𝑋𝐴 = 𝑋𝐴′ because the con-
figurations of columns of 𝐴 and 𝐴′ are affinely equivalent.
Let 𝜄𝐴 be the rational parameterization of𝑋𝐴 defined in (1) and𝑈 = 𝜄𝐴((ℂ∗)𝑚)

the torus of 𝑋𝐴. Taking 𝑘 = 1 in (4) we get that 𝐴(1)(1,… , 1) = 𝐴. Therefore,
we see that the embedded tangent space at the point 𝟏 is the projective linear
space spanned by the row vectors of𝐴 considered as points inℙ𝑑, which shows
item (ii). Then, if 𝑋𝐴 = 𝑋𝐴′ , they have the same embedded tangent space at 𝟏
and so rowspan(𝐴) = rowspan(𝐴′)
Given such a linear subspace 𝐿 as in the statement and any choice of matrix

𝐴 with 𝐿 = rowspan(𝐴), then 𝑇𝑋𝐴,𝟏 = ℙ(rowspan(𝐴)⊗ℝ ℂ) = ℙ(𝐿ℂ). □

We next show the existence and uniqueness of toric interpolants for any 𝑘 ∈
ℕ.

Theorem 2.6. Let 𝐴 ∈ ℤ(𝑚+1)×(𝑑+1) and 𝑘 ∈ ℕ.
(i) The variety 𝑋𝐴(𝑘) is a 𝑘th toric interpolant of 𝑋𝐴 at all points in the torus

of 𝑋𝐴, i.e., all points of 𝑋𝐴 in the torus of ℙ𝑑.



1506 A. DICKENSTEIN, S. DI ROCCO AND R. PIENE

(ii) Assume there exists a matrix 𝐵 ∈ ℤ(𝑚𝐵+1)×(𝑑+1) such that 𝑋𝐵 is a 𝑘th
toric interpolant of 𝑋𝐴 at one point 𝐩∗ = 𝜄𝐴(𝐭∗) in the torus of 𝑋𝐴. Then,
𝑋𝐵 = 𝑋𝐴(𝑘) .

Proof. Assume that the first row of𝐴 is given by the vector with all coordinates
equal to 1. We have already observed that for any 𝐭 ∈ (ℂ∗)𝑚, the tangent space
to𝑋𝐴 at 𝐩 = 𝜄𝐴(𝐭) = (𝐭𝐚0 ∶⋯ ∶ 𝐭𝐚𝑑) is spanned by the row vectors of the matrix
𝐴(1)(𝐭) in (4). Note that multiplying the 𝑗th row vector of this matrix by 𝑡𝑗 for
𝑗 = 1,… , 𝑚, we get that the rows of the new matrix are the torus translates by
the diagonal action ∗𝐴 in (3) of the rows of thematrix𝐴(1)(𝟏) = 𝐴. We canwrite
this as 𝐭∗𝐴𝐴(1)(𝟏) = 𝐴(1)(𝐭). Similarly, the row vectors of 𝐴(𝑘)(𝐭) span the 𝑘th
osculating space to 𝑋𝐴 at the point 𝐩. Multiplying its rows by corresponding
powers of 𝑡1,… , 𝑡𝑚, we see that the rowspan of 𝐴(𝑘)(𝐭) equals the rowspan of
the matrix 𝐭∗𝐴𝐴(𝑘)(𝟏) = 𝐭∗𝐴𝐴(𝑘).
Introduce

(𝑚+𝑘
𝑘

)
− (𝑚 + 1) new (ordered) variables 𝑢𝐢, where 𝐢 = (𝑖1,… , 𝑖𝑚)

and 2 ≤ |𝐢| ≤ 𝑘. The entry in the matrix 𝐴(𝑘) in the 𝑗th column and the 𝐢th
row is the integer

(𝐚𝑗
𝐢

)
∶=

(𝑎1,𝑗
𝑖1

)
⋯
(𝑎𝑚,𝑗
𝑖𝑚

)
. Hence, the toric variety 𝑋𝐴(𝑘) has a

parameterization

𝜄𝐴(𝑘) ∶ (𝐭,𝐮) ∶= (𝑡1,… , 𝑡𝑚,… , 𝑢𝐢,… )↦ (⋯ ∶ 𝐭𝐚𝑗
∏

𝐢
𝑢
(𝐚𝑗𝐢 )
𝐤 ∶⋯).

