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On noncommutative frame bundles

StefanWagner

Abstract. The question of whether a right Hilbert bimodule admits a non-
commutative frame bundle - i. e., a C∗-algebraic noncommutative principal
bundle with which the right Hilbert bimodule is associated via some fun-
damental representation - is both pivotal and difficult. In this paper, we
contribute to this topic by providing an axiomatic characterization of a right
Hilbert bimodule, let’s say 𝑀, that ensures the existence of a unique (up to
isomorphism) free C∗-dynamical system (𝒜𝑀 , SO(𝑛), 𝛼𝑀) with the property
that its associated noncommutative vector bundle, with respect to the stan-
dard representation of SO(𝑛), is isomorphic to𝑀. Our approach is inspired
by potential applications in noncommutative Riemannian spin geometry.
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1. Introduction
Vector bundles in classical geometry typically arise as objects associatedwith

somethingmore profound, a principal bundle. In particular, each vector bundle
𝐸 with fibre 𝑉 is naturally associated with a principal GL(𝑉)-bundle, called
the frame bundle of 𝐸 and denoted by Fr(𝐸). Notably, if the base space of 𝐸
comes equipped with additional structure, then it is often natural to consider
a reduction of Fr(𝐸) which is adapted to the given structure. Frame bundles
thus constitute a key tool for studying vector bundles. Indeed, given a vector
bundle 𝐸, its frame bundle can be utilized in order to attach to 𝐸 several new
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vector bundles in a functorial manner. Furthermore, a connection on Fr(𝐸)
induces covariant derivatives on all associated vector bundles in a coherentway,
leading to many important geometric constructions. This is the situation in
Riemannian geometry where, for a Riemannian manifold 𝑋, the Levi-Civita
connection onFr(𝑇𝑋) - a principalO(𝑉)-bundle - induces a covariant derivative
on the tensor fields, leading, for instance, to the Riemannian curvature of 𝑋.
Another instance is Riemannian spin geometry where, for a spin manifold𝑋, a
“spin connection” on Fr(𝑇𝑋) - a principal SO(𝑉)-bundle - induces a covariant
derivative on the spinor bundle, leading to the Dirac and Laplace operator on
the spinor bundle.
The noncommutative geometry of frame bundles, however, has not been

studied conclusively, although the notion of a noncommutative principal bun-
dle is certainly available, accompanied by a natural procedure of associating
noncommutative vector bundles (see, e. g., [BCH17, Ell00, SW17b] and refer-
ences therein). Noteworthily, the purpose of [Ell00] was to provide a general
setting in order to address the problem of finding “a suitable notion of frame
bundle over an abstract non-commutative manifold”. To the best of our knowl-
edge, the first and only systematic treatment of a quantized notion of frame
bundle seems to be due to S. Majid [Maj99, Maj02, Maj05] (see also [BM20,
Sec. 5.6] for a cohesive presentation). For the sake of expedience, we briefly
recall his main idea. Let 𝐵 be an algebra equipped with a differential structure
(Ω1, 𝑑) which plays the role of the differential 1-forms of an ordinary mani-
fold. A framing of 𝐵 is then essentially a Hopf-Galois-algebraic noncommu-
tative principal bundle over 𝐵 that recovers Ω1 in the sense that there exists a
suitable associated noncommutative vector bundle isomorphic toΩ1. Note that
the structure quantum group need not be fixed in this approach as one might
have several different candidates.
In this paper, we sort of complementMajid’s approachwithin theC∗-algebraic

framework of noncommutative principal bundles. More precisely, for a corre-
spondence𝑀 over a unital C∗-algebraℬ, we provide axiomatic conditions that
enable the construction of a unique (up to isomorphism) free C∗-dynamical
system (𝒜𝑀 , SO(𝑛), 𝛼𝑀) with fixed point algebra ℬ and the property that its
associated noncommutative vector bundle with respect to the standard repre-
sentation of SO(𝑛) is isomorphic to𝑀. This will be our noncommutative frame
bundle associatedwith𝑀. We emphasize that such a construction already exists
for the special case of the compact Abelian group SO(2) (see [SW17a, Sec. 4]);
therefore we assume from now on that 𝑛 ≥ 3.
Although our approach is primarily of topological nature, we hope that it can

be extended to incorporate additional geometric information. In particular, we
hope to be able to construct new and interesting characteristic classes in future
work. Furthermore, we wish to mention that this paper is part of a broader
research program aimed at offering a novel perspective on noncommutative
Riemannian spin geometry by systematically developing and studying the key
constructions and ideas of Riemannian spin geometry within the C∗-algebraic
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framework of noncommutative principal bundles. This also explains our focus
on the structure group SO(𝑛). However, wewould like to point out that with lit-
tle effort our arguments and results extend to semisimple Lie groups admitting
a faithful irreducible representation.

Organization of the paper. In Section 2, we set out the necessary prelimi-
naries and notation. In Section 3, the main body of this paper, we provide a
detailed exposition of our approach and its significant outcomes. More pre-
cisely, for a unital C∗-algebra ℬ and the standard representation 𝜋 of SO(𝑛),
𝑛 ≥ 3, we introduce the central notion of this work which is concerned with
correspondences over ℬ being “tensorial of type 𝜋” (Definition 3.1 and Defi-
nition 3.5). For such a correspondence, let’s say 𝑀, we are able to provide a
construction procedure for a unitary tensor functor from a small tensor subcat-
egory 𝒯 ⊆ Rep(SO(𝑛)) containing representatives of Irr(SO(𝑛)) to the tensor
category Corr(ℬ) of correspondences over ℬ. The construction procedure re-
lies on the representation theory of the semisimple compact Lie group SO(𝑛),
and it naturally splits into the following two main steps:

(1) We construct a small tensor subcategory 𝒯 ⊆ Rep(SO(𝑛)) containing
representatives of Irr(SO(𝑛)) together with a linear functor Γ𝑀 ∶ 𝒯 →
Corr(ℬ) satisfying Γ𝑀

(
𝜋⊗𝑘

)
= 𝑀⊗𝑘 for all integers 𝑘 ≥ 0 and Γ𝑀(𝑇)∗ =

Γ𝑀(𝑇∗) for all morphisms 𝑇 in 𝒯 (Corollary 3.4).
(2) We construct natural, ℬ-bilinear, and unitary maps

𝑚𝑀(𝜎, 𝜏) ∶ Γ𝑀(𝜎)⊗ℬ Γ𝑀(𝜏)→ Γ𝑀(𝜎 ⊗ 𝜏)
for all objects 𝜎, 𝜏 ∈ 𝒯 (Corollary 3.10), and show that they satisfy a
certain associativity condition (Lemma 3.11).

Taken together, these results yield a unitary tensor functor 𝒯 → Corr(ℬ)
(Theorem 3.12) which, in turn, gives rise to a free C∗-dynamical system
(𝒜𝑀 , SO(𝑛), 𝛼𝑀) with fixed point algebra ℬ and the property Γ𝒜𝑀 (𝜋) ≅ 𝑀,
the noncommutative frame bundle associated with 𝑀 (Corollary 3.13; see Sec-
tion 4.2 for a justification of this designation). For expediency’s sake, we discuss
the main steps of the construction of (𝒜𝑀 , SO(𝑛), 𝛼𝑀) in Appendix A. Finally,
we present a classification result that extends the classical correspondence be-
tween frame bundles and their associated vector bundles (Corollary 3.16). Sec-
tion 4 is devoted to providing examples. Indeed, let 𝑉 be the representation
space of 𝜋. In Section 4.1, we show that ℬ ⊗ 𝑉 is tensorial of type 𝜋. In Sec-
tion 4.2, we demonstrate that each locally trivial hermitian vector bundle over
a compact space with typical fibre 𝑉 and structure group SO(𝑛) is tensorial of
type 𝜋, thereby recovering the classical setting of frame bundles. In Section 4.3
and Section 4.4, we introduce, as of yet unknown, free C∗-dynamical systems
with structure group SO(3), the quantum projective 7-space and the (even part
of the) Cuntz algebra𝒪2, and hence we get twomore examples of tensorial cor-
respondences of type 𝜋 by looking at their associated noncommutative vector
bundles with respect to 𝜋. Last but not least, in Appendix B, we briefly treat
the special case of SO(2) for the sake of completeness.
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2. Preliminaries and notation
Our study deals with noncommutative frame bundles. This preliminary sec-

tion exhibits the most fundamental definitions and notations in use.
At first, we provide some standard references. For a thorough treatment of

Lie theory and representation theory, we refer to the remarkable work [GW09]
by Goodman and Wallach (see also [BtD85]). For a comprehensive introduc-
tion to the theory of fibre bundles, especially principal bundles and (their asso-
ciated) vector bundles, we refer to Husemöller’s book [Hus94] and the influen-
tial exposition [KN96] by Nomizu and Kobayashi. For a recent account of the
theory of Hilbert module structures, we refer to the excellent volume [RW98]
by Raeburn and Williams and the memoirs [EKQR06] by Echterhoff et al. Our
standard references for the theory of operator algebras are the opuses [Bla06,
Ped18] by Blackadar and Pedersen, respectively. We also use a categorical de-
scription of noncommutative principal bundles, and for the necessary back-
groundon category theorywe refer to themonographs [EGNO15,Mit65,NT13].

