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On Pimsner-Popa orthonormal basis and
Popa’s relative dimension of projections

Keshab Chandra Bakshi and Satyajit Guin

Abstract. We show that any depth 2 subfactor with a simple first relative
commutant has a unitary orthonormal basis. As a pleasant consequence, we
produce new elements in the set of Popa’s relative dimension of projections
for such subfactors. We also construct infinitely many new elements in the
set of relative dimension of projections for subfactors arising from complex
Hadamard matrices and bi-unitary matrices.
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1. Introduction

For a subfactor 𝑁 ⊂ 𝑀 of type 𝐼𝐼1 factors and a projection 𝑝 ∈ 𝑀, the el-
ement 𝐸𝑁(𝑝) may be regarded as the dimension of the projection 𝑝 relative to
the subfactor 𝑁. The interesting case is when 𝐸𝑁(𝑝) is a scalar multiple of the
identity. Indeed, motivated by the orthogonalization problem, in [22] Popa ini-
tiated the study of the set Λ(𝑀,𝑁) ∶= {𝛼 ∈ [0, 1] ∶ 𝐸𝑁(𝑝) = 𝛼1, 𝑝 ∈ 𝒫(𝑀)}.
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This set is an invariant for the inclusion 𝑁 ⊂ 𝑀 that is closely related to the
index [𝑀 ∶ 𝑁]. More precisely, inf

(
Λ(𝑀,𝑁) ⧵ {0}

)
= [𝑀 ∶ 𝑁]−1. Popa com-

puted Λ(𝑀,𝑁) when [𝑀 ∶ 𝑁] ≤ 4 and 𝑁 is locally trivial; and some parts
of Λ(𝑀,𝑁) when [𝑀 ∶ 𝑁] > 4. In all these cases, it turns out that Λ de-
pends only on the index [𝑀 ∶ 𝑁]. To be more precise regarding the case when
[𝑀 ∶ 𝑁] > 4, let 0 < 𝑡 <

1

2
be the real number given by the quadratic equation

𝑡(1 − 𝑡) = [𝑀 ∶ 𝑁]−1. Then, the set Λ(𝑀,𝑁) ∩ (𝑡, 1 − 𝑡) is mysterious. In fact,
Popa has asked the following question in [22] (see also [24]):

Question A: ([22, 24]) Is it true that if 𝑁′ ∩ 𝑀 = ℂ and [𝑀 ∶ 𝑁] > 4, then
Λ(𝑀,𝑁) ∩ (𝑡, 1 − 𝑡) ≠ ∅, where 0 < 𝑡 <

1

2
is the real number given by the

quadratic equation 𝑡(1 − 𝑡) = [𝑀 ∶ 𝑁]−1?

The answer to the above question in its full generality seems very difficult. In
this article, we show that the question has affirmative answer in the following
situations.

Theorem 1.1. Let𝑁 ⊂ 𝑀 be a finite index subfactor such that [𝑀 ∶ 𝑁] > 4, and
0 < 𝑡 <

1

2
be the real number given by the quadratic equation 𝑡(1 − 𝑡) = [𝑀 ∶

𝑁]−1. Then, the set Λ(𝑀,𝑁) ∩ (𝑡, 1 − 𝑡) is non-empty in the following cases :

(𝑖) if𝑁 ⊂ 𝑀 is a depth 2 subfactor such that𝑁′ ∩𝑀 is simple;
(𝑖𝑖) if𝑁 ⊂ 𝑀 is a spin model subfactor;
(𝑖𝑖𝑖) if𝑁 ⊂ 𝑀 is a vertex model subfactor.

Moreover, we prove the following stronger version of the above theorem in
some situations.

Theorem 1.2. (𝑖) Let𝑁 ⊂ 𝑀 be an even index, say 2𝑛 with 𝑛 ≥ 3, spin model
subfactor. There are increasing sequences {𝛼(𝑖)𝑚 }𝑚≥1, where 0 ≤ 𝑖 ≤ 2𝑛 − 4,
in Λ(𝑀,𝑁) ∩ (𝑡, 1 − 𝑡) with limit point 2+𝑖

[𝑀∶𝑁]
, where 𝑡(1 − 𝑡) = [𝑀 ∶ 𝑁]−1.

(𝑖𝑖) Let 𝑁 ⊂ 𝑀 be a vertex model subfactor of index (2𝑛)2, 𝑛 ≥ 3. There are
increasing sequences {𝛽(𝑖)𝑚 }𝑚≥1, where 0 ≤ 𝑖 ≤ 2𝑛−4, inΛ(𝑀,𝑁)∩ (𝑡, 1− 𝑡)

with limit point 2+𝑖
√
[𝑀∶𝑁]

, where 𝑡(1 − 𝑡) = [𝑀 ∶ 𝑁]−1.

Popa has shown that if the inclusion 𝑁 ⊂ 𝑀 splits 𝑅 and if

Λ(𝑀,𝑁) ∩ (𝑡, 1 − 𝑡) ≠ ∅,

then the cardinality of this set is at leastℵ [22]. This is achieved by constructing
recursively a decreasing sequencewith limit point 𝑡. Therefore, applying Popa’s
construction to each element of the sequence in the above theorem, we obtain
lots of elements in the desired set for the cases of spin/vertex model subfactors.
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However, the sequence that we have constructed consists entirely of rational
numbers. This leads us to propose the following relatively easier version of
Popa’s question :

Question B: For an irreducible subfactor 𝑁 ⊂ 𝑀 with [𝑀 ∶ 𝑁] > 4, can
Λ(𝑀,𝑁) ∩ (𝑡, 1 − 𝑡) (where 𝑡(1 − 𝑡) = [𝑀 ∶ 𝑁]−1) contain irrational numbers?

The difficulty in answering the above question lies in the fact that it is not
known whether the set Λ(𝑀,𝑁) is closed, and hence we fail to apply any limit
argument. Also, it is not known whether Λ is uncountable, or if it can contain
intervals. This seems to a be a challenging problem.
To compute Λ, we have used Pimsner-Popa orthonormal basis as a technical

tool. Indeed, restrictions on themaximal number of unitaries that can appear in
an orthonormal basis of𝑀∕𝑁 can be used to obtain a restriction to the possible
values in Λ(𝑀,𝑁), as observed in [24]. However, the following question due to
Popa seems extremely hard.

Question C: ([24]) For an irreducible subfactor𝑁 ⊂ 𝑀 with index 𝑛 ≥ 5, does
there exist an orthonormal basis consisting of 𝑛many unitary elements?

For a recent progress on the above question, see [8, 10]. As a small contribu-
tion to the above question of Popa, in this paper we have proved the following.

Theorem 1.3. A depth 2 subfactor with simple first relative commutant has a
unitary orthonormal basis.

2. Preliminaries

Generalizing the classical notion of independence for 𝜎-algebras, Popa intro-
duced a notion of orthogonality for pairs of von Neumann subalgebras𝒫 and𝒬
of a finite von Neumann algebraℳ [21]. As a slight generalization of the no-
tion of orthogonality, Popa also introduced the notion of ‘commuting square’,
which turns out to be an indispensable tool in subfactor theory. Consider an in-
clusion of finite von Neumann algebras𝒩 ⊂ℳ with a fixed trace 𝑡𝑟 onℳ, and
intermediate von Neumann subalgebras𝒫 and𝒬. Thus, we obtain a quadruple
of von Neumann algebras

𝒬 ⊂ ℳ

∪ ∪

𝒩 ⊂ 𝒫 .

If 𝒫 ∨ 𝒬 =ℳ and 𝒫 ∧ 𝒬 =𝒩, then a quadruple is called a quadrilateral.
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Definition 2.1 ([23, 13, 15]). A quadruple

𝒬 ⊂ ℳ

∪ ∪

𝒩 ⊂ 𝒫

of finite von Neumann algebras is called a commuting square if

𝐸ℳ
𝒫
𝐸ℳ
𝒬
= 𝐸ℳ

𝒬
𝐸ℳ
𝒫
= 𝐸ℳ

𝒩
.

The quadruple is said to be non-degenrate if

𝒫𝒬
SOT

= 𝒬𝒫
SOT

=ℳ.

A quadruple is called a non-degenerate commuting square (or symmetric com-
muting square) if it is a commuting square and non-degenerate.

For brevity, we shall sometimes write (𝒩 ⊂ 𝒫,𝒬 ⊂ℳ) to mean the quadru-
ple

𝒬 ⊂ ℳ

∪ ∪

𝒩 ⊂ 𝒫

The following result is extremely useful.

Theorem 2.2 ([23]). Suppose we have a quadruple (𝒩 ⊂ 𝒫,𝒬 ⊂ ℳ) of finite
von Neumann algebras with a fixed trace 𝑡𝑟 on ℳ. If 𝐸ℳ

𝒬
and 𝐸𝒫

𝒩
are the 𝑡𝑟-

preserving conditional expectations, then an orthonormal Pimsner-Popa basis for
𝒫∕𝒩 via 𝐸𝒫

𝒩
is also an orthonormal Pimsner-Popa basis forℳ∕𝒬 via 𝐸ℳ

𝒬
.

A rich source of commuting squares are the complex Hadamard matrices
and bi-unitary matrices. In this article, we have a special focus on two classes
of subfactors, namely the spinmodel (also known asHadamard subfactors) and
vertex model subfactors. We briefly recall the construction of these classes of
subfactors from [15]. These subfactors arise as iterated basic construction of
non-degenerate commuting squares of finite-dimensional algebras. Nothing
much is known about these subfactors, and these are known to be difficult.
Recently, an in-depth study for ‘pairs’ of spin model subfactors is carried out in
[5, 4], and several interesting results have been obtained.

Notation (1): Throughout the article, we denote 𝑀𝑛(ℂ) simply by 𝑀𝑛 for
brevity.
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Let 𝑢 be a complex Hadamard matrix of order 𝑛 × 𝑛. Then, we have the
following non-degenerate commuting square

Ad𝑢(∆𝑛) ⊂ 𝑀𝑛

∪ ∪

ℂ ⊂ ∆𝑛

where∆𝑛 ⊂ 𝑀𝑛 is the algebra of diagonalmatrices. Iterating the basic construc-
tion vertically, we obtain the spin model subfactor 𝑅𝑢 ⊂ 𝑅 from the following
grid of finite-dimensional inclusions

∆𝑛 ⊂ 𝑀𝑛 ⊂ 𝑒2 ∆𝑛 ⊗𝑀𝑛 ⊂ 𝑒3 𝑀𝑛 ⊗𝑀𝑛 ⊂ ⋯⋯

∪ ∪ ∪ ∪

ℂ ⊂ 𝑢∆𝑛𝑢
∗ ⊂𝑒2 ⟨𝑢∆𝑛𝑢

∗, 𝑒2⟩ ⊂𝑒3 ⟨⟨𝑢∆𝑛𝑢
∗, 𝑒2⟩, 𝑒3⟩ ⊂ ⋯⋯

where 𝑒𝑗’s are the Jones projections, and the notation ⟨𝒜, 𝑥⟩ for any inclusion
of algebras 𝒜 ⊂ ℬ and 𝑥 ∈ ℬ denotes the subalgebra of ℬ generated by 𝒜 and
𝑥. Note that [𝑅 ∶ 𝑅𝑢] = 𝑛. See [15] for details. Importance of this class of
subfactors has been emphasized by Jones; however, not much is known about
this class of subfactors. The subfactor 𝑅𝑢 ⊂ 𝑅 is irreducible and index is 𝑛. It is
also known that the second relative commutant is always abelian.
Now, let 𝑣 be a bi-unitary matrix in𝑀𝑛 ⊗𝑀𝑘. Recall that a unitary matrix

𝑤 = (𝑤
𝛽𝑏
𝛼𝑎) ∈ 𝑀𝑛 ⊗𝑀𝑘 is called a bi-unitary matrix if its block transpose 𝑤 =

(𝑤
𝛽𝑏
𝛼𝑎), with 𝑤

𝛽𝑏
𝛼𝑎 ∶= 𝑤𝛼𝑏

𝛽𝑎
, is also a unitary matrix in𝑀𝑛 ⊗𝑀𝑘. In this case, we

have the following nondegenerate commuting square

Ad𝑣(𝑀𝑛 ⊗ ℂ) ⊂ 𝑀𝑛 ⊗𝑀𝑘

∪ ∪

ℂ ⊂ ℂ⊗𝑀𝑘

and iterating the basic construction vertically, as in the case of spin model, we
obtain the vertex model subfactor 𝑅𝑣 ⊂ 𝑅 such that [𝑅 ∶ 𝑅𝑣] = 𝑘2. See [15] for
details. Note that vertexmodel subfactors need not be irreducible, and its index
is always square of an integer.

