ABSTRACT. We study the action of the fundamental group Γ of a negatively curved 3-manifold M on the universal cover M of M. In particular we consider the ergodicity properties of the action and the distances by which points of M are displaced by elements of Γ . First we prove a displacement estimate for a general *n*-dimensional manifold with negatively pinched curvature and free fundamental group. This estimate is given in terms of the critical exponent Dof the Poincaré series for Γ . For the case in which n = 3, assuming that Γ is free of rank $k \geq 2$, that the limit set of Γ has positive 2dimensional Hausdorff measure, that D = 2 and that the Poincaré series diverges at the exponent 2, we prove a displacement estimate for Γ which is identical to the one given by the $\log(2k-1)$ theorem [ACCS] for the constant-curvature case.