About groups. Let 𝐺 be a compact group. All representations of 𝐺 are as-
sumed to be finite-dimensional and unitary unless mentioned otherwise. We
denote a representation 𝜎 ∶ 𝐺 → 𝒰(𝑉𝜎) by the pair (𝜎, 𝑉𝜎) or simply by 𝜎.
In particular, we let 1 stand for the trivial representation when no ambiguity
is possible. We write Rep(𝐺) for its C∗-tensor category of representations and
Irr(𝐺) for the set of equivalence classes of irreducible representations. By abuse
of notation, we also use the symbol 𝜎 to denote elements of Irr(𝐺) and choose
a representative representation (𝜎, 𝑉𝜎) for 𝜎 ∈ Irr(𝐺) when needed.
One of the key ingredients for our construction procedure in Section 3 is the

following result on irreducible representations of the semisimple compact Lie
group SO(𝑛), 𝑛 ≥ 3.

Corollary 2.1 (See, e. g., [GW09, Thm. 5.5.21]). Let 𝜋 be the standard represen-
tation of SO(𝑛), 𝑛 ≥ 3. Each irreducible representation of SO(𝑛) occurs as a sub-
representation of some tensor product representation 𝜋⊗𝑘, 𝑘 ≥ 0 (with 𝜋⊗0 = 1).

About frames bundles. Let 𝑋 be a locally compact space and let 𝑞 ∶ 𝐸 → 𝑋
be a locally trivial (real or complex) vector bundle over 𝑋 with typical fibre 𝑉.
The frame bundle

Fr(𝐸) ∶=
⋃

𝑥∈𝑋
Iso (𝑉, 𝐸𝑥) , 𝐸𝑥 ∶= 𝑞−1({𝑥}),

where Iso (𝑉, 𝐸𝑥) denotes the set of linear isomorphisms from 𝑉 to 𝐸𝑥, carries
the structure of a principal GL(𝑉)-bundle over 𝑋 with respect to the canonical
right action of GL(𝑉) on Fr(𝐸). The associated vector bundle Fr(𝐸) ×GL(𝑉) 𝑉
with respect to the standard representation (𝜋,𝑉) of GL(𝑉) recovers 𝐸, i. e.,
Fr(𝐸)×GL(𝑉)𝑉 ≅ 𝐸 as vector bundles over𝑋. For simplicity of notation, we use
the same symbol Fr(𝐸) to denote any reduction of the frame bundle.
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AboutHilbertmodules. Letℬ be a unital C∗-algebra. A correspondence over
ℬ is a ℬ-bimodule 𝑀 equipped with an inner product ⟨⋅, ⋅⟩ℬ ∶ 𝑀 × 𝑀 → ℬ
turning it into a right Hilbert ℬ-module such that the left action of ℬ on 𝑀
is through adjointable operators. Given two correspondences 𝑀 and 𝑁 over
ℬ, we write 𝑀 ⊗ℬ 𝑁 for their tensor product on which the inner product is
determined by ⟨𝑥1 ⊗ 𝑦1, 𝑥2 ⊗ 𝑦2⟩ℬ = ⟨𝑦1, ⟨𝑥1, 𝑥2⟩ℬ .𝑦2⟩ℬ for all 𝑥1, 𝑥2 ∈ 𝑀
and 𝑦1, 𝑦2 ∈ 𝑁. We are also concerned with multiple tensor products. For a
correspondence𝑀 over ℬ and a non-negative integer 𝑘, we let𝑀⊗𝑘 stand for
the 𝑘-fold tensor product of𝑀 with itself (with𝑀⊗0 = ℬ). We use the symbol
Corr(ℬ) to denote the C∗-tensor category of correspondences over ℬ.

About C∗-dynamical systems. Let 𝒜 be a unital C∗-algebra, let 𝐺 be a com-
pact group, and let 𝛼 ∶ 𝐺 → Aut(𝒜) be a strongly continuous group homomor-
phism. We refer to such a triple (𝒜, 𝐺, 𝛼) as a C∗dynamical system and adopt
the standard shorthand 𝛼𝑔 ∶= 𝛼(𝑔) for 𝑔 ∈ 𝐺. The corresponding fixed point
algebra is typically denoted by ℬ.

Remark 2.2. Like every, possibly infinite, continuous representation of a com-
pact group, the algebra𝒜 can be decomposed into its isotypic componentswhich
amounts to saying that their algebraic direct sum forms a dense ∗-subalgebra
of 𝒜 (see, e. g., [HM13, Thm. 4.22]).

We also deal to a large extend with the associated spaces

Γ𝒜(𝜎) ∶= {𝑥 ∈ 𝒜⊗𝑉𝜎 ∶ (∀𝑔 ∈ 𝐺) (𝛼𝑔 ⊗ 𝜎𝑔)(𝑥) = 𝑥} (1)

for all objects 𝜎 in Rep(𝐺), each of which is naturally a correspondence over
ℬ with respect to the canonical left and right actions and the restriction of the
right 𝒜-valued inner product on 𝒜 ⊗ 𝑉𝜎 determined by ⟨𝑎 ⊗ 𝑣, 𝑏 ⊗ 𝑤⟩𝒜 ∶=
⟨𝑣, 𝑤⟩𝑎∗𝑏 for all 𝑎, 𝑏 ∈ 𝒜 and 𝑣, 𝑤 ∈ 𝑉𝜎. Most notably, the linear functor
Γ𝒜 ∶ Rep(𝐺) → Corr(ℬ), defined for objects by Γ𝒜(𝜎) and for morphisms by
Γ𝒜(𝑇) ∶= 1𝒜 ⊗ 𝑇, together with the natural ℬ-bilinear isometries

𝑚𝒜(𝜎, 𝜏) ∶ Γ𝒜(𝜎)⊗ℬ Γ𝒜(𝜏)→ Γ𝒜(𝜎 ⊗ 𝜏), 𝑥 ⊗ 𝑦 ↦ 𝑥12𝑦13
for all objects 𝜎, 𝜏 inRep(𝐺) constitute aweak unitary tensor functorRep(𝐺)→
Corr(ℬ) which allows to reconstruct the C∗-dynamical system (𝒜, 𝐺, 𝛼) up to
isomorphism (see [Nes13, Sec. 2]).

About freeness. A C∗-dynamical system (𝒜, 𝐺, 𝛼) is called free if the Ellwood
map

Φ ∶ 𝒜⊗alg 𝒜→ 𝐶(𝐺,𝒜), Φ(𝑥 ⊗ 𝑦)(𝑔) ∶= 𝑥𝛼𝑔(𝑦)
has dense range with respect to the canonical C∗-norm on 𝐶(𝐺,𝒜). This re-
quirement was originally introduced for actions of quantum groups on
C∗-algebras by Ellwood [Ell00] and is known to be equivalent to Rieffel’s sat-
uratedness [Rie91] and the Peter-Weyl-Galois condition [BCH17]. By [Phi87,
Prop. 7.1.12 & Thm. 7.2.6], a continuous action 𝑟 ∶ 𝑃 × 𝐺 → 𝑃 of a compact
group 𝐺 on a compact space 𝑃 is free in the classical sense if and only if the
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induced C∗-dynamical system (𝐶(𝑃), 𝐺, 𝛼), where 𝛼𝑔(𝑓)(𝑝) ∶= 𝑓(𝑟(𝑝, 𝑔)) for
all 𝑝 ∈ 𝑃 and 𝑔 ∈ 𝐺, is free in the sense of Ellwood. Free C∗-dynamical sys-
tems thus provide a natural framework for noncommutative principal bundles,
and in this context the spaces in (1) play the role of the associated vector bun-
dles. In particular, they are finitely generated and projective as rightℬ-modules
(see, e. g., [CY13, Thm. 1.2]).
Yet another crucial result, which plays a significant role in the construction

of noncommutative frame bundles, is the bijective correspondence between
free C∗-dynamical systems and unitary tensor functors [SW17b, Sec. 5] (see
also [Ður96]). For the convenience of the reader, we now recall the definition
of these functors.

Definition 2.3. Let ℬ be a unital C∗-algebra and let 𝐺 be a compact group. A
unitary tensor functor Rep(𝐺) → Corr(ℬ) is a linear functor Γ ∶ Rep(𝐺) →
Corr(ℬ) together with natural ℬ-bilinear unitary maps

𝑚(𝜎, 𝜏) ∶ Γ(𝜎)⊗ℬ Γ(𝜏)→ Γ(𝜎 ⊗ 𝜏)
for all objects 𝜎, 𝜏 ∈ Rep(𝐺) such that the following conditions are satisfied:

(i) Γ(1) = ℬ, and for each object 𝜎 in Rep(𝐺) the map𝑚(1, 𝜎)maps 𝑏 ⊗ 𝑥
to 𝑏 . 𝑥 and, similarly, 𝑚(𝜎, 1) maps 𝑥 ⊗ 𝑏 to 𝑥 . 𝑏 for all 𝑏 ∈ ℬ and
𝑥 ∈ Γ(𝜎).