It follows that the row span of thematrix𝐴(𝑘)(𝐭,𝐮) is equal to the tangent space

to𝑋𝐴(𝑘) at the point (⋯ ∶ 𝐭𝐚𝑗
∏

𝐢 𝑢
(𝐚𝑗𝐢 )
𝐢 ∶⋯). This is a point of𝑋𝐴 if all 𝑢𝐢 = 1. In

particular, we have𝑋𝐴 ⊆ 𝑋𝐴(𝑘) . The tangent space to𝑋𝐴(𝑘) at the point𝐩 ∈ 𝑋𝐴 is
equal to the torus translate by (𝐭, 𝟏) bymeans of the action ∗𝐴(𝑘) of the embedded
tangent space at the point (1 ∶ ⋯ ∶ 1) ∈ ℙ𝑑, which equals the 𝑘th osculating
space to𝑋𝐴 at 𝐩. It follows that𝑋𝐴(𝑘) is a 𝑘th toric interpolant of𝑋𝐴 at any point
𝐩 in the torus of 𝑋𝐴.
Assume a configuration 𝐵 defines a 𝑘th-toric interpolant of 𝑋𝐴. Then, we

have the equality of tangent spaces 𝑇𝐵,𝟏 = 𝑇𝐴(𝑘),𝟏 since both coincide with the
𝑘th-osculating space to 𝑋𝐴 at 𝟏. Theorem 2.5 implies that 𝑋𝐵 = 𝑋𝐴(𝑘) . □

Example 2.7. Consider the Del Pezzo surface 𝑋 ⊂ ℙ6 of degree 6 given by the
parameterization

𝜄∶ (𝑡1, 𝑡2)↦ (1 ∶ 𝑡1 ∶ 𝑡2 ∶ 𝑡1𝑡2 ∶ 𝑡1𝑡22 ∶ 𝑡
2
1𝑡2 ∶ 𝑡

2
1𝑡
2
2).

We get

𝐴(2) =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1 1 1 1
0 1 0 1 1 2 2
0 0 1 1 2 1 2
0 0 0 0 0 1 1
0 0 0 1 2 2 4
0 0 0 0 1 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.
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Consider new variables 𝑢(2,0), 𝑢(1,1) and 𝑢(0,2). Then, we get a parameterization

𝜄𝐴(2) ∶ (𝑡1, 𝑡2, 𝑢(2,0), 𝑢(1,1), 𝑢(0,2))↦

(1 ∶ 𝑡1 ∶ 𝑡2 ∶ 𝑡1𝑡2𝑢(1,1) ∶ 𝑡1𝑡22𝑢
2
(1,1)𝑢(0,2) ∶ 𝑡

2
1𝑡2𝑢(2,0)𝑢

2
(1,1) ∶ 𝑡

2
1𝑡
2
2𝑢(2,0)𝑢

4
(1,1)𝑢(0,2)).

We could also subtract twice the sum of the fourth and sixth rows from the fifth
row, which gives the vector (0, 0, 0, 1, 0, 0, 0), so that we get the parameteriza-
tion:

𝜄𝐴(2) ∶ (𝑡1, 𝑡2, 𝑢(2,0), 𝑢(1,1), 𝑢(0,2))↦

(1 ∶ 𝑡1 ∶ 𝑡2 ∶ 𝑡1𝑡2𝑢(1,1) ∶ 𝑡1𝑡22𝑢(0,2) ∶ 𝑡
2
1𝑡2𝑢(2,0) ∶ 𝑡

2
1𝑡
2
2𝑢(2,0)𝑢(0,2)).

The corank of𝐴(2) is 1 and the 2nd toric interpolant is the degree 3 hypersurface
with equation 𝑥0𝑥4𝑥5 − 𝑥1𝑥2𝑥6 = 0. This equation does not depend on 𝑥3
because the configuration of columns of 𝐴(2) is a pyramid with vertex on its
fourth column, as by the previous calculation the fourth column vector lies in
the hyperplane 𝑦4 − 2𝑦3 − 2𝑦5 = 1 in ℤ5, while all the other column vectors lie
in the parallel hyperplane 𝑦4 − 2𝑦3 − 2𝑦5 = 0.
The tangent space to 𝑋𝐴(2) at a point

𝜄𝐴(2)(𝐭,𝐮) = 𝜄𝐴(2)(𝑡1, 𝑡2, 𝑢(2,0), 𝑢(1,1), 𝑢(0,2))

is the row span of the matrix 𝐴(2)(𝐭,𝐮) given by

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 𝑡1 𝑡2 𝑡1𝑡2𝑢(1,1) 𝑡1𝑡22𝑢
2
(1,1)𝑢(0,2) 𝑡21𝑡2𝑢(2,0)𝑢

2
(1,1) 𝑡21𝑡

2
2𝑢(2,0)𝑢

4
(1,1)𝑢(0,2)

0 1 0 𝑡2𝑢(1,1) 𝑡22𝑢
2
(1,1)𝑢(0,2) 2𝑡1𝑡2𝑢(2,0)𝑢2(1,1) 2𝑡1𝑡22𝑢(2,0)𝑢

4
(1,1)𝑢(0,2)

