ABSTRACT. A sharp affine L_p Sobolev inequality for functions on Euclidean n-space is established. This new inequality is significantly stronger than (and directly implies) the classical sharp L_n Sobolev inequality of Aubin and Talenti, even though it uses only the vector space structure and standard Lebesgue measure on \mathbb{R}^n . For the new inequality, no inner product, norm, or conformal structure is needed; the inequality is invariant under all affine transformations of \mathbb{R}^n .