(ii) Γ(𝑇)∗ = Γ(𝑇∗) for all morphisms 𝑇 in Rep(𝐺).
(iii) 𝑚(𝜎, 𝜏⊗𝜌) (id⊗ℬ𝑚(𝜏, 𝜌)) = 𝑚(𝜎⊗𝜏, 𝜌) (𝑚(𝜎, 𝜏)⊗ℬ id) for all objects

𝜎, 𝜏, 𝜌 in Rep(𝐺).

Remark 2.4. For the construction of a free C∗-dynamical system from a unitary
tensor functor Rep(𝐺) → Corr(ℬ), one only needs a small C∗-tensor subcate-
gory 𝒯 ⊆ Rep(𝐺) containing representatives of Irr(𝐺) (see [Nes13, Thm. 2.3]).

3. Noncommutative 𝐒𝐎(𝒏)-frame bundles
Let ℬ be a unital C∗-algebra, let 𝑀 be a correspondence over ℬ, and let 𝜋

be the standard representation of SO(𝑛), 𝑛 ≥ 3. In this section, we provide ax-
iomatic conditions on𝑀 that enable the construction of a unique (up to isomor-
phism) free C∗-dynamical system (𝒜𝑀 , SO(𝑛), 𝛼𝑀) with fixed point algebra ℬ
and the property Γ𝒜𝑀 (𝜋) ≅ 𝑀. This will be our noncommutative frame bundle
associated with𝑀 (see Remark 3.14). The main idea is to put together a unitary
tensor functor from a small tensor subcategory 𝒯 ⊆ Rep(SO(𝑛)) containing
representatives of Irr(SO(𝑛)) to Corr(ℬ) (see Remark 2.4).
We begin by introducing the main notion of this paper:

Definition 3.1. Let ℬ be a unital C∗-algebra and let 𝜋 be the standard repre-
sentation of SO(𝑛), 𝑛 ≥ 3. We say that a correspondence𝑀 overℬ is of type 𝜋 if
there exist injective linear maps

𝜑𝑘,𝑙 ∶ 𝐶𝑘,𝑙 =∶ HomSO(𝑛)
(
𝑉⊗𝑘
𝜋 , 𝑉⊗𝑙

𝜋
)
→ ℒ

(
𝑀⊗𝑘,𝑀⊗𝑙)
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for all integers 𝑘, 𝑙 ≥ 0 such that the following compatibility conditions are
satisfied:

(C) 𝜑𝑙,𝑚(𝑇′)𝜑𝑘,𝑙(𝑇) = 𝜑𝑘,𝑚(𝑇′𝑇) for all 𝑘, 𝑙,𝑚 ≥ 0, 𝑇 ∈ 𝐶𝑘,𝑙, and 𝑇′ ∈ 𝐶𝑙,𝑚.
(A) 𝜑𝑘,𝑙(𝑇)∗ = 𝜑𝑙,𝑘(𝑇∗) for all 𝑘, 𝑙 ≥ 0 and 𝑇 ∈ 𝐶𝑘,𝑙.
(U) 𝜑𝑘,𝑘(id) = id for all 𝑘 ≥ 0.

From now on, let ℬ be a unital C∗-algebra, let 𝜋 be the standard represen-
tation of SO(𝑛), 𝑛 ≥ 3, and let𝑀 be a correspondence over ℬ of type 𝜋. Also,
let 𝑉 ∶= 𝑉𝜋 for brevity. As a first step, we construct a small tensor subcat-
egory 𝒯 ⊆ Rep(𝐺) containing representatives of Irr(SO(𝑛)) together with a
linear functor Γ𝑀 ∶ 𝒯 → Corr(ℬ). For this purpose, we choose for each
𝜎 ∈ Irr(SO(𝑛)) a representative (𝜎, 𝑉𝜎) that is a subrepresentation of some ten-
sor product representation

(
𝜋⊗𝑘, 𝑉⊗𝑘), 𝑘 ≥ 0 (see Corollary 2.1). In particular,

for 1 ∈ Irr(SO(𝑛))we choose the trivial representation (1,ℂ). Furthermore, we
consider the full subcategory 𝒮 ⊆ Rep(𝐺) whose objects consists of all finite
tensor product representations generated by the family (𝜎, 𝑉𝜎), 𝜎 ∈ Irr(SO(𝑛)).
Let (𝜎, 𝑉𝜎) be an object in 𝒮. By construction, there exists an integer 𝑘 ≥ 0

such that (𝜎, 𝑉𝜎) is a subrepresentation of
(
𝜋⊗𝑘, 𝑉⊗𝑘). Let 𝑃𝜎 be the orthogo-

nal projection of 𝑉⊗𝑘 onto 𝑉𝜎. Clearly, 𝑃𝜎 ∈ 𝐶𝑘,𝑘, and hence 𝜑𝑘,𝑘(𝑃𝜎) acts as
an adjointable operator on𝑀⊗𝑘. Moreover, Conditions (C) and (A) combined
imply that 𝜑𝑘,𝑘(𝑃𝜎) is a projection, and from this it may be concluded that

Γ𝑀(𝜎) ∶= 𝜑𝑘,𝑘(𝑃𝜎)
(
𝑀⊗𝑘) (2)

is a correspondence over ℬ. We thus have a correspondence over ℬ available
for each object (𝜎, 𝑉𝜎) in 𝒮. Note that Γ𝑀

(
𝜋⊗𝑘

)
= 𝑀⊗𝑘 for all integers 𝑘 ≥ 0

by Condition (U).
Next, let (𝜎, 𝑉𝜎) and (𝜏, 𝑉𝜏) be objects in 𝒮 and let 𝑇 ∶ 𝑉𝜎 → 𝑉𝜏 be a

morphism. Our objective is to relate the correspondences Γ𝑀(𝜎) and Γ𝑀(𝜏)
by means of a morphism Γ𝑀(𝑇). To this end, let 𝑘, 𝑙 ≥ 0 be integers such
that (𝜎, 𝑉𝜎) and (𝜏, 𝑉𝜏) are subrepresentations of

(
𝜋⊗𝑘, 𝑉⊗𝑘) and

(
𝜋⊗𝑙, 𝑉⊗𝑙),

respectively, and let 𝑃𝜎 and 𝑃𝜏 be the orthogonal projections of 𝑉⊗𝑘 onto 𝑉𝜎
and 𝑉⊗𝑙 onto 𝑉𝜏, respectively. We define a map𝑊𝑇 ∶ 𝑉⊗𝑘 → 𝑉⊗𝑙 by

𝑊𝑇(𝑥) ∶= {𝑇(𝑥) for 𝑥 ∈ 𝑉𝜎,
0 for 𝑥 ∈ 𝑉⟂

𝜎 ⊆ 𝑉⊗𝑘.

Note that𝑊∗
𝑇 =𝑊𝑇∗ . Moreover, it is easily seen that𝑊𝑇 ∈ 𝐶𝑘,𝑙, and so wemay

look at its image under the map 𝜑𝑘,𝑙. In fact, we have

𝜑𝑙,𝑙(𝑃𝜏)𝜑𝑘,𝑙(𝑊𝑇)
(C)= 𝜑𝑘,𝑙(𝑃𝜏𝑊𝑇) = 𝜑𝑘,𝑙(𝑊𝑇)

which implies that ran(𝜑𝑘,𝑙(𝑊𝑇)) ⊆ Γ𝑀(𝜏). With this at hand, we put

Γ𝑀(𝑇) ∶= 𝜑𝑘,𝑙(𝑊𝑇) ↾
Γ𝑀(𝜏)
Γ𝑀(𝜎)

∶ Γ𝑀(𝜎)→ Γ𝑀(𝜏).
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It is worth noting that 𝑊𝑃𝜎 = 𝑃𝜎, therefore that Γ𝑀(𝑃𝜎) = 𝜑𝑘,𝑘(𝑃𝜎), and fi-
nally that ran(Γ𝑀(𝑃𝜎)) = Γ𝑀(𝜎). Furthermore, we see at once that Γ𝑀(id𝑉𝜎) =
idΓ𝑀(𝜎).
By attentively following the above construction and applying the assump-

tions in Definition 3.1, we immediately get:

Lemma 3.2. For objects (𝜎, 𝑉𝜎), (𝜏, 𝑉𝜏), and (𝜌, 𝑉𝜌) in 𝒮 the following assertions
hold:

(1) Γ𝑀(𝑇+ 𝑐𝑇′) = Γ𝑀(𝑇)+ 𝑐Γ𝑀(𝑇′) for all morphisms 𝑇, 𝑇′ ∶ 𝑉𝜎 → 𝑉𝜏 and
𝑐 ∈ ℂ.

(2) Γ𝑀(𝑇′𝑇) = Γ𝑀(𝑇′)Γ𝑀(𝑇) for all morphisms 𝑇 ∶ 𝑉𝜎 → 𝑉𝜏 and 𝑇′ ∶
𝑉𝜏 → 𝑉𝜌.

Lemma 3.3. Let (𝜎, 𝑉𝜎) and (𝜏, 𝑉𝜏) be objects in 𝒮 and let 𝑇 ∶ 𝑉𝜎 → 𝑉𝜏 be a
morphism. Then Γ𝑀(𝑇)∗ = Γ𝑀(𝑇∗).