0 0 1 𝑡1𝑢(1,1) 2𝑡1𝑡2𝑢2(1,1)𝑢(0,2) 𝑡21𝑢(2,0)𝑢
2
(1,1) 2𝑡21𝑡2𝑢(2,0)𝑢

4
(1,1)𝑢(0,2)

0 0 0 0 0 𝑡21𝑡2𝑢
2
(1,1) 𝑡21𝑡

2
2𝑢

4
(1,1)𝑢(0,2)

0 0 0 𝑡1𝑡2 2𝑡1𝑡22𝑢(1,1)𝑢(0,2) 2𝑡21𝑡2𝑢(2,0)𝑢(1,1) 4𝑡21𝑡
2
2𝑢(2,0)𝑢

3
(1,1)𝑢(0,2)

0 0 0 0 𝑡1𝑡22𝑢
2
(1,1) 0 𝑡21𝑡

2
2𝑢(2,0)𝑢

4
(1,1)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

For a point 𝜄𝐴(2)(𝑡1, 𝑡2, 1, 1, 1) ∈ 𝑋 with 𝑡1, 𝑡2 ≠ 0, this is the same as the row
span of the matrix

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 𝑡1 𝑡2 𝑡1𝑡2 𝑡1𝑡22 𝑡21𝑡2 𝑡21𝑡
2
2

0 1 0 𝑡2 𝑡22 2𝑡1𝑡2 2𝑡1𝑡2
0 0 1 𝑡1 2𝑡1𝑡2 𝑡21 2𝑡21𝑡2
0 0 0 0 0 1 𝑡2
0 0 0 1 2𝑡2 2𝑡1 4𝑡1𝑡2
0 0 0 0 1 0 𝑡1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

which is the same as the second osculating space to 𝑋 at this point.

3. Toric curves
We shall now study in more detail the case when 𝑋 is a curve. A toric curve

𝑋 ⊂ ℙ𝑑 which is not contained in a coordinate hyperplane, can be described as
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follows. Given integers 𝓁0 = 0 < 𝓁1 <⋯ < 𝓁𝑑−1 < 𝑙𝑑, set 𝓁 ∶= {𝓁0,… ,𝓁𝑑} and

𝐴𝓁,𝑑 ∶= ( 1 1 ⋯ 1
0 𝓁1 ⋯ 𝓁𝑑

) .

Let 𝑋𝐴𝓁,𝑑
⊂ ℙ𝑑 be the rational curve of degree 𝓁𝑑 parameterized by

𝑡 ↦ (1 ∶ 𝑡𝓁1 ∶⋯ ∶ 𝑡𝓁𝑑−1 ∶ 𝑡𝓁𝑑).

In the special case when 𝓁0 = 1, 𝓁1 = 1,. . . , 𝓁𝑑 = 𝑑, the curve𝑋𝐴𝓁,𝑑
is a rational

normal curve.
The 𝑘th toric interpolant of 𝑋𝐴𝓁,𝑑

is given by the matrix

𝐴(𝑘)
𝓁,𝑑 =

⎛
⎜
⎜
⎜
⎜
⎝

1 1 1 ⋯ 1 1
0 𝓁1 𝓁2 ⋯ 𝓁𝑑−1 𝓁𝑑
0

(𝓁1
2

) (𝓁2
2

)
⋯

(𝓁𝑑−1
2

) (𝓁𝑑
2

)

⋮ ⋮ ⋮ ⋯ ⋮ ⋮
0

(𝓁1
𝑘

) (𝓁2
𝑘

)
⋯

(𝓁𝑑−1
𝑘

) (𝑙𝓁𝑑
𝑘

)

⎞
⎟
⎟
⎟
⎟
⎠

.

As we observed in the comment after Definition 2.2 there exists a (𝑘 + 1) ×
(𝑘 + 1)-matrix𝑀𝑘 such that the matrix

𝐴(𝑘)
𝓁,𝑑 ∶=

⎛
⎜
⎜
⎜
⎜
⎝

1 1 1 ⋯ 1 1
0 𝓁1 𝓁2 ⋯ 𝓁𝑑−1 𝓁𝑑
0 𝓁21 𝓁22 ⋯ 𝓁2𝑑−1 𝓁𝑑

2

⋮ ⋮ ⋮ ⋯ ⋮ ⋮
0 𝓁𝑘1 𝓁𝑘3 ⋯ 𝓁𝑘𝑑−1 𝓁𝑘𝑑

⎞
⎟
⎟
⎟
⎟
⎠

is equal to 𝑀𝑘 ⋅ 𝐴
(𝑘)
𝓁,𝑑, with det𝑀𝑘 =

∏𝑘
𝑗=1 𝑗!. The column vectors of this sec-

ond matrix 𝐴(𝑘)
𝓁,𝑑 form the vertices of a cyclic polytope 𝐶(𝑘)𝓁,𝑑. They are ordered

points on a moment curve. Here, ordered means naively that the second coor-
dinates are increasing, but the main point is that all the maximal minors of the
matrix (with the corresponding ordered columns) are positive. Therefore, we
can compute the degree of the variety 𝑋(𝑘)

