
New York Journal of Mathematics
New York J. Math. 1 (1995) 196–205.

Cohomology of Modules in the Principal Block of
a Finite Group

D. J. Benson

Abstract. In this paper, we prove the conjectures made in a joint paper of
the author with Carlson and Robinson, on the vanishing of cohomology of a
finite group G. In particular, we prove that if k is a field of characteristic p,
then every non-projective kG-module M in the principal block has nontrivial
cohomology in the sense that H∗(G,M) 6= 0, if and only if the centralizer in
G of every element of order p is p-nilpotent (this was proved for p odd in the
above mentioned paper, but the proof here is independent of p). We prove the
stronger statement that whether or not these conditions hold, the union of the
varieties of the modules in the principal block having no cohomology coincides
with the union of the varieties of the elementary abelian p-subgroups whose
centralizers are not p-nilpotent (i.e., the nucleus). The proofs involve the new
idempotent functor machinery of Rickard.
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1. Introduction

Recent developments in modular representation theory of finite groups have in-
volved a re-evaluation of the role of infinitely generated modules. In particular,
Rickard [5] has introduced some infinitely generated modules which are idempotent
in the stable category, in the sense that the tensor square is isomorphic to the orig-
inal module plus a projective. This work, together with a version of Dade’s lemma
for infinitely generated modules, has allowed Benson, Carlson and Rickard [1, 2] to
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formulate and prove a generalization of the usual theory of complexity and varieties
for modules to the infinitely generated situation.

In this paper, we shall demonstrate how the recent work described above can be
used to address some older questions about finitely generated modules. In particu-
lar, we shall prove the conjectures formulated in the paper of Benson, Carlson and
Robinson [3]. Before stating our main theorem, we state a more easily understood
consequence, which provides an affirmative solution to Conjecture 1.2 of that paper.
The proof may be found in Section 5.

Theorem 1.1. Let k be a field of characteristic p, and let G be a finite group.
Then the centralizer of every element of order p in G is p-nilpotent, if and only if
for every non-projective module M in the principal block B0(kG), Hn(G,M) 6= 0
for some n 6= 0.

We remark that in general, for a kG-module M , Hn(G,M) 6= 0 for some n 6= 0

if and only if Ĥn(G,M) 6= 0 for infinitely many values of n both positive and
negative, cf. Theorem 1.1 of [3]. We also remark that in the statement of the above
theorem, it does not matter whether we restrict our attention to finitely generated
kG-modules.

In the language of [3], our main theorem is the following. This almost provides
an affirmative answer to Conjecture 10.10 of that paper, which does not mention
passing down to summands. Terminology used in this introduction is explained in
Section 2, and the proof may be found in Section 5.

Theorem 1.2. Let k be an algebraically closed field of characteristic p, and let G
be a finite group. Then every finitely generated kG-module in the principal block is
a direct summand of a nuclear homology module.

It follows from this theorem that every kG-module in the principal block is a
filtered colimit of nuclear homology modules. In order to prove that every finitely
generated module in the principal block actually is a nuclear homology module, it
would suffice to show that the characters of nuclear homology modules span the
principal block, and then the argument would run as in the proof of Proposition 4.4
of [3]. It does not seem immediately clear that this character theoretic statement
is true.

As pointed out in Corollary 10.12 of [3] (passage to direct summands does not
affect this), it follows from this theorem that the nucleus YG (which is the union
of the images in the cohomology variety VG, of the elementary abelian p-subgroups
whose centralizers are not p-nilpotent) coincides with the representation theoretic
nucleus ΘG (which is the union of the varieties of the finitely generated modules in
the principal block having no cohomology).

Corollary 1.3. For any finite group G, we have YG = ΘG.

In the case where YG = {0}, this implies Theorem 1.1. More precisely, we prove
the following strengthened form of Theorem 1.4 of [3]:

Theorem 1.4. Suppose that G is a finite group and k is a field of characteristic
p. Then the following are equivalent:

(A) Every finitely generated module in the principal block B0(kG) is a trivial ho-
mology module.
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(A′) Every simple module in B0(kG) is a direct summand of a trivial homology
module.

(A′′) Every (finitely generated) trivial source module in B0(kG) is a direct summand
of a trivial homology module.