Proof. Let 𝑥 ∈ Γ𝑀(𝜎) and let 𝑦 ∈ Γ𝑀(𝜏). Since 𝜑𝑘,𝑙(𝑊𝑇)∗
(A)= 𝜑𝑙,𝑘(𝑊∗

𝑇) =
𝜑𝑙,𝑘(𝑊𝑇∗), we conclude that

⟨Γ𝑀(𝑇)(𝑥), 𝑦⟩ℬ = ⟨𝜑𝑘,𝑙(𝑊𝑇)(𝑥), 𝑦⟩ℬ = ⟨𝑥, 𝜑𝑘,𝑙(𝑊𝑇)∗(𝑦)⟩ℬ
= ⟨𝑥, 𝜑𝑙,𝑘(𝑊𝑇∗)(𝑦)⟩ℬ = ⟨𝑥,Γ𝑀(𝑇∗)(𝑦)⟩ℬ. □

We proceed by looking at the full subcategory 𝒯 ⊆ Rep(SO(𝑛)) whose ob-
jects are finite direct sums of objects in 𝒮. It is clear that 𝒯 is a small tensor
subcategory of Rep(SO(𝑛)). Furthermore, for an object 𝜎 = 𝜎1⊕⋯⊕𝜎𝑚 in𝒯
we define

Γ𝑀(𝜎) ∶= Γ𝑀(𝜎1)⊕⋯⊕ Γ𝑀(𝜎𝑚).
Also, for two objects 𝜎 = 𝜎1 ⊕⋯⊕ 𝜎𝑟 and 𝜏 = 𝜏1 ⊕⋯⊕ 𝜏𝑠 in 𝒯 we note that

Hom𝐺(𝑉𝜎, 𝑉𝜏) =
⨁

𝑖,𝑗
Hom𝐺(𝑉𝜎𝑖 , 𝑉𝜏𝑗 ),

and hence each morphism 𝑇 ∶ 𝑉𝜎 → 𝑉𝜏 can be uniquely written as a matrix
with entries inHom𝐺(𝑉𝜎𝑖 , 𝑉𝜏𝑗 ) for all eligible pairs 𝑖, 𝑗. Given such amorphism
𝑇 = (𝑇𝑖𝑗), we put

Γ𝑀(𝑇) ∶=
(
Γ𝑀(𝑇𝑖𝑗)

)
.

With these definitions, it is easily checked that Lemma 3.2 and Lemma 3.3 ex-
tend to objects in𝒯 andmorphisms between them. Summarizing, we have thus
shown:

Corollary 3.4. 𝒯 is a small tensor subcategory of Rep(𝑆𝑂(𝑛)) containing rep-
resentatives of Irr(SO(𝑛)). Furthermore, the map Γ𝑀 ∶ 𝒯 → Corr(ℬ), defined
for objects by Γ𝑀(𝜎) and for morphisms by Γ𝑀(𝑇), is a linear functor such that
Γ𝑀

(
𝜋⊗𝑘

)
= 𝑀⊗𝑘 for all integers 𝑘 ≥ 0 and Γ𝑀(𝑇)∗ = Γ𝑀(𝑇∗) for all morphisms

𝑇 in𝒯.
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Having completed the first task, we now turn to the construction of natu-
ral, ℬ-bilinear, and unitary maps 𝑚𝑀(𝜎, 𝜏) ∶ Γ𝑀(𝜎) ⊗ℬ Γ𝑀(𝜏) → Γ𝑀(𝜎 ⊗ 𝜏)
for all 𝜎, 𝜏 ∈ 𝒯. To this end, we consider the canonical multiplication maps
𝑚𝑀(𝑘, 𝑙) ∶ 𝑀⊗𝑘 ⊗ℬ 𝑀⊗𝑙 → 𝑀⊗(𝑘+𝑙) for all integers 𝑘, 𝑙 ≥ 0, which are obvi-
ously ℬ-bilinear and unitary, and note that

𝑚𝑀(𝑘, 𝑙 +𝑚) (id⊗ℬ𝑚𝑀(𝑙, 𝑚)) = 𝑚𝑀(𝑘 + 𝑙, 𝑚) (𝑚𝑀(𝑘, 𝑙)⊗ℬ id) (3)

for all integers 𝑘, 𝑙,𝑚 ≥ 0. Furthermore, we impose another condition ensuring
that the maps 𝜑𝑘,𝑙 for all integers 𝑘, 𝑙 ≥ 0 are compatible with respect to taking
tensor products:

Definition 3.5. Let ℬ be a unital C∗-algebra and let 𝜋 be the standard repre-
sentation of SO(𝑛), 𝑛 ≥ 3. We say that a correspondence𝑀 over ℬ is tensorial
of type 𝜋 if it is of type 𝜋 (see Definition 3.1) and the following compatibility
condition is satisfied:

(T) 𝑚𝑀(𝑘, 𝑙)
(
𝜑𝑘,𝑘(𝑇) ⊗ℬ 𝜑𝑙,𝑙(𝑇′)

)
= 𝜑𝑘+𝑙(𝑇 ⊗ 𝑇′)𝑚𝑀(𝑘, 𝑙) for all 𝑘, 𝑙 ≥ 0,

𝑇 ∈ 𝐶𝑘,𝑘, and 𝑇′ ∈ 𝐶𝑙,𝑙.

Remark 3.6.
(1) It is straightforward that each free C∗-dynamical system (𝒜, SO(𝑛), 𝛼)

with fixed point algebraℬ naturally gives rise to a correspondence over
ℬ that is tensorial of type 𝜋, namely the associated module Γ𝒜(𝜋); see
Definition 2.3.

(2) Conversely, given a correspondence𝑀 overℬ, the task is simply to ver-
ify explicitly that it satisfies the axiomatic conditions defining tensori-
ality of type 𝜋.

In the remainder of this section, we assume that𝑀 is tensorial of type 𝜋. Let
(𝜎, 𝑉𝜎) and (𝜏, 𝑉𝜏) be objects in 𝒮, let 𝑘, 𝑙 ≥ 0 be integers such that (𝜎, 𝑉𝜎) and
(𝜏, 𝑉𝜏) are subrepresentations of

(
𝜋⊗𝑘, 𝑉⊗𝑘) and

(
𝜋⊗𝑙, 𝑉⊗𝑙), respectively, and

let 𝑃𝜎 and 𝑃𝜏 be the orthogonal projections of 𝑉⊗𝑘 onto 𝑉𝜎 and 𝑉⊗𝑙 onto 𝑉𝜏,
respectively. Then (𝜎⊗𝜏,𝑉𝜎⊗𝑉𝜏) is a subrepresentation of

(
𝜋⊗(𝑘+𝑙), 𝑉⊗(𝑘+𝑙))

and 𝑃𝜎 ⊗ 𝑃𝜏 is the orthogonal projection of 𝑉⊗(𝑘+𝑙) onto 𝑉𝜎 ⊗𝑉𝜏. We put

𝑚𝑀(𝜎, 𝜏) ∶ Γ𝑀(𝜎)⊗ℬ Γ𝑀(𝜏)→ Γ𝑀(𝜎 ⊗ 𝜏)

𝑚𝑀(𝜎, 𝜏) ∶= 𝜑𝑘+𝑙(𝑃𝜎 ⊗ 𝑃𝜏)⏟⎴⎴⎴⏟⎴⎴⎴⏟
=Γ𝑀(𝑃𝜎⊗𝑃𝜏)

𝑚𝑀(𝑘, 𝑙) ↾
Γ𝑀(𝜎⊗𝜏)
Γ𝑀(𝜎)⊗ℬΓ𝑀(𝜏)

(4)

It is readily seen that themap𝑚𝑀(𝜎, 𝜏) is well-defined andℬ-bilinear. Further-
more, Condition (T) shows that

𝑚𝑀(𝜎, 𝜏) = 𝑚𝑀(𝑘, 𝑙)
(
𝜑𝑘,𝑘(𝑃𝜎)⊗ℬ 𝜑𝑙,𝑙(𝑃𝜏)
⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟

=Γ𝑀(𝑃𝜎)⊗ℬΓ𝑀(𝑃𝜏)

)
↾Γ𝑀(𝜎⊗𝜏)Γ𝑀(𝜎)⊗ℬΓ𝑀(𝜏)

(5)

We proceed with a series of lemmas.
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Lemma 3.7. We have𝑚𝑀(𝜎, 𝜏)
(
Γ𝑀(𝑇)⊗ℬ Γ𝑀(𝑇′)

)
= Γ𝑀(𝑇⊗𝑇′)𝑚𝑀(𝜎, 𝜏) for

all morphisms 𝑇 ∶ 𝑉𝜎 → 𝑉𝜎 and 𝑇′ ∶ 𝑉𝜏 → 𝑉𝜏.

