ABSTRACT. This paper studies knots that are transversal to the standard contact structure in \mathbb{R}^3 , bringing techniques from topological knot theory to bear on their transversal classification. We say that a transversal knot type $\mathcal{T}K$ is *transversally simple* if it is determined by its topological knot type \mathcal{K} and its Bennequin number. The main theorem asserts that any $\mathcal{T}K$ whose associated \mathcal{K} satisfies a condition that we call *exchange reducibility* is transversally simple.

As a first application, we prove that the unlink is transversally simple, extending the main theorem in [E1]. As a second application we use a new theorem of Menasco [Me] to extend a result of Etnyre [Et] to prove that all iterated torus knots are transversally simple. We also give a formula for their maximum Bennequin number. We show that the concept of exchange reducibility is the simplest of the constraints that one can place on \mathcal{K} in order to prove that any associated $\mathcal{T}K$ is transversally simple. We also give examples of pairs of transversal knots that we conjecture are *not* transversally simple.