𝐴𝓁,𝑑
= 𝑋(𝑘)

𝐴𝓁,𝑑
as the lattice volume of the

cyclic polytope 𝐶(𝑘)𝓁,𝑑 with respect to the lattice generated by the columns of the

matrix𝐴(𝑘)
𝓁,𝑑, which are all consecutive vertices of the cyclic polytope. Note that

the matrices 𝐴(𝑘)
𝓁,𝑑 are positroids: their maximal minors are positive since they

are equal to Vandermonde determinants and the 𝓁𝑖 satisfy 𝓁𝑖 < 𝓁𝑗 for 𝑖 < 𝑗.
Since 𝐴(𝑘)

𝑙,𝑑 = 𝑀−1
𝑘 ⋅ 𝐴(𝑘)

𝑙,𝑑 , with det𝑀
−1
𝑘 > 0, also 𝐴(𝑘)

𝓁,𝑑 is a positroid.
In general, the lattice volume of a 𝑘-dimensional lattice polytope is 𝑘! times

its Euclidean volume andwill be denoted byVol. By decomposing the polytope
into simplices, Vol(𝐶(𝑘)𝓁,𝑑) can be computed as the sum of the lattice volumes of
these simplices, which will all be expressed as Vandermonde determinants in
𝓁1,… ,𝓁𝑑. To decompose the polytope, one can use a classical characterization
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of its facets, for an account of this, see [8]. Once one knows the volume, one
can compute the number of lattice points of the polytope by the formula given
by Liu [12, Thm. 1.2, p. 112]:

𝑖(𝐶(𝑘)𝓁,𝑑) =
𝑘∑

𝑗=0
Vol𝐶(𝑗)𝓁,𝑑,

where Vol𝐶(0)𝓁,𝑑 ∶= 1.

To illustrate this situation, assume that 𝑘 = 2. Then 𝐶(2)𝓁,𝑑 is a cyclic polygon.

Proposition 3.1. The lattice volume of and the number of lattice points in 𝐶(2)𝓁,𝑑
are given as

Vol𝐶(2)𝓁,𝑑 =
𝑑−1∑

𝑖=1
𝓁𝑖𝓁𝑖+1(𝓁𝑖+1 − 𝓁𝑖)

and

𝑖(𝐶(2)𝓁,𝑑) =
1
2

𝑑−1∑

𝑖=1
𝓁𝑖𝓁𝑖+1(𝓁𝑖+1 − 𝓁𝑖) + 𝓁𝑑 + 1.

Proof. Wewrite𝐶(2)𝓁,𝑑 as the union of the triangleswith vertices (0, 0), (𝓁𝑖,𝓁
2
𝑖 ),and

(𝓁𝑖+1,𝓁2𝑖+1). The lattice area of the triangles are
1
2
𝓁𝑖𝓁𝑖+1(𝓁𝑖+1 − 𝓁𝑖). The lattice

length of 𝐶(1)𝓁,𝑑 is 𝓁𝑑. □

Assume 𝓁0 = 0,𝓁1 = 1,… ,𝓁𝑑 = 𝑑 and 𝑘 = 2. If we instead use the matrix

𝐴(2)
𝑑 =

⎛
⎜
⎜
⎝

1 1 1 1 1 ⋯ 1 1 1 1
0 1 2 3 4 ⋯ 𝑑 − 3 𝑑 − 2 𝑑 − 1 𝑑
0 0 1 3 6 ⋯

(𝑑−3
2

) (𝑑−2
2

) (𝑑−1
2

) (𝑑
2

)

⎞
⎟
⎟
⎠

, (5)

we get a different polygon, which we call 𝑃(𝑑). It is easy to see that the lattice
area of 𝑃(𝑑) coincides with its normalized area and thus gives the degree of the
associated toric variety 𝑋𝐴(2)

𝑑
= 𝑋𝐴(2)

𝓁,𝑑
.

