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BLASCHKE-SANTAL�O INEQUALITIES

ERWIN LUTWAK & GAOYONG ZHANG

Two of the most important a�ne isoperimetric inequalities are the
Blaschke-Santal�o inequality (see, e.g., Gardner [6, p. 322] or Schneider
[12, p. 425]) and the classical a�ne isoperimetric inequality of a�ne
di�erential geometry (see, e.g., Schneider [12, p. 419]). These two
inequalities are closely related in that given either one of these inequal-
ities, then by well-known methods one can be quickly deduced from the
other. The aim of this article is to establish a new family of analytic in-
equalities and their geometric counterparts. One of the members of this
family of inequalities turns out to be the Blaschke-Santal�o inequality.

Let Sn�1 denote the unit sphere in Rn . Let B denote the unit ball
(the convex hull of Sn�1) in R

n , and write !n for the n-dimensional
volume of B. Note that,

!n = �n=2=�(1 + n
2 );

de�nes !n for all non{negative real n (not just the positive integers).
For real p � 1, de�ne cn;p by

cn;p =
!n+p

!2!n!p�1
:

For real p � 1 and continuous f : Sn�1 ! R, let kfkp denote the
standard Lp-norm of f ; i.e.,

kfkp =

�Z
Sn�1

jf(u)jp du

�1=p

;
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where the integration is always with respect to the rotation invariant
probability measure on Sn�1.

Theorem A. For real p � 1 and continuous f; g : Sn�1 ! (0;1),Z
Sn�1

Z
Sn�1

ju�vjpf(u)g(v) du dv � cn�2;p kfk n

n+p
kgk n

n+p
;

with equality if and only if there exist a � 2 GL(n) and real c1; c2 > 0
such that

f(u) = c1j�(u)j
�(n+p) and g(u) = c2j�

�t(u)j�(n+p);

for all u 2 Sn�1.

Here u �v denotes the standard inner product of u and v, and ��t

denotes the inverse of the transpose of �.

For the special case p = 2, the inequality of Theorem A is known
(see e.g. Schneider [12, p. 422]) and easily established. The analytic
inequality of Theorem A will be established by �rst proving its geometric
counterpart.

For each compact star-shaped (about the origin) subset, K, of Rn ,
let the norm k � k��

p
K on Rn be de�ned by

kxk��pK =

�
1

cn;pV (K)

Z
K
jx�yjpdy

�1=p

; 1 � p � 1;

where V (K) denotes the volume of K. For the case p = 1, this def-
inition is to be interpreted as a limit as p ! 1. The unit ball of
this n-dimensional Lp-space is denoted by ��pK, and called the polar

p-centroid body of K. The (unusual) normalization above was chosen so
that for the unit ball B in Rn , we have ��pB = B.

We will prove the following centro{a�ne inequality involving the
volumes of K and its polar p-centroid body, ��pK:

Theorem B. If K is a star body (about the origin) in R
n , then for

1 � p � 1,

V (K)V (��pK) � !2
n;

with equality if and only if K is an ellipsoid centered at the origin.

If K is a centered convex body (i.e., symmetric about the origin)
then ��

1
K is just the polar, K�, of K where

K� = fx 2 Rn : jx�yj � 1; for all y 2 Kg:
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In this case, the inequality of Theorem B, for p =1, reduces to:

V (K)V (K�) � !2
n;

with equality if and only if K is an ellipsoid.

This is the well-known Blaschke-Santal�o inequality. A very recent ap-
proach to the Blaschke-Santal�o inequality and the classical a�ne isoperi-
metric inequality of a�ne di�erential geometry can be found in Andrews
[2].

1. Star bodies and dual mixed volumes

For quick reference, we recall some basic properties regarding star
bodies and dual mixed volumes. Some recent applications of dual mixed
volumes can be found in [5] and [14]. For general reference the reader
may wish to consult Gardner [6] and Schneider [12].

The radial function, �K = �(K; � ) : Rn n f0g ! [0;1), of a com-
pact, star{shaped (about the origin) K � R

n , is de�ned, for x 6= 0, by
�(K;x) = maxf� � 0 : �x 2 K g. If �K is positive and continuous,
call K a star body (about the origin), and write S for the set of star
bodies (about the origin) of Rn . Two star bodies K;L 2 S are said to
be dilates (of one another) if �K(u)=�L(u) is independent of u 2 Sn�1.

