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Proxy-small objects present compactly
generated categories

Benjamin Briggs, Srikanth B. Iyengar
and Greg Stevenson

Abstract. Wedevelop a correspondence betweenpresentations of compactly
generated triangulated categories as localizations of derived categories of ring
spectra and proxy-small objects, and explore some consequences. In addi-
tion, we give a characterization of proxy-smallness in terms of coproduct
preservation of the associated corepresentable functor ‘up to base change’.
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1. Introduction
Proxy-smallness is a relatively new concept that was introduced in [6, 7] as

a weakening of smallness, also called compactness, in triangulated categories.
It is general enough that the residue field of any noetherian local ring is proxy-
small in the derived category, but strong enough to yield useful formulas for
local cohomology. This has had striking applications, both in homotopy the-
ory and in commutative algebra. For instance, Dwyer, Greenlees, and Iyengar
proved [6, Theorem 9.4] that if a commutative noetherian ring 𝑅 is complete
intersection then every object of 𝖣b(𝗆𝗈𝖽𝑅) is proxy-small and they asked if
this property characterized complete intersections. This remarkable statement
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turns out to be true, as was proved by Pollitz [20]. This opens many doors.
By analogy it furnishes us with an elegant and homotopy invariant definition
of complete intersection in derived settings, and it supports rather appealing,
if speculative, connections to questions concerning finite generation of coho-
mology. The purpose of this article is to give a conceptual interpretation of
proxy-smallness in analogy with the definition of compactness, that is in terms
of some functor preserving coproducts.
Let 𝖪 be an enhanced compactly generated triangulated category. Given a

compact object 𝑘 ∈ 𝖪 there is an equivalence between the localizing subcate-
gory loc(𝑘) generated by 𝑘 and the derived category𝖣(𝐸)where 𝐸 is the derived
endomorphism ring𝐑Hom𝖪(𝑘, 𝑘) of 𝑘. This equivalence is given by the adjoint
pair of functors (−)⊗𝐸 𝑘 and 𝐑Hom𝖪(𝑘,−), and boils down to the statements
𝐸 = 𝐑Hom𝖪(𝑘, 𝑘) and 𝐸 ⊗𝐸 𝑘 = 𝑘, since both functors preserve coproducts.
For a non-compact object 𝑃 this statement is false in general —the localizing
subcategory loc(𝑃) depends on how 𝑃 sits in 𝖪 in a subtle way, and not only on
its endomorphism ring. For instance, in the derived category of abelian groups
𝖣(ℤ) the objects ℤ𝑝 and ℤ[𝑝−1]∕ℤ have the same derived endomorphism ring
but generate different localizing subcategories. The slogan is: giving a proxy-
small object 𝑃 is the same thing as giving a presentation of the compactly gener-
ated localizing subcategory loc(𝑃) as a quotient of 𝖣(𝐑Hom𝖪(𝑃, 𝑃)) (see 4.10).
This shows that proxy-smallness is ubiquitous. Moreover, as we point out,

the proxy-small condition is hidden behind fundamental constructions such
as passing from the derived category of a coherent ring 𝑅 to its ind-coherent
derived category 𝖪(𝖨𝗇𝗃𝑅).
Along the way, in Theorem 4.3, we give a purely functorial characterization

of the proxy-small condition when the ambient category satisfies the telescope
conjecture. An object 𝑃 with 𝐸 = 𝐑Hom(𝑃, 𝑃) is proxy-small if and only if
𝐑Hom(𝑃,−)⊗𝐸 𝑃 preserves coproducts. We also consider the relative version,
where one enhanced triangulated category acts on another. The paper con-
cludeswith a discussion of the closure conditions the proxy-small objects satisfy
as well as some speculations and applications.

Acknowledgements. The authors thank John Greenlees for his comments,
suggestions, and interest.

2. Proxy-smallness revisited
We begin with some ‘recollections’ on proxy-smallness and effective con-

structibility, both in the sense of [7]. These are ‘recollections’ rather than recol-
lections because the definition of proxy-smallness we use is slightly more gen-
eral than the original andwe give a different perspective, with somenew results,
on effective constructibility.
Let us fix a compactly generated stable ∞-category (i.e. an ℵ0-presentable

stable∞-category) with homotopy category 𝖪. The subcategory of compact ob-
jects in 𝖪 is denoted 𝖪c; it is, by definition, essentially small. Essentially 𝖪 is
a compactly generated triangulated category (see [14, Remark 1.4.4.3]) and we
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can speak of mapping spaces, homotopy (co)limits, and so on. In particular,
given any two objects there is a spectrum of maps between them (see for in-
stance Section 2.3 of [2] and in particular Definition 2.15) and hence any object
has a ring spectrum of endomorphisms.
Little is lost if the reader prefers to think of insteadfixing a differential graded,

or model, category with compactly generated homotopy category. In fact, es-
sentially all arguments take place at the level of homotopy categories. In the
dg setting we would consider for any pair of objects the chain complex of maps
between them and one could replace ring spectra by dg algebras.
Throughout by ‘localization’ we will mean a reflective localization of stable

∞-categories, i.e. an exact functor with a fully faithful right adjoint (what Lurie
simply calls a localization in [16, 5.2.7.2] in the not necessarily stable setting).
This is equivalent to a localization in the usual sense, i.e. given by inverting a
suitable collection of maps in a homotopy coherent way, which moreover has
a right adjoint (cf. [15, Proposition 04JL] and the linked definitions). In the
differential graded context this can bemodeled by aDrinfeld quotient admitting
a right adjoint.
Again, given the adjunction, this boils down to something which can be

checked on the homotopy categories. The right adjoint is by definition fully
faithful precisely when it induces weak equivalences of mapping spaces, and so
given stability, exactly when it is fully faithful on the homotopy category. This
can be rephrased as asking that the components of the counit are equivalences,
i.e. isomorphisms in the homotopy category.
For a set of objects 𝖷 of 𝖪we denote by thick(𝖷) and loc(𝖷) the smallest trian-

gulated subcategories containing 𝖷 and closed under summands and arbitrary
coproducts respectively.

Definition 2.1. An object 𝑃 ∈ 𝖪 is a proxy-small object with small set of proxies
𝐩 if

𝐩 ⊆ thick(𝑃) ∩ 𝖪c and 𝑃 ∈ loc(𝐩).
We will often just say that 𝑃 is proxy-small without fixing a set of proxies.

Throughout we regard 𝐩 as a full subcategory of 𝖪 and we use 𝑖 to denote
the inclusion. Using the enhancement we may consider the ind-completion
𝖣(𝐩) of thick(𝐩) and this identifies with the full subcategory loc(𝐩) of 𝖪 with 𝑖∗
the corresponding fully faithful left Kan extension, i.e. the inclusion of loc(𝐩).
Details on ind-completion in general can be found in [16, 5.3] (see in particular
5.3.5.10 and 5.3.5.11) and see [14, 1.1.3.6] for the fact that this construction
preserves stability.

Remark 2.2. If 𝑃 is proxy-small then thick(𝑃)∩𝖪c is a canonical set of proxies.

Remark 2.3. If 𝑃 is proxy-small with set of proxies 𝐩 then
loc(𝐩) = loc(𝑃) = loc(thick(𝑃) ∩ 𝖪c).

Remark 2.4. This is a small generalization of the original definition of Dwyer,
Greenlees, and Iyengar [7]. Instead of insisting there be a single small proxy we
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allow a set of such. This has the advantage that it does not depend on a choice
of proxy if we just take 𝐩 = 𝖪c ∩ thick(𝑃).
In fact one could, and in some cases should, go further: we could also replace

𝑃 by a set of objects; see 2.13. Everythingworks just aswell if one takes this extra
step. In our primary cases of interest we can get away with a single object 𝑃 and
so we stick to this setting—replacing 𝑃 by a subcategory is essentially cosmetic.