3. A quick overview on Pimsner-Popa orthonormal basis

In this paper, we are interested in subfactors 𝑁 ⊂ 𝑀 such that [𝑀 ∶ 𝑁] <

∞. We have the unique 𝑡𝑟-preserving conditional expectation from𝑀 onto 𝑁,
denoted by 𝐸𝑁 . Suppose that 𝑒1 is the Jones projection and 𝑀1 denotes the
corresponding basic construction. We begin by recalling a few necessary facts
to be crucially used in this article.
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Definition 3.1. Let 𝒩 ⊂ ℳ be a unital inclusion of von Neumann algebras
equippedwith a faithful normal conditional expectationℰ fromℳ onto𝒩. Then,
a finite setℬ ∶= {𝜆1,… , 𝜆𝑛} ⊂ℳ is called a (right) Pimsner-Popa basis forℳ over
𝒩 via ℰ if every 𝑥 ∈ℳ can be expressed as 𝑥 =

∑𝑛

𝑗=1
𝜆𝑗ℰ(𝜆

∗
𝑗
𝑥). Equivalently (by

taking adjoints), every 𝑥 ∈ ℳ can be expressed as 𝑥 =
∑𝑛

𝑗=1
ℰ(𝑥𝜆𝑗)𝜆

∗
𝑗
. Further,

such a basis {𝜆𝑖} is said to be orthonormal if ℰ(𝜆∗𝑖 𝜆𝑗) = 𝛿𝑖,𝑗 for all 𝑖, 𝑗. A finite set
{𝜆1,⋯ , 𝜆𝑛} ⊂ 𝑀 is called a left Pimsner-Popa basis if {𝜆∗

1
,⋯ , 𝜆∗𝑛} ⊂ 𝑀 is a right

Pimsner-Popa basis. Also, a left basis {𝜆𝑖} is said to be orthonormal Pimsner-Popa
basis if ℰ(𝜆𝑖𝜆∗𝑗 ) = 𝛿𝑖,𝑗 for all 𝑖, 𝑗. A right orthonormal basis {𝜆𝑖} is said to be a
two-sided orthonormal basis if it is simultaneously a left orthonormal basis.

Notation (2): Unless specified otherwise, in this article by a basis for𝑀∕𝑁 we
mean a right Pimsner-Popa orthonormal basis for𝑀∕𝑁 via 𝐸𝑁 .
An important result by Pimsner and Popa states that given a finite index sub-

factor𝑁 ⊂ 𝑀, there always exists an orthonormal Pimsner-Popa basis for𝑀∕𝑁

with respect to the unique 𝑡𝑟𝑀-preserving conditional expectation 𝐸𝑁 . The fol-
lowing is a well-known open problem in subfactor theory. For more details, the
reader is referred to [7].
QuestionD: (Jones) Does an extremal finite index subfactor always have a two-
sided orthonormal basis?
This is related to Question C asked by Popa (see [24]), mentioned in the in-

troduction.
QuestionE: Is it true that an integer index subfactor has a unitary orthonormal
basis if and only if it has a two-sided basis?
In [8], it is observed that if𝑀∕𝑁 has a unitary basis, then𝑀1∕𝑀 will have a

two-sided basis. In the converse direction, we can say the following.

Theorem 3.2. Suppose𝑁 ⊂ 𝑀 is an integer index subfactor. If𝑀∕𝑁 has a two-
sided orthonormal basis, then𝑀1∕𝑁 has a unitary orthonormal basis.

Proof : Suppose [𝑀 ∶ 𝑁] = 𝑛 and let {𝜆𝑖 ∶ 0 ≤ 𝑖 ≤ 𝑛 − 1} be a two-sided
orthonormal basis for 𝑀∕𝑁. Thus, 𝐸𝑀

𝑁
(𝜆𝑢𝜆

∗
𝑢) = 𝐸𝑀

𝑁
(𝜆∗𝑢𝜆𝑢) = 1. For 0 ≤ 𝑗 ≤

𝑛 − 1, we put 𝜇𝑗 =
∑𝑛−1

𝑘=0
𝜔𝑗𝑘𝜆𝑘𝑒1𝜆

∗

𝑘
. Then, for 0 ≤ 𝑠, 𝑡 ≤ 𝑛 − 1 we have

𝜇∗𝑠 𝜇𝑡 =

𝑛−1∑

𝑢,𝑣=0

𝜔−𝑠𝑢𝜔𝑡𝑣𝜆𝑢𝑒1𝜆
∗
𝑢𝜆𝑣𝑒1𝜆

∗
𝑣

=

𝑛−1∑

𝑢,𝑣=0

𝜔−𝑠𝑢𝜔𝑡𝑣𝜆𝑢𝐸𝑁(𝜆
∗
𝑢𝜆𝑣)𝑒1𝜆

∗
𝑣
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=

𝑛−1∑

𝑢=0

𝜔(𝑡−𝑠)𝑢𝜆𝑢𝑒1𝜆
∗
𝑢

Since,
∑

𝑢
𝜆𝑢𝑒1𝜆

∗
𝑢 = 1, we conclude that each 𝜇𝑠 is a unitary element in𝑀1. On

the other hand, for 𝑠 ≠ 𝑡, as 𝐸𝑀
𝑁
(𝜆𝑢𝜆

∗
𝑢) = 1, we see that

𝐸
𝑀1

𝑁
(𝜇∗𝑠 𝜇𝑡) = [𝑀 ∶ 𝑁]

−1
𝑛−1∑

𝑢=𝑜

𝜔(𝑡−𝑠)𝑢𝐸
𝑀1

𝑁
(𝜆𝑢𝜆

∗
𝑢) = [𝑀 ∶ 𝑁]

−1
𝑛−1∑

𝑢=0

𝜔(𝑡−𝑠)𝑢 = 0.

Therefore, {𝜇𝑗 ∶ 0 ≤ 𝑗 ≤ 𝑛 − 1} is a unitary orthonormal basis for𝑀1∕𝑁. 2

Recent progress: Existence of a two-sided basis for an extremal finite index
subfactor can be thought of as an analogue of Hall’s Marriage theorem (see
[7]). Recall that a sufactor 𝑁 ⊂ 𝑀 is said be regular if the normalizer𝒩𝑀(𝑁)

generates the von Neumann algebra𝑀. In [7], we have proved the following.

Theorem3.3 ([7]). Every finite index regular subfactor has a two-sided orthonor-
mal basis.

In [7], we have proved that for a finite index subfactor 𝑁 ⊂ 𝑀, the gener-
alized Weyl group 𝐺 =

𝒩𝑀(𝑁)

𝒰(𝑁)𝒰(𝑁′∩𝑀)
is finite. Theorem 3.3 has the following

pleasant consequence.

Theorem 3.4 ([7]). If𝑁 ⊂ 𝑀 is a finite index regular subfactor, then

[𝑀 ∶ 𝑁] = |𝐺| dimℂ(𝑁
′ ∩𝑀).

Given a subfactor 𝑁 ⊂ 𝑀 with [𝑀 ∶ 𝑁] < ∞, the corresponding relative
commutant𝑁′ ∩𝑀 is a finite-dimensional 𝐶∗-algebra. Iterating the basic con-
struction, we obtain a tower of 𝐼𝐼1 factors 𝑁 ⊂ 𝑀 ⊂ 𝑀1 ⊂ ⋯. In particu-
lar, we have a subfactor inclusion 𝑁 ⊂ 𝑀𝑘 with [𝑀𝑘 ∶ 𝑁] < ∞, and there-
fore, the relative commutants𝑁′ ∩𝑀𝑘 are also finite-dimensional 𝐶∗-algebras.
In other words, we have a natural inclusion of finite-dimensional 𝐶∗-algebra
𝑁′∩𝑀𝑘 ⊂ 𝑁′∩𝑀𝑘+1 for each 𝑘. Recall that a subfactor is said be of depth ‘𝑘’ if
𝑘 is the least integer such that𝑁′∩𝑀𝑘−2 ⊂ 𝑁′∩𝑀𝑘−1 ⊂ 𝑁′∩𝑀𝑘 is an instance
of basic construction of finite-dimensional 𝐶∗-algebras.
As a follow-up to [7], we have proved in [8] the following:

Theorem 3.5 ([8]). Any depth 2 subfactor with simple relative commutant has
a two-sided orthonormal Pimsner-Popa basis.

On the other hand, the importance of the existence of a unitary orthonormal
basis for an integer index subfactor has been outlined in [25]. Recently, in [8]
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it has been proved that any finite index regular subfactor with either simple or
abelian relative commutant must have a unitary orthonormal basis. Also, in
[8] it is conjectured that any regular subfactor will have a unitary orthonormal
basis. Indeed, in [10] this conjecture has been verified by proving the following.

Theorem 3.6 ([10]). Any regular subfactor with finite Jones index has a unitary
orthonormal basis.

As pointed out in [8], this enables us to conclude that any finite index regular
subfactor has depth at most 2. For more applications of unitary basis problem,
see [9].

We conclude this section mentioning a related invariant that is recently in-
troduced by Popa while discussing paving size of a subfactor [25]. This is a new
invariant for a subfactor 𝑁 ⊂ 𝑀, denoted by 𝑑𝑜𝑏(𝑁 ⊂ 𝑀), defined as the in-
fimum of ‖

∑

𝑗
𝑚∗
𝑗
𝑚𝑗‖ over all orthonormal basis {𝑚𝑗} for 𝑀 over 𝑁. In [25],

Popa have shown that

[𝑀 ∶ 𝑁] ≤ 𝑑𝑜𝑏(𝑁 ⊂ 𝑀) ≤ [𝑀 ∶ 𝑁](⌈[𝑀 ∶ 𝑁]⌉ − 1).

This is closely related to the two-sided basis problem. Indeed, if a subfac-
tor 𝑁 ⊂ 𝑀 has either a two-sided basis or a unitary orthonormal basis, then
𝑑𝑜𝑏(𝑁 ⊂ 𝑀) = [𝑀 ∶ 𝑁].

Question F: Is there any extremal finite index subfactor 𝑁 ⊂ 𝑀 such that
𝑑𝑜𝑏(𝑁 ⊂ 𝑀) ≠ [𝑀 ∶ 𝑁]?

We observe that if𝑁 ⊂ 𝑀 is either a regular subfactor or a depth 2 subfactor
with either simple or abelian relative commutant, then

𝑑𝑜𝑏(𝑁 ⊂ 𝑀) = [𝑀 ∶ 𝑁].

4. Depth 2 subfactors and the existence of unitary basis

The goal of this section is to prove Theorem 1.3. This makes small progress
on Popa’s question on existence of a unitary orthonormal basis stated earlier.
Examples of depth 2 subfactors with simple first relative commutant can be

easily constructed. For example, let𝑁 ⊂ 𝑀 be an irreducible depth 2 subfactor.
Then, ℂ ⊗ 𝑁 ⊂ 𝑀𝑛(ℂ) ⊗ 𝑀 is a depth 2 subfactor with simple relative com-
mutant. To prove Theorem 1.3, we need the following well-known important
result.
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Proposition 4.1 (Section 4.6, [13]). Let 𝑁 ⊂ 𝑀 be a finite-index subfactor with
depth 𝑘. Then, 𝑡𝑟𝑀|𝑁′∩𝑀𝑙−1

is a Markov trace for the inclusion𝑁′ ∩𝑀𝑙−2 ⊂ 𝑁′ ∩

𝑀𝑙−1 with modulus [𝑀 ∶ 𝑁] for all 𝑙 ≥ 𝑘.

Before presenting the proof of Theorem 1.3, let us briefly pause to discuss
the unitary basis problem for a ‘connected inclusion’ of finite-dimensional 𝐶∗-
algebras which will be used crucially in the proof. The grid of relative com-
mutants often encodes rich structure of the corresponding subfactor. In view
of the fact that for a subfactor 𝑁 ⊂ 𝑀 with [𝑀 ∶ 𝑁] < ∞, the relative com-
mutants 𝑁′ ∩𝑀𝑘 ⊂ 𝑁′ ∩𝑀𝑘+1 are connected inclusions of finite-dimensional
𝐶∗-algebras, the unitary basis problem in the finite-dimension seems to be of
interest (see [1]). This can be thought of as a generalization of unitary error
basis in quantum information theory (see [8, 10, 2]).