(A′′′) Every module (finitely or infinitely generated) in B0(kG) is a filtered colimit
of trivial homology modules.

(B) For every finitely generated non-projective module M in B0(kG), we have
Hn(G,M) 6= 0 for some n > 0.

(B′) For every finitely generated non-projective periodic module M in B0(kG), we
have Hn(G,M) 6= 0 for some n > 0.

(B′′) For every (finitely or infinitely generated) non-projective module M in B0(kG),
we have Hn(G,M) 6= 0 for some n > 0.

(B′′′) For every (finitely or infinitely generated) module M of complexity one in
B0(kG), we have Hn(G,M) 6= 0 for some n > 0.

(C) For every non-projective (finitely generated) trivial source module M in B0(kG),
we have Hn(G,M) 6= 0 for some n > 0.

(D) The centralizer of every element of order p in G is p-nilpotent.
(D′) The centralizer of every nontrivial p-subgroup of G is p-nilpotent.
(E) For every non-projective finitely generated indecomposable module M in B0(kG),

with vertex R and Green correspondent f(M), we have Hn(NG(R), f(M)) 6= 0
for some n > 0.

On the way to proving these theorems, we prove a remarkable property of mod-
ules of complexity one. In general, such a module decomposes as a direct sum of
modules whose variety consists of a single line through the origin in the cohomology
variety VG(k). The following theorem is proved at the end of Section 3.

Theorem 1.5. Suppose that M is a kG-module whose variety VG(M) consists of a
single line L through the origin in VG(k). Let E be an elementary abelian p-subgroup
of G, minimal with respect to the property that L is contained in the image of the
map res∗G,E : VE(k) → VG(k) induced by restriction from G to E in cohomology.

Let L = res∗G,E(`0) with `0 a line through the origin in VE(k), and let D be the

subgroup of NG(E) consisting of the elements which stabilize `0 setwise. Then the
direct sum of M with some projective kG-module is induced from D.

We remark that this paper makes Sections 8 and 9 of [3] obsolete, and there is
no longer anything special about odd primes in our proofs. We also remark that
we have not been able to tackle the original question which motivated [3], namely
whether every simple module in the principal block necessarily has nonvanishing
cohomology. One possible approach to this might be to try to prove that the variety
of a simple module in the principal block cannot be contained in the nucleus. Since
the property of being simple is not easy to work with, it may be better to consider
modules whose endomorphism rings, modulo traces from suitable subgroups, are
isomorphic to the field.

I would like to thank Jon Carlson and Jeremy Rickard for conversations which
inspired this work, and I would also like to thank Jon Carlson for pointing out a
serious error in an earlier version of this paper.
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2. Terminology and Background Material

Let G be a finite group and k an algebraically closed field of characteristic p. Let
stmod(kG) be the stable category of finitely generated kG-modules, considered as
a triangulated category. The homomorphisms HomkG(M,N) in this category are
homomorphisms in the usual module category, modulo those that factor through
some projective module. The triangles in stmod(kG) come from the short exact se-
quences in mod(kG) in the normal way. Similarly, StMod(kG) is the stable category
of all (not necessarily finitely generated) kG-modules, which is again a triangulated
category.

We write VG(k) for the maximal ideal spectrum of H∗(G, k). Note that for p
odd, elements of odd degree square to zero, so that H∗(G, k) modulo its nil radical
is commutative. Thus VG(k) is a homogeneous affine variety. Associated to any
(not necessarily finitely generated) kG-module M , there is a collection VG(M) of
closed homogeneous irreducible subvarieties of VG(k) (see [2] for details). These
varieties have good properties with respect to tensor products, and M is projective
if and only if VG(M) = ∅.

We next remark that there is a mistake in the definition of YG given in Section 10
of [3]. The nucleus YG should be defined as the subvariety of VG(k) given as the
union of the images of the maps res∗G,H : VH(k) → VG(k) induced by resG,H :

H∗(G, k)→ H∗(H, k), as H runs over the set of subgroups of G for which CG(H) is
not p-nilpotent (and not the union of the images of res∗G,CG(H) : VCG(H)(k)→ VG(k)

as stated there; also in the proof of Theorem 10.2 of that paper, VCG(H) should be
replaced by VH , and no other changes are necessary).