Let us consider the ring spectrum 𝐸 = 𝐑Hom(𝑃, 𝑃) and the full subcategory
𝐩 of 𝖪 and form the following diagram

𝖣(𝐸)

loc(𝐩) 𝖪

𝖣(𝐩)

𝑖∗

𝑖!
≀

(2.1)

consisting of the various tensor-hom adjunctions, and which commutes in the
obvious ways by construction. Namely, the unlabelled left adjoints are given
as follows: 𝖣(𝐸) → 𝖪 is (−) ⊗𝐸 𝑃 which factors via loc(𝑃) = loc(𝐩) by virtue
of preserving coproducts, 𝖣(𝐩) → loc(𝐩) is the equivalence determined by the
universal property of ind-completion (that is, by sending𝐑Hom𝐩(−, 𝑝) to 𝑝 for
𝑝 ∈ 𝐩), and 𝖣(𝐩)→ 𝖪, which we denote by (−)⊗𝐩 𝐩, is also determined by the
universal property.

Remark 2.5. In most cases of interest it is possible to pick a single proxy and
take 𝐩 = {𝑝}. In this case we can just deal with 𝐵 = 𝐑Hom(𝑝, 𝑝), for instance
𝖣(𝐩) ≅ 𝖣(𝐵) and 𝖣(𝐵) → 𝖪 is the functor (−) ⊗𝐵 𝑝 which factors via loc(𝑝).
The reader may find it helpful to keep this case in mind.

For the rest of this section 𝑃 is a proxy-small object in 𝖪 with a set of proxies
𝐩. We are primarily concerned with understanding the functor

Γ = 𝑖∗𝑖! ≅ 𝐑Hom𝖪(𝐩,−)⊗𝐩 𝐩. (2.2)

To this end let us begin by understanding the composite 𝖣(𝐸)→ 𝖣(𝐩).

Lemma 2.6. The functor 𝖣(𝐸)→ 𝖣(𝐩) is naturally isomorphic to

−⊗𝐸 𝐑Hom𝖪(𝐩, 𝑃)

where 𝐑Hom𝖪(𝐩, 𝑃) is the 𝐸op ⊗ 𝐩-module given by restricting 𝐑Hom𝖪(−,−) to
the indicated objects.

Proof. The composite𝐑Hom𝖪(𝐩,−⊗𝐸𝑃) ∶ 𝖣(𝐸)→ 𝖣(𝐩) preserves coproducts
since 𝐩 consists of compacts. As we vary𝑀 ∈ 𝖣(𝐸), by tracing the image of the
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identity under the chain of isomorphisms
𝐑Hom𝐾(𝑀 ⊗𝐸 𝑃,𝑀 ⊗𝐸 𝑃) ≅ 𝐑Hom𝐸(𝑀,𝐑Hom𝖪(𝑃,𝑀 ⊗𝐸 𝑃))

≅ 𝐑Hom𝐸(𝑀,𝐑Hom𝐩(𝐑Hom𝖪(𝐩, 𝑃),𝐑Hom𝖪(𝐩,𝑀 ⊗𝐸 𝑃)))
≅ 𝐑Hom𝐩(𝑀 ⊗𝐸 𝐑Hom𝖪(𝐩, 𝑃),𝐑Hom𝐸(𝐩,𝑀 ⊗𝐸 𝑃)),

where the third isomorphism is fully faithfulness of𝐑Hom𝖪(𝐩,−) on loc(𝐩) and
the others are adjunction isomorphisms, we obtain a natural map

−⊗𝐸 𝐑Hom𝖪(𝐩, 𝑃)→ 𝐑Hom𝖪(𝐩,−⊗𝐸 𝑃).
This is evidently an isomorphism at 𝐸, and both functors preserve coproducts,
so this natural transformation is an isomorphism as claimed. □

Remark 2.7. It follows that the right adjoint functor 𝖣(𝐩)→ 𝖣(𝐸) is given by
𝐑Hom𝐩(𝐑Hom𝖪(𝐩, 𝑃),−).

We now prove the key fact concerning proxy-smallness.

Theorem 2.8. Assume 𝑃 is proxy-small. The functor (−)⊗𝐸 𝑃∶ 𝖣(𝐸)→ loc(𝑃)
is a localization. Moreover it preserves products.

Proof. We verify that the functor𝐑Hom𝖪(𝑃,−)∶ loc(𝑃)→ 𝖣(𝐸) is fully faith-
ful and right adjoint to (−) ⊗𝐸 𝑃. Our starting point is the observation that
𝐑Hom𝖪(𝑃,−) induces an equivalence from thick(𝑃) to𝖣(𝐸)cwith inverse (−)⊗𝐸
𝑃. In particular, 𝐩 ⊆ thick(𝑃) embeds fully faithfully into 𝖣(𝐸) which induces
a colimit and compact preserving embedding 𝜆∶ loc(𝐩) → 𝖣(𝐸). While the
localizing subcategory loc(𝑃)must be taken in 𝖪, we note that loc(𝐩) is unam-
biguous here: 𝐩 consists of objects that are compact in both 𝖣(𝐸) and 𝖪, and
so it does not matter where we form the localizing subcategory 𝐩 generates. By
Brown representability 𝜆 has a right adjoint 𝜌. Of course, this is overkill: the
right adjoint is just the obvious restriction functor (up to identifying loc(𝐩) and
𝖣(𝐩)).
We claim that 𝜌 ≅ (−)⊗𝐸 𝑃. Since both of these functors preserve colimits

they are determined by their value at 𝐸. We use the identification of thick(𝑃),
where the thick closure is taken in loc(𝐩),with 𝖣(𝐸)c again. The latter contains
𝜆(𝐩) and so

𝜌(𝐸) = 𝐑Hom𝖣(𝐸)(−, 𝐸)|𝜆(𝐩) ≅ 𝐑Hom𝖪(−, 𝑃)|𝐩.
Now the representable functor on the right corresponds to 𝑃 ∈ loc(𝑃) = loc(𝐩)
under the equivalence𝖣(𝐩) ≅ loc(𝐩), andwe can conclude that 𝜌 ≅ (−)⊗𝐸𝑃. It
follows that the right adjoint𝐑Hom𝖪(𝑃,−) of (−)⊗𝐸 𝑃 is fully faithful, because
the left adjoint 𝜆 of 𝜌 is so, showing that the latter is a localization. Being a right
adjoint 𝜌 ≅ (−)⊗𝐸 𝑃 preserves products as claimed. □

Remark2.9. The theoremgives a rather pleasant perspective onproxy-smallness:
Given an object 𝑋 of 𝖪 with derived endomorphism ring 𝐸, there is always an
adjunction

𝖣(𝐸) loc(𝑋)
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where 𝖣(𝑅)→ loc(𝑋) is given by (−)⊗𝑅𝑋. However, there is no reason for this
to be a localization. Proxy-smallness of 𝑋 guarantees that it is.

This alone is already interesting in a number of cases.

Corollary 2.10. Let (𝑅,𝔪, 𝑘) be a commutative noetherian local ring and let 𝐸
denote the derived endomorphism ring of 𝑘. Then 𝖣(𝐸) → 𝖣{𝔪}(𝑅) = loc(𝑘) is a
localization.

Proof. The residue field 𝑘 is always proxy-small, with proxy given by, for ex-
ample, the Koszul complex on𝔪. □

Example 2.11. Consider 𝑅 = 𝑘[𝑥]∕(𝑥2). In this case, 𝐸 = 𝑘[𝜃] with 𝜃 in
(homological) degree−1 and no higher homotopical structure (i.e.𝐸 is formal).
We have

𝖣b(𝑅) = thick(𝑘) ⊆ loc(𝑘) = 𝖣(𝑅)
and a fully faithful embedding of𝖣(𝑅) into 𝖪(𝖨𝗇𝗃𝑅) the ind-coherent sheaves on
Spec𝑅 given by taking 𝐾-injective resolutions. The compact objects of 𝖪(𝖨𝗇𝗃𝑅)
are the image of 𝖣b(𝑅) under this embedding and so an injective resolution of
𝑘 is a compact generator. Thus there is an equivalence of 𝖪(𝖨𝗇𝗃𝑅) with 𝖣(𝐸)
which identifies the above embedding with 𝐑Hom(𝑘,−)∶ 𝖣(𝑅) → 𝖣(𝐸). The
left adjoint to this embedding is the localization 𝖣(𝐸)→ 𝖣(𝑅) = 𝖣{𝔪}(𝑅).