Proposition 4.2 (Propn. 3.2.3, [15]). Let 𝐵 ⊂ 𝐴 be a unital inclusion of finite
dimensional 𝐶∗-algebras with inclusion matrix Λ. Let 𝜏 be a tracial state on 𝐴,
𝐴1 ∶= ⟨𝐴, 𝑒1⟩ ⊂ 𝐵(𝐿2(𝐴, 𝜏)) denote the basic construction for 𝐵 ⊂ 𝐴 w.r.t. 𝜏,
𝐸1 ∶ 𝐴1 → 𝐴 denote the unique conditional expectation induced by 𝜏 and 𝛽 be a
positive real number. Then, the following statements are equivalent:

(𝑖) There exists a tracial state 𝜏1 on 𝐴1 such that 𝜏1(𝑥) = 𝜏(𝑥) for all 𝑥 ∈ 𝐴

and 𝛽𝜏1(𝑥𝑒1) = 𝜏(𝑥) for all 𝑥 ∈ 𝐴.
(𝑖𝑖) There exists a tracial state 𝜏1 on 𝐴1 such that 𝜏1(𝑥) = 𝜏(𝑥) for all 𝑥 ∈ 𝐴

and 𝐸1(𝑒1) = 𝛽−11.

(𝑖𝑖𝑖) If 𝑡 is the trace vector for 𝜏, then Λ𝑡Λ𝑡 = 𝛽𝑡.

Definition 4.3 ([13, 15]). Let 𝐵 ⊂ 𝐴 be a unital inclusion of finite dimensional
𝐶∗-algebras with inclusion matrix Λ. Let 𝜏 be a tracial state on 𝐴 and 𝐴1 ∶=

⟨𝐴, 𝑒1⟩ ⊂ 𝐵(𝐿2(𝐴, 𝜏)) denote the basic construction for 𝐵 ⊂ 𝐴 w.r.t. 𝜏, 𝐸1 ∶ 𝐴1 →

𝐴 denote the unique conditional expectation induced by 𝜏 and 𝛽 be a positive real
number. Then, 𝜏 is said to be aMarkov trace for the inclusion𝐵 ⊂ 𝐴withmodulus
𝛽 if any of equivalent conditions of Proposition 4.2 holds.

Therefore, for a unital inclusion 𝐵 ⊂ 𝐴 of finite dimensional 𝐶∗-algebras
with inclusion matrix Λ, a tracial state 𝑡𝑟 on 𝐴 is said to be a Markov trace for
𝐵 ⊂ 𝐴 if

Λ𝑡Λ𝑡 = ‖Λ‖2𝑡,

where 𝑡 denotes the trace vector of the tracial state 𝑡𝑟. For more on Markov
trace, see [15]. Recall that if 𝐵 ⊂ 𝐴 is a connected inclusion (that is, the Bratelli
diagram is connected), then there is a unique Markov trace for 𝐵 ⊂ 𝐴.



866 KESHAB CHANDRA BAKSHI AND SATYAJIT GUIN

As a tool to prove the existence of a unitary orthonormal basis for a finite
index regular subfactor, we have the following result.

Proposition 4.4 ([8]). Let 𝐴 be a finite dimensional 𝐶∗-algebra which is either
simple or commutative. Then,𝐴∕ℂ has a unitary orthonormal basis with respect
to the Markov trace for the unital inclusion ℂ ⊂ 𝐴.

Recently in [10], the above has been generalized to the following.

Theorem 4.5 ([10]). Let 𝐴 be any finite-dimesnional 𝐶∗-algebra. Then, 𝐴∕ℂ
has a unitary orthonormal basis with respect to the Markov trace for ℂ ⊂ 𝐴.

Recently, Crann et al. have verified a conjecture in [8] (see Conjecture 3.20)
using Theorem 4.5 as the main technical tool. Indeed, Theorem 4.5 has the
following marginal generalization.

Proposition 4.6. If 𝐵 ⊂ 𝐴 is a connected inclusion of finite-dimensional 𝐶∗-
algebra with 𝐵 simple, then 𝐴∕𝐵 has a unitary orthonormal basis with respect to
the Markov trace.

Proof : Since 𝐵 is simple, 𝐵 ⊂ 𝐴 is isomorphic to 𝐵 ⊂ 𝐵 ⊗ (𝐵′ ∩ 𝐴). The
conclusion now follows from Theorem 4.5. 2

Proof of Theorem 1.3 : Suppose that 𝑁 ⊂ 𝑀 is a subfactor with 𝑁′ ∩ 𝑀 is
simple, that is, 𝑁′ ∩𝑀 ≅ 𝑀𝑛(ℂ) for some 𝑛 ∈ ℕ.

Step (𝑖): We first show that,𝑀1 ⊂ 𝑀2 has a unitary orthonormal basis. Note
that 𝑁′ ∩ 𝑀 ∋ 𝑥 ↦ 𝐽𝑥𝐽 ∈ 𝑀′ ∩ 𝑀1 is an anti-isomorphism; so, 𝑀′ ∩ 𝑀1 is
also simple. Further, since 𝑁 ⊂ 𝑀 has depth 2, it follows that𝑀 ⊂ 𝑀1 is also
of depth 2. Thus, by Proposition 4.1 we know that 𝑡𝑟𝑀2

|𝑀′∩𝑀2
is the Markov

trace for 𝑀′ ∩𝑀1 ⊂ 𝑀′ ∩𝑀2. By Proposition 4.6, 𝑀′ ∩𝑀2 admits a unitary
orthonormal basis , say {𝑢𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑑} over𝑀′∩𝑀1, w.r.t. this trace. Moreover,
we know that

𝑀1 ⊂ 𝑀2

∪ ∪

𝑀′ ∩𝑀1 ⊂ 𝑀′ ∩𝑀2

is a non-degenerate commuting square. Hence, {𝑢𝑖} is also an orthonormal uni-
tary basis for𝑀2∕𝑀1 (see Theorem 2.2).

Step (𝑖𝑖): We prove that 𝑁 ⊂ 𝑀 has a unitary orthonormal basis. Indeed,
fix a 2-step downward basic construction 𝑁−2 ⊂ 𝑁−1 ⊂ 𝑁 ⊂ 𝑀 and recall that
(see for instance, [7, Prop. 3.12]) that𝑁−2 ⊂ 𝑁−1 has depth 2. Also,𝑁−2 ⊂ 𝑁−1

has simple first relative commutant because𝑁′
−2
∩𝑁−1 ≅ 𝑁′ ∩𝑀 (via the shift
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operator - see the proof of Cor. 3.12, [7]). Hence, using Step (𝑖) for the subfactor
𝑁−2 ⊂ 𝑁−1, we conclude that 𝑁 ⊂ 𝑀 has a unitary orthonormal basis.

These two steps together completes the proof. 2

5. On Popa’s relative dimension of projections

In [22], Popa introduced the set Λ(𝑀,𝑁) to measure the dimension of pro-
jections 𝑝 ∈ 𝑀 relative to the subfactor𝑁. Computation ofΛ(𝑀,𝑁) in full gen-
erality is extremely hard and remains an open problem (see [22, 24]). In [22],
this has been viewed as an orthogonalization problem (see also [24]). More re-
cently, in [3], a notion of angle between interemdiate subfactors of a subfactor
with finite Jones index have been discovered. In [6], the possible value of an-
gle has been shown to be intimately related with Popa’s question of finding the
possible elements in Λ.

Notation (3): For a von Neumann algebraℳ, we denote by𝒫(ℳ) the set of all
projections inℳ.

Definition 5.1 ([22]). For a subfactor 𝑁 ⊂ 𝑀, define Λ(𝑀,𝑁) = {𝛼 ≥ 0 ∶

𝐸𝑀
𝑁
(𝑝) = 𝛼, 𝑝 ∈ 𝒫(𝑀)}.

Observe that 0, 1 ∈ Λ(𝑀,𝑁), and since 𝐸 is a contraction, Λ(𝑀,𝑁) ⊆ [0, 1].
It is known that [𝑀 ∶ 𝑁]−1 = inf Λ(𝑀,𝑁) [22]. The following results will be
repeatedly used possibly without any further mention.

Proposition 5.2 (Proposition 1.7, [22]). If (𝒩 ⊂ 𝒬,𝒫 ⊂ℳ) is a commuting
square of von Neumann algebras, then Λ(𝒬,𝒩) ⊆ Λ(ℳ,𝒫).

Proposition 5.3 (Proposition 4.1, [22]). Let 𝑁 ⊂ 𝑀 be a finite index subfactor
with basic construction𝑀 ⊂ 𝑀1. For any 𝛽 > 0, let𝑀𝛽 be the 𝛽-amplification of
𝑀. Then, we have the following :

(𝑖) If 𝛼 ∈ Λ(𝑀,𝑁), then 1 − 𝛼 ∈ Λ(𝑀,𝑁).
(𝑖𝑖) If 𝛼 ∈ Λ(𝑀,𝑁), 𝛼 ≠ 0, 1, then 𝜆∕𝛼 ∈ Λ(𝑀𝛼

1
,𝑀𝛼) and 𝜆∕(1 − 𝛼) ∈

Λ(𝑀1−𝛼
1

,𝑀1−𝛼), where 𝜆 = [𝑀 ∶ 𝑁]−1.

Lemma 5.4. For any unitary 𝑢 ∈ 𝒰(𝑀), we have Λ(𝑀,𝑁) = Λ(𝑀,𝑢𝑁𝑢∗).

Proof : For 𝛼 ∈ Λ(𝑀,𝑁), there is a projection 𝑝 ∈ 𝑀 such that 𝐸(𝑝) = 𝛼.
Consider Ad𝑢(𝑝) ∈ 𝑀. Then,

𝐸𝑢𝑁𝑢∗(Ad𝑢(𝑝)) = Ad𝑢◦𝐸𝑀𝑁 (𝑝) = 𝛼 .
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Hence, Λ(𝑀,𝑁) ⊆ Λ(𝑀,𝑢𝑁𝑢∗). Replacing 𝑢 by 𝑢∗ in the above, similar anal-
ysis gives the reverse inclusion. 2

The set Λ(𝑀,𝑁) is completely known when [𝑀 ∶ 𝑁] ≤ 4 and 𝑁 is locally
trivial; and only some parts of Λ(𝑀,𝑁) is known when [𝑀 ∶ 𝑁] > 4. Let 0 <
𝑡 <

1

2
be the real number given by the quadratic equation 𝑡(1− 𝑡) = [𝑀 ∶ 𝑁]−1.

For [𝑀 ∶ 𝑁] ≤ 4, both the sets Λ(𝑀,𝑁) ∩ [0, 𝑡] and Λ(𝑀,𝑁) ∩ [1 − 𝑡, 1] are
computed in [22]. Note that Λ depends only on the index [𝑀 ∶ 𝑁] in all these
cases. However, for index greater than 4, the set Λ(𝑀,𝑁) ∩ (𝑡, 1 − 𝑡) remains
mysterious. In [22], one of the major questions asked by Popa is whether the
set Λ(𝑀,𝑁) ∩ (𝑡, 1 − 𝑡) is nonempty, at least for irreducible subfactors, where
𝑡(1 − 𝑡) = [𝑀 ∶ 𝑁]−1 and 𝑡 < 1∕2 (see 5.4.3 in [22]). The goal of this section
is to show that at least for three different classes of subfactors, this question of
Popa has positive answer.
Beforewe begin, let us get familiar with a construction of Popa in Proposition

5.5, [22]. If Λ(𝑀,𝑁) ∩ (𝑡, 1 − 𝑡) has one element 𝛼 such that 𝑡 < 𝛼 ≤ 1∕2, then
in certain situations, it is possible to construct a sequence of elements in the
set starting with 𝛼. If 𝑁 ⊂ 𝑀 is such that [𝑀 ∶ 𝑁] > 4 and the inclusion
𝑁 ⊂ 𝑀 splits 𝑅 (i.e., there exists 𝑅 ⊂ 𝑁 with 𝑁 = 𝑅 ∨ (𝑅′ ∩ 𝑁) and 𝑀 =

𝑅∨(𝑅′∩𝑀)), then for any 𝑡 < 𝛼 < 1∕2, there exists a sequence {𝛼𝑚}𝑚≥0 defined
recursively by 𝛼0 = 𝛼 and 𝛼𝑚+1 =

[𝑀∶𝑁]−1

1−𝛼𝑚
such that {𝛼2𝑚}𝑚≥0 ⊆ Λ(𝑁 ⊂ 𝑀)

and {𝛼2𝑚+1}𝑚≥0 ⊆ Λ(𝑀 ⊂ 𝑀1). Moreover, 𝛼𝑚 decreases to 𝑡. Thus, if 𝑁 ⊂ 𝑀

satisfies the above hypothesis, and if Λ(𝑀,𝑁) ∩ (𝑡, 1 − 𝑡) is nonempty, then the
cardinality #Λ(𝑀,𝑁) ∩ (𝑡, 1 − 𝑡) is at least ℵ.