The representation theoretic nucleus ΘG is the subset of VG(k) given as the
union of the varieties VG(M) as M runs over the finitely generated modules in the
principal block B0(kG) with Hn(G,M) = 0 for all n. By Theorem 6.4 of [3], it
suffices to consider periodic modules in this definition.

We say that a finitely generated kG-module M is a trivial homology module
or a TH module if there exists a finite complex (Ci, δi : Ci → Ci−1) of finitely
generated kG-modules and homomorphisms such that the following conditions hold:

(i) Each Ci is a projective kG-module, and Ci = 0 for i < 0 and for i sufficiently
large.

(ii) For i > 0, Hi(C∗) is a direct sum of copies of the trivial kG-module k.
(iii) H0(C∗) ∼= M .

We say that a finitely generated kG-module M is a nuclear homology module
or an NH module if it satisfies the same conditions, but with (ii) replaced by:

(ii′) For i > 0, Hi(C∗) is a direct sum of copies of the trivial kG-module k and
finitely generated modules M ′ in B0(kG) with VG(M ′) ⊆ YG.

We write T H and NH for the thick subcategories of stmod(kG) consisting of
the direct summands of trivial homology modules and of nuclear homology modules
respectively.

Next, we recall from Section 5 of Rickard [5] that given any thick subcategory C
of stmod(kG), there are functors EC and FC on StMod(kG) satisfying the following
properties:

(a) For any X in StMod(kG), EC(X) is a filtered colimit of objects in C.
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(b) For any X in StMod(kG), FC(X) is C-local, in the sense that for any object
M in C, HomkG(M,FC(X)) = 0.

(c) There is a triangle in StMod(kG)

EC(X)→ X → FC(X)→ Ω−1EC(X).

In fact (see the remark after Proposition 5.7 of [5]) the functors EC and FC are
characterized by these properties.

Our goal will be to show that the functor FNH is the zero functor on the principal
block, which will enable us to prove that every finitely generated module in the
principal block is a direct summand of a nuclear homology module.

If V is a closed homogeneous subvariety of VG(k), we write CV for the subcategory
of stmod(kG) consisting of the finitely generated modules M with VG(M) ⊆ V .
Then the corresponding functors EV = ECV and FV = FCV are given by tensoring
with certain (usually infinitely generated) modules eV and fV . These are orthogonal
idempotents in StMod(kG), in the sense that eV ⊗eV ∼= eV ⊕(projective), fV ⊗fV ∼=
fV ⊕ (projective), and eV ⊗ fV is projective. The triangle for a module X in this
situation is given by tensoring the triangle

eV
λV−→ k

µV−→ fV → Ω−1eV

with X.

3. Inducing Idempotents

Let L be a line through the origin in VG(k). Then by the Quillen stratification
theorem, there is an elementary abelian p-subgroup E, uniquely determined up to
conjugacy, with the property that L is in the image of res∗G,E : VE(k) → VG(k),

but L is not in the image of res∗G,E′ : VE′(k)→ VG(k) for any proper subgroup E′

of E. In this situation, we say that L originates in E. We write C = CG(E) for
the centralizer, and N = NG(E) for the normalizer in G of E. Let `0 be a line
through the origin in VE(k) with L = res∗G,E(`0), and let D be the subgroup of

NG(E) consisting of the elements which stabilize `0 setwise. Then `0 and D are
uniquely determined up to conjugacy in N . Since `0 originates in E, the centralizer
C is equal to the pointwise stabilizer of `0. Any finite group of automorphisms
of the line `0 is cyclic of order prime to p, so we have C E D ≤ N with D/C a
cyclic group of order prime to p. Finally, we set ` = res∗D,E(`0) ⊆ VD(k), so that

L = res∗G,D(`).

Theorem 3.1. With the above notation, let e` be the idempotent kD-module cor-
responding to ` and eL be the idempotent kG-module corresponding to L. Then

e` ↑
G∼= eL ⊕ (projective).