The remarks in the previous example extend to any artinian commutative
local ring, and in fact it is more general still.

Example 2.12. Let𝑅 be a coherent ring and𝐺 a classical generator for𝖣b(𝗆𝗈𝖽𝑅),
that is to say, thick(𝐺) = 𝖣b(𝗆𝗈𝖽𝑅). Then 𝐺 is certainly proxy-small: thick(𝐺)
contains all perfect complexes and hence loc(𝐺) = 𝖣(𝑅), since the latter is gen-
erated by 𝑅.
Hence, letting 𝐸 denote the derived endomorphism ring of 𝐺, we see 𝖣(𝑅) is

a localization of 𝖣(𝐸) and 𝖣(𝐸)c ≅ 𝖣b(𝗆𝗈𝖽𝑅). Thus 𝖣(𝐸) ≅ 𝖪(𝖨𝗇𝗃𝑅) and this
localization is the usual one, namely the functor inverting quasi-isomorphisms,
up to equivalence.
We note that not all rings, not even commutative ones, have classical gener-

ators.

Remark2.13. Allowing𝑃 to consist of a set of objects, we can take𝑃 = 𝖣b(𝗆𝗈𝖽𝑅)
for any coherent ring𝑅 (or scheme) and the result can be identifiedwithKrause’s
recollement [12] (as extended to coherent rings by Šťovíček [23]) connecting
𝖪(𝖨𝗇𝗃𝑅) and 𝖣(𝑅) essentially for free from the formalism of proxy-smallness.
We are grateful to Šťovíček for pointing this out.

Using Theorem 2.8 we can give an efficient proof of effective constructibility
as in [7, Theorem 4.10]. The functor Γ is the one from (2.2).

Proposition 2.14. There is a natural isomorphism

Γ ≅ 𝐑Hom𝖪(𝑃,−)⊗𝐸 𝑃.
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Proof. We know, since 𝐩 consists of compact objects, there is an isomorphism
Γ ≅ 𝐑Hom𝖪(𝐩,−)⊗𝐩 𝐩. Hence, for 𝑋 ∈ 𝖪 we have

𝐑Hom𝖪(𝑃,𝑋)⊗𝐸 𝑃 𝐑Hom𝖪(𝑃,𝑋)⊗𝐸 𝐑Hom𝖪(𝐩, 𝑃)⊗𝐩 𝐩

Γ𝑋 𝐑Hom𝖪(𝐩, 𝑋)⊗𝐩 𝐩

∼

◦⊗𝐩𝐩

∼

where the top horizontal isomorphism comes from factoring𝖣(𝐸)→ 𝖪 via𝖣(𝐩)
and applying Lemma 2.6. So we just need to check that the vertical map is an
isomorphism, and of course it suffices to show that

𝜀∶ 𝐑Hom𝖪(𝑃,𝑋)⊗𝐸 𝐑Hom𝖪(𝐩, 𝑃)→ 𝐑Hom𝖪(𝐩, 𝑋)

is an isomorphism. One can see this directly from chasing diagram (2.1) using
Lemma 2.6 and Theorem 2.8. □

Example 2.15. As the reader may have already divined from the setup it is
not necessarily the case that 𝖣(𝐸) → 𝖪 is fully faithful. In fact, it is not even
necessarily conservative.
Consider 𝖪 = 𝖣(ℤ) and let 𝑃 be the injective envelope of 𝔽𝑝. Then 𝐸 =

𝐑Homℤ(𝑃, 𝑃) is concentrated in degree 0 and isomorphic to the 𝑝-adic integers
ℤ𝑝. Note that 𝑃 is proxy-small (e.g. with small proxy 𝔽𝑝 cf. Example 6.3). One
can easily check that ℚ𝑝, the function field of ℤ𝑝, is killed by

−⊗ℤ𝑝 𝑃∶ 𝖣(ℤ𝑝)⟶ 𝖣(ℤ)

and so this functor is not fully faithful.

3. Detecting smashing localizations
We continue the notation of the previous sections, with the caveat that we

no longer assume that 𝑃 is necessarily proxy-small.
If 𝑃 is proxy-small then the functor𝐑Hom𝖪(𝑃,−)⊗𝐸𝑃 preserves coproducts,

even though𝐑Hom𝖪(𝑃,−) does not if 𝑃 is not compact. It is then natural to ask
whatwe can deduce about a general𝑃with the property that𝐑Hom𝖪(𝑃,−)⊗𝐸𝑃
preserves coproducts.
Set 𝐹 = − ⊗𝐸 𝑃 and 𝐺 = 𝐑Hom𝖪(𝑃,−) for brevity, and assume that 𝐹𝐺

preserves coproducts. We consider these functors, as in diagram (2.1), as an ad-
junction relating𝖣(𝐸) and𝖪. The counit of this adjunction is denoted 𝜀∶ 𝐹𝐺 →
id𝖪. The following lemma is implicit in said diagram, but let us make it explicit.

Lemma 3.1. The essential image of 𝐹𝐺, denoted im𝐹𝐺, is contained in loc(𝑃).

Proof. It is clear that im𝐹𝐺 ⊆ im𝐹. We have 𝐹𝐸 = 𝑃 and 𝐹 preserves coprod-
ucts and is exact so im𝐹 ⊆ loc(𝑃) by the usual arguments. □

Now let us use that 𝐹𝐺 preserves coproducts.

Lemma 3.2. The map 𝜀𝐹𝐺 ∶ (𝐹𝐺)2 → 𝐹𝐺 is an isomorphism.
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Proof. Since 𝐹𝐺 preserves coproducts

𝖭 = {𝑋 ∈ 𝖪 ∣ 𝐹𝐺(𝑋)
𝜀
→ 𝑋 is an isomorphism}

is a localizing subcategory. On 𝑃 we get

𝜀𝑃 ∶ 𝐹𝐺(𝑃) = 𝐑Hom𝖪(𝑃, 𝑃)⊗𝐸 𝑃
∼
→ 𝑃

and so loc(𝑃) ⊆ 𝖭. The statement then follows from Lemma 3.1. □

Since 𝖪 is compactly generated loc(𝑃) is well-generated [19, Theorem 4.4.9]
and so by Brown representability [19, Theorem 8.3.3] there is for all 𝑋 a local-
ization triangle

Γ𝑃𝑋 → 𝑋 → 𝐿𝑃𝑋 (3.1)

with Γ𝑃𝑋 in loc(𝑃) and 𝐿𝑃𝑋 in loc(𝑃)⟂.

Lemma 3.3. The natural map 𝐹𝐺(𝜀)∶ (𝐹𝐺)2 → 𝐹𝐺 is an isomorphism.

Proof. Since 𝐹𝐺 preserves coproducts

𝖭 = {𝑋 ∈ 𝖪 ∣ 𝐹𝐺(𝜀)∶ (𝐹𝐺)2(𝑋)→ 𝐹𝐺(𝑋) is an isomorphism}

is a localizing subcategory. The map 𝐹𝐺(𝜀) is an isomorphism on 𝑃 (in fact the
same one as in Lemma 3.2) and hence on all of loc(𝑃). On the other hand, if
𝑋 ∈ loc(𝑃)⟂ then 𝐺(𝑋) = 0 by definition and so 𝐹𝐺(𝑋) = 0. Thus 𝜀𝑋 = 0 and
so 𝐹𝐺(𝜀𝑋)∶ 0→ 0 is an isomorphism and we see loc(𝑃)⟂ ⊆ 𝖭. Thus𝖭 contains
loc(𝑃) and loc(𝑃)⟂, fromwhichwe conclude using the localization triangle (3.1)
that 𝖭 = 𝖪. □

To summarize: we have shown that the coproduct preserving functor

𝐹𝐺 = 𝐑Hom𝖪(𝑃,−)⊗𝐸 𝑃,

equipped with the counit 𝜀∶ 𝐹𝐺 → id𝖪, has essential image loc(𝑃) and that
𝐹𝐺(𝜀) and 𝜀𝐹𝐺 are isomorphisms. Thus providedwe can show that𝐹𝐺(𝜀) = 𝜀𝐹𝐺
we would see that 𝐹𝐺 is an acyclization functor and loc(𝑃) is smashing.
This is true on objects of loc(𝑃). Indeed, the naturality square at an object 𝑋

for 𝜀 with respect to itself

(𝐹𝐺)2(𝑋) 𝐹𝐺(𝑋)