The (𝑑 − 1)th toric interpolant of 𝑋𝐴𝑑
is given by the matrix

𝐴(𝑑−1)
𝑑 =

⎛
⎜
⎜
⎜
⎜
⎝

1 1 1 1 1 ⋯ 1 1 1 1
0 1 2 3 4 ⋯ 𝑑 − 3 𝑑 − 2 𝑑 − 1 𝑑
0 0 1 3 6 ⋯

(𝑑−3
2

) (𝑑−2
2

) (𝑑−1
2

) (𝑑
2

)

⋮ ⋮ ⋮ ⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 ⋯ 0 0 1

( 𝑑
𝑑−1

)

⎞
⎟
⎟
⎟
⎟
⎠

.

Hence we get the following parameterization of 𝑋𝐴(𝑑−1)
𝑑

:

(𝑡0, 𝑡1,… , 𝑡𝑑−1)↦ (𝑡0 ∶ 𝑡0𝑡1 ∶ 𝑡0𝑡21𝑡2 ∶⋯ ∶ 𝑡0𝑡𝑑1 𝑡
(𝑑2)
2 ⋯ 𝑡𝑑𝑑−1) ∈ ℙ𝑑.
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P(3)

P(4)

P(5)

(d+1, d(d+1))/2)

(d, d(d-1))/2)

(0, 0)

Figure 1. The polygons 𝑃(𝑑).

Proposition 3.2. 𝑋𝐴(𝑑−1)
𝑑

is a toric hypersurface of degree 2𝑑−1.

Proof. It is clear that the rank of𝐴(𝑑−1)
𝑑 is𝑑 as itsmaximalminor corresponding

to its first columns is equal to 1. Then, its kernel has dimension one and so
𝑋𝐴(𝑑−1)

𝑑
is a hypersurface. It is easy to check that a (𝑑 + 1)-vector 𝑣 lies in the

kernel of𝐴(𝑑−1)
𝑑 if and only if the polynomial 𝑓𝑣(𝑡) =

∑𝑑
𝑖=0 𝑣𝑖𝑡

𝑖 vanishes at 𝑡 = 1
jointly with its derivatives up to order (𝑑 − 1). The vector 𝑤 with coordinates
𝑤𝑖 = (−1)𝑑−𝑖

(𝑑
𝑖

)
, satisfies that 𝑓𝑤(𝑡) = (𝑡 − 1)𝑑, and so 𝑤 is a generator of the

kernel. Separating its positive from its negative entries, we get that the ideal of
𝑋𝐴(𝑑−1)

𝑑
is generated by the binomial

𝑥0𝑥
(𝑑2)
2 ⋯𝑥

( 𝑑
𝑑−2)
𝑑−2 𝑥𝑑 − 𝑥

(𝑑1)
1 𝑥

(𝑑3)
3 ⋯𝑥

( 𝑑
𝑑−1)
𝑑−1 = 0

if 𝑑 is even, and

𝑥0𝑥
(𝑑2)
2 ⋯𝑥

( 𝑑
𝑑−1)
𝑑−1 − 𝑥

(𝑑1)
1 𝑥

(𝑑3)
3 ⋯𝑥

( 𝑑
𝑑−2)
𝑑−2 𝑥𝑑 = 0

if 𝑑 is odd. By using
(𝑑
𝑖

)
=
(𝑑−1
𝑖−1

)
+
(𝑑−1

𝑖

)
, we see that all four monomials appear-

ing in these two equations have degree
∑𝑑−1

𝑖=0
(𝑑−1

𝑖

)
= 2𝑑−1. □

In [1], the concept of positive geometries was introduced in the study of scat-
tering amplitudes in particle physics. Apositive geometry is a real semi-algebraic
set, together with a rational differential form, with poles along the boundary of
the semi-algebraic set, called the canonical form. Of special interest were semi-
algebraic sets given by certain polytopes, called generalized tree amplituhedra,
of type𝒜𝑛,𝑘,𝑚(𝑍), where 𝑍 is a (𝑘+𝑚)×𝑛-matrix with positivemaximalminors
– a positroid – in the real positive Grassmann variety 𝔾≥0

𝑘,𝑘+𝑚 [2]. The polygon
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𝑃(𝑑) is cyclic and is an example of a generalized tree amplituhedron of type
𝒜𝑑+1,1,2(𝑍) in 𝔾

≥0
1,3 = (ℙ2)≥0, with 𝑍 = 𝐴(2)

𝑑 .
Any convex polygon gives rise to a positive geometry, hence has an associated

canonical form. In particular, 𝑃(𝑑) gives rise to a positive geometry. The follow-
ing example shows an explicit computation for any 𝑑 of the procedure outlined
in [1, 7.1.1] for computing the canonical form of a cyclic polytope. Using the
description of the facets of combinatorial cyclic polytopes [4], our computation
could be extended to higher interpolants of toric curves.