Recall that if𝑀∕𝑁 has a unitary orthonormal basis, then [𝑀 ∶ 𝑁] must be
an integer.

Theorem 5.5. If𝑀∕𝑁 has a unitary orthonormal basis then

{0, 1∕𝑛, 2∕𝑛,⋯ , (𝑛 − 1)∕𝑛, 1} ⊆ Λ(𝑀1,𝑀),

where [𝑀 ∶ 𝑁] = 𝑛.

Proof : Suppose {𝑢𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛} is a unitary orthonormal basis. Therefore,
𝐸𝑁(𝑢

∗
𝑖
𝑢𝑗) = 𝛿𝑖𝑗. For 1 ≤ 𝑚 ≤ 𝑛 we see that

(∑𝑚

𝑖=1
𝑢𝑖𝑒1𝑢

∗
𝑖

)(∑𝑚

𝑗=1
𝑢𝑗𝑒1𝑢

∗
𝑗

)
=

∑𝑚

𝑖,𝑗=1
𝑢𝑖𝐸𝑁(𝑢

∗
𝑖
𝑢𝑗)𝑒1𝑢

∗
𝑗
=

∑𝑚

𝑖=1
𝑢𝑖𝑒1𝑢

∗
𝑖
. Thus, for each 1 ≤ 𝑚 ≤ 𝑛, the self-

adjoint operator
∑𝑚

𝑖=1
𝑢𝑖𝑒1𝑢

∗
𝑖
is a projection in 𝑀1. Also, 𝐸

𝑀1

𝑀
(
∑𝑚

𝑖=1
𝑢𝑖𝑒1𝑢

∗
𝑖
) =

𝑚∕𝑛, which completes the proof. 2
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Corollary 5.6. Suppose that 𝑁 ⊂ 𝑀 is a depth 2 subfactor with 𝑁′ ∩𝑀 simple.
Then, [𝑀 ∶ 𝑁] is an integer, say 𝑛, and {0, 1∕𝑛, 2∕𝑛,⋯ , (𝑛−1)∕𝑛, 1} ⊆ Λ(𝑀,𝑁).

Proof : A subfactor𝑁 ⊂ 𝑀 is of depth 2 if and only if the subfactor𝑁−1 ⊂ 𝑁 is
of depth 2, where𝑁−1 ⊂ 𝑁 ⊂ 𝑀 is a (semi-canonical) tower of downward basic
construction. As 𝑁′

−1
∩ 𝑁 is anti-isomorphic to 𝑁′ ∩𝑀, we find that 𝑁′

−1
∩ 𝑁

is simple. The rest follows from Theorem 1.3 and Theorem 5.5. 2

Corollary 5.7. Let𝑁 ⊂ 𝑀 be a subfactor with [𝑀 ∶ 𝑁] = 𝑛 ∈ ℕ. If𝑀∕𝑁 has a
two-sided orthonormal basis, then {0, 1∕𝑛, 2∕𝑛,⋯ , (𝑛 − 1)∕𝑛, 1} ⊆ Λ(𝑀1, 𝑁).

Proof : Suppose that {𝜆1,⋯ , 𝜆𝑛} is an orthonormal basis for 𝑀∕𝑁, and thus
∑𝑛

𝑖=1
𝜆𝑖𝑒1𝜆

∗
𝑖
= 1. As in the proof of Theorem 5.5, we see that for each 1 ≤ 𝑚 ≤

𝑛, the operator
∑𝑚

𝑖=1
𝜆𝑖𝑒1𝜆

∗
𝑖
is a projection in𝑀1. Now,

𝐸
𝑀1

𝑁

(
𝑚∑

𝑖=1

𝜆𝑖𝑒1𝜆
∗
𝑖

)
= 𝐸𝑀

𝑁
◦𝐸

𝑀1

𝑀

(
𝑚∑

𝑖=1

𝜆𝑖𝑒1𝜆
∗
𝑖

)
=
1

𝑛

𝑚∑

𝑖=1

𝐸𝑁(𝜆𝑖𝜆
∗
𝑖
) = 𝑚∕𝑛,

where the last equality follows from the fact that {𝜆∗
𝑖
∶ 1 ≤ 𝑖 ≤ 𝑛} is also an

orthonormal basis, if {𝜆𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛} is so. 2

Theorem 5.8. For a depth 2 subfactor 𝑁 ⊂ 𝑀 such that [𝑀 ∶ 𝑁] > 4 and
𝑁′ ∩𝑀 is simple, we have Λ(𝑀,𝑁) ∩ (𝑡, 1 − 𝑡) ≠ ∅, where 0 < 𝑡 <

1

2
is given by

the quadratic equation 𝑡(1 − 𝑡) = [𝑀 ∶ 𝑁]−1.

Proof : For a depth 2 subfactor 𝑁 ⊂ 𝑀 with 𝑁′ ∩𝑀 is simple, we have [𝑀 ∶

𝑁] = 𝑛, an integer, and {0, 1∕𝑛,… , (𝑛 − 1)∕𝑛, 1} ⊂ Λ(𝑀,𝑁) by Corollary 5.6.
Consider 𝑘 = ⌊

𝑛+1

2
⌋. Then, 𝑘∕𝑛 ∈ Λ(𝑀,𝑁). If 0 < 𝑡 < 1∕2 and 𝑡(1 − 𝑡) = 1∕𝑛

with 𝑛 > 4, then 𝑡 = 1

2
(1 − (1 −

4

𝑛
)
1

2 ). Now, in both the situations when 𝑛 is

even and odd, we see that 𝑘∕𝑛 > 𝑡. This is because, on contrary, if we assume

that 𝑘∕𝑛 ≤ 𝑡, then we get that ⌊𝑛+1
𝑛
⌋ = 1 ≤ (1 − (1 −

4

𝑛
)
1

2 ), a contradiction to

𝑛 > 4. Similarly, we can conclude that 𝑘∕𝑛 < 1 − 𝑡, that is 𝑘∕𝑛 ∈ (𝑡, 1 − 𝑡).
Hence, 𝑘∕𝑛 ∈ Λ(𝑀,𝑁) ∩ (𝑡, 1 − 𝑡). 2

Proposition 5.9. Let 𝑢 be an 𝑛×𝑛 complex Hadamardmatrix where 𝑛 > 4, and
𝑅𝑢 ⊂ 𝑅 be the associated spin model subfactor of index 𝑛. Then,

{ 𝑘

𝑛
∶ 0 ≤ 𝑘 ≤

𝑛
}
⊆ Λ(𝑅, 𝑅𝑢). Moreover, Λ(𝑅, 𝑅𝑢) ∩ (𝑡, 1 − 𝑡) ≠ ∅, where 0 < 𝑡 <

1

2
is given by

the quadratic equation 𝑡(1 − 𝑡) =
1

𝑛
.
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Proof : Recall from Section 2 the following non-degenerate commuting square

Ad𝑢(∆𝑛) ⊂ 𝑀𝑛

∪ ∪

ℂ ⊂ ∆𝑛

where 𝑢 is an 𝑛 × 𝑛 complex Hadamard matrix, and iterating Jones’ basic con-
struction vertically, the spin model subfactor 𝑅𝑢 ⊂ 𝑅 is obtained with [𝑅 ∶

𝑅𝑢] = 𝑛. Therefore, we have the following commuting square

𝑅𝑢 ⊂ 𝑅

∪ ∪

ℂ ⊂ ∆𝑛

and hence, Λ(∆𝑛,ℂ) ⊆ Λ(𝑅, 𝑅𝑢). The conditional expectation 𝐸 ∶ ∆𝑛 → ℂ

is given by the unique normalized trace 𝑡𝑟 on 𝑀𝑛. Since there are projections
of rank 𝑘 in ∆𝑛, where 1 ≤ 𝑘 ≤ 𝑛, it is now immediate that {0, 1∕𝑛,… , (𝑛 −
1)∕𝑛, 1} ⊆ Λ(∆𝑛,ℂ). Hence, we have {0, 1∕𝑛,… , (𝑛−1)∕𝑛, 1} ⊆ Λ(𝑅, 𝑅𝑢). Now,
the similar trick used in the proof of Theorem 5.8 gives the result. 2

Theorem 5.10. Let 𝑢 be an 𝑛×𝑛 complex Hadamardmatrix and 𝑛 > 4. For the
spin model subfactor 𝑅𝑢 ⊂ 𝑅, we have

{
1

𝑘
∶ 1 ≤ 𝑘 ≤ 𝑛} ∪ {

𝑘 − 1

𝑘
∶ 1 ≤ 𝑘 ≤ 𝑛} ⊆ Λ(𝑅, 𝑅𝑢).

Moreover, if 2 ≤ 𝑘 ≤ 𝑛−2, then each 1

𝑘
and 𝑘−1

𝑘
lie inΛ(𝑅, 𝑅𝑢) ∩ (𝑡, 1− 𝑡), where

𝑡(1 − 𝑡) =
1

𝑛
and 𝑡 > 1∕2.

Proof : Suppose that𝑅𝑢,−1 ⊂ 𝑅𝑢 ⊂ 𝑅 is an instance of downward basic construc-
tion. By Proposition 4 in [17], we see that 𝑅𝑢∕𝑅𝑢,−1 has a unitary orthonormal
basis. Thus, we have 𝑚

𝑛
∈ Λ(𝑅𝑢,−1 ⊂ 𝑅𝑢) for 0 ≤ 𝑚 ≤ 𝑛. Consider 𝛼 = 𝑘

𝑛
, where

0 < 𝑘 < 𝑛. By Proposition 4.1 in [22], we have 1

𝑘
∈ Λ(𝑅𝛼, 𝑅𝛼𝑢 ) = Λ(𝑅, 𝑅𝑢). Now,

if 𝛼 ∈ Λ(𝑅, 𝑅𝑢), then 1 − 𝛼 ∈ Λ(𝑅, 𝑅𝑢), and moreover, both 1 and
1

𝑛
belong

to Λ(𝑅, 𝑅𝑢) by Proposition 5.9. Hence, the first part follows. To see the sec-
ond part, first observe that 𝑡 < 1

𝑘
< 1 − 𝑡 if and only if 𝑘2

𝑘−1
< 𝑛. Moreover,

𝑡 <
1

𝑘
< 1 − 𝑡 implies that 𝑡 < 𝑘−1

𝑘
< 1 − 𝑡. Now, the inequality 𝑘2

𝑘−1
< 𝑛 holds

for any 1 < 𝑘 ≤ 𝑛 − 3 because

𝑘2 ≤ (𝑘 − 1)(𝑘 + 2) ⇒
𝑘2

𝑘 − 1
≤ 𝑘 + 2 ⇒

𝑘2

𝑘 − 1
≤ 𝑛 − 1 < 𝑛
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when 𝑘 > 1. Also, the inequality holds for 𝑘 = 𝑛 − 2 as 𝑛 > 4, and it never
holds for 𝑘 = 𝑛, 𝑛 − 1. This completes the second part. 2

Proposition 5.11. Let 𝑣 be an𝑛2×𝑛2 bi-unitarymatrix, where𝑛 > 2, and𝑅𝑣 ⊂ 𝑅

be the corresponding vertex model subfactor of index 𝑛2. Then,
{ 𝑘

𝑛
∶ 0 ≤ 𝑘 ≤

𝑛
}
⊆ Λ(𝑅, 𝑅𝑣). Moreover, Λ(𝑅, 𝑅𝑣) ∩ (𝑡, 1 − 𝑡) ≠ ∅, where 0 < 𝑡 <

1

2
is given by

the quadratic equation 𝑡(1 − 𝑡) =
1

𝑛2
.