Proof. Consider the composite map

e` ↑
G λ ↑̀G
−−−−−→ kD ↑

G ν
−→ k,

where ν : kD ↑G→ k is the augmentation map. On restriction to E, this becomes
(modulo projectives) the composite map

⊕
g∈N/D

g ⊗ e` ↓E→

 ⊕
g∈N/D

g ⊗ k

⊕ (induced modules)
ν↓E−→ k.
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Here, g ∈ N/D means that g runs over a set of left coset representatives of D in
N . The first map is the sum of all the maps

g ⊗ e` ↓E ∼= eg(`) ↓E

↓ ↓

g ⊗ k ∼= k

and the second map ν ↓E sends
∑
i gi ⊗ λi to

∑
i λi. On restriction to a cyclic

shifted subgroup corresponding to a point in `0, the summands g⊗ e` ↓E for g 6∈ D
give projective modules, while 1 ⊗ e` restricts to give k ⊕ (projective), because `0
isn’t fixed by any g ∈ N \D. Moreover, this copy of k maps isomorphically to 1⊗k
in the second module, and then isomorphically to k in the third module. So if we
complete to a triangle

e` ↑
G→ k → f → Ω−1e` ↑

G,

then f restricted to this cyclic shifted subgroup is projective.
The module e` ↑G is a filtered colimit of modules in CL, since e` is a filtered

colimit of modules in C`. For M in CL, Homk(M,f) is projective, by a combination
of Dade’s lemma (the infinite dimensional version given in Section 3 of [2]) and
Chouinard’s theorem [4], so f is CL-local.

By Rickard’s characterization (see the remark after Proposition 5.7 of [5]), the
triangle

e` ↑
G→ k → f → Ω−1e` ↑

G

is isomorphic to

eL → k → fL → Ω−1eL. �

Corollary 3.2. If M is a module whose variety VG(M) = {L} with L as above,
then M ⊕ (projective) is induced from D.

Proof. If VG(M) ⊆ {L} then using the theorem, we have

M ⊕ (projective) ∼= M ⊗ eL ∼= M ⊗ e` ↑
G∼= (M ↓D ⊗e`)↑

G,

and so M ⊕ (projective) is induced from D. �

This completes the proof of Theorem 1.5.

4. An Equivalence of Categories

We can combine the results of the last section with the Mackey decomposition
theorem to obtain an equivalence of categories as follows. Let C be the full subcate-
gory of StMod(kG) consisting of kG-modulesM with VG(M) ⊆ {L} (or equivalently
M ∼= eL ⊗M), and let C′ be the full subcategory of StMod(kD) consisting of mod-
ules M ′ with VD(M ′) ⊆ {`} (or equivalently M ′ ∼= e` ⊗M ′). Using the Mackey
decomposition theorem, we see that if M ′ is in C′ then M ′ ↑G↓D is isomorphic to a
direct sum of M ′ with a module M ′′ satisfying VD(M ′′) ∩ {`} = ∅. So we have

e` ⊗ (M ′ ↑G↓D) ∼= M ′.
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Since every object in C is induced from an object in C′ by Corollary 3.2, it follows
that the functors (e` ⊗ −) ◦ resG,D : C → C′ and indD,G : C′ → C are mutually
inverse equivalences of categories.

Lemma 4.1. If M is a kG-module in C, which lies in the principal block B0(kG),
then e`⊗M ↓D is a direct sum of a projective module and a module in the principal
block B0(kD).

Conversely, if M is a kG-module in C with no summand in the principal block
B0(kG), then e` ⊗M ↓D is a direct sum of a projective module and a module with
no summand in the principal block B0(kD).

Proof. Let e be a block idempotent of kG, and let BrE : Z(kG) → Z(kD) be
the Brauer map with respect to E. If b is any block of kD, say with defect group
R, then E ≤ R ≤ C, and so RCG(R) ≤ C. So the Brauer correspondent bG is
defined, and by Brauer’s third main theorem, bG is equal to B0(kG) if and only if
b = B0(kD). It follows that if e0 is the principal block idempotent of kG and e1 is
the principal block idempotent of kD, then BrE(e0) = e1, and BrE(e)e1 6= 0 if and
only if e = e0.