Example 3.3. The polygon 𝑃(𝑑) can be decomposed as the polygon 𝑃(𝑑 − 1)
union the triangle∆(𝑑)with vertices (0, 0), (𝑑−1,

(𝑑−1
2

)
), and (𝑑,

(𝑑
2

)
). The sides

of ∆(𝑑) have equations 2𝑦 − (𝑑 − 2)𝑥 = 0, 2𝑦 − 2(𝑑 − 1)𝑥 + 𝑑(𝑑 − 1) = 0, and
(𝑑 − 1)𝑥 − 2𝑦 = 0. Hence, we compute the canonical form (see [1, 11]) of the
triangle to be

Ω(∆(𝑑)) =
2𝑑(𝑑 − 1)

(2𝑦 − (𝑑 − 2)𝑥)(2𝑦 − 2(𝑑 − 1)𝑥 + 𝑑(𝑑 − 1))((𝑑 − 1)𝑥 − 2𝑦)
𝑑𝑥∧𝑑𝑦.

The additivity of the canonical form [11, 2.4] then gives

Ω(𝑃(𝑑)) =
2𝑑(𝑑 − 1) 𝑑𝑥 ∧ 𝑑𝑦

(2𝑦 − (𝑑 − 2)𝑥)(2𝑦 − 2(𝑑 − 1)𝑥 + 𝑑(𝑑 − 1))((𝑑 − 1)𝑥 − 2𝑦)
+ Ω(𝑃(𝑑 − 1)).

Hence, the canonical form of the polygon 𝑃(𝑑) equals

Ω(𝑃(𝑑)) =
𝑑∑

𝑖=2

2𝑖(𝑖 − 1)
(2𝑦 − (𝑖 − 2)𝑥)(2𝑦 − 2(𝑖 − 1)𝑥 + 𝑖(𝑖 − 1))((𝑖 − 1)𝑥 − 2𝑦)

𝑑𝑥 ∧ 𝑑𝑦.

In particular, we get

Ω(𝑃(2)) = 1
𝑦(𝑦 − 𝑥 + 1)(𝑥 − 2𝑦)

𝑑𝑥 ∧ 𝑑𝑦

and

Ω(𝑃(3)) =
2𝑦 − 2𝑥 + 3

𝑦(𝑦 − 𝑥 + 1)(𝑦 − 2𝑥 + 3)(𝑥 − 𝑦)
𝑑𝑥 ∧ 𝑑𝑦.

The latter is consistent with the fact that the adjoint curve to 𝑃(3) is the line
2𝑦 − 2𝑥 + 3 = 0 [11, 2.1].

4. Normalizations and dual varieties
In projective geometry, it is interesting to determine whether a given lin-

ear projection is general. Indeed, a character (a cycle class, or a number) of a
projective variety is said to be projective if it is invariant under a general linear
projection. An example of a projective character of a variety is its degree, and
also the degree of its dual variety, i.e., the variety in the dual projective space
equal to the (closure of) the set of tangent hyperplanes.
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Given a lattice point configuration 𝐴 ⊂ ℤ𝑚+1, let 𝐴 ⊂ ℤ𝑚+1 denote the
configuration of lattice points in the convex hull of 𝐴 in ℝ𝑚+1, and denote by
𝐴 the corresponding matrix. We obtain a normal toric variety 𝑋𝐴 ⊂ ℙ𝑁 , where
𝑁+1 is the number of lattice points in the configuration𝐴. Since thematrix𝐴 is
obtained from 𝐴 by removing some columns, 𝑋𝐴 is equal to a linear projection
of its normalization 𝑋𝐴.
We now return to the second toric interpolant 𝑋𝐴(2)

𝑑
of the rational normal

curve 𝑋𝐴 of degree 𝑑 studied in the previous section, see (5). We assume 𝑑 ≥ 3.
We choose this case as an example since it is computable, and we show that
𝑋𝐴(2)

𝑑
is not a general linear projection of its normalization 𝑋

𝐴(2)
𝑑

. For 𝑑 ≥ 4, this

follows since the degrees of their dual varieties are different. For 𝑑 = 3, the
surface 𝑋𝐴(2)

3
⊂ ℙ3 has a singular line of multiplicity 3, hence is not a general

projection of a smooth surface in ℙ5.

Proposition 4.1. The degree of 𝑋𝐴(2)
𝑑
⊂ ℙ𝑑 is

(𝑑+1
3

)
, and it is a toric linear pro-

jection of its normalization 𝑋
𝐴(2)
𝑑

from ℙ
1
12
𝑑(𝑑2+8) if 𝑑 is even and from ℙ

1
12
𝑑(𝑑2+11)

if 𝑑 is odd.