𝐹𝐺(𝑋) 𝑋

𝐹𝐺(𝜀𝑋)

𝜀𝐹𝐺(𝑋) 𝜀𝑋
𝜀𝑋

shows these two transformations agree up to 𝜀𝑋 . In particular, if 𝑋 ∈ loc(𝑃)
then 𝜀𝑋 is an isomorphism (e.g. by the proof of Lemma 3.2) and sowe can cancel
it to deduce that 𝐹𝐺(𝜀𝑋) = 𝜀𝐹𝐺𝑋 .
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Applying (𝐹𝐺)2 → 𝐹𝐺 to the localization triangle (3.1), and noting that
𝐺(𝐿𝑃𝑋) = 0, we get a pair of maps of triangles

𝐹𝐺2(Γ𝑃𝑋) (𝐹𝐺)2(𝑋) 0

𝐹𝐺(Γ𝑝𝑋) 𝐹𝐺(𝑋) 0

= 𝐹𝐺(𝜀𝑋)𝜀𝐹𝐺(𝑋)

from which we see 𝐹𝐺(𝜀𝑋) = 𝜀𝐹𝐺𝑋 . Thus we have proved the following theo-
rem.

Theorem 3.4. Let 𝑃 be an object of 𝖪, with derived endomorphism ring 𝐸, such
that𝐑Hom𝖪(𝑃,−)⊗𝐸 𝑃 preserves coproducts. Then loc(𝑃) is smashing with acy-
clization functor 𝐑Hom𝖪(𝑃,−)⊗𝐸 𝑃. □

4. Characterization of proxy-smallness
We use Theorem 3.4 to give a characterization of proxy-small objects. Before

proceeding let us give a quick reminder. We have an object 𝑃 of 𝖪 with derived
endomorphism ring 𝐸. This data induces a composite functor

𝖣(𝐸)→ loc(𝑃)→ 𝖪
with a right adjoint, and we have observed 𝖣(𝐸) → loc(𝑃) is not necessarily
an equivalence. However, it does induce an equivalence 𝖣(𝐸)c

∼
→ thick(𝑃)

between the perfect 𝐸-modules and the thick subcategory generated by 𝑃.
We have the following ‘boundedness’ result.

Lemma 4.1. Let 𝑃 be an object of 𝖪with derived endomorphism ring 𝐸. Suppose
that 𝐑Hom𝖪(𝑃,−)⊗𝐸 𝑃 preserves coproducts. Then loc(𝑃) ∩ 𝖪c ⊆ thick(𝑃).

Proof. Let 𝑥 be an object of loc(𝑃) ∩ 𝖪c. The object 𝐑Hom𝖪(𝑃, 𝑥) of 𝖣(𝐸)
can be written as a filtered homotopy colimit hocolim𝑖 𝐹𝑖 where each 𝐹𝑖 lies
in thick(𝐸). The left adjoint (−)⊗𝐸 𝑃 preserves homotopy colimits and so we
get isomorphisms

𝑥 ≅ 𝐑Hom𝖪(𝑃, 𝑥)⊗𝐸 𝑃 ≅ (hocolim𝑖 𝐹𝑖)⊗𝐸 𝑃 ≅ hocolim𝑖(𝐹𝑖 ⊗𝐸 𝑃)
the first via Theorem 3.4. Because 𝑥 is compact in loc(𝑃) the isomorphism from
𝑥 to hocolim𝑖(𝐹𝑖 ⊗𝐸 𝑃) factors through some 𝐹𝑖 ⊗𝐸 𝑃. Hence 𝑥 is a retract of
the object 𝐹𝑖 ⊗𝐸 𝑃 ∈ thick(𝑃) and so 𝑥 lies in thick(𝑃). □

Remark 4.2. For 𝑃 as above we know loc(𝑃) is smashing, by Theorem 3.4, and
so the inclusion functor loc(𝑃) → 𝖪 sends compacts to compacts. Thus, being
compact in loc(𝑃) is the same as being compact in 𝖪 and we do not need to
distinguish these notions.

All this leads to the following characterization of proxy-smallness.

Theorem 4.3. Let 𝑃 be an object of 𝖪, with derived endomorphism ring 𝐸. Then
𝑃 is proxy-small if and only if the following two conditions hold:
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(i) loc(𝑃) = loc(loc(𝑃) ∩ 𝖪c);
(ii) 𝐑Hom𝖪(𝑃,−)⊗𝐸 𝑃 preserves coproducts.

Proof. If 𝑃 is proxy-small then (i) holds by definition and (ii) holds by effective
constructibility as in Proposition 2.14.
Suppose, on the other hand, the object 𝑃 verifies (i) and (ii). By Theorem 3.4

condition (ii) guarantees that 𝐑Hom𝖪(𝑃,−) ⊗𝐸 𝑃 is the acyclization functor
for loc(𝑃). By Lemma 4.1 if 𝑥 ∈ loc(𝑃) is compact in 𝖪 then 𝑥 already lies in
thick(𝑃). Condition (i) then ensures there are enough such compacts. □

Remark 4.4. It was already shown in [7], provided loc(𝑃) has a compact gen-
erator, that proxy-smallness of 𝑃 implies (i) and (ii).
Remark 4.5. In fact the localization corresponding to a proxy-small object also
preserves products. This was shown in Theorem 2.8.

Corollary 4.6. Suppose that 𝖪 satisfies the telescope conjecture, i.e. every smash-
ing subcategory of 𝖪 is generated by the compact objects it contains. Then 𝑃 is
proxy-small if and only if 𝐑Hom𝖪(𝑃,−)⊗𝐸 𝑃 preserves coproducts.
Proof. If the telescope conjecture holds for𝖪 then condition (ii) already implies
condition (i) by Theorem 3.4. □

Corollary 4.7. Let 𝖩 be a localizing subcategory of 𝖪 satisfying 𝖩 = loc(𝖩 ∩ 𝖪c). If
𝐸 is a ring spectrum and 𝜋∶ 𝖣(𝐸) → 𝖩 is a localization then 𝜋(𝐸) is proxy-small
in 𝖪.
Proof. Being a left adjoint 𝜋 preserves coproducts, so it necessarily of the form
− ⊗𝐸 𝜋(𝐸), with right adjoint given by 𝐑Hom𝖪(𝜋(𝐸),−). By the assumption
that 𝜋 is a localization we have a natural isomorphism 𝐑Hom𝖪(𝜋(𝐸),−) ⊗𝐸
𝜋(𝐸) ≅ id𝖩. Since the inclusion 𝑖∗∶ 𝖩 → 𝖪 preserves compacts, it has a coprod-
uct preserving right adjoint 𝑖!. Then

𝐑Hom𝖪(𝜋(𝐸),−)⊗𝐸 𝜋(𝐸) = 𝑖∗(𝐑Hom𝖩(𝜋(𝐸), 𝑖!(−))⊗𝐸 𝜋(𝐸)) = 𝑖∗𝑖!

evidently preserves coproducts, and 𝜋(𝐸) is proxy-small by Theorem 4.3. □

Remark 4.8. One can also prove the preceding result by checking the defini-
tion of proxy-smallness directly using that 𝖩 = loc(𝜋(𝐸)), because 𝜋 is a local-
ization, and applying Lemma 4.1.

Remark 4.9. Choosing a set of small proxies 𝐩 is the additional data of fixing
another presentation of 𝖩 as a derived category, namely 𝖩 ≅ 𝖣(𝐩).
Slogan 4.10. Proxy-small objects are presentations of localizing subcategories
generated by compacts: giving a proxy-small object 𝑃 is equivalent to giving a
thick subcategory 𝖱 of the compact objects 𝖪c, a ring spectrum 𝐸, and a local-
ization 𝖣(𝐸)→ loc(𝖱).
Let us justify this. We saw already, via Theorem 2.8, that given a proxy-small

𝑃 with derived endomorphism ring 𝐸 we get a localization 𝖣(𝐸) → loc(𝑃) and
(by definition) loc(𝑃) is generated by objects of 𝖪c. Going in the other direction
is precisely Corollary 4.7.
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Here is another consequence of Theorem 4.3.