If M is a finitely generated kG-module with e.M = M , then Nagao’s lemma says
that

M ↓D∼= BrE(e).M ↓D ⊕M1

where M1 is a direct sum of modules which are projective relative to subgroups
Q ≤ C with E 6≤ Q. Since the variety of e`⊗M ↓D has trivial intersection with the
image of VE′ → VD for any proper subgroup E′ of E, it follows that

e` ⊗M ↓D∼= BrE(e).(e` ⊗M ↓D)⊕M2

where M2 is projective.
If M = e.M is not finitely generated, express it as a filtered colimit of finitely

generated modules Mα in C. Each e` ⊗Mα ↓D may be written as a direct sum of
BrE(e).(e`⊗Mα ↓D) and a projective module killed by BrE(e). There are no maps
between these two types of summands, so when we pass to the colimit, we obtain
a decomposition of e` ⊗M ↓D of the desired form. �

Theorem 4.2. The functors (e`⊗−)◦resG,D : C → C′ and indD,G : C′ → C are mu-
tually inverse equivalences of categories, and induce mutually inverse equivalences
between the full subcategories B0(kG) ∩ C and B0(kD) ∩ C′.

Proof. This follows immediately from the lemma and the discussion preceding
it. �

5. The Main Theorems

We continue with the same notation. Namely, L is a line through the origin in
VG(k) originating in an elementary abelian p-subgroup E of G. We set C = CG(E),
N = NG(E) and L = res∗G,E(`0), with `0 a line through the origin in VE(k). We

set D equal to the stabilizer in N of the line `0. We set `1 = res∗C,E(`0) ⊆ VC(k)

and ` = res∗D,E(`0) ⊆ VD(k).

Lemma 5.1. Suppose that C is p-nilpotent. Then for any module M ′ in B0(kD)

satisfying VD(M ′) = {`}, we have Ĥn(D,M ′) 6= 0 for some n.
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Proof. The argument for this is given in the proof of Proposition 6.8 of [3]; we
repeat it here for convenience. Let C̄ = C/Op′(C) and D̄ = D/Op′(C). Then
C̄ is a p-group, and D̄/C̄ is a cyclic p′-group. By Lemma 6.7 of [3], we may
choose a homogeneous element ζ ∈ Hm(C̄, k) = Hm(C, k) for some m, so that
`1 ∩ VC(〈ζ〉) = {0}, and so that the one dimensional subspace 〈ζ〉 ⊆ H∗(C, k)
is D̄/C̄-invariant and affords a faithful one dimensional representation of D̄/C̄.
For a suitable one dimensional representation ε of D with kernel C, ζ may be
regarded as an element of ExtmkD(k, ε). Thus ζ is represented by a homomorphism

ζ̂ : Ωm(k) → ε, and we write Lζ for the kernel of ζ̂. So there is a short exact
sequence of kD-modules

0→ Lζ → Ωm(k)→ ε→ 0.

Tensoring with M ′, we obtain a short exact sequence

0→ Lζ ⊗M
′ → Ωm(k)⊗M ′ → ε⊗M ′ → 0.

The tensor product theorem for varieties (Theorem 10.8 of [2]) implies that Lζ⊗M ′

is projective, and so we obtain a stable isomorphism Ωm(M ′) ∼= ε⊗M ′.
Since M ′ is non-projective, for some value of r we have

Êxt
0

kD(εr,M ′) = HomkG(εr,M ′) 6= 0,

where εr denotes the rth tensor power of ε. This is because every simple module
in B0(kD) is isomorphic to some such εr. Thus

Ĥmr(D,M ′) ∼= Ĥ0(D,Ω−mr(M ′)) ∼= Ĥ0(D, ε−r ⊗M ′) ∼= Êxt
0

kD(εr,M ′) 6= 0.

Here, ε−r denotes the rth tensor power of the dual module ε∗. �

Theorem 5.2. Suppose that M is a module in B0(kG) with VG(M) = {L}, and

that C is p-nilpotent. Then Ĥn(G,M) 6= 0 for some n.

Proof. By Theorem 4.2, there is a module M ′ in B0(kD) with M ′ ↑G∼= M ⊕
(projective). By Shapiro’s lemma we have Ĥn(G,M) ∼= Ĥn(D,M ′). By Lemma 5.1,
this is nonzero for some n. �

Corollary 5.3. Suppose that M is a non-projective kG-module in B0(kG) with
the property that VG(M) contains no closed homogeneous subset of the nucleus YG.

Then Ĥn(G,M) 6= 0 for some n.