Proof. The lattice polygon 𝑃(𝑑) in the plane corresponding to𝐴(2)
𝑑 contains the

lattice polygon 𝑃(𝑑 − 1) corresponding to 𝐴(2)
𝑑−1, see Fig. 1. It is easy to see that

the difference of the two polygons has lattice area equal to

𝑑
(𝑑
2

)
− (𝑑 − 1)

(𝑑 − 1
2

)
− 2

(𝑑 − 1
2

)
−
(𝑑
2

)
+
(𝑑 − 1

2

)
=
(𝑑
2

)
.

Hence, we get

deg𝑋𝐴(2)
𝑑
= deg𝑋𝐴(2)

(𝑑−1)
+
(𝑑
2

)
=⋯ =

𝑑∑

𝑗=2

(𝑗
2

)
=
(𝑑 + 1

3

)
.

Let 𝑝(𝑑) denote the perimeter of 𝑃(𝑑). This polygon has 𝑑 + 1 vertices and
𝑑 + 1 edges. Of the latter, 𝑑 have lattice length 1. The edge between (𝑑,

(𝑑
2

)
)

and (0, 0) is a segment of the line 𝑦 = 𝑑−1
2
𝑥, which contains 1

2
(𝑑 − 2) lattice

points other than the vertices if 𝑑 is even and 𝑑 − 1 if 𝑑 is odd. Hence, 𝑝(𝑑) =
𝑑 + 1

2
(𝑑 − 2) + 1 = 3

2
𝑑 if 𝑑 is even and 𝑝(𝑑) = 𝑑 + 𝑑 − 1 + 1 = 2𝑑 if 𝑑 is odd.

It then follows from Pick’s formula that the number of lattice points in 𝑃(𝑑) is
1
2

(𝑑+1
3

)
+ 1

2
⋅ 3
2
𝑑 + 1 = 1

12
𝑑(𝑑2 + 8) + 1 if 𝑑 is even and 1

2

(𝑑+1
3

)
+ 1

2
⋅ 2𝑑 + 1 =

1
12
𝑑(𝑑2 + 11) + 1 if 𝑑 is odd. □
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Proposition 4.2. The surface 𝑋
𝐴(2)
3

is a quartic nonsingular surface in ℙ5. For

𝑑 ≥ 4, the surface 𝑋
𝐴(2)
𝑑

has two singular points, both of multiplicity 𝑑 − 1 if 𝑑 is

even and of multiplicity 1
2
(𝑑 − 1) if 𝑑 is odd.

Proof. The vertices of the polygon𝑃(𝑑) are (0, 0), (1, 0),⋯ , (𝑑−1,
(𝑑−1

2

)
), (𝑑,

(𝑑
2

)
).

It is easy to check that the vertices (1, 0),⋯ , (𝑑−1,
(𝑑−1

2

)
) of 𝑃(𝑑) are nonsingu-

lar, so it remains to check the vertices (0, 0) and (𝑑,
(𝑑
2

)
) [9, Thm. 3.14, p. 186]:

∙ If 𝑑 is even:

𝑚(0,0) = | det ( 1 2
0 𝑑 − 1 ) | = 𝑑 − 1,

𝑚(𝑑,(𝑑2))
= | det ( 2 1

𝑑 − 1 𝑑 − 1 ) | = 𝑑 − 1.

∙ If 𝑑 is odd:

𝑚(0,0) = | det (
1 1
0 1

2
(𝑑 − 1) ) | =

1
2(𝑑 − 1),

𝑚(𝑑,(𝑑2))
= | det (

1 1
1
2
(𝑑 − 1) 𝑑 − 1 ) | =

1
2(𝑑 − 1).

This proves the proposition. □

Finally, we derive formulas for the degrees of the dual varieties, which enable
us to determine whether the linear projection is generic.

Proposition 4.3. The degree of the dual variety (𝑋
𝐴(2)
𝑑

)∨ is equal to
(𝑑−1

2

)
(𝑑 + 3)

if 𝑑 is even and 1
2
(𝑑 − 1)(𝑑2 + 𝑑 − 8) if 𝑑 is odd.

The degree of the dual variety (𝑋𝐴(2)
𝑑
)∨ is equal to

(𝑑−1
2

)
(𝑑 + 1).