Proof : Recall from Section 2 the following non-degenerate commuting square

Ad𝑣(ℂ⊗𝑀𝑛) ⊂ 𝑀𝑛 ⊗𝑀𝑛

∪ ∪

ℂ ⊂ 𝑀𝑛 ⊗ ℂ

where 𝑣 is an 𝑛2 × 𝑛2 bi-unitary matrix, and iterating Jones’ basic construction
vertically, the vertex model 𝑅𝑣 ⊂ 𝑅 is obtained with [𝑅 ∶ 𝑅𝑣] = 𝑛2. Therefore,
we have the following commuting square

𝑅𝑣 ⊂ 𝑅

∪ ∪

ℂ ⊂ 𝑀𝑛 ⊗ ℂ

and hence, Λ(𝑀𝑛,ℂ) ⊆ Λ(𝑅, 𝑅𝑣). The conditional expectation 𝐸 ∶ 𝑀𝑛 → ℂ

is given by the unique normalized trace 𝑡𝑟 on 𝑀𝑛. Since there are projections
of rank 𝑘 in 𝑀𝑛, where 1 ≤ 𝑘 ≤ 𝑛, it is now immediate that {0, 1∕𝑛,… , (𝑛 −
1)∕𝑛, 1} ⊆ Λ(𝑀𝑛,ℂ). The rest of the proof is similar to that of Proposition 5.9
and we skip the details. 2

Theorem 5.12. Let 𝑣 be an 𝑛2×𝑛2 bi-unitarymatrix, where 𝑛 > 2. For the vertex
model subfactor 𝑅𝑣 ⊂ 𝑅, we have

{
1

𝑛𝑘
∶ 1 ≤ 𝑘 ≤ 𝑛} ∪ {

𝑛𝑘 − 1

𝑘
∶ 1 ≤ 𝑘 ≤ 𝑛} ⊂ Λ(𝑅, 𝑅𝑣).

Moreover, for 1 ≤ 𝑘 ≤ 𝑛 − 1 each 1

𝑛𝑘
and 𝑛𝑘−1

𝑘
lie in Λ(𝑅, 𝑅𝑢) ∩ (𝑡, 1 − 𝑡), where

𝑡(1 − 𝑡) =
1

𝑛2
and 𝑡 > 1∕2.

Proof : Suppose that 𝑅𝑣,−1 ⊂ 𝑅𝑣 ⊂ 𝑅 is an instance of downward basic con-
struction. Again by Proposition 4 in [17], we see that 𝑅𝑣∕𝑅𝑣,−1 has a unitary
orthonormal basis. Thus, by Proposition 5.11 we have 𝑚

𝑛
∈ Λ(𝑅, 𝑅𝑣) for 0 ≤

𝑚 ≤ 𝑛. Consider 𝛼 =
𝑘

𝑛
, where 1 < 𝑘 < 𝑛. By Proposition 4.1 in [22],

we have 𝜆(𝑅,𝑅𝑣)

𝛼
=

1

𝑛𝑘
∈ Λ(𝑅𝛼, 𝑅𝛼𝑣 ) = Λ(𝑅, 𝑅𝑣). Now, if 𝛼 ∈ Λ(𝑅, 𝑅𝑣), then
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1 − 𝛼 ∈ Λ(𝑅, 𝑅𝑣), and moreover both 1 and
1

𝑛2
belong to Λ(𝑅, 𝑅𝑣). Hence, the

first part follows. For the second part, first observe that 𝑡 < 1

𝑛𝑘
< 1 − 𝑡 if and

only if 𝑘
2+1

𝑘
< 𝑛, and moreover 𝑡 < 1

𝑛𝑘
< 1 − 𝑡 implies that 𝑡 < 𝑛𝑘−1

𝑘
< 1 − 𝑡.

Now, the inequality 𝑘2+1

𝑘
< 𝑛 holds for any 1 < 𝑘 < 𝑛 because

𝑘 ≤ 𝑛 − 1 ⇒ 𝑘2 ≤ (𝑛 − 1)𝑘 ⇒ 𝑘2 + 1 ≤ 𝑛𝑘 + (1 − 𝑘) ⇒ 𝑘2 + 1 < 𝑛𝑘

when 𝑘 > 1. Since 𝑛 > 2, the inequality holds for 𝑘 = 1, and it never holds for
𝑘 = 𝑛. This completes the second part. 2

Remark 5.13. We end this section with the remark that for the spinmodel and
vertex model subfactors, using Popa’s construction discussed at the beginning
of the section (or see Proposition 5.5, [22]), we get countable infinitely many
elements in the setΛ∩(𝑡, 1− 𝑡). This is because if𝑁 ⊂ 𝑀 is either a spin model
or a vertex model subfactor, then the inclusion𝑁 ⊂ 𝑀 splits 𝑅 (i.e., there exists
𝑅 ⊂ 𝑁 with𝑁 = 𝑅 ∨ (𝑅′ ∩𝑁) and𝑀 = 𝑅 ∨ (𝑅′ ∩𝑀)), since𝑁 ⊂ 𝑀 is obtained
as iterated basic construction of non-degenerate commuting squares of finite-
dimensional algebras. Therefore, for each element 𝛼 =

1

𝑘
in Theorem 5.10,

and 𝛽 =
1

𝑛𝑘
in Theorem 5.12, for the cases of spin model subfactor 𝑅𝑢 ⊂ 𝑅

and vertex model subfactor 𝑅𝑣 ⊂ 𝑅 respectively, we get sequences {𝛼2𝑚}𝑚≥0 in
Λ(𝑅𝑢 ⊂ 𝑅) ∩ (𝑡, 1 − 𝑡) and {𝛽2𝑚}𝑚≥0 in Λ(𝑅𝑣 ⊂ 𝑅) ∩ (𝑡, 1 − 𝑡).

6. A construction of infinitely many new elements in 𝚲 for the
cases of spin and vertex model subfactors

In Section 5, we have shown that if 𝑁 ⊂ 𝑀 is a spin model or a vertex
model subfactor, then Λ(𝑁 ⊂ 𝑀) ∩ (𝑡, 1 − 𝑡) ≠ ∅, where 𝑡 ≤ 1

2
is given by

𝑡(1 − 𝑡) = [𝑀 ∶ 𝑁]−1. In fact, we have produced finitely many elements in
the intersection, and then applying Popa’s construction one can produce a se-
quence of elements in Λ(𝑁 ⊂ 𝑀) ∩ (𝑡, 1 − 𝑡). The goal of this section is to
construct infinitely many elements (distinct from those arising through Popa’s
construction) in Λ(𝑅𝑣 ⊂ 𝑅) ∩ (𝑡, 1 − 𝑡), where 𝑅𝑣 ⊂ 𝑅 is either an even index
spin model subfactor or a vertex model subfactor of index (2𝑛)2, 𝑛 ≥ 3. Then,
applying Popa’s construction to each element in our sequence, we can produce
a lot of new elements inΛ(𝑁 ⊂ 𝑀)∩(𝑡, 1−𝑡) for these two classes of subfactors.
We begin by fixing some notations that are crucial in this section.
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Notation (4): Let 𝑘 ∈ ℕ ∪ {0} and 𝑢 be a comple Hadamard matrix of order 𝑛.
Consider the following unitary matrices :

𝐷𝑢 ∶=
√
𝑛

𝑛∑

𝑖=1

𝑛∑

𝑗=1

𝑢𝑖𝑗(𝐸𝑖𝑖 ⊗𝐸𝑗𝑗)

and

𝑢2𝑘+1 ∶= (𝐼𝑛 ⊗ 𝑢2𝑘)(𝐷𝑢 ⊗ 𝐼
(𝑘)
𝑛 )

𝑢2𝑘 ∶= 𝑢2𝑘−1(𝑢 ⊗ 𝐼
(𝑘)
𝑛 ) (6.1)

defined recursively with the convention 𝑢0 = 𝑢. Note that these unitary matri-
ces appear in the grid of finite-dimensional algebras for the spin model subfac-
tor 𝑅𝑢 ⊂ 𝑅 (see Section 2).

Our scheme: We first consider any spin model subfactor 𝑅𝑢 ⊂ 𝑅 of index 4,
that is, 𝑢 is a 4 × 4 complex Hadamard matrix. Due to [22], we know all the
elements in Λ(𝑅𝑢 ⊂ 𝑅). We identify a sequence {𝛼𝑚} ⊆ Λ(𝑅𝑢 ⊂ 𝑅) such that
each 𝛼𝑚 appears from the grid Ad𝑢2𝑘−1(𝑀

(𝑘)

4
) ⊂ ∆4 ⊗ 𝑀

(𝑘)

4
, 𝑘 ∈ ℕ, of finite-

dimensional algebras for the subfactor 𝑅𝑢 ⊂ 𝑅 (see Equation (6.1) in this re-
gard). That is, for each𝑚 ∈ ℕ,

𝛼𝑚 ∈ Λ
(
𝑀

(𝑘)

4
) ⊂ ∆4 ⊗𝑀

(𝑘)

4

)
⊆ Λ(𝑅𝑢 ⊂ 𝑅)

for some 𝑘 ∈ ℕ. Now, consider any even index spin model subfactor 𝑅𝑣 ⊂ 𝑅,
where 𝑣 is an 𝑛 × 𝑛 complex Hadamard matrix such that 𝑛 = [𝑅 ∶ 𝑅𝑣] ≥ 6 is
even integer. We construct 𝑛−3 injective functions 𝑓𝑗 and show that {𝑓𝑗(𝛼𝑚) ∶
𝑗 = 1,… , 𝑛−3; 𝑚 ∈ ℕ} ⊆ Λ(𝑅𝑣 ⊂ 𝑅)∩(𝑡, 1−𝑡), where 𝑡 < 1

2
and 𝑡(1−𝑡) = 1∕𝑛.

It turns out that this construction can be carried to the case of vertex model
subfactors also. This scheme is depicted in Figure 1.

Let us now proceed to the construction. Let 𝑅𝑢 ⊂ 𝑅 be any spin model sub-
factor of index 4, and consider any spin model subfactor 𝑅𝑣 ⊂ 𝑅 of index 𝑛
such that 𝑛 ∈ 2ℕ and 𝑛 ≥ 6. Recall that the alternating stages in the finite-
dimensional grid for the subfactor 𝑅𝑣 ⊂ 𝑅 is of the form Ad𝑣2𝑘−1(ℂ ⊗ 𝑀𝑛𝑘 ) ⊂

∆𝑛 ⊗ 𝑀𝑛𝑘 , where 𝑘 ∈ ℕ and 𝑣2𝑘−1 ∈ ∆𝑛 ⊗ 𝑀𝑛𝑘 are unitary matrices (see
Equation (6.1) in this regard). For each 𝑘 ∈ ℕ, the conditional expectation
𝐸𝑘 ∶ ∆𝑛 ⊗𝑀𝑛𝑘 → Ad𝑣2𝑘−1(ℂ⊗𝑀𝑛𝑘 ) is given by Ad𝑣2𝑘−1(tr⊗ id)Ad𝑣∗

2𝑘−1
, where

tr ∶ ∆𝑛 → ℂ is the restriction of the unique normalized trace on𝑀𝑛. Since

Λ(Ad𝑣2𝑘−1(ℂ⊗𝑀𝑛𝑘 ) ⊂ ∆𝑛 ⊗𝑀𝑛𝑘 ) = Λ(ℂ⊗𝑀𝑛𝑘 ⊂ ∆𝑛 ⊗𝑀𝑛𝑘 )
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Take any spin model
subfactor 𝑅𝑢 ⊂ 𝑅 of index 4

Construct a sequence {𝛼𝑚} ⊆ Λ(𝑅𝑢 ⊂ 𝑅)

that comes from the f.d. grid for 𝑅𝑢 ⊂ 𝑅

Take any even index, say 𝑛, spin
model subfactor 𝑅𝑣 ⊂ 𝑅

Construct 𝑛 − 3 injective
functions 𝑓𝑗 such that

{𝑓𝑗(𝛼𝑚) ∶ 𝑗 = 1,… , 𝑛 − 3; 𝑚 ∈ ℕ} ⊆

Λ(𝑅𝑣 ⊂ 𝑅) ∩ (𝑡, 1 − 𝑡)

