ABSTRACT. Given a nondegenerate minimal hypersurface Σ in a Riemannian manifold, we prove that, for all ε small enough there exists u_{ε} , a critical point of the Allen-Cahn energy $E_{\varepsilon}(u) =$ $\varepsilon^2 \int |\nabla u|^2 + \int (1-u^2)^2$, whose nodal set converges to Σ as ε tends to 0. Moreover, if Σ is a volume nondegenerate constant mean curvature hypersurface, then the same conclusion holds with the function u_{ε} being a critical point of E_{ε} under some volume constraint.