From the de�nition of the radial function, it follows immediately
that for K 2 S and � 2 GL(n) we have �(�K; x) = �(K;��1x), for all
x 6= 0. Obviously, for the unit ball, B, in Rn , we have �(B; x) = 1=jxj,
for all x 6= 0. Hence, if � 2 GL(n) then �(�B; x) = 1=j��1xj. From the
de�nition of the polar body, it follows immediately that (�B)� = ��tB.
Thus, for all x 6= 0, we have �((�B)�; x) = 1=j�txj, where �t denotes the
transpose of �. We summarize this in: The bodiesE andE� are centered
polar reciprocal ellipsoids, if and only if, there exists a � 2 GL(n) such
that

(1:1) �(E; u) = 1=j�uj and �(E�; u) = 1=j��tuj;

for all u 2 Sn�1.

If K is a convex body (i.e., compact convex subset with nonempty
interior) in Rn , then its support function, hK = h(K; � ) : Rn ! R, is
de�ned for x 2 R

n by h(K;x) = maxfx�y : y 2 Kg. If K is a centered
(i.e., symmetric about the origin) convex body, then from the de�nitions
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of support function, radial function and polar body, it follows that

(1:2) hK� = 1=�K and �K� = 1=hK :

Fix a real p � 1. For K;L 2 S, and � > 0, the p -harmonic radial
combination K +̂ ��L 2 S is de�ned by

�(K +̂ ��L; � )�p = �(K; � )�p + ��(L; � )�p:

While this addition and scalar multiplication are obviously dependent
on p, we have not made this explicit in our choice of notation. The dual
mixed volume ~V�p(K;L) of K;L 2 S, can be de�ned by

n

�p
~V�p(K;L) = lim

�!0

V (K +̂ ��L)� V (K)

�
:

The de�nition above and the polar coordinate formula for volume give
the following integral representation of the dual mixed volume ~V�p(K;L)
for K;L 2 S:

(1:3) ~V�p(K;L) = !n

Z
Sn�1

�(K; v)n+p�(L; v)�p dv:

Recall that the integration is with respect to the rotation invariant prob-
ability measure on Sn�1.

Unless K and L are dilates, [ ~V�p(K;L)=V (K)]1=p is strictly increas-
ing, in p. This is an immediate consequence of the H�older integral
inequality. From the integral representation (1.3) it is easily seen that
[ ~V�p(K;L)=V (K)]1=p is bounded by maxu2Sn�1 �K(u)=�L(u). It will be
convenient to de�ne ~V�1(K;L) by

(1:4)
~V�1(K;L)

V (K)
= lim

p!1

 
~V�p(K;L)

V (K)

!1=p
= max

u2Sn�1

�K(u)

�L(u)
:

We will need two useful properties of dual mixed volumes. First,
note that for each K 2 S,

(1:5) ~V�p(K;K) = V (K); 1 � p � 1:
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The integral representation (1.3) together with the H�older integral in-
equality immediately give the dual mixed volume inequality: IfK;L 2 S
and 1 � p <1, then

~V�1(K;L)

V (K)
�

 
~V�p(K;L)

V (K)

!1=p
�

�
V (K)

V (L)

�1=n
;(1.6)

with equality, in either inequality, if and only if K and L are dilates.
This inequality will provide simple proofs of two key ingredients in the
proof of Theorem B.

2. Dual mixed volumes and the operator ��p

For K 2 S and real p � 1, the p-centroid body, �pK, of K is the
body whose support function is given by

(2:1) cn�2;p h(�pK;x)p =
!n

V (K)

Z
Sn�1

jx�vjp�(K; v)n+pdv;

for all x 2 Rn .

For p = 1, the integral operator above is the classical cosine trans-
form which is closely related to the spherical Radon transform (see e.g.
Goodey and Weil [7]).

The Minkowski integral inequality shows that h�pK is the support
function of a (centered) convex body. De�ne �1K as the convex body
whose support function is given by

(2:2) h(�1K;u) = lim
p!1

h(�pK;u) = max
v2Sn�1

ju�vj�(K; v);

for u 2 Sn�1. Since the pointwise convergence h�pK ! h�1K , on Sn�1,
is a pointwise convergence of support functions, it is in fact a uniform
convergence (see, e.g., Schneider [12, p. 54]). Note that the polar of
�pK is denoted by ��pK, rather than (�pK)�.