Proof. Let 𝑇 ∶ 𝑉𝜎 → 𝑉𝜎 and 𝑇′ ∶ 𝑉𝜏 → 𝑉𝜏 be morphisms. Using Condi-
tions (T) and (C), on the domain Γ𝑀(𝜎)⊗ℬ Γ𝑀(𝜏) we deduce that
𝑚𝑀(𝜎, 𝜏)

(
Γ𝑀(𝑇)⊗ℬ Γ𝑀(𝑇′)

)
= 𝜑𝑘+𝑙(𝑃𝜎 ⊗ 𝑃𝜏)𝑚𝑀(𝑘, 𝑙)

(
𝜑𝑘,𝑘(𝑊𝑇)⊗ℬ 𝜑𝑙,𝑙(𝑊𝑇′)

)

= 𝜑𝑘+𝑙(𝑃𝜎 ⊗ 𝑃𝜏)𝜑𝑘+𝑙(𝑊𝑇⊗𝑇′)𝑚𝑀(𝑘, 𝑙)
= 𝜑𝑘+𝑙((𝑃𝜎 ⊗ 𝑃𝜏)𝑊𝑇⊗𝑇′)𝑚𝑀(𝑘, 𝑙)
= 𝜑𝑘+𝑙(𝑊𝑇⊗𝑇′(𝑃𝜎 ⊗ 𝑃𝜏))𝑚𝑀(𝑘, 𝑙)
= 𝜑𝑘+𝑙(𝑊𝑇⊗𝑇′)𝜑𝑘+𝑙(𝑃𝜎 ⊗ 𝑃𝜏)𝑚𝑀(𝑘, 𝑙)
= 𝜑𝑘+𝑙(𝑊𝑇⊗𝑇′)𝑚𝑀(𝜎, 𝜏) = Γ𝑀(𝑇 ⊗ 𝑇′)𝑚𝑀(𝜎, 𝜏).□

Lemma 3.8. The map𝑚𝑀(𝜎, 𝜏) is isometric.

Proof. Let 𝑥 ∈ Γ𝑀(𝜎) and let 𝑦 ∈ Γ𝑀(𝜏). By (5), we have

⟨𝑚𝑀(𝜎, 𝜏)(𝑥 ⊗ℬ 𝑦), 𝑚𝑀(𝜎, 𝜏)(𝑥 ⊗ℬ 𝑦)⟩ℬ
= ⟨𝑚𝑀(𝑘, 𝑙)(𝑥 ⊗ℬ 𝑦), 𝑚𝑀(𝑘, 𝑙)(𝑥 ⊗ℬ 𝑦)⟩ℬ.

The claim therefore follows from the fact that the map𝑚𝑀(𝑘, 𝑙) is unitary. □

Lemma 3.9. The map𝑚𝑀(𝜎, 𝜏) is surjective.

Proof. Our proof starts with the observation that

𝑀⊗𝑘 ⊗ℬ 𝑀⊗𝑙 = Γ𝑀(𝜎)⊗ℬ Γ𝑀(𝜏)⊕ ker
(
𝜑𝑘,𝑘(𝑃𝜎)⊗ℬ 𝜑𝑙,𝑙(𝑃𝜏)

)
.

Furthermore, we have

ker (𝜑𝑘+𝑙(𝑃𝜎 ⊗ 𝑃𝜏)𝑚𝑀(𝑘, 𝑙)) = ker
(
𝜑𝑘,𝑘(𝑃𝜎)⊗ℬ 𝜑𝑙,𝑙(𝑃𝜏)

)

which is clear from Condition (T). Since

ran (𝜑𝑘+𝑙(𝑃𝜎 ⊗ 𝑃𝜏)𝑚𝑀(𝑘, 𝑙)) = Γ𝑀(𝜎 ⊗ 𝜏),
it follows that ran(𝑚𝑀(𝜎, 𝜏)) = Γ𝑀(𝜎 ⊗ 𝜏) as required. □

To summarize:

Corollary 3.10. Themap𝑚𝑀(𝜎, 𝜏) ∶ Γ𝑀(𝜎)⊗ℬΓ𝑀(𝜏)→ Γ𝑀(𝜎⊗𝜏) given by (4)
is natural,ℬ-bilinear, and unitary for all objects 𝜎, 𝜏 in 𝒮.

Note that𝑚𝑀(𝜋⊗𝑘, 𝜋⊗𝑙) = 𝑚𝑀(𝑘, 𝑙) for all integers 𝑘, 𝑙 ≥ 0. Our next claim is
that themaps𝑚𝑀(𝜎, 𝜏) for all objects 𝜎, 𝜏 in 𝒮 satisfy the following associativity
condition:

Lemma 3.11. We have

𝑚𝑀(𝜎, 𝜏 ⊗ 𝜌) (id⊗ℬ𝑚𝑀(𝜏, 𝜌)) = 𝑚𝑀(𝜎 ⊗ 𝜏, 𝜌) (𝑚𝑀(𝜎, 𝜏)⊗ℬ id)
for all objects 𝜎, 𝜏, 𝜌 in 𝒮.
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Proof. Let (𝜎, 𝑉𝜎), (𝜏, 𝑉𝜏), and (𝜌, 𝑉𝜌) be objects in 𝒮. Furthermore, let 𝑘, 𝑙
and 𝑚 be non-negative integers such that (𝜎, 𝑉𝜎), (𝜏, 𝑉𝜏), and (𝜌, 𝑉𝜌) are sub-
representations of

(
𝜋⊗𝑘, 𝑉⊗𝑘),

(
𝜋⊗𝑙, 𝑉⊗𝑙), and

(
𝜋⊗𝑚, 𝑉⊗𝑚), respectively, and

let 𝑃𝜎, 𝑃𝜏, and 𝑃𝜌 be the orthogonal projections of 𝑉⊗𝑘 onto 𝑉𝜎, 𝑉⊗𝑙 onto 𝑉𝜏,
and 𝑉⊗𝑚 onto 𝑉𝜌, respectively. On the domain Γ𝑀(𝜎)⊗ℬ Γ𝑀(𝜏)⊗ℬ Γ𝑀(𝜌) we
find that
𝑚𝑀(𝜎, 𝜏 ⊗ 𝜌) (id⊗ℬ𝑚𝑀(𝜏, 𝜌))
(4)= 𝜑𝑘+𝑙+𝑚(𝑃𝜎 ⊗ (𝑃𝜏 ⊗ 𝑃𝜌))𝑚𝑀(𝑘, 𝑙 +𝑚)

(
𝜑𝑘,𝑘(𝑃𝜎)⊗ℬ

(
𝜑𝑙+𝑚(𝑃𝜏 ⊗ 𝑃𝜌)𝑚𝑀(𝑙, 𝑚)

))

(T)= 𝜑𝑘+𝑙+𝑚(𝑃𝜎 ⊗ 𝑃𝜏 ⊗ 𝑃𝜌)𝜑𝑘+𝑙+𝑚(𝑃𝜎 ⊗ 𝑃𝜏 ⊗ 𝑃𝜌)𝑚𝑀(𝑘, 𝑙 +𝑚) (id⊗ℬ𝑚𝑀(𝑙, 𝑚))
(3)= 𝜑𝑘+𝑙+𝑚(𝑃𝜎 ⊗ 𝑃𝜏 ⊗ 𝑃𝜌)𝜑𝑘+𝑙+𝑚(𝑃𝜎 ⊗ 𝑃𝜏 ⊗ 𝑃𝜌)𝑚𝑀(𝑘 + 𝑙, 𝑚) (𝑚𝑀(𝑘, 𝑙)⊗ℬ id)
(T)= 𝜑𝑘+𝑙+𝑚((𝑃𝜎 ⊗ 𝑃𝜏)⊗ 𝑃𝜌)𝑚𝑀(𝑘 + 𝑙, 𝑚)

(
𝜑𝑘+𝑙(𝑃𝜎 ⊗ 𝑃𝜏)𝑚𝑀(𝑘, 𝑙)⊗ℬ 𝜑𝑚,𝑚(𝑃𝜌)

)
.

(4)= 𝑚𝑀(𝜎 ⊗ 𝜏, 𝜌) (𝑚𝑀(𝜎, 𝜏)⊗ℬ id) . □

Finally, we look once more at the small tensor category 𝒯 ⊆ Rep(SO(𝑛)).
For two objects 𝜎 = 𝜎1 ⊕⋯⊕ 𝜎𝑟 and 𝜏 = 𝜏1 ⊕⋯⊕ 𝜏𝑠 in 𝒯 we put

𝑚𝑀(𝜎, 𝜏) ∶=
⨁

𝑖,𝑗
𝑚𝑀(𝜎𝑖, 𝜏𝑗).