Corollary 4.11. Let𝑅 be a commutative noetherian ring, and {𝑅 → 𝑆𝜆}𝜆 a family
of flat maps of rings such that the induced map ⊔𝜆 Spec 𝑆𝜆 → Spec𝑅 is onto. For
an object 𝑃 in 𝖣b(𝗆𝗈𝖽𝑅), if 𝑆𝜆 ⊗𝑅 𝑃 is proxy-small in 𝖣(𝑆𝜆) for all 𝜆, then 𝑃 is
proxy-small.

Proof. To begin with, we claim a map 𝑓 in 𝖣(𝑅) is an isomorphism if 𝑆𝜆 ⊗𝑅 𝑓
is an isomorphism in 𝖣(𝑆𝜆) for each 𝜆.
Indeed, by considering the mapping cone of 𝑓, it suffices to verify that for an

object𝑀 ∈ 𝖣(𝑅), if 𝑆𝜆 ⊗𝑅 𝑀 = 0 in 𝖣(𝑆𝜆) for all 𝜆, then𝑀 = 0 in 𝖣(𝑅).
Fix 𝔭 in Spec𝑅 and pick an 𝑆𝜆 and a 𝔮 ∈ Spec 𝑆𝜆 such that 𝔮 ∩ 𝑅 = 𝔭. Then,

with 𝑘(𝔭) and 𝑘(𝔮) denoting the residue fields of 𝑅𝔭 and 𝑆𝔮, respectively, we get
isomorphisms

𝑘(𝔮)⊗𝑆 (𝑆𝜆 ⊗𝑅 𝑀) ≅ 𝑘(𝔮)⊗𝑅 𝑀 ≅ 𝑘(𝔮)⊗𝑘(𝔭) (𝑘(𝔭)⊗𝑅 𝑀) .
Thuswe obtain that 𝑘(𝔭)⊗𝑅𝑀 = 0. Since 𝔭was arbitrary, it follows that𝑀 = 0,
as claimed; see, for instance, [18, Lemma 2.12].
Set 𝐸 = 𝐑Hom𝑅(𝑃, 𝑃). Since 𝑅 is noetherian and the 𝑅-module 𝐻(𝑃) is

finitely generated, for any flat map 𝑅 → 𝑆, and𝑀 in 𝖣(𝑅), the natural map is
an isomorphism:

𝑆 ⊗𝑅 𝐑Hom𝑅(𝑃,𝑀)
≅
,,,→ 𝐑Hom𝑆(𝑆 ⊗𝑅 𝑃, 𝑆 ⊗𝑅 𝑀) .

We write 𝐿𝑅𝑃(−) for the functor 𝐑Hom𝑅(𝑃,−) ⊗𝐸 𝑃 on 𝖣(𝑅). Given the iso-
morphism above, for any 𝑀 in 𝖣(𝑅) and flat map 𝑅 → 𝑆 one gets a natural
isomorphism:

𝑆 ⊗𝑅 𝐿𝑅𝑃(𝑀)⟶ 𝐿𝑆𝑆⊗𝑅𝑃
(𝑆 ⊗𝑅 𝑀) . (∗)

Now we are ready to verify that 𝑃 is proxy-small: Since the telescope conjec-
ture holds for𝖣(𝑅), by [18, Corollary 3.4], it suffices to verify that for any family
{𝑀𝑖} of 𝑅-complexes the natural map

𝑓∶
⨁

𝑖
𝐿𝑅𝑃(𝑀𝑖)⟶ 𝐿𝑅𝑃(

⨁

𝑖
𝑀𝑖)

is an isomorphism; see Corollary 4.6. Given the discussion above, it suffices to
verify that 𝑆𝜆 ⊗𝑅 𝑓 is an isomorphism for each 𝜆. Applying (∗) one gets

𝑆𝜆 ⊗𝑅 𝑓∶
⨁

𝑖
𝐿𝑆𝜆𝑆𝜆⊗𝑅𝑃

(𝑆𝜆 ⊗𝑅 𝑀𝑖))⟶ 𝐿𝑆𝜆(
⨁

𝑖
(𝑆𝜆 ⊗𝑅 𝑀𝑖)) .

This is an isomorphism by Theorem 4.3 because 𝑆𝜆 ⊗𝑅 𝑃 is proxy-small, by
hypothesis. □

It is illustrative to further specialise the preceding corollary; it recovers [13,
Propositions 5.3 and 5.5].

Corollary 4.12. Let𝑅 be a commutative noetherian ring and𝑃 in𝖣b(𝗆𝗈𝖽𝑅). The
following conditions are equivalent:

(1) 𝑃 is proxy-small;
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(2) 𝑃𝔭 is proxy-small in 𝖣(𝑅𝔭) for each 𝔭 ∈ Spec𝑅;
(3) 𝑅⊗𝑅 𝑃 is proxy-small in 𝖣(𝑅) where 𝑅 is the completion of 𝑅 with respect

to an ideal in the Jacobson radical of 𝑅;
(4) 𝑆 ⊗𝑅 𝑃 is proxy-small in 𝖣(𝑆) for some faithfully flat map of rings 𝑅 →

𝑆. □

Returning to the general context, when 𝖪 has a compact generator each com-
pactly generated localizing subcategory comes with a canonical presentation.
Let 𝐩 be a set of compact objects of 𝖪 and set

𝖩c = thick(𝐩) ⊆ loc(𝐩) = 𝖩.
We continue to denote by 𝑖∗ and 𝑖! the fully faithful inclusion 𝖩 → 𝖪 and its
right adjoint which is a localization. This gives rise to the acyclization functor
Γ = 𝑖∗𝑖! as before.

Proposition 4.13. Suppose that 𝖪 has a compact generator 𝑔. The object Γ𝑔 is
proxy-small. Moreover, one can take 𝐩 as a set of small proxies.

Proof. By assumption we have thick(𝑔) = 𝖪c ⊇ 𝖩c. Applying Γ we obtain
thick(Γ𝑔) ⊇ Γ thick(𝑔) = Γ(𝖪c) ⊇ Γ(𝖩c) = 𝖩c ⊇ 𝐩.

By construction loc(Γ𝑔) = 𝖩 = loc(𝐩) and so Γ𝑔 is proxy-small, with set of
proxies 𝐩. □

Remark 4.14. Even if 𝖪 does not have a generator we can, using the expanded
definition of proxy-smallness of Remark 2.1, considerΓ𝖪cwith set of small prox-
ies 𝖪c.

This gives the claimed canonical presentation which is, it seems, new as well
as being rather striking.

Corollary 4.15. Suppose that 𝖪 has a compact generator 𝑔. Then 𝖩 is a localiza-
tion of 𝖣(𝐑Hom𝖪(Γ𝑔,Γ𝑔)). □

It is interesting to understand this phenomenonmore thoroughly. In analogy
with the situation in algebraic geometry one should perhaps think of this as
some form of completion.

5. The relative setting
In this section we discuss a version of proxy-smallness in the setting of a

closedmonoidal triangulated category acting on another triangulated category.
Ourmainmotivation is to capture phenomena in algebraic geometry and repre-
sentation theory where typically one needs additional closure conditions, com-
ing from the action, to realize the connection between supports and thick sub-
categories.
Let 𝖳 be a monoidal ℵ0-presentable stable ∞-category with an associative

and unital left action 𝖳 × 𝖪
∗
→ 𝖪 on the ℵ0-presentable stable ∞-category 𝖪.