From the de�nition of the p-centroid body we see that forK 2 S and
� 2 GL(n) we have �p�K = ��pK: Thus, if E is a centered ellipsoid,
then

(2:3) �pE = E:
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Now (1.2), together with de�nition (2.1), and the integral represen-
tation (1.3), shows that for real p � 1 and K;L 2 S,

cn�2;p
~V�p(K;��pL)

V (K)

(2.4)

=
!2
n

V (K)V (L)

Z
Sn�1

Z
Sn�1

ju�vjp[�K(u)�L(v)]
n+p du dv:

From (1.4), (1.2) and (2.2), we see that for the case p =1 we have,

~V�1(K;��
1
L)

V (K)
= max

u2Sn�1
max

v2Sn�1
ju�vj�K(u)�L(v)

= max
u;v2Sn�1

ju�vj�K(u)�L(v):

According to these observations we immediately get:

Lemma 2.5. If K;L 2 S, then

(2:5) ~V�p(K;��pL)=V (K) = ~V�p(L;�
�

pK)=V (L); 1 � p � 1:

Taking L = ��pK in (2.5), and using (1.5), we are led to see that for
K 2 S,

(2:6) V (K) = ~V�p(K;��p�
�

pK); 1 � p �1;

where ��p�
�

pK is used to abbreviate ��p(�
�

pK). Identity (2.6) for p = 1
can be found in [9].

From identity (2.6) and the dual mixed volume inequality (1.6), we
have

Proposition 2.7. If 1 � p � 1 and K 2 S, then

V (��p�
�

pK) � V (K);

with equality if and only if K and ��p�
�

pK are dilates.

A consequence of this proposition, that will be needed in the proof
of Theorem B, states that for the special case where K is a star body
whose polar p-centroid body is an ellipsoid, the inequality of Theorem B
holds. This is contained in:
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Lemma 2.8. If 1 � p � 1 and K 2 S is a star body such that

��pK is an ellipsoid, then

V (K)V (��pK) � !2
n;

with equality if and only if K is a centered ellipsoid.

Proof. Since ��pK is an ellipsoid, from (2.3) it follows that

��p(�
�

pK) = (��pK)�:

This, together with the trivial observation that the product of the vol-
umes of centered polar reciprocal ellipsoids is !2

n, gives

V (��p�
�

pK) = V ((��pK)�) = !2
n=V (�

�

pK):

Combine this with the inequality of Proposition 2.7, to get the desired
inequality.

To see the necessity of the equality conditions, note that from the
equality conditions of Proposition 2.7 it follows that equality, in our
inequality, implies that K and ��p�

�

pK are dilates. But ��p(�
�

pK) =
(��pK)� and ��pK is (by hypothesis) a centered ellipsoid. Hence, equality
implies that K is a centered ellipsoid. q.e.d.

De�ne Z�p to be the class of centered convex bodies that are the
range of the operator ��p on S; i.e.,

Z�p = fZ�pK : K 2 Sg:

As an aside, note that the closure (in the space of convex bodies) of Z�1
is the class of polar projection bodies. The polars of these bodies form
the class of zonoids (see e.g. [6, p. 133] and [12, p. 182]). The class Z�2
is the class of centered ellipsoids.

The following lemma shows that in order to prove the inequality
of Theorem B for all star bodies, we need only prove it for the class
of centered convex bodies. In fact, a much smaller class than the set
of centered convex bodies will su�ce. These `class reduction' methods
were used in [8], and their use here may be seen as a natural extension
to the Brunn{Minkowski{Firey theory (see, e.g., [10]).

Lemma 2.9. Suppose 1 � p � 1. If the inequality of Theorem B,

with its equality conditions, holds for all bodies in Z�p , then the inequality

of Theorem B, with its equality conditions, holds for all bodies in S.
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Proof. Suppose K 2 S. By de�nition of Z�p , we have ��pK 2 Z�p .
Hence, the hypothesis gives

V (��pK)V (��p�
�

pK) � !2
n;

with equality if and only if ��pK is a centered ellipsoid. Now, Proposition
2.7 states that

V (K) � V (��p�
�

pK);

with equality if and only if K and ��p�
�

pK are dilates. The desired
inequality is obtained by combining these inequalities.

If there is equality in the desired inequality, then ��pK must be a
centered ellipsoid, and K and ��p�

�

pK are dilates. Hence K must be a
centered ellipsoid. q.e.d.

3. Steiner symmetrization and the operator ��p

For a set Q � R
n , and t 2 R, let

Qt = fx 2 Rn�1 : (x; t) 2 Qg;

and write �Qt for f�x : x 2 Qtg.