Astraightforward verification shows that this formula yields a naturalℬ-bilinear
unitary map𝑚𝑀(𝜎, 𝜏) ∶ Γ𝑀(𝜎)⊗ℬ Γ𝑀(𝜏)→ Γ𝑀(𝜎 ⊗ 𝜏) for all objects 𝜎, 𝜏 in 𝒯
satisfying

𝑚𝑀(𝜎, 𝜏 ⊗ 𝜌) (id⊗ℬ𝑚𝑀(𝜏, 𝜌)) = 𝑚𝑀(𝜎 ⊗ 𝜏, 𝜌) (𝑚𝑀(𝜎, 𝜏)⊗ℬ id)
for all objects 𝜎, 𝜏, 𝜌 in𝒯. Thus we have proven the following statement, which
constitutes the main result of this paper:

Theorem 3.12. The linear functor Γ𝑀 ∶ 𝒯 → Corr(ℬ) together with the natural
ℬ-bilinear unitary maps 𝑚𝑀(𝜎, 𝜏) ∶ Γ𝑀(𝜎) ⊗ℬ Γ𝑀(𝜏) → Γ𝑀(𝜎 ⊗ 𝜏) for all
objects 𝜎, 𝜏 in 𝒯 constitute a unitary tensor functor such that Γ𝑀

(
𝜋⊗𝑘

)
= 𝑀⊗𝑘

for all integers 𝑘 ≥ 0.
Having the unitary tensor functor𝒯 → Corr(ℬ) at our disposal, we can now

apply the construction procedure presented in [Nes13, Sec. 2] (see also [DR89,
SW17b, Ður96]) to obtain a free C∗-dynamical system (𝒜𝑀 , SO(𝑛), 𝛼𝑀) with
fixed point algebra ℬ and Γ𝒜𝑀 (𝜋) ≅ 𝑀. For the sake of expediency we briefly
sketch the main steps of the construction of (𝒜𝑀 , SO(𝑛), 𝛼𝑀) in Appendix A.
Corollary 3.13. Let ℬ be a unital C∗-algebra and let 𝜋 be the standard rep-
resentation of SO(𝑛), 𝑛 ≥ 3. Each correspondence 𝑀 over ℬ that is tensorial
of type 𝜋 yields a unitary tensor functor 𝒯 → Corr(ℬ) for some small tensor
subcategory 𝒯 of Rep(𝑆𝑂(𝑛)) containing representatives of Irr(SO(𝑛)) such that
Γ𝑀

(
𝜋⊗𝑘

)
= 𝑀⊗𝑘 for all integers 𝑘 ≥ 0, and hence a free C∗-dynamical system

(𝒜𝑀 , SO(𝑛), 𝛼𝑀) with fixed point algebraℬ and Γ𝒜𝑀 (𝜋) ≅ Γ𝑀(𝜋) = 𝑀.
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Remark 3.14. In Section 4.2, we show that each locally trivial hermitian vector
bundle over a compact space with typical fibre 𝑉 and structure group SO(𝑛) is
tensorial of type 𝜋, thereby recovering the classical setting of frame bundles.
This justifies referring to the free C∗-dynamical system (𝒜𝑀 , SO(𝑛), 𝛼𝑀) de-
scribed inCorollary 3.13 as thenoncommutative framebundle associatedwith𝑀.

Remark 3.15. By the general theory of free C∗-dynamical systems, it follows
that𝑀, and hence Γ𝑀(𝜎) for all objects 𝜎 in𝒯, is necessarily finitely generated
and projective as a right ℬ-module (see, e. g., [CY13, Thm. 1.2]).

We conclude this section with a classification result that extends the clas-
sical correspondence between frame bundles and their associated vector bun-
dles. For this, we consider equivalence classes of free C∗-dynamical systems
with structure group SO(𝑛) and fixed point algebra ℬ with respect to equivari-
ant ∗-isomorphisms that preserve ℬ and, further, equivalence classes of corre-
spondences overℬwith respect toℬ-bilinear isomorphisms. CombiningCorol-
lary 3.13 with [Nes13, Thm. 2.3], we get:

Corollary 3.16. Let ℬ be a unital C∗-algebra and let 𝜋 be the standard repre-
sentation of SO(𝑛), 𝑛 ≥ 3. The map [(𝒜, SO(𝑛), 𝛼)] ↦ [Γ𝒜(𝜋)] yields a bi-
jective correspondence between equivalence classes of free C∗-dynamical systems
with structure group SO(𝑛) and fixed point algebra ℬ and equivalence classes of
correspondences over ℬ that are tensorial of type 𝜋 with inverse given by [𝑀] ↦
[(𝒜𝑀 , SO(𝑛), 𝛼𝑀)].

4. Examples
This section is devoted to discussing examples. For expediency, we continue

to use (𝜋,𝑉) to denote the standard representation of SO(𝑛), 𝑛 ≥ 3.

4.1. Example: the free module of rank 𝒏. Let ℬ be a unital C∗-algebra. In
this example we apply ourselves to the tensor product 𝑀 ∶= ℬ ⊗ 𝑉 which is
naturally a correspondence over ℬ with respect to the canonical left and right
actions and the rightℬ-valued inner product determined by ⟨𝑏⊗𝑣, 𝑏′⊗𝑣′⟩ℬ ∶=
⟨𝑣, 𝑣′⟩𝑏∗𝑏′ for all 𝑏, 𝑏′ ∈ ℬ and 𝑣, 𝑣′ ∈ 𝑉. Note that, up to the canonical iso-
morphism ℬ⊗𝑘 ≅ ℬ, we have 𝑀⊗𝑘 = ℬ ⊗ 𝑉⊗𝑘 for all integers 𝑘 ≥ 0. For
integers 𝑘, 𝑙 ≥ 0, 𝑇 ∈ 𝐶𝑘,𝑙, and 𝑥 ∈ 𝑀⊗𝑘, we obtain an element in 𝑀⊗𝑙 by
putting 𝜑𝑘,𝑙(𝑥) ∶= idℬ⊗𝑇(𝑥). This yields injective linear maps 𝜑𝑘,𝑙 ∶ 𝐶𝑘,𝑙 →
ℒ
(
𝑀⊗𝑘,𝑀⊗𝑙) for all integers 𝑘, 𝑙 ≥ 0 which make 𝑀 tensorial of type 𝜋, as

is easy to check. From the construction procedure presented in Appendix A,
we infer that the corresponding free C∗-dynamical system (𝒜𝑀 , SO(𝑛), 𝛼𝑀) is
equivalent to (ℬ ⊗min 𝐶(SO(𝑛)), SO(𝑛), 𝛼), where ⊗min denotes the minimal
tensor product of C∗-algebras and the action 𝛼 is given by right translation in
the argument of the second tensor factor.
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4.2. Example: classical vector bundles. Let 𝑋 be a compact space and let
𝑞 ∶ 𝐸 → 𝑋 be a locally trivial hermitian vector bundle with typical fibre 𝑉,
structure group SO(𝑛), and Hermitian metric 𝑥 ↦ ⟨⋅, ⋅⟩𝑥. In this example, we
consider the space 𝑀 ∶= Γ(𝐸) of continuous sections of 𝑞 ∶ 𝐸 → 𝑋 which
carries the structure of a correspondence over 𝐶(𝑋)with respect to the obvious
(bi-)module structure given by pointwise multiplication and the inner product
⟨⋅, ⋅⟩𝐶(𝑋) given for 𝑠, 𝑡 ∈ Γ(𝐸) by ⟨𝑠, 𝑡⟩𝐶(𝑋)(𝑥) ∶= ⟨𝑠(𝑥), 𝑡(𝑥)⟩𝑥, 𝑥 ∈ 𝑋. In case
𝐸 is trivial, 𝑀 ≅ 𝐶(𝑋) ⊗ 𝑉, and therefore we are, up to isomorphism, in the
situation of Example 4.1. In particular, we have 𝒜𝑀 ≅ 𝐶(𝑋) ⊗min 𝐶(SO(𝑛))
which shows that 𝒜𝑀 is commutative with character space given by the triv-
ial frame bundle Fr(𝐸) ≅ 𝑋 × SO(𝑛). In case 𝐸 is non-trivial, we use bundle
charts to conclude similarly that𝑀 is tensorial of type 𝜋. Let (𝒜𝑀 , SO(𝑛), 𝛼𝑀)
be the corresponding free C∗-dynamical system. A moment’s thought shows
that 𝑚(𝜎, 𝜏) = flip(𝑚(𝜏, 𝜎)) for all 𝜎, 𝜏 ∈ 𝒯, where flip denotes the fibre-
wise tensor flip. From this it follows that 𝒜𝑀 is commutative, and hence that
𝒜𝑀 ≅ 𝐶(Fr(𝐸)) by the uniqueness (up to isomorphism) of the geometric con-
struction.
Remark 4.1. If 𝑋 is a closed orientable manifold, then its tangent space is a
locally trivial hermitian vector bundle with typical fibre 𝑉 and structure group
SO(𝑛).
4.3. Example: the quantum projective 7-space. In this example we intro-
duce a new free C∗-dynamical systemwith structure group SO(3). In particular,
its associated noncommutative vector bundle with respect to the standard rep-
resentation 𝜋 of SO(3) yields another instance of a tensorial correspondence of
type 𝜋 (see Remark 3.6). To the best of our knowledge, this noncommutative
principal bundle has, as of yet, not been considered in the literature.
For a start, we recall a noncommutative C∗-algebraic version of the classical

SU(2)-Hopf fibration over the four sphere (see [LS05] for a generalization in the
context of Hopf-Galois extensions). Let 𝜃 ∈ ℝ and let 𝜃′ be the skewsymmetric
4 × 4-matrix with 𝜃′1,2 = 𝜃′3,4 = 0 and 𝜃′1,3 = 𝜃′1,4 = 𝜃′2,3 = 𝜃′2,4 = 𝜃∕2. The
Connes-Landi sphere 𝒜(𝕊7𝜃′) is the universal unital C

∗-algebra generated by
normal elements 𝑧1,… , 𝑧4 subject to the relations

𝑧𝑖𝑧𝑗 = 𝑒2𝜋𝚤𝜃
′
𝑖,𝑗 𝑧𝑗𝑧𝑖, 𝑧∗𝑗𝑧𝑖 = 𝑒2𝜋𝚤𝜃

′
𝑖,𝑗 𝑧𝑖𝑧∗𝑗 ,

4∑

𝑘=1
𝑧∗𝑘𝑧𝑘 = 1

for all 1 ≤ 𝑖, 𝑗 ≤ 4. By [SW17b, Expl. 3.5], it comes equipped with a free action
𝛼 of SU(2) given for each 𝑈 ∈ SU(2) on generators by

𝛼𝑈 ∶ (𝑧1,… , 𝑧4)↦ (𝑧1,… , 𝑧4) (
𝑈 0
0 𝑈) .