Proof. We shall apply the formula for the degree of the dual variety of a toric
surface (see [14, Cor. 1.6, p. 2042], [15, Section 5]). In the first case the surface
is normal, and we get

deg(𝑋
𝐴(2)
𝑑

)∨ = 3Vol(𝑃(𝑑)) − 2𝑝(𝑑) +
∑

𝑣
Eu(𝑣),

where Eu(𝑣) denotes the local Euler obstruction at the point of 𝑋𝐴 correspond-
ing to the vertex 𝑣 of 𝑃(𝑑). The local Euler obstruction of a variety is a con-
structible function, introduced byMacPherson in order to define Chern classes
of singular varieties [13].
For a normal toric surface, the local Euler obstruction at a vertex 𝑣 is equal to

2 minus the difference between the lattice area of 𝑃(𝑑) and that of the polytope
Conv(𝑃(𝑑) ⧵ {𝑣}) obtained by removing the vertex 𝑣 and taking the convex hull
of all the remaining vertices [14, Cor. 4.4, p. 2052]. It can also be computed as
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1−𝑐, where 𝑐 is the number if interior lattice points of 𝑃(𝑑)which are boundary
points of Conv(𝑃(𝑑) ⧵ {𝑣}) [15, Lemma 5.1, p. 514]. We get

Eu((0, 0)) = Eu((𝑑,
(𝑑
2

)
)) = 2 − 1

2𝑑

if 𝑑 is even, and

Eu((0, 0)) = Eu((𝑑,
(𝑑
2

)
)) = 2 − 1

2(𝑑 − 1)

if 𝑑 is odd. Hence, we get

deg(𝑋
𝐴(2)
𝑑

)∨ = 3
(𝑑 + 1

3

)
− 2 ⋅ 32𝑑 + 𝑑 − 1 + 2(2 − 1

2𝑑) =
1
2(𝑑

3 − 7𝑑 + 6)

if 𝑑 is even, and

deg(𝑋
𝐴(2)
𝑑

)∨ = 3
(𝑑 + 1

3

)
− 2 ⋅ 2𝑑 + 𝑑 − 1 + 2(2 − 1

2(𝑑 − 1)) = 1
2(𝑑

3 − 9𝑑 + 8)

if 𝑑 is odd.
In the second case, the surface is singular along the curve corresponding to

the edge ∆ of 𝑃(𝑑) joining the vertices 𝑣 ∶= (0, 0) and 𝑣′ ∶= (𝑑,
(𝑑
2

)
). In the

formula for the degree of the dual surface, also the edge lengths need to be
weighted by the Euler obstruction at a general point of the corresponding orbit.
This gives [14, Cor. 1.6, p. 2042] Eu(∆) = 1

2
𝑑 if 𝑑 is even and 𝑑 if 𝑑 is odd. The

Euler obstruction at each singular vertex is then Eu(𝑣) = Eu(𝑣′) = 1
2
𝑑+1−

(𝑑
2

)

if 𝑑 is even and Eu(𝑣) = Eu(𝑣′) = 𝑑 + 1 −
(𝑑
2

)
if 𝑑 is odd. We get

deg(𝑋𝐴(2)
𝑑
)∨ = 3

(𝑑 + 1
3

)
− 2(12𝑑 + 𝑑) + 𝑑 − 1 + 2(12𝑑 + 1 −

(𝑑
2

)
)

= 1
2(𝑑

3 − 2𝑑2 − 𝑑 + 2)

if 𝑑 is even, and

deg(𝑋𝐴(2)
𝑑
)∨ = 3

(𝑑 + 1
3

)
−2(𝑑+𝑑)+𝑑−1+2(𝑑+1−

(𝑑
2

)
) = 1

2(𝑑
3−2𝑑2−𝑑+2)

if 𝑑 is odd. □

Corollary 4.4. The surface 𝑋𝐴(2)
𝑑
is not a general linear projection of its normal-

ization 𝑋
𝐴(2)
𝑑

.

Proof. We have deg(𝑋𝐴(2)
𝑑
)∨ ≠ deg(𝑋

𝐴(2)
𝑑

)∨ for 𝑑 ≥ 4. For 𝑑 = 3, we have

deg(𝑋
𝐴(2)
3

)∨ = deg(𝑋𝐴(2)
3
)∨ = 4. The nonsingular quartic surface 𝑋

𝐴(2)
3

⊂ ℙ5

is given by the polygon 𝑃(3). Its projection 𝑋𝐴(2)
3
⊂ ℙ3 has a triple line, corre-

sponding to the edge ∆; indeed, its equation is 𝑥0𝑥32 − 𝑥31𝑥3 = 0. Since general
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projections to ℙ3 of smooth surfaces in ℙ5 do not have singular curves of mul-
tiplicity > 2, 𝑋𝐴(2)

3
is not a general projection of 𝑋

𝐴(2)
𝑑

, even though their dual

varieties have the same degree. □

The surfaces 𝑋
𝐴(2)
4

and 𝑋
𝐴(2)
5

have two singular points with local Euler ob-

struction equal to 0, hence are Gorenstein varieties, whereas for 𝑑 ≥ 6, 𝑋
𝐴(2)
𝑑

is

not Gorenstein. The surfaces 𝑋𝐴(2)
𝑑
are non-normal (they have a singular curve

corresponding to the edge ∆).
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