Apply similar scheme for vertex model

Figure 1. Scheme for constructing infinitely many elements
in Λ(𝑅𝑣 ⊂ 𝑅) ∩ (𝑡, 1 − 𝑡)

due to Lemma 5.4, if we are interested only in Λ, then we can safely discard
the unitary matrices 𝑣2𝑘−1 at each stage and 𝐸𝑘 ∶ ∆𝑛 ⊗𝑀𝑛𝑘 → 𝑀𝑛𝑘 is given by
(𝑥1,… , 𝑥𝑛)↦

1

𝑛
(𝑥1 +⋯ + 𝑥𝑛), where 𝑥𝑗 ∈ 𝑀𝑛𝑘 . Note that

Λ(𝑀𝑛𝑘 ⊂ ∆𝑛 ⊗𝑀𝑛𝑘 ) ⊆ Λ(𝑀𝑛𝑘+1 ⊂ ∆𝑛 ⊗𝑀𝑛𝑘+1) ,

and consequently

∪𝑘Λ(𝑀𝑛𝑘 ⊂ ∆𝑛 ⊗𝑀𝑛𝑘 ) ⊆ Λ(𝑅𝑢 ⊂ 𝑅)

due to the fact that

Ad𝑣2𝑘+1(ℂ⊗𝑀𝑛𝑘+1) ⊂ ∆𝑛 ⊗𝑀𝑛𝑘+1

∪ ∪

ℂ⊗ Ad𝑣2𝑘−1(ℂ⊗𝑀𝑛𝑘 ) ⊂ ℂ⊗ ∆𝑛 ⊗𝑀𝑛𝑘

are commuting squares by the construction of 𝑅𝑣 ⊂ 𝑅. The set ∪𝑘Λ(𝑀𝑛𝑘 ⊂

∆𝑛 ⊗𝑀𝑛𝑘 ) consists of precisely those 𝛼 ∈ Λ(𝑅𝑢 ⊂ 𝑅) that arise from the finite-
dimensional grid for 𝑅𝑣 ⊂ 𝑅.
Any projection 𝑝 ∈ ∆𝑛 ⊗𝑀𝑛𝑘 is given by 𝑛-tuple (𝑝1,… , 𝑝𝑛) of projections

𝑝𝑗 ∈ 𝑀𝑛𝑘 , 𝑗 = 1,… , 𝑛. Therefore, by definition of Λ, we get that 𝛼 ∈ Λ(𝑀𝑛𝑘 ⊂

∆𝑛 ⊗𝑀𝑛𝑘 ) if and only if
1

𝑛
(
∑𝑛

𝑗=1
𝑝𝑗) = 𝛼𝐼𝑛𝑘 . Note that some of the 𝑝𝑗 can be

zero also. Thus, solution to the equation 𝐸𝑘(𝑝) = 𝛼𝐼𝑛𝑘 for 𝑝 ∈ 𝒫(∆𝑛 ⊗ 𝑀𝑛𝑘 )

reduces to the existence of at most 𝑛-projections 𝑝𝑗, 𝑗 = 1,… , 𝑛, in 𝑀𝑛𝑘 such
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that
𝑝1 +⋯ + 𝑝𝑛 = 𝑛𝛼𝐼𝑛𝑘 .

This is the same as asking whether the following unital ⋆-algebra

A𝑛,𝛽 ∶= ℂ
⟨
𝑝1,… , 𝑝𝑛 ∶ 𝑝∗

𝑗
= 𝑝𝑗 = 𝑝2

𝑗
, 𝑗 = 1,… , 𝑛,

𝑛∑

𝑗=1

𝑝𝑗 = 𝛽𝑒
⟩
,

where 𝑒 denotes the unit element, has at least one ⋆-representation on the
finite-dimensional Hilbert spacesℋ𝑛(𝑘) ∶= ℂ𝑛𝑘 for 𝑘 ∈ ℕ. At this point, it is
worthwhile tomention that finding values of the parameter 𝜏 ∈ ℝ such that the
⋆-algebra 𝒯ℒ∞,𝜏 = ℂ

⟨
𝑝1,… , 𝑝𝑛,… ∶ 𝑝2

𝑘
= 𝑝𝑘 = 𝑝∗

𝑘
; 𝑝𝑘𝑝𝑗 = 𝑝𝑗𝑝𝑘, |𝑘 − 𝑗| ≥

2; 𝑝𝑘𝑝𝑘±1𝑝𝑘 = 𝜏𝑝𝑘
⟩
has at least one representation is in similar theme and goes

back to the celebrated work of Jones [14].
In this regard, wemention thatmotivated by [16, 12], numerous authors have

investigated representation of the ⋆-algebra A𝑛,𝛽 using the Coxeter functors
(see e.g., [11, 26, 27, 18, 19, 28], and references therein). However, there was no
restriction on the dimensions of theHilbert spaces onwhich representations ex-
ist, and moreover, infinite-dimensional Hilbert spaces were also allowed. This
is where our situation differs. We need to study whether representation ofA𝑛,𝛽

exists on 𝑛𝑘-dimensional (𝑘 ∈ ℕ) Hilbert spaces. Thus, our situation is dras-
tically much more complicated. Note that since trace of a finite-dimensional
projection is rational, 𝛽 can take only rational values in any representation of
A𝑛,𝛽 onℋ𝑛(𝑘). It is worthwhile to investigate all possible ⋆-representations of
A𝑛,𝛽 onℋ𝑛(𝑘), 𝑘 ∈ ℕ.
Consider the 𝑛 = 4 case. A projection in ∆4 ⊗𝑀4𝑘 is a tuple (𝑝1, 𝑝2, 𝑝3, 𝑝4)

such that each𝑝𝑗 ∈ 𝑀4𝑘 . By definition ofΛ, we get that𝛼 ∈ Λ(𝑀4𝑘 ⊂ ∆4⊗𝑀4𝑘 )

if and only if 1
4
(
∑4

𝑗=1
𝑝𝑗) = 𝛼𝐼4𝑘 . Note that some of the 𝑝𝑗’s can be zero also.

Thus, we are interested in the existence of at most four projections 𝑝𝑗, 𝑗 =

1, 2, 3, 4, in𝑀4𝑘 such that

𝑝1 + 𝑝2 + 𝑝3 + 𝑝4 = 4𝛼𝐼4𝑘 . (6.2)

In other words, we concentrate on ⋆-representations of the unital ⋆-algebra
A4,𝛽 on the finite dimensional Hilbert spacesℋ4(𝑘) ∶= ℂ4𝑘 for 𝑘 ∈ ℕ. Con-
sider the set Σ4 = {2} ∪ ∧4 ∪ (4 − ∧4) (see [19]), where

∧4 ∶= {0,Φ4(0),Φ4(Φ4(0)),…} ∪ {1,Φ4(1),Φ4(Φ4(1)),…}

and

Φ4(𝑥) ∶= 1 +
1

4 − 𝑥 − 1
= 1 +

1

3 − 𝑥
. (6.3)
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Note that Σ4 contains the set of 𝛽 such thatA4,𝛽 has⋆-representation on a finite
dimensional Hilbert space. Now, recall from [28], the following definitions of
Σ𝑛 and ∧𝑛 for general 𝑛 ≥ 5 ∶

∧𝑛 ∶= ∧1𝑛 ∪ ∧
2
𝑛,

∧1𝑛 ∶=
{
0 , 1 +

1

𝑛 − 1
, 1 +

1

𝑛 − 2 −
1

𝑛−1

, 1 +
1

𝑛 − 2 −
1

𝑛−2−
1

𝑛−1

, …
}
,

∧2𝑛 ∶=
{
1 , 1 +

1

𝑛 − 2
, 1 +

1

𝑛 − 2 −
1

𝑛−2

, 1 +
1

𝑛 − 2 −
1

𝑛−2−
1

𝑛−2

, …
}
,

Σ𝑛 ∶= ∧𝑛 ∪ [
𝑛 −

√
𝑛2 − 4𝑛

2
,
𝑛 +

√
𝑛2 − 4𝑛

2
] ∪ (𝑛 − ∧𝑛).

Notice that when 𝑛 ≥ 5, the set Σ𝑛 contains an interval, and ∧𝑛’s are discrete.
Also, for 𝑡 < 1

2
satisfying the quadratic equation 𝑡(1 − 𝑡) =

1

𝑛
, the interval in Σ𝑛

is precisely [𝑛𝑡, 𝑛−𝑛𝑡]. Our purpose of recalling the above sets is the following
result.

Theorem 6.1 ([19]). A real matrix 𝛼𝐼𝑛 can be written as sum of 𝑟 projections if
and only if 𝛼 ∈ Σ𝑟 and 𝑛𝛼 ∈ ℕ.

We apply this theorem for 𝑟 = 4 and 𝑛 = 4𝑘 for 𝑘 ∈ ℕ. Thus, we have a
solution to the equation

∑4

𝑗=1
𝑝𝑗 = 𝛽𝐼4𝑘 in Equation (6.2) if and only if 𝛽 ∈ Σ4

and 4𝑘𝛽 ∈ ℕ. Now, consider the subset {1,Φ4(1),Φ4(Φ4(1)),…} of ∧4 ⊆ Σ4.

Lemma 6.2. For any 𝑘 ∈ ℕ, we haveΦ(𝑘)

4
(1) =

3+2(𝑘−1)

2+(𝑘−1)
, whereΦ(𝑘)

4
(1) is defined

recursively as Φ4

(
Φ
(𝑘−1)

4
(1)
)
.

Proof : This follows easily by induction on 𝑘, using the formula for Φ4(𝑥) de-
scribed in the Equation (6.3). 2

It is now obvious that 4𝑟Φ(𝑘)

4
(1) ∈ ℕ for some 𝑟, 𝑘 ∈ ℕ if and only if (𝑘 + 1)

divides 4𝑟, that is, 𝑘 must be of the form 2𝑚 − 1 for𝑚 ∈ ℕ.

Proposition 6.3. Let 𝛽𝑚 = Φ
(2𝑚−1)

4
(1) ∈ ∧4 for 𝑚 ∈ ℕ, and consider a spin

model subfactor 𝑅𝑢 ⊂ 𝑅 of index 4. Then, { 1
4
𝛽𝑚 ∶ 𝑚 ∈ ℕ} is a subset of Λ(𝑅𝑢 ⊂

𝑅), and all elements of this subset are arising from the finite-dimensional grid for
the subfactor 𝑅𝑢 ⊂ 𝑅.

Proof : By Lemma 6.2, we have 𝛽𝑚 = Φ
(2𝑚−1)

4
(1) =

2𝑚+1−1

2𝑚
∈ ∧4 ⊆ Σ4. By

Theorem 6.1, the matrix 𝛽𝑚𝐼4𝑟 , 𝑟 ∈ ℕ, can be written as sum of at most four
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projections in𝑀4𝑟 if and only if 𝛽𝑚 ∈ Σ4 and 4𝑟𝛽𝑚 ∈ ℕ. Given𝑚 ∈ ℕ, choose
𝑟𝑚 ∈ ℕ such that 2𝑟𝑚 > 𝑚. The condition 4𝑟𝛽𝑚 ∈ ℕ is then satisfied for 𝑟 = 𝑟𝑚.
Hence, 𝛽𝑚𝐼4𝑟𝑚 = 𝑝1 + 𝑝2 + 𝑝3 + 𝑝4 has a solution in the finite-dimensional
Hilbert space ℂ4𝑟𝑚 . Therefore, 1

4
𝛽𝑚 ∈ Λ(𝑀4𝑟𝑚 ⊂ ∆4 ⊗ 𝑀4𝑟𝑚 ) ⊂ Λ(𝑅𝑢 ⊂ 𝑅),

which concludes the proof. 2

Therefore, although for 𝑅𝑢 ⊂ 𝑅 with [𝑅 ∶ 𝑅𝑢] = 4, the set Λ(𝑅𝑢 ⊂ 𝑅) is com-
pletely known by Popa [22], in Proposition 6.3 we have identified a sequence of
elements in Λ(𝑅𝑢 ⊂ 𝑅) that arise from the finite-dimensional grid for 𝑅𝑢 ⊂ 𝑅.
With the help of this, we show the following result.

Theorem 6.4. Consider a spin model subfactor 𝑅𝑣 ⊂ 𝑅 such that [𝑅 ∶ 𝑅𝑣] = 2𝑛,
where 𝑛 ≥ 3, and let 𝑡 < 1

2
be given by the quadratic equation 𝑡(1 − 𝑡) = 1∕2𝑛.