The corresponding fixed point algebra is the universal unital C∗-algebra𝒜(𝕊4𝜃)
generated by normal elements 𝑤1, 𝑤2 and a self-adjoint element 𝑥 satisfying

𝑤1𝑤2 = 𝑒2𝜋𝚤𝜃 𝑤2𝑤1, 𝑤∗
2𝑤1 = 𝑒2𝜋𝚤𝜃 𝑤1𝑤∗

2 , 𝑤∗
1𝑤1 + 𝑤∗

2𝑤2 + 𝑥∗𝑥 = 1.
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To proceed, we consider the normal subgroup 𝑁 ∶= {±1} ⊆ SU(2). [SW17a,
Prop. 3.18] implies that the induced C∗-dynamical system

(𝒜(𝕊7𝜃′)
𝑁 , SU(2)∕𝑁, 𝛼 ↾SU(2)∕𝑁)

is free, too. Hence, we arrive at the announced free C∗-dynamical system with
structure group SO(3) by (simply) putting 𝒜(ℙ7𝜃′) ∶= 𝒜(𝕊7𝜃′)

𝑁 and by identify-
ing SO(3) with SU(2)∕𝑁 via the universal covering map 𝑝 ∶ SU(2) → SO(3),
i. e.,

(𝒜(ℙ7𝜃′), SO(3), 𝛼 ↾SU(2)∕𝑁 ◦ �̄�−1),

�̄� being the induced isomorphism from SU(2)∕𝑁 to SO(3). Note that

𝒜(ℙ7𝜃′)
SO(3) = 𝒜(𝕊4𝜃).

Finally, we conclude from Remark 3.6 that Γ𝒜(ℙ7𝜃′ )(𝜋) is tensorial of type 𝜋.

4.4. Example: the even part of the Cuntz algebra 𝒪𝟐. In this example,
we present yet another instance of a free C∗-dynamical system with structure
group SO(3), and hence of a correspondence that is tensorial of type 𝜋. Appar-
ently, this free C∗-dynamical system has neither been considered elsewhere in
the literature.
To begin with, we bring to mind that the Cuntz algebra 𝒪2 is the universal

unital C∗-algebra generated by two elements 𝑆1 and 𝑆2 satisfying 𝑆∗𝑖 𝑆𝑗 = 𝛿𝑖𝑗
and 𝑆1𝑆∗1 + 𝑆2𝑆∗2 = 1 (see [Cun77]). On account of [Gab14, Prop. 8.4], it comes
equipped with a free action 𝛼 of SU(2) given for each

𝑈 ∶= (𝑎 −�̄�
𝑏 �̄�) ∈ SU(2)

on generators by

𝛼𝑈 ∶ (𝑆1, 𝑆2)↦ (𝑎𝑆1 + 𝑏𝑆2,−�̄�𝑆1 + �̄�𝑆2).

Now, the exact same line of arguments as in Example 4.3 above shows that the
inducedC∗-dynamical system (𝒪𝑁

2 , SO(3), 𝛼 ↾SU(2)∕𝑁 ◦ �̄�−1) is free and, further,
that Γ𝒪𝑁

2
(𝜋) is tensorial of type 𝜋.

Appendix A. The construction of the free C∗-dynamical systems
from the unitary tensor functor

This section contains a brief summary of the construction of the freeC∗-dyna-
mical system (𝒜𝑀 , SO(𝑛), 𝛼𝑀) from the unitary tensor functor 𝒯 → Corr(ℬ)
put together in Section 3. Some parts of the construction require us to deal
with conjugates. Indeed, given an irreducible representation (𝜎, 𝑉𝜎) of SO(𝑛),
we identify its conjugate representation (�̄�, �̄�𝜎)with the equivalent irreducible
representation from our initial choice of representatives and denote the latter,
by abuse of notation, also by (�̄�, �̄�𝜎).
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First, we form an algebra 𝐴𝑀 . To do this, we consider the algebraic direct
sum

𝐴𝑀 ∶=
⨁

𝜎∈Irr(SO(𝑛))
Γ𝑀(�̄�)⊗𝑉𝜎.

Moreover, for 𝜎, 𝜏 ∈ Irr(SO(𝑛)), 𝑥⊗𝑣 ∈ Γ𝑀(�̄�)⊗𝑉𝜎, and 𝑦⊗𝑤 ∈ Γ𝑀(�̄�)⊗𝑉𝜏
we define a product by the recipe

(𝑥 ⊗ 𝑣) ∙ (𝑦 ⊗ 𝑤) =∶
𝑁∑

𝑘=1

(
Γ𝑀

(
�̄�𝑘
)∗ ⊗ 𝑆∗𝑘

)
(𝑚(�̄�, �̄�)(𝑥 ⊗ 𝑦)⊗ 𝑣 ⊗𝑤)

∈
𝑁∑

𝑘=1
Γ𝑀 (�̄�𝑘)⊗𝑉𝜎𝑘 ,

where {𝑆1,… , 𝑆𝑁} is a complete set of isometric intertwiners 𝑆𝑘 ∶ 𝑉𝜎𝑘 → 𝑉𝜎 ⊗
𝑉𝜏, 𝜎𝑘 ∈ Irr(SO(𝑛)), with respective conjugates �̄�𝑘 ∶ �̄�𝜎𝑘 → �̄�𝜎⊗�̄�𝜏. Extending
this product bilinearly yields a multiplication on 𝐴𝑀 which is associative due
to condition (iii) in the definition of a unitary tensor functor. Note that ℬ can
be regarded as the subalgebra of 𝐴𝑀 corresponding to the equivalence class
of the trivial representation. Second, we turn 𝐴𝑀 into a ∗-algebra. For this
purpose, let 𝜎 ∈ Irr(SO(𝑛)). We define an involutive map + ∶ Γ𝑀(𝜎) → Γ𝑀(�̄�)
by setting 𝑥+ ∶= 𝑚∗

𝑥 (Γ𝑀(𝑅)(1ℬ)), where 𝑅 ∶ ℂ → 𝑉𝜎 ⊗ �̄�𝜎 is any intertwiner
and 𝑚𝑥 ∶ Γ𝑀(�̄�) → Γ𝑀(𝜎 ⊗ �̄�) denotes the map 𝑚𝑥(𝑦) ∶= 𝑚(𝜎, �̄�)(𝑥 ⊗ 𝑦).
Now, for 𝑥 ⊗ 𝑣 ∈ Γ𝑀(�̄�) ⊗ 𝑉𝜎 we put (𝑥 ⊗ 𝑣)+ ∶= 𝑥+ ⊗ 𝑣 and extend this
anilinearly to an involutive map on 𝐴𝑀 . Third, we equip 𝐴𝑀 with the SO(𝑛)-
action by ∗-automorphisms, let’s say 𝑎𝑀 , given on each summand Γ𝑀(�̄�)⊗𝑉𝜎,
𝜎 ∈ Irr(SO(𝑛)), by the respective unitary representation of SO(𝑛) on the second
tensor factor. In summary, we have built a ∗-algebra𝐴𝑀 together with an action
of SO(𝑛) on 𝐴𝑀 by ∗-automorphisms.
We proceed by noting that each summand Γ𝑀(�̄�) ⊗ 𝑉𝜎, 𝜎 ∈ Irr(SO(𝑛)), is

naturally a correspondence over ℬ with respect to the canonical ℬ-bimodule
structure and the ℬ-valued inner product determined by ⟨𝑥 ⊗ 𝑣, 𝑦 ⊗ 𝑤⟩ℬ ∶=
⟨𝑥, 𝑦⟩ℬ⟨𝑣, 𝑤⟩ for all 𝑥, 𝑦 ∈ Γ𝑀(�̄�) and 𝑣, 𝑤 ∈ 𝑉𝜎. From this it follows that
𝐴𝑀 carries the structure of a right pre-Hilbert ℬ-module. We write ℌ𝑀 for
its completion. It is easy to check that the left multiplication on 𝐴𝑀 yields a
faithful ∗-representation 𝜆 ∶ 𝐴𝑀 → ℒ(ℌ𝑀). Furthermore, it is immediate that
𝑎𝑀 extends to a unitary representation 𝑈𝑀 ∶ SO(𝑛)→ 𝒰(ℌ𝑀).
Now, we are in a position to introduce the free C∗-dynamical system