We assume that the monoidal structure and action preserve colimits in each
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variable. In particular, at the level of homotopy categories we have an action
of a monoidal triangulated category in the sense of [21] (except without the
insistence on symmetry of the monoidal structure), and as before it is sufficient
for the reader to just have this in mind. A prototypical example is the action of
𝖳 on itself via the monoidal structure.
Given a full subcategory𝖠 of 𝖪we denote by loc∗(𝖠) and thick∗(𝖠) the small-

est localizing𝖳-submodule of𝖪 containing𝖠 and the smallest thick𝖳c-submodule
of 𝖪 containing 𝖠 respectively. These are given by closing under the action, e.g.
taking {𝑋 ∗ 𝐴 ∣ 𝑋 ∈ 𝖳, 𝐴 ∈ 𝖠} and then taking the smallest localizing subcate-
gory containing these objects gives loc∗(𝖠).

Definition 5.1. An object 𝑃 ∈ 𝖪 is a ∗-proxy-small object with small set of prox-
ies 𝐩 if

𝐩 ⊆ 𝖪c ∩ thick∗(𝑃) and 𝑃 ∈ loc∗(𝐩).
As before, we will often just say that 𝑃 is ∗-proxy-small without fixing a set of
proxies.

Remark 5.2. The above definition is equivalent to asking that 𝖳c ∗ 𝑃 = {𝑥 ∗
𝑃 ∣ 𝑥 ∈ 𝖳c} is proxy-small in the absolute sense.

Remark 5.3. As in the absolute setting it makes perfect sense to replace the
object 𝑃 by a full subcategory and this only results in cosmetic changes.

This again gives rise to presentations of loc∗(𝑃), that are now 𝖳-linear in an
appropriate sense. Recall that 𝖪 satisfies the ∗-telescope conjecture if every
smashing ∗-submodule of 𝖪 is generated by objects of 𝖪c.

Theorem 5.4. Let 𝑃 be an object of 𝖪, let 𝖦 be a set of compact generators for 𝖳,
and set 𝖦 ∗ 𝑃 = {𝑔 ∗ 𝑃 ∣ 𝑔 ∈ 𝖦}. Let us moreover assume that 𝖪 satisfies the
∗-telescope conjecture. Then the following statements are equivalent:

(i) 𝑃 is ∗-proxy-small;
(ii) the functor 𝐑Hom𝖪(𝖦 ∗ 𝑃,−)⊗𝖦∗𝑃 𝖦 ∗ 𝑃 preserves coproducts;
(iii) there is a product preserving 𝖳-linear localization 𝖣(𝖦 ∗ 𝑃) → loc∗(𝑃)

sending 𝐑Hom𝖪(−, 𝑃) to 𝑃.

Proof. The equivalence of (i) and (ii) is a direct application of Corollary 4.6.
Now let us show that (i) and (iii) are also equivalent. Let 𝑃 be an ∗-proxy-

small object of 𝖪 and fix 𝖦 as in the statement. Because thick(𝖦) = 𝖳c we
know thick(𝖦 ∗ 𝑃) = thick∗(𝑃) (cf. [21, Lemma 3.11]) and so 𝖦 ∗ 𝑃 is proxy-
small in the absolute sense. Theorem 2.8 then furnishes us with the required
localization and it only remains to construct the action of 𝖳 on 𝖣(𝖦 ∗ 𝑃) and
check linearity.
The compact objects of 𝖣(𝖦 ∗ 𝑃) are equivalent to thick(𝖦 ∗ 𝑃) = thick∗(𝑃)

and so are canonically endowedwith an action of𝖳c. Passing to ind-completions
gives the desired action of 𝖳 on 𝖣(𝖦 ∗ 𝑃) and linearity of the localization
𝖣(𝖦 ∗ 𝑃) → loc∗(𝑃) then follows from the fact it is linear on generators and
everything in sight preserving colimits.
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Finally, suppose we are given a localization 𝜋∶ 𝖣(𝖦 ∗ 𝑃) → loc∗(𝑃) as in
(iii) of the statement. Then by 𝖳-linearity 𝐑Hom𝖪(−, 𝑔 ∗ 𝑃) is sent to 𝑔 ∗ 𝑃,
and by Corollary 4.7 the subcategory 𝖦 ∗ 𝑃 of 𝖪 is proxy-small. Using again
that thick(𝖦 ∗ 𝑃) = thick∗(𝑃) we see 𝑃 is ∗-proxy-small. □

Remark 5.5. The canonical choice is 𝖦 = 𝖳c. Different choices satisfying 𝖦 ⊆
𝖦′ give presentations, as in (iii), related by 𝖳-linear localizations.

Example 5.6. Let 𝑇 be a separated noetherian regular scheme of finite Krull
dimension, ℰ a vector bundle on 𝑇, 𝑡 ∈ Γ(𝑇,ℰ) a regular section, and let 𝑋 be
the zero scheme of 𝑡. We take 𝖳 = 𝖪 = 𝖣(QCoh𝑋) the unbounded derived
category of quasi-coherent sheaves which acts on itself via the derived tensor
product. Then [22, Lemma 4.1] asserts that every object ℱ ∈ 𝖣b(Coh𝑋) is
⊗-proxy-small.

Example 5.7. Let 𝐺 be a finite group and let 𝑘 be a field whose characteristic
divides the order of 𝐺. We take 𝖳 = 𝖪 = 𝖣(𝑘𝐺) acting on itself via the tensor
product. Then every object of 𝖣b(𝗆𝗈𝖽𝑘𝐺) is⊗-proxy-small.

6. Closure conditions
We give a brief discussion of the closure conditions the proxy-small objects

satisfy. They are rather different thanwhat one generally hopes for in the stable
setting. We begin with the observation that proxy-smallness is preserved under
taking coproducts.

Lemma 6.1. The class of proxy-small objects is closed under suspensions and
arbitrary co-products.

Proof. It is clear that a suspension of a proxy-small object is proxy-small.
Let {𝑃𝜆 ∣ 𝜆 ∈ Λ} be a set of proxy-small objects. Set 𝑃 = ⊕𝜆𝑃𝜆 and 𝐩𝜆 =

loc(𝑃𝜆)∩𝖪c. By virtue of being summands of 𝑃 each 𝑃𝜆 is in thick(𝑃) and hence
𝐩𝜆 ⊆ thick(𝑃) for each 𝜆. On the other hand, loc(𝑃) = loc(𝑃𝜆 ∣ 𝜆 ∈ Λ) and
loc(𝑃𝜆) = loc(𝐩𝜆) so

loc(𝑃𝜆 ∣ 𝜆 ∈ Λ) ⊆ loc(∪𝜆𝐩𝜆) ⊆ loc(𝑃).

Thus loc(𝑃) = loc(∪𝜆𝐩𝜆). We already saw ∪𝜆𝐩𝜆 ⊆ thick(𝑃) and so 𝑃 is proxy-
small. □

However, closure under cones is rather unusual.

Lemma 6.2. Proxy-smallness is preserved under taking cones if and only if every
object is proxy-small. In particular, this implies every localizing subcategory of 𝖪
is generated by objects of 𝖪c.

Proof. Since the full subcategory of proxy-small objects is closed under sus-
pensions and arbitrary coproducts, it is closed under cones precisely if it is a
localizing subcategory. Since the objects of 𝖪c are proxy-small this occurs if
only if every object is proxy-small.
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Suppose then that this is the case. If 𝖩 is a localizing subcategory then we
have

𝖩 = loc(loc(𝑋) ∣ 𝑋 ∈ 𝖩) = loc(loc(𝑋) ∩ 𝖪c ∣ 𝑋 ∈ 𝖩) = loc(𝖩 ∩ 𝖪c),

i.e. 𝖩 is generated by the compact objects it contains. □

Example 6.3. Consider 𝖪 = 𝖣{𝑝}(ℤ) = loc(𝔽𝑝) ⊆ 𝖣(ℤ). We claim that every
object of 𝖪 is proxy-small. Indeed, if 𝑋 ≠ 0 is an object of 𝖪 then there is a
triangle

𝑋 𝑋 𝑋 ⊗ 𝔽𝑝 Σ𝑋
𝑝

where 𝑋⊗𝔽𝑝 is a non-zero sum of suspensions of 𝔽𝑝. Thus 𝔽𝑝 ∈ thick(𝑋) and
of course 𝑋 ∈ loc(𝔽𝑝) = 𝖪.