For 𝛼𝑚 =
1

4
Φ
(2𝑚−1)

4
(1), 𝑚 ∈ ℕ, as in Proposition 6.3, we have

2𝑛−4⋃

𝑖=0

{4𝛼𝑚 + 𝑖

2𝑛
∶ 𝑚 ∈ ℕ

}
⊆ Λ(𝑅𝑣 ⊂ 𝑅) ∩ (𝑡, 1 − 𝑡) .

For each 0 ≤ 𝑖 ≤ 2𝑛 − 4, the sequence {(4𝛼𝑚 + 𝑖)∕2𝑛}𝑚≥1 converges increasingly
to 2+𝑖

2𝑛
.

Proof : Consider any spin model subfactor 𝑅𝑢 ⊂ 𝑅 such that [𝑅 ∶ 𝑅𝑢] = 4.
Choose any 𝑘 ∈ ℕ and pick 𝛼 ∈ Λ(𝑀4𝑘 ⊂ ∆4 ⊗ 𝑀4𝑘 ) ⊆ Λ(𝑅𝑢 ⊂ 𝑅). By
Proposition 6.3, we have 𝛼 = 1

4
Φ
(2𝑚−1)

4
(1) for some𝑚 ∈ ℕ, and hence there are

infinitely many choices for 𝛼. Now, consider a spin model subfactor 𝑅𝑣 ⊂ 𝑅

such that [𝑅 ∶ 𝑅𝑣] = 2𝑛, where 𝑛 ≥ 3.

Step 1 : 1

2𝑛
(4𝛼 + 𝑖) lie in Λ(𝑅𝑣 ⊂ 𝑅), where 0 ≤ 𝑖 ≤ 2𝑛 − 4 and [𝑅 ∶ 𝑅𝑣] =

2𝑛, 𝑛 ≥ 3.

Since 𝛼 ∈ Λ(𝑀4𝑘 ⊂ ∆4 ⊗ 𝑀4𝑘 ), there are at most four projections 𝑝𝑗, 𝑗 =

1, 2, 3, 4, in 𝑀4𝑘 such that
∑

𝑗
𝑝𝑗 = 4𝛼𝐼4𝑘 . By Theorem 6.1, we have 4𝛼 ∈ Σ4

and 4𝑘+1𝛼 ∈ ℕ. For [𝑅 ∶ 𝑅𝑣] = 2𝑛, consider projections 𝑞𝑗 = 𝐼𝑛2𝑘 ⊗ 𝑝𝑗 in
𝑀(2𝑛)2𝑘 for 𝑗 = 1, 2, 3, 4. Then,

∑4

𝑗=1
𝑞𝑗 = 4𝛼𝐼(2𝑛)2𝑘 . Consider the following

2𝑛 − 3 projections in ∆2𝑛 ⊗𝑀(2𝑛)2𝑘 ∶

𝑞0 = (𝑞1, 𝑞2, 𝑞3, 𝑞4, 0,… , 0) ,

and for 1 ≤ 𝑖 ≤ 2𝑛 − 4,

𝑞𝑖 = (𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝐼(2𝑛)2𝑘 ,… , 𝐼(2𝑛)2𝑘 , 0,… , 0) .
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For the conditional expectation 𝐸 ∶ ∆2𝑛 ⊗𝑀(2𝑛)2𝑘 → 𝑀(2𝑛)2𝑘 , and for 0 ≤ 𝑖 ≤

2𝑛 − 4, we get

𝐸(𝑞𝑖) =
1

2𝑛

( 4∑

𝑗=1

𝑞𝑗 + 𝑖𝐼(2𝑛)2𝑘
)
=

1

2𝑛
(4𝛼 + 𝑖)𝐼(2𝑛)2𝑘 .

This says that 1

2𝑛
(4𝛼 + 𝑖), for each 0 ≤ 𝑖 ≤ 2𝑛 − 4, are in the set Λ(𝑀(2𝑛)2𝑘 ⊂

∆2𝑛 ⊗𝑀(2𝑛)2𝑘 ) ⊆ Λ(𝑅𝑣 ⊂ 𝑅), where [𝑅 ∶ 𝑅𝑣] = 2𝑛.

Step 2 : 4𝛼
6
> 𝑡, where 𝑡(1 − 𝑡) =

1

6
.

To show that 4𝛼

6
> 𝑡, we need to prove 𝛼 >

3

4
(1 −

1
√
3
). Recall that 𝛼 =

1

4
Φ
(2𝑚−1)

4
(1) for some 𝑚 ∈ ℕ. By Lemma 6.2, we have Φ(2𝑚−1)

4
(1) =

2𝑚+1−1

2𝑚
.

So, we need to show that 2
𝑚+1−1

2𝑚
> 3−

√
3 for any𝑚 ∈ ℕ. However, this follows

easily since 2𝑚 >
1

√
3−1

for any𝑚 ∈ ℕ.

Step 3 : 4𝛼+2
6

< 1 − 𝑡, where 𝑡(1 − 𝑡) =
1

6
.

Observe that 𝑡(1 − 𝑡) = 1∕6 and 𝑡 < 1

2
implies that 𝑡 = 1

2
(1 − (1 −

4

6
)
1

2 ). Now,

on the contrary, assume that 4𝛼+2
6

≥ 1 − 𝑡. Then, we have the following :

4𝛼 + 2

6
≥ 1 − 𝑡 ⟹

4𝛼 + 2

6
≥
1

2
+

1

2
√
3

⟹ 4𝛼 + 2 ≥ 3 +
√
3

⟹ 𝛼 ≥
1 +

√
3

4
.

Since 𝛼 ≤ 1

2
, we get that 1

2
≥

1+
√
3

4
, that is, 2 ≥ 1+

√
3, which is a contradiction.

This proves that 4𝛼+2
6

< 1 − 𝑡.

Step 4 : 4𝛼+𝑖
2𝑛

lie in (𝑡, 1 − 𝑡), where 0 ≤ 𝑖 ≤ 2𝑛 − 4 and 𝑡(1 − 𝑡) =
1

2𝑛
, 𝑛 ≥ 3.

It is enough to prove that 4𝛼
2𝑛
> 𝑡 and 4𝛼+2𝑛−4

2𝑛
< 1−𝑡. We use induction on𝑛 ≥ 3,

where Step 3 is the base step for the induction. Assume that the result is true for
2𝑛− 2, and consider any spin model subfactor 𝑅𝑣 ⊂ 𝑅 such that [𝑅 ∶ 𝑅𝑣] = 2𝑛.
First note that 𝑡 = 1

2
(1 − (1 −

4

2𝑛
)
1

2 ) as 𝑡 < 1∕2 and 𝑡(1 − 𝑡) = 1∕2𝑛. Thus, we
need to show that if

4𝛼 + 2𝑛 − 6

2𝑛 − 2
<
1

2
(1 +

√

1 −
4

2𝑛 − 2
) , (6.4)
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then

4𝛼 + 2𝑛 − 4

2𝑛
<
1

2
(1 +

√

1 −
4

2𝑛
) . (6.5)

First we claim that the following inequality

𝑛

𝑛 − 1
(1 +

√

1 −
2

𝑛
) ≥ 1 +

√

1 −
4

2𝑛 − 2
+

2

𝑛 − 1

= 1 +

√
𝑛 − 3

𝑛 − 1
+

2

𝑛 − 1
(6.6)

holds. On the contrary, if we assume that

𝑛

𝑛 − 1
(1 +

√

1 −
2

𝑛
) < 1 +

√
𝑛 − 3

𝑛 − 1
+

2

𝑛 − 1
,

then we get the following inequality

𝑛 +
√
𝑛(𝑛 − 2) < 𝑛 + 1 +

√
(𝑛 − 1)(𝑛 − 3) .

This further implies that

𝑛(𝑛 − 2) + 1 − 2
√
𝑛(𝑛 − 2) < (𝑛 − 1)(𝑛 − 3),

which gives us 𝑛− 1 <
√
𝑛(𝑛 − 2). However, this is clearly not possible for any

𝑛 ≥ 3. Therefore, Equation (6.6) is validated. Now, to validate Equation (6.5),
on the contrary, assume that 4𝛼+2𝑛−4

𝑛
≥ 1 +

√

1 −
4

2𝑛
. Then, we have the fol-

lowing :

4𝛼 + 2𝑛 − 4

𝑛
≥ 1 +

√

1 −
4

2𝑛

⟹
4𝛼 + 2𝑛 − 6

𝑛 − 1
≥

𝑛

𝑛 − 1
(1 +

√

1 −
2

𝑛
) −

2

𝑛 − 1

⟹
4𝛼 + 2𝑛 − 6

𝑛 − 1
≥ 1 +

√
𝑛 − 3

𝑛 − 1
by 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (6.6).

In other words, we arrive at the inequality 4𝛼+2𝑛−6

𝑛−1
≥ 1 +

√

1 −
4

2𝑛−2
, which

contradicts to Equation (6.4). Therefore, Equation (6.5) is validated. That is,
4𝛼+2𝑛−4

2𝑛
< 1 − 𝑡 for all 𝑛 ≥ 3, where 𝑡(1 − 𝑡) = 1∕2𝑛. Thus, the induction is

complete, andwe conclude that 4𝛼+𝑖
2𝑛

< 1−𝑡 for all𝑛 ≥ 3 and 0 ≤ 𝑖 ≤ 2𝑛−4. The

case of 4𝛼
2𝑛
> 𝑡 is exactly similar, where Step 2 is the base step for the induction,

and we omit the details.

Finally, combination of Step 1 and Step 4 completes the first part of the proof.
Now, for the second part, observe that the sequence {(4𝛼𝑚 + 𝑖)∕2𝑛}𝑚≥1 is equal
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to {(2 − 1

2𝑚
+ 𝑖

)
∕2𝑛}𝑚≥1, which is clearly increasing. This follows directly from

Lemma 6.2 by putting 𝑘 = 2𝑚−1. Indeed,Φ(2𝑚−1)

4
=

2𝑚+1−1

2𝑚
= 2−

1

2𝑚
for𝑚 ∈ ℕ.

2

QuestionG: In the above theorem, we have produced a lot of rational numbers
inΛ(𝑅𝑣 ⊂ 𝑅)∩(𝑡, 1−𝑡) for the spinmodel subfactor𝑅𝑣 ⊂ 𝑅with even index, but
our method does not help to produce any irrational number. In fact, we do not
know whether there is any irrational number in the set Λ(𝑅𝑣 ⊂ 𝑅) ∩ (𝑡, 1 − 𝑡).
We would like to propose this as a question, that is, whether the set Λ(𝑅𝑣 ⊂

𝑅) ∩ (𝑡, 1 − 𝑡) contain any irrational number for the cases of even index spin
model subfactors.

Now, we turn our attention to the vertex model subfactors (recall from Sec-
tion 2). Recall that vertex model subfactors need not be irreducible, unlike the
spin model subfactors. Below we produce infinitely many numbers in the set
Λ(𝑅𝑤 ⊂ 𝑅) ∩ (𝑡, 1 − 𝑡) for certain class of vertex model subfactors 𝑅𝑤 ⊂ 𝑅. This
is an important result of this paper because we move beyond ‘irreducibility’.

Theorem 6.5. Consider a vertex model subfactor 𝑅𝑤 ⊂ 𝑅 such that [𝑅 ∶ 𝑅𝑤] =

(2𝑛)2, where 𝑛 ≥ 3, and let 𝑡 < 1

2
be given by the quadratic equation 𝑡(1 − 𝑡) =

1∕4𝑛2. For 𝛼𝑚 =
1

4
Φ
(2𝑚−1)

4
(1), 𝑚 ∈ ℕ, as in Proposition 6.3, we have

2𝑛−4⋃

𝑖=0

{4𝛼𝑚 + 𝑖

2𝑛
∶ 𝑚 ∈ ℕ

}
⊆ Λ(𝑅𝑤 ⊂ 𝑅) ∩ (𝑡, 1 − 𝑡) .

For each 0 ≤ 𝑖 ≤ 2𝑛 − 4, the sequence {(4𝛼𝑚 + 𝑖)∕2𝑛}𝑚≥1 converges increasingly
to 2+𝑖

2𝑛
.