(𝒜𝑀 , SO(𝑛), 𝛼𝑀).
Indeed, we let 𝒜𝑀 be the closure of 𝜆(𝐴𝑀) with respect to the operator norm
onℒ(ℌ𝑀). Furthermore, 𝛼𝑀 is implemented by the unitary representation𝑈𝑀
in the sense that (𝛼𝑀)𝑔(𝑥) = (𝑈𝑀)𝑔𝑥(𝑈𝑀)∗𝑔 for all 𝑔 ∈ SO(𝑛) and 𝑥 ∈ 𝒜𝑀 .
Finally, (𝒜𝑀 , SO(𝑛), 𝛼𝑀) is free as asserted, because we initially started with
a unitary tensor functor. For a more detailed account of the construction, we
refer to [Nes13, Sec. 2] (see also [DR89, SW17b, Ður96]).
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Appendix B. The special case of 𝐒𝐎(𝟐)
In this section, we briefly deal with the special case of SO(2). More precisely,

for a unital C∗-algebra ℬ we show that there is a bijective correspondence be-
tween free C∗-dynamical systems with structure group SO(2) and fixed point
algebra ℬ and Morita equivalence ℬ-bimodules.
We begin by recalling that Irr(SO(2)) ≅ ℤ. Now, let (𝒜, SO(2), 𝛼) be a free

C∗-dynamical system with fixed point algebra ℬ. Each isotypic component
𝐴(𝑘), 𝑘 ∈ ℤ, is a Morita equivalence ℬ-bimodule with inner products given
by ℬ⟨𝑥, 𝑦⟩ ∶= 𝑥𝑦∗ and ⟨𝑥, 𝑦⟩ℬ ∶= 𝑥∗𝑦 for all 𝑥, 𝑦 ∈ 𝐴(𝑘). Furthermore, the
canonical multiplication maps

Ψ𝑘1,𝑘2 ∶ 𝐴(𝑘1)⊗ℬ 𝐴(𝑘2)→ 𝐴(𝑘1 + 𝑘2), 𝑥 ⊗ℬ 𝑦 ↦ 𝑥𝑦
are isomorphisms ofMorita equivalenceℬ-bimodules for all 𝑘1, 𝑘2 ∈ ℤ and the
following associativity condition holds for all 𝑘1, 𝑘2, 𝑘3 ∈ ℤ:

Ψ𝑘1+𝑘2,𝑘3(Ψ𝑘1,𝑘2 ⊗ℬ id𝑘3) = Ψ𝑘1,𝑘2+𝑘3(id𝑘1 ⊗ℬΨ𝑘2,𝑘3). (6)

Note that 𝐴(0) = ℬ and that, up to the canonical isomorphism ℬ ⊗ℬ ℬ ≅ ℬ,
Ψ0,0 = idℬ. The isotypic components 𝐴(𝑘), 𝑘 ∈ ℤ, along with the maps Ψ𝑘1,𝑘2 ,
𝑘1, 𝑘2 ∈ ℤ, constitute a so-called factor system and allows to reconstruct the
C∗-dynamical system (𝒜, SO(2), 𝛼) up to isomorphism (see [SW17a, Def. 4.5]).
Conversely, let ℬ be a unital C∗-algebra and let 𝑁 be a Morita equivalence

ℬ-bimodule with dual module �̄� and isomorphisms

Ψ1,−1 ∶ 𝑁 ⊗ℬ �̄� → ℬ, 𝑥 ⊗ �̃� ↦ ℬ⟨𝑥, 𝑦⟩,
and

Ψ−1,1 ∶ �̄� ⊗ℬ 𝑁 → ℬ, �̃� ⊗ 𝑦 ↦ ⟨𝑥, 𝑦⟩ℬ.
Note that the Morita equivalence condition

ℬ⟨𝑥, 𝑦⟩ . 𝑧 = 𝑥 . ⟨𝑦, 𝑧⟩ℬ for all 𝑥, 𝑦, 𝑧 ∈ 𝑁
implies that Ψ1,−1 ⊗ℬ id𝑁 = id𝑁⊗ℬΨ−1,1 and Ψ−1,1 ⊗ℬ id�̄� = id�̄�⊗ℬΨ1,−1.
The task is now to construct a free C∗-dynamical system (𝒜𝑁 , SO(2), 𝛼𝑁) with
fixed point algebra ℬ and 𝐴𝑁(1) = 𝑁. For this, we apply [SW17a, Thm. 4.21]
which amounts to the construction of a factor system associated with 𝑁: First,
for each 𝑘 ∈ ℤ we form a Morita equivalence ℬ-bimodule 𝑁(𝑘) by setting

𝑁(𝑘) ∶=
⎧

⎨
⎩

ℬ 𝑘 = 0
𝑁⊗𝑘 𝑘 > 0
�̄�⊗−𝑘 𝑘 < 0.

Second, we define Morita equivalence ℬ-bimodule isomorphisms
Ψ𝑘1,𝑘2 ∶ 𝑁(𝑘1)⊗ℬ 𝑁(𝑘2)→ 𝑁(𝑘1 + 𝑘2)

for all 𝑘1, 𝑘2 ∈ ℤ in the followingway: For non-negative integerswe simply take
the tensor product⊗ℬ, and similarly for negative integers. Note that𝑁(0) = ℬ
and that, up to the canonical isomorphism ℬ ⊗ℬ ℬ ≅ ℬ, Ψ0,0 = idℬ. To deal
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with integers of mixed parity, we repeatedly make use of the maps Ψ1,−1 and
Ψ−1,1. From Ψ1,−1 ⊗ℬ id1 = id1⊗ℬΨ−1,1 and Ψ−1,1 ⊗ℬ id−1 = id−1⊗ℬΨ1,−1,
it may be concluded that Equation (6) holds for all 𝑘1, 𝑘2, 𝑘3 ∈ ℤ. Hence the
modules 𝑁(𝑘), 𝑘 ∈ ℤ, together with the maps Ψ𝑘1,𝑘2 , 𝑘1, 𝑘2 ∈ ℤ, form a fac-
tor system which gives a free C∗-dynamical system (𝒜𝑁 , SO(2), 𝛼𝑁) with fixed
point algebra ℬ and 𝐴(1) = 𝑁 as required. We proceed by looking at the maps

(𝒜, SO(2), 𝛼)↦ 𝐴(1), and 𝑁 ↦ (𝒜𝑁 , SO(2), 𝛼𝑁).

A few moments thought show that these are, in fact, inverse to each other as
claimed in the beginning of this section. Passing over to the set Ext(ℬ, SO(2))
of equivalence classes of free C∗-dynamical systems with structure group SO(2)
andfixed point algebraℬ (with respect to SO(2)-equivariant isomorphisms over
ℬ) and the setPic(ℬ) of equivalence classes ofMorita equivalenceℬ-bimodules,
the Picard group of ℬ, we can assert that

Ext(ℬ, SO(2))→ Pic(ℬ), [(𝒜, SO(2), 𝛼)]↦ [𝐴(1)].

is a bijection.

Remark B.1. The above correspondence can also be obtained from a more ab-
stract result involving group cohomology. In fact, since the group cohomol-
ogy H𝑛

gr(ℤ,𝒰𝑍(ℬ)) vanishes for each 𝑛 > 1, the correspondence follows from
[SW17a, Cor. 5.9 & Thm. 5.14].

Remark B.2. Ifℬ = 𝐶(𝑋) for some compact space 𝑋 and𝑁 is the 𝐶(𝑋)-module
of sections of some line bundle𝐿 over𝑋, then𝒜𝑁 ≅ 𝐶(Fr(𝐿)) (see, e. g., [SW17a,
Sec. 6]).

Remark B.3. For a similar discussion in the purely algebraic setting of strongly
graded rings we refer to the opus [BM20, Sec. 5.2.3].

Remark B.4. Woronowicz’s quantum SU𝑞(2), equipped with its natural gauge
action by U(1) (identified with SO(2)), provides a prominent example of a free
C∗-dynamical system with structure group U(1). It gives rise to the so-called
quantum Hopf fibration. Moreover, the module associated with the trivial rep-
resentation corresponds to the quantum Hopf line bundle.

We conclude by establishing a relation between free C∗-dynamical systems
with structure group SO(2) and their associated noncommutative vector bun-
dles with respect to the standard representation of SO(2). For this, we recall
that the standard representation of SO(2) is not irreducible. In fact, we have
ℂ2 = ℂ(1, 𝚤)⊺⨁ℂ(1,−𝚤)⊺ as SO(2)-modules.

Corollary B.5. Let (𝒜, SO(2), 𝛼) be a free C∗-dynamical system. Furthermore,
let 𝜋 be the standard representation of SO(2). Then Γ𝒜(𝜋) = 𝐴(1)⊕ 𝐴(−1). In
particular, for a unital C∗-algebra ℬ and a Morita equivalence ℬ-bimodule 𝑁
with dual module �̄� we have Γ𝒜𝑁 (𝜋) = 𝑁⨁ �̄�.
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