Proof. We use the argument given in Theorem 6.4 of [3] to reduce to the complex-
ity one case. Let K be an algebraically closed extension of k of large transcendence
degree. Since M is non-projective, VG(M) contains a closed homogeneous irre-
ducible subset V which is not contained in YG. So VG(K ⊗kM) contains a generic
line L for V . Choose elements ζ1, . . . , ζs ∈ H∗(G,K) so that

VG(K ⊗kM) ∩ VG〈ζ1〉 ∩ · · · ∩ VG〈ζs〉 = {L}.

Here, VG〈ζi〉 is the collection of closed homogeneous subsets of the hypersurface
VG〈ζi〉 defined by ζi. Then we have

VG((K ⊗kM)⊗K Lζ1 ⊗K · · · ⊗K Lζs) = {L}.

Next, we note that in Lemma 6.3 of [3], although M2 needs to be finitely gen-
erated, M1 does not. So every non-projective summand of M1 ⊗ Lζ is in the same
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block as M1. So every non-projective summand of (K⊗kM)⊗K Lζ1 ⊗K · · ·⊗K Lζs
is in B0(KG), and by the theorem, we have

Ĥn(G, (K ⊗kM)⊗K Lζ1 ⊗K · · · ⊗K Lζs) 6= 0

for infinitely many values of n, positive and negative.
Similarly, in Lemma 6.2 of [3], although M1 must be finitely generated, M2 need

not be. So if ζ is a homogeneous element in cohomology, then Ĥn(G,M2) = 0 for all

n implies Ĥn(G,Lζ⊗M2) = 0 for all n. So we may deduce that Ĥn(G,K⊗kM) 6= 0
for infinitely many values of n, positive and negative. Finally, this implies that the
same is true of Ĥn(G,M). �

Proposition 5.4. If M is an NH-local kG-module, then VG(M) contains no closed
homogeneous subset of the nucleus YG.

Proof. If VG(M) contains a closed homogeneous subset V of YG, then

HomkG(EV (M),M) 6= 0,

while if M is NH-local, ENH(M) = 0. However, any map from EV (M) to M factors
through ENH(M), because the subcategory of stmod(kG) consisting of modules with
variety in V is contained in NH. �

Theorem 5.5. If M is a module in B0(kG), then ENH(M) ∼= M and FNH(M) =
0.

Proof. Consider the variety of FNH(M). By Proposition 5.4, it contains no closed
homogeneous subset of the nucleus YG. So if FNH(M) is nonzero in StMod(kG)
(i.e., non-projective), its variety must contain some closed homogeneous subset

which is not in the nucleus. Then by Corollary 5.3, we have Ĥn(G,FNH(M)) 6= 0
for infinitely many values of n. So for some n, we have HomkG(Ωn(k),FNH(M)) 6=
0. Since Ωn(k) is an NH module, this contradicts the fact that FNH(M) is NH-
local. It follows that FNH(M) = 0, and therefore that ENH(M) ∼= M . �

Proof of Theorem 1.2. By Theorem 5.5, if M is in B0(kG), then ENH(M) ∼= M .
So M is a filtered colimit of NH modules, and since it is finitely generated, it follows
that it is a direct summand of an NH module. �

Proof of Corollary 1.3. It is shown in Corollary 10.12 of [3] that this follows
from Theorem 1.2. �

Theorem 5.6. Suppose that the centralizer of every element of order p in G is
p-nilpotent. Then every finitely generated module in the principal block is a trivial
homology module.

Proof. The condition on G is equivalent to the condition that YG = {0}. So
under these conditions, nuclear homology modules are the same as trivial homol-
ogy modules. So the theorem follows from Theorem 1.2, using Theorem 3.5 and
Propositions 4.4 and 4.5 of [3]. �

Proof of Theorem 1.4. It is proved in [3] that (A) ⇔ (A′) ⇔ (A′′) ⇒ (B) ⇔
(B′) ⇒ (C) ⇔ (D) ⇔ (D′) ⇔ (E). It is clear that (A′′′) ⇒ (A′), (B′′) ⇒ (B) and
(B′′)⇒ (B′′′)⇒ (B′). Theorem 5.6 shows that (D)⇒ (A′′′). Finally, Corollary 5.3
shows that (D) ⇒ (B′′). �
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Proof of Theorem 1.1. This is just the statement that (B′′) ⇔ (D) in Theo-
rem 1.4, so this is now proved. �
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