Lemma 3.1. Suppose K is a centered convex body in R
n , and eK

is the Steiner symmetral of K with respect to the hyperplane de�ned by
xn = 0. Then, for 1 � p � 1,

1
2(�

�

pK)t +
1
2(�

�

pK)�t � (��p eK)t;

for all t 2 R.

Proof. First note that it su�ces to prove the inclusion for
1 � p < 1. Also, without loss of generality, we may assume V (K) =
1=cn;p = V ( eK).

Let K 0 be the image of the orthogonal projection of K onto the
hyperplane xn = 0. For x 2 K 0, let c(x) denote the chord of K that is
parallel to the xn-axis and (whose extension) passes through x. Thus,

c(x) = x� [m� �
2 ;m+ �

2 ];

where � is the length of c(x), andm is the xn-coordinate of the midpoint
of c(x). For (x; s) 2 eK de�ne

s1 = s+m and s2 = �s+m:



blaschke-santal�o inequalities 9

Thus, (x; s1) and (x; s2) are points in c(x) that are symmetric about the
midpoint of c(x). While m and � are obviously functions of x 2 K 0, we
have chosen not to make this explicit in our notation.

Recall that

��pK = f(x; t) 2 Rn�1 � R : k(x; t)k��pK � 1g:

Suppose y1 2 (��pK)t, y2 2 (��pK)�t, and let y = 1
2(y1 + y2). To prove

the lemma we will show that y 2 (��p eK)t. The conditions

k(y1; t)k��pK � 1 and k(y2;�t)k��pK � 1;

giveZ
(x;s)2K

jy1 �x+ tsjpdxds � 1 and

Z
(x;s)2K

jy2 �x� tsjpdxds � 1:

Our aim is to show that k(y; t)k
��p eK

� 1, or equivalently thatZ
(x;s)2 eK

jy �x+ tsjpdxds � 1:

Now for (x; s) 2 eK, recall that s1 = s +m and s2 = �s +m, and
since s = 1

2 (s1 � s2),

jy�x+ tsjp = j12 (y1+y2)�x+
1
2(s1�s2)tj

p � 1
2 jy1�x+ ts1j

p+ 1
2 jy2�x� ts2j

p:

Thus,Z
eK
jy �x+ tsjpdxds

�
1

2

Z
eK
jy1 �x+ ts1j

pdxds +
1

2

Z
eK
jy2 �x� ts2j

pdxds

=
1

2

Z
K0

dx

Z �=2

��=2
jy1 �x+ ts1j

pds +
1

2

Z
K0

dx

Z �=2

��=2
jy2 �x� ts2j

pds:

Since s1 = s + m and s2 = �s + m, with (x; s1) 2 c(x) � K and
(x; s2) 2 c(x) � K,Z

K0

dx

Z �=2

��=2
jy1 �x+ ts1j

pds =

Z
K0

dx

Z m+�=2

m��=2
jy1 �x+ ts1j

pds1

=

Z
(x;s1)2K

jy1 �x+ ts1j
pdxds1;
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andZ
K0

dx

Z �=2

��=2
jy2 �x� ts2j

pds =

Z
K0

dx

Z m��=2

m+�=2
jy2 �x� ts2j

p(�ds2)

=

Z
(x;s2)2K

jy2 �x� ts2j
pdxds2:

It follows thatZ
eK
jy�x+tsjpdxds �

1

2

Z
K
jy1�x+ts1j

pdxds1+
1

2

Z
K
jy2�x�ts2j

pdxds2 � 1:

Thus k(y; t)k
��
p
eK

� 1, or equivalently, (y; t) 2 ��p eK, and hence

1
2(y1 + y2) = y 2 (��p

eK)t. q.e.d.

The Brunn-Minkowski inequality can now be used to show that
Steiner symmetrization does not decrease the volume of polar p-centroid
bodies.

Lemma 3.2. Suppose K is a centered convex body in R
n and

1 � p � 1. If eK is the Steiner symmetral of K with respect to the

hyperplane �, then
V (��pK) � V (��p eK);

with equality if and only if every (n� 1)-dimensional slice of ��pK, par-

allel to � is centrally symmetric.