Example 6.4. The above example generalizes to any non-singular point on a
noetherian scheme, i.e. if (𝑅,𝔪, 𝑘) is a regular local ring then every object of
𝖣{𝔪}(𝑅) = loc(𝑘) is proxy-small. One repeats the same argument using that the
Koszul complex𝐾(𝔪) is isomorphic to 𝑘 and that𝑋⊗𝐾(𝔪) ∈ thick(𝑋) is both
non-zero (if 𝑋 ≠ 0) and a sum of suspensions of 𝑘.

Example 6.5. For a local noetherian ring (𝑅,𝔪, 𝑘) it need not be the case that
every object of loc(𝑘) is proxy-small. Indeed, if 𝑅 is artinian then loc(𝑘) = 𝖣(𝑅).
If 𝑅 is not complete intersection then by [20] there is some 𝑋 ∈ 𝖣b(𝑅) which is
not proxy-small.

In general, the proxy-small objects are also not closed under taking sum-
mands.

Example 6.6. Consider 𝖪 = 𝖣(ℤ). The object ℚ is not proxy-small:

thick(ℚ) = {⊕𝑚
𝑖=1Σ

𝑎𝑖ℚ𝑏𝑖 ∣ 𝑎𝑖 ∈ ℤ, 𝑏𝑖 ∈ ℕ}

has no non-zero compact object. However ℤ⊕ℚ is proxy-small with proxy ℤ.

Since the proxy-small condition depends only on the thick subcategory gen-
erated by an object, it is natural to consider proxy-small thick subcategories, as
in Remark 2.1.

Proposition 6.7. The collection of proxy-small thick subcategories in 𝖪, ordered
by inclusion, has all least upper bounds.

Proof. By the same argument as for Lemma 6.1, if {𝑃𝜆 ∣ 𝜆 ∈ Λ} is a family
of proxy-small thick subcategories, then thick(𝑃𝜆 ∣ 𝜆 ∈ Λ) is proxy-small as
well. □

7. A perspective on complete intersections
We would like to use this new conceptual understanding of proxy-smallness

to our benefit. In this section we provide some first applications, present some
more examples, and pose some problems.
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One setting in which proxy-smallness has been studied extensively is 𝖪 =
𝖣(𝑅) for 𝑅 a commutative noetherian ring. In this case 𝖣(𝑅) satisfies the tele-
scope conjecture by [18] and so Theorem 4.3 applies in full force. This lets us
reformulate various results in terms of the coproduct preservation of certain
functors.
As an example, let 𝜙∶ 𝑅 → 𝑆 be a map of commutative noetherian rings

such that 𝜙 is flat and essentially of finite type. Set

HH∗(𝑆∕𝑅,−) ∶= 𝐑Hom𝑆⊗𝑅𝑆(𝑆,−)∶ 𝖣(𝑆 ⊗𝑅 𝑆)⟶ 𝖣(𝑆) ,

the Hochschild cohomology functor. Viewing HH∗(𝑆∕𝑅) = HH∗(𝑆∕𝑅, 𝑆) in
the enhanced sense, i.e. as a dg algebra or ring spectrum, and combining The-
orem 4.3 with the work of Briggs, Iyengar, Letz, and Pollitz [3] we deduce the
following corollary to their work.

Corollary 7.1. With notation as above, 𝜙 is locally complete intersection if and
only

HH∗(𝑆∕𝑅,−)⊗HH∗(𝑆∕𝑅) 𝑆∶ 𝖣(𝑆 ⊗𝑅 𝑆)⟶ 𝖣(𝑆)

preserves coproducts. Moreover, if this is the case then the above gives local coho-
mology on Spec 𝑆 ×Spec𝑅 Spec 𝑆 with support on the diagonal ∆ and

−⊗HH∗(𝑆) 𝑆∶ 𝖣(HH
∗(𝑆∕𝑅))→ 𝖣∆(𝑆 ⊗𝑅 𝑆)

is a localization. □

There are other settings where proxy-smallness of the diagonal appears, al-
though this point of view does not seem to have been made explicit in the liter-
ature.

Corollary 7.2. Let 𝐺 be a 𝑝-group and 𝑘 a field. Then 𝖣(𝑘(𝐺 ×𝐺)) is a localiza-
tion of 𝖣(HH∗(𝑘𝐺)).

Proof. Since 𝑘(𝐺 × 𝐺) ≅ 𝑘𝐺e is in thick(𝑘), it follows that 𝑘𝐺 ⊗𝑘 𝑘(𝐺 × 𝐺) is
in thick(𝑘𝐺), which exhibits a non-zero compact object in thick(𝑘𝐺). Thus 𝑘𝐺
is proxy-small over 𝑘(𝐺 × 𝐺). This proves the corollary. □

Question 7.3. Is there a natural description of the kernel of the localization
functors 𝖣(HH∗(𝑆))→ 𝖣∆(𝑆 ⊗𝑅 𝑆) and 𝖣(HH

∗(𝑘𝐺))→ 𝖣(𝑘(𝐺 × 𝐺))?

In fact, it seems in examples that proxy-smallness of the diagonal bimodule
and finite generation of Hochschild cohomology occur together. This prompts
a definition (which does not seem to have appeared in the literature yet) and
some questions.

Definition 7.4. Let 𝐸 be a commutative ring spectrum and let 𝑅 be a com-
mutative 𝐸-algebra. We say that 𝑅 is complete intersection (relative to 𝐸) if ∆
is proxy-small in 𝖣(𝑅op ⊗𝐸 𝑅) where ∆ is 𝑅 viewed with the obvious bimodule
structure (i.e. the bimodule corresponding to the identity functor).



PROXY-SMALL OBJECT 717

Remark 7.5. One canmodify the above definition by only asking for some rel-
ative version of proxy-smallness. For instance, 𝖣(𝑅op⊗𝐸 𝑅) is monoidal and we
could ask for⊗-proxy-smallness of the diagonal. However, since the diagonal
is the identity for the monoidal structure this turns out to be trivial.
A good definition should involve somemore restrictive closure condition, for

instance proxy-smallness relative to the invertible bimodules as in Example 7.9.

Question 7.6. Greenlees has given several versions of the complete intersec-
tion property for ring spectra [10, Definition 14.3]. How does this definition fit
into his hierarchy?

Question 7.7. If the graded-commutative ring HH∗(𝑅∕𝑆) is finitely generated
is ∆ proxy-small? If ∆ is proxy-small does it imply HH∗(𝑅∕𝑆) is finitely gener-
ated?

Example 7.8. It follows from work of Dotsenko, Gélinas and Tamaroff that
noncommutative Gorenstein monomial algebras are complete intersection in
the sense of Definition 7.4.
Let 𝑄 be a finite quiver, 𝑘 a field, and 𝐼 an ideal in 𝑘𝑄 generated by paths.

Assume that the monomial algebra Λ = 𝑘𝑄∕𝐼 is Iwanaga-Gorenstein. Accord-
ing to [5, Theorem 6.3] there is an explicit map 𝜒∶ Σ−𝑝Λ → Λ in 𝖣(Λop ⊗𝑘
Λ) such that, for all finite dimensional Λ-modules 𝑀 and 𝑁, Ext∗Λ(𝑀,𝑁) =
HH∗(Λ,Hom𝑘(𝑀,𝑁)) is finitely generated over the subring 𝑘[𝜒] ⊆ HH∗(Λ);
that is,Λ satisfies the so-called 𝐅𝐠 condition. Varying𝑀 and𝑁 over the simple
Λ-modules we obtain all simple Λ-bimodules as Hom𝑘(𝑀,𝑁). Therefore, for
each simple bimodule 𝑠, applying the functor ExtΛop⊗𝑘Λ(−, 𝑠) to the triangle

Σ−𝑝Λ
𝜒
,,,→ Λ→ cone(𝜒)

shows that ExtΛop⊗𝑘Λ(cone(𝜒), 𝑠) is finite dimensional. We can conclude that
cone(𝜒) is perfect overΛop⊗𝑘Λ. On the other hand, cone(𝜒𝑛) is in thick(cone(𝜒))
for all 𝑛, and we may recover the diagonal bimodule as the homotopy limit
Λ = holim(cone(𝜒𝑛)). This shows that Λ ∈ loc(cone(𝜒)), and so Λ is proxy-
small in 𝖣(Λop ⊗𝑘 Λ) with proxy cone(𝜒).
Likewise, we can deduce that every object𝑀 of 𝖣b(Λ) is proxy-small in 𝖣(Λ)

with proxy𝑀 ⊗Λ cone(𝜒).
This homological behaviour is similar to that of hypersurface rings in com-

mutative algebra, where𝜒 is the cohomology operator ofGulliksen. In that case
one can always take 𝑝 = 2, reflecting the 2-periodicity of matrix factorizations
over hypersurface rings.
The class of Gorenstein monomial algebras includes all gentle algebras by

[9].