Proof : Recall from Section 2, the grid of finite-dimensional algebras for any
vertex model subfactor 𝑅𝑤 ⊂ 𝑅 of index 𝑟2 is given by the following :

𝑀𝑟 ⊗ ℂ ⊂ 𝑀𝑟 ⊗𝑀𝑟 ⊂ … ⊂ 𝑀𝑟 ⊗
𝑘 𝑀𝑟 ⊂ … ⊂ 𝑅

∪ ∪ ∪ ∪

ℂ ⊂ Ad𝑤(ℂ⊗𝑀𝑟) ⊂ … ⊂ Ad𝑤𝑘 (ℂ⊗ 𝑘 𝑀𝑟) ⊂ … ⊂ 𝑅𝑤

where 𝑤 is a bi-unitary in𝑀𝑟2 = 𝑀𝑟 ⊗𝑀𝑟. The conditional expectation 𝐸𝑘 ∶
𝑀𝑟 ⊗

𝑘 𝑀𝑟 → ℂ⊗ 𝑘 𝑀𝑟 is given by 𝑡𝑟 ⊗ id, where 𝑡𝑟 is the unique normalized
trace on𝑀𝑟. Therefore, we have the following

𝑝1 + … + 𝑝𝑟 = 𝑟𝛼𝐼𝑟𝑘

⟹ 𝐸𝑘
(
𝐸11 ⊗ 𝑝1 + … + 𝐸𝑟𝑟 ⊗ 𝑝𝑟

)
= 𝛼𝐼𝑟𝑘
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for projections 𝑝𝑗 ∈ 𝑀𝑟𝑘 . This immediately says the following :

Λ
(
ℂ⊗ 𝑘 𝑀𝑟 ⊂ ∆𝑟 ⊗

𝑘 𝑀𝑟

)
⊆ Λ

(
ℂ⊗ 𝑘 𝑀𝑟 ⊂ 𝑀𝑟 ⊗

𝑘 𝑀𝑟

)
(6.7)

for any 𝑘 ∈ ℕ and fixed 𝑟 ∈ ℕ. Now, let 𝑡 =
1

2
(1 − (1 −

4

𝑟
)
1

2 ) and �̃� =

1

2
(1 − (1 −

4

𝑟2
)
1

2 ). Then, clearly we have

�̃� < 𝑡 and 1 − 𝑡 < 1 − �̃�. (6.8)

The result now follows immediately from Theorem 6.4, together with Equa-
tions (6.7) and (6.8), by putting 𝑟 = 2𝑛. 2

For any𝑚 ∈ ℕ and each 0 ≤ 𝑖 ≤ 2𝑛−4, denote 𝛾𝑚,𝑖 ∶=
4𝛼𝑚+𝑖

2𝑛
. For each 𝛾𝑚,𝑖,

there is a sequence {𝜁(𝑘)
𝑚,𝑖
}𝑘≥1 due to Proposition 5.5 in [22], defined recursively

by 𝜁(0)
𝑚,𝑖

∶= 𝛾𝑚,𝑖 and 𝜁
(𝑘)

𝑚,𝑖
∶=

(
2𝑛 −

1

1−𝜁
(𝑘−2)

𝑚,𝑖

)−1
. This is possible because if 𝑁 ⊂

𝑀 is either a spin model or a vertex model subfactor, then the inclusion 𝑁 ⊂

𝑀 splits 𝑅. Therefore, by Theorem 6.4 and 6.5, for the cases of spin model
subfactors of index 2𝑛, 𝑛 ≥ 3, and vertexmodel subfactors of index (2𝑛)2, 𝑛 ≥ 3,
we have the following infinite matrix where each entry is an element in the
desired set Λ(𝑅𝑣 ⊂ 𝑅) ∩ (𝑡, 1 − 𝑡),

𝜁
(0)

1,𝑖
= 𝛾1,𝑖 𝜁

(1)

1,𝑖
𝜁
(2)

1,𝑖
⋯ 𝜁

(𝑘)

1,𝑖
⋯

𝜁
(0)

2,𝑖
= 𝛾2,𝑖 𝜁

(1)

2,𝑖
𝜁
(2)

2,𝑖
⋯ 𝜁

(𝑘)

2,𝑖
⋯

⋮ ⋮ ⋮ ⋮

𝜁
(0)

𝑚,𝑖
= 𝛾𝑚,𝑖 𝜁

(1)

𝑚,𝑖
𝜁
(2)

𝑚,𝑖
⋯ 𝜁

(𝑘)

𝑚,𝑖
⋯

⋮ ⋮ ⋮ ⋮

for any 0 ≤ 𝑖 ≤ 2𝑛 − 4.

In the above infinite matrix, the elements 𝛾 in the first column are con-
structed inTheorem6.4 and 6.5, and all the elements 𝜁 in rest of the columns are
produced from the first column recursively using Popa’s construction (Propo-
sition 5.5, [22]) discussed in Section 5. Moreover, lim𝑚→∞ 𝛾𝑚,𝑖 =

2+𝑖

2𝑛
for each

0 ≤ 𝑖 ≤ 2𝑛 − 4, and lim𝑘→∞ 𝜁
(𝑘)

𝑚,𝑖
= 𝑡 for each 𝑚 ∈ ℕ and 0 ≤ 𝑖 ≤ 2𝑛 − 4.

We conclude this section by showing that all the elements in the above infinite
matrix are distinct.
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Proposition 6.6. Fix any 0 ≤ 𝑖 ≤ 2𝑛 − 4, where 𝑛 ≥ 3. Then, we have 𝜁(𝑘1)
𝑚1,𝑖

≠

𝜁
(𝑘2)

𝑚2,𝑖
for any𝑚1 ≠ 𝑚2 ∈ ℕ or 𝑘1 ≠ 𝑘2 ∈ ℕ ∪ {0}.

Proof : First observe that any two elements in a row are distinct due to the
construction by Popa, that is, for each 𝑚 ∈ ℕ, we have 𝜁(𝑘1)

𝑚,𝑖
≠ 𝜁

(𝑘2)

𝑚,𝑖
if 𝑘1 ≠ 𝑘2.

Also, by our construction in Theorem 6.4, any two elements in the first column
are distinct, that is, 𝛾𝑚1,𝑖

≠ 𝛾𝑚2,𝑖
if 𝑚1 ≠ 𝑚2. Therefore, it is enough to show

that 𝜁(𝑘1)
𝑚1,𝑖

≠ 𝜁
(𝑘2)

𝑚2,𝑖
for any𝑚1 ≠ 𝑚2 and 𝑘1, 𝑘2 ∈ ℕ ∪ {0}.

First consider the case of 𝑘1 = 𝑘2 = 𝑘, that is, consider any two elements
in the 𝑘-th column. Then, 𝜁(𝑘)

𝑚1,𝑖
= 𝜁

(𝑘)

𝑚2,𝑖
implies that 𝛾𝑚1,𝑖

= 𝛾𝑚2,𝑖
due to their

construction. Since this forces𝑚1 = 𝑚2, we conclude that any two elements in
the 𝑘-th column, for 𝑘 ∈ ℕ, are distinct. Now, assume that 𝜁(𝑘1)

𝑚1,𝑖
= 𝜁

(𝑘2)

𝑚2,𝑖
such

that 𝑚1 ≠ 𝑚2 and 𝑘1 ≠ 𝑘2. Without loss of generality, we can take 𝑘1 < 𝑘2.
Again due to the construction, it readily follows that 𝛾𝑚1,𝑖

= 𝜁
(𝑘2−𝑘1)

𝑚2,𝑖
. This says

that it is enough to show that no element in the first column is equal to any
element in any other column. Now taking 𝑘2 − 𝑘1 = 𝑟, we see that 𝛾𝑚1,𝑖

= 𝜁
(𝑟)

𝑚2,𝑖

implies the following :

2 −
1

2𝑚1
+ 𝑖 =

2𝑛

2𝑛 −
1

1−𝜁𝑟−2
𝑚2 ,𝑖

.

Therefore,
2𝑛

2 −
1

2𝑚1
+ 𝑖

= 2𝑛 −
1

1 − 𝜁
(𝑟−2)

𝑚2,𝑖

,

which further implies that

1

1 − 𝜁
(𝑟−2)

𝑚2,𝑖

=

2𝑛 −
2𝑛

2𝑚1
+ 2𝑛𝑖

2 −
1

2𝑚1
+ 𝑖

.

Therefore, we have the following equality

1 − 𝜁
(𝑟−2)

𝑚2,𝑖
=

2𝑚1+1 − 1 + 2𝑚1 𝑖

2𝑛(2𝑚1 + 1 + 2𝑚1 𝑖)
.

Since 𝜁(𝑟−2)
𝑚2,𝑖

< 1∕2, we have the following inequality

1

2
< 1 − 𝜁

(𝑟−2)

𝑚2,𝑖
=

2𝑚1+1 − 1 + 2𝑚1 𝑖

2𝑛(2𝑚1 + 1 + 2𝑚1 𝑖)
,

which further gives us the following :

𝑛 <
2𝑚1+1 − 1 + 2𝑚1 𝑖

2𝑚1 + 1 + 2𝑚1 𝑖
.
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Therefore,
2𝑚1(𝑛 − 2) + (𝑛 − 1)2𝑚1 𝑖) < −1 − 𝑛

which is impossible since 𝑛 ≥ 3. Hence, 𝜁(𝑘1)
𝑚1,𝑖

≠ 𝜁
(𝑘2)

𝑚2,𝑖
for𝑚1 ≠ 𝑚2 and 𝑘1 ≠ 𝑘2,

which concludes the proof. 2

Combining Theorems 5.10, 5.12, Theorems 6.4, 6.5, and Proposition 6.6, we
conclude the following final result.

Theorem 6.7. (𝑖) Let 𝑅𝑣 ⊂ 𝑅 be a spin model subfactor of index 2𝑛, 𝑛 ≥ 3.
The following is a subset of the set Λ(𝑅𝑣 ⊂ 𝑅) ∩ (𝑡, 1 − 𝑡), where 𝑡(1 − 𝑡) =

1∕2𝑛,

{𝑚∕2𝑛 ∶ 0 ≤ 𝑚 ≤ 2𝑛} ∪ {1∕𝑘 ∶ 2 ≤ 𝑘 ≤ 2𝑛 − 2}

∪{(𝑘 − 1)∕𝑘 ∶ 2 ≤ 𝑘 ≤ 2𝑛 − 2}

∪ {𝛾𝑚,𝑖 ∶ 𝑚 ∈ ℕ, 0 ≤ 𝑖 ≤ 2𝑛 − 4}

∪
{
𝜁
(𝑘)

𝑚,𝑖
∶ 𝑚, 𝑘 ∈ ℕ, 0 ≤ 𝑖 ≤ 2𝑛 − 4

}

∪ {1 − 𝛾𝑚,𝑖 ∶ 𝑚 ∈ ℕ, 0 ≤ 𝑖 ≤ 2𝑛 − 4}

∪
{
1 − 𝜁

(𝑘)

𝑚,𝑖
∶ 𝑚, 𝑘 ∈ ℕ, 0 ≤ 𝑖 ≤ 2𝑛 − 4

}
.

(𝑖𝑖) Let 𝑅𝑤 ⊂ 𝑅 be a vertex model subfactor of index (2𝑛)2, 𝑛 ≥ 3. The following
is a subset of the set Λ(𝑅𝑤 ⊂ 𝑅) ∩ (𝑡, 1 − 𝑡), where 𝑡(1 − 𝑡) = 1∕(2𝑛)2,

{𝑚∕4𝑛2 ∶ 0 ≤ 𝑚 ≤ 4𝑛2} ∪ {1∕4𝑛2𝑘 ∶ 1 ≤ 𝑘 ≤ 2𝑛 − 1}

∪{(4𝑛2𝑘 − 1)∕𝑘 ∶ 1 ≤ 𝑘 ≤ 2𝑛 − 1}

∪ {𝛾𝑚,𝑖 ∶ 𝑚 ∈ ℕ, 0 ≤ 𝑖 ≤ 2𝑛 − 4}

∪
{
𝜁
(𝑘)

𝑚,𝑖
∶ 𝑚, 𝑘 ∈ ℕ, 0 ≤ 𝑖 ≤ 2𝑛 − 4

}

∪ {1 − 𝛾𝑚,𝑖 ∶ 𝑚 ∈ ℕ, 0 ≤ 𝑖 ≤ 2𝑛 − 4}

∪
{
1 − 𝜁

(𝑘)

𝑚,𝑖
∶ 𝑚, 𝑘 ∈ ℕ, 0 ≤ 𝑖 ≤ 2𝑛 − 4

}
.
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