In other complete-intersection-like examples the diagonal bimodule is not
enough, but rather the set of invertible bimodules is proxy-small in the sense of
Remark 2.1.
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Example 7.9. Let 𝑞 be a unit in a field 𝑘, and consider the quantum complete
intersection

Λ = 𝑘⟨𝑥, 𝑦⟩∕(𝑥𝑚, 𝑦𝑛, 𝑥𝑦 − 𝑞𝑦𝑥).
For any automorphism 𝜎 of Λ there is an invertible bimodule Λ𝜎 with under-
lying 𝑘-module Λ and with left and right action 𝑎 ⋅ 𝑚 ⋅ 𝑐 = 𝑎𝑚𝜎(𝑐) (multipli-
cation in Λ). We will use the two commuting automorphisms 𝛼 and 𝛽 given by
𝛼(𝑥) = 𝑞−1𝑥, 𝛼(𝑦) = 𝑦, and 𝛽(𝑦) = 𝑞𝑦, 𝛽(𝑥) = 𝑥 below.
By [1, 5.3] the extension algebra Ext∗Λ(𝑘, 𝑘) of Λ is finite over a subalgebra

𝑘⟨𝑢, 𝑣⟩∕(𝑢𝑣−𝑞𝑚𝑛𝑣𝑢). Moreover one can compute using [4, 3.1] that, under the
map

HH∗(Λ,Λ𝛽𝑚)→ HH∗(Λ, 𝑘) = Ext∗Λ(𝑘, 𝑘),
the class 𝑢 lifts canonically to a class 𝜒𝑢 in HH

∗(Λ,Λ𝛽𝑚). Similarly, 𝑣 lifts to a
class 𝜒𝑣 in HH

∗(Λ,Λ𝛼𝑛). These cohomology operators commute up to a factor
of 𝑞𝑚𝑛, that is, they fit into a commuting square

Σ−4Λ Σ−22Λ𝛽𝑚

Σ−22Λ𝛼𝑛 Λ𝛼𝑛𝛽𝑚

𝜒𝑢

𝜒𝑣 𝜒𝑣
𝑞𝑚𝑛𝜒𝑢

in𝖣(Λop⊗𝑘Λ). Finally, we take the colimit of this diagram (that is, take the cone
twice) to obtain a quantumKoszul complex𝐾(𝜒𝑢, 𝜒𝑣) [17]. A similar argument
to Example 7.8 shows that 𝐾(𝜒𝑢, 𝜒𝑣) (and all of its twists 𝐾(𝜒𝑢, 𝜒𝑣)𝛼𝑖𝛽𝑗 ) is per-
fect in 𝖣(Λop ⊗𝑘 Λ). Just as before, we can also recover Λ (and all of its twists
Λ𝛼𝑖𝛽𝑗 ) from the objects 𝐾(𝜒𝑢, 𝜒𝑣)𝛼𝑖𝛽𝑗 by taking a homotopy limit. Altogether,
we have sketched a proof that the set of invertible bimodules {Λ𝛼𝑖𝛽𝑗 ∣ 𝑖, 𝑗 ∈ ℤ}
is proxy-small, with a set {𝐾(𝜒𝑢, 𝜒𝑣)𝛼𝑖𝛽𝑗 ∣ 𝑖, 𝑗 ∈ ℤ} of proxies.
This example is in the spirit of Section 5: in order for the thick closure to be

large enough we have closed up with respect to the action of the derived Picard
group (or just the subgroup generated by Λ𝛼 and Λ𝛽, in this case). One can
formulate it instead by saying that the diagonal bimodule Λ is ⊗-proxy-small
with respect to the action of the ind-completion of thick(Λ𝛼𝑖𝛽𝑗 ∣ 𝑖, 𝑗 ∈ ℤ).

Example 7.10. A simply connected finite CW-complex 𝑋 is called rationally
elliptic if 𝜋𝑛(𝑋)⊗ℤ ℚ = 0 for all but finitely many 𝑛. The results of [11] show
that if 𝑋 is rationally elliptic then the dg algebra 𝐶∗(𝑋;ℚ) of rational cochains
on 𝑋 has a proxy-small diagonal, and therefore is complete intersection overℚ
in the sense of 7.4.
Rationally elliptic spaces are “spherically complete intersection" in the sense

of [11]—they can be constructed, up to rational homotopy equivalence, by start-
ing with a point and using finitely many spherical fibrations. Therefore by [11,
Theorem 10.1] they are “endomorphism complete intersection", that is, there
is a sequence of triangles of dg 𝐶∗(𝑋 × 𝑋;ℚ)-modules

𝐶∗(𝑋) = 𝑀0
𝑔1,,,→ Σ𝑛1𝑀0 → 𝑀1, ⋯ 𝑀𝑐−1

𝑔𝑐,,,→ Σ𝑛𝑐𝑀𝑐−1 → 𝑀𝑐
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such that𝑀𝑐 is a perfect dg 𝐶∗(𝑋 ⊗ 𝑋;ℚ)-module. Each𝑀𝑖 has finite dimen-
sional total homology, and by [11, Remark 10.2] each 𝑔𝑖 has strictly positive
cohomological degree. Therefore, as in Example 7.8, we can recover each𝑀𝑖−1
from𝑀𝑖 by taking a countable homotopy colimit. It follows that𝐶∗(𝑋) is proxy-
small as a dg module over 𝐶∗(𝑋 × 𝑋) ≃ 𝐶∗(𝑋) ⊗ 𝐶∗(𝑋) with proxy 𝑀𝑐, as
claimed.
Various other complete-intersection-like conditions on a space are consid-

ered in [11]. We also note that the results of [11] are stated much more gen-
erally for strongly noetherian rational spaces (we have restricted to finite CW
complexes only for the sake of familiarity).

Proxy-smallness does not come cheap. It is natural to ask if there are there
are some easy conditions we could put on 𝑃 and 𝐸 = 𝐑Hom(𝑃, 𝑃) that would
guarantee 𝑃 is proxy-small. The following example indicates that even impos-
ing some very strong finiteness conditions on 𝐸 is not sufficient.

Example 7.11. As we saw in Example 6.6 in 𝖣(ℤ) the object ℚ is not proxy-
small, and so having endomorphism ring a field is not enough.

Example 7.12. Consider 𝑅 = 𝑘[𝑥, 𝑦]∕(𝑥, 𝑦)2, for some field 𝑘, which is an ar-
tinian non-Gorenstein ring. We take for 𝑃 the indecomposable injective mod-
uleHom𝑘(𝑅, 𝑘). Then𝐑Hom𝑅(𝑃, 𝑃) is just 𝑅. In particular, it is discrete (i.e. no
higher homotopical information required) and artinian.
Nevertheless, 𝑃 is not proxy-small. Indeed, thick(𝑃) consists of the bounded

complexes of injectives with finite dimensional cohomology and so thick(𝑃) ∩
𝖣perf (𝑅) consists of complexes with both finite projective and injective dimen-
sion. The only such complex can be 0, because 𝑅 is not Gorenstein; see for
example [8, 2.10].

None of this is too surprising. Indeed, proxy-smallness of𝑃 depends crucially
on how 𝑃 sits in 𝖪 and so it is quite a subtle property. A related question is:

Question 7.13. What do proxy-small objects form? That is to say, if we fix a
compactly generated localizing subcategory 𝖩what is the right structure on the
collection of proxy-small objects which generate 𝖩?
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