Proof. Without loss of generality, we may assume that the hyper-
plane � is the subspace of Rn de�ned by xn = 0. From Lemma 3.1,

voln�1(
1
2 (�

�

pK)t +
1
2 (�

�

pK)�t) � voln�1((�
�

p
eK)t);

for all t 2 R. Since ��pK is centered, �(��pK)t = (��pK)�t. Hence, the
Brunn-Minkowski inequality (in Rn�1) shows that for each t,

voln�1((�
�

pK)t) � voln�1(
1
2 (�

�

pK)t +
1
2(�

�

pK)�t);

with equality if and only if (��pK)t is a translate of �(�
�

pK)t. Hence for
all t 2 R,

voln�1((�
�

pK)t) � voln�1((�
�

p
eK)t);

with equality if and only if (��pK)t is centrally symmetric.
By integrating (over all t 2 R) the quantities on both sides of the

last inequality, we get

V (��pK) � V (��p eK);
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with equality if and only if every (n � 1)-dimensional slice of ��pK,
parallel to the hyperplane � is centrally symmetric. q.e.d.

4. Proof of the theorems

We are now in a position to quickly prove the theorems presented in
the introduction.

Theorem B. If K 2 S and 1 � p � 1, then

V (K)V (��pK) � !2
n;

with equality if and only if K is a centered ellipsoid.

Proof. First recall that from Lemma 2.9 it follows that we may
assume that the star body K is a centered convex body. Now Lemma
3.2, and a standard Steiner symmetrization argument, show that if Bo

is a dilate of the unit ball, B, chosen so that V (Bo) = V (K), then

V (��pK) � V (��pBo):

Thus,
V (K)V (��pK) � V (Bo)V (�

�

pBo) = !2
n:

To obtain the necessity of the equality conditions, suppose there is
equality in the last inequality. By Lemma 3.2 this implies that every
(n�1)-dimensional slice of ��pK is centrally symmetric. A special case of
the false center theorem of Aitchison, Petty, and Rogers [1] (see Burton-
Mani [4] for an alternate proof) asserts that a convex body, all of whose
(n�1)-dimensional slices are centrally symmetric, must be an ellipsoid.
Thus we conclude that ��pK must be an ellipsoid, and now the equality
conditions of Lemma 2.8 may be invoked to show that K itself is a
centered ellipsoid. q.e.d.

The only tools needed to show how Theorem A follows directly from
Theorem B are dual mixed volumes.

Theorem A. For real p � 1 and continuous f; g : Sn�1 ! (0;1),Z
Sn�1

Z
Sn�1

ju�vjpf(u)g(v) du dv � cn�2;p kfk n

n+p
kgk n

n+p
;

with equality if and only if there exist a � 2 SL(n) and c1; c2 > 0 such

that

f(u) = c1j�(u)j
�(n+p) and g(u) = c2j�

�t(u)j�(n+p);
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for all u 2 Sn�1.

Proof. De�ne K 2 S and L 2 S by

�n+pK = f and �n+pL = g:

The polar coordinate formula for volume and the de�nitions of K;L 2 S
give

kfk n

n+p
= [V (K)=!n]

p=n and kgk n

n+p
= [V (L)=!n]

p=n:

From the de�nition of K and L, identity (2.4), the dual mixed vol-
ume inequality (1.6), and the inequality of Theorem B, we have

Z
Sn�1

Z
Sn�1

ju�vjpf(u)g(v) du dv

=
!2
n

V (K)V (L)

Z
Sn�1

Z
Sn�1

ju�vjp[�K(u)�L(v)]
n+p du dv

= cn�2;p
~V�p(K;��pL)

V (K)

� cn�2;p [V (K)=V (��pL)]
p=n

� cn�2;p [V (K)V (L)=!2
n]
p=n

= cn�2;p kfk n

n+p
kgk n

n+p
:

The above equation also shows that equality in the inequality of
the theorem implies that there is equality in the dual mixed volume
inequality and equality in the inequality of Theorem B. Thus, equality
in the inequality of the theorem implies that K and ��pL are dilates, and
L is a centered ellipsoid. But if L is a centered ellipsoid, then from (2.3)
we have ��pL = L�. Thus K and L are polar reciprocal ellipsoids which
are centered at the origin. The necessity of the equality conditions now
follows from (1.1). q.e.d.

The preceding results show that Theorem B can be used to quickly
obtain Theorem A. However, the process can be reversed. Theorem A
will quickly yield Theorem B, for all real p. If we start with Theorem A,
to quickly prove Theorem B we proceed as follows:

Given K 2 S, de�ne f and g in Theorem A by

f =
!n

V (K)
�(K; � )n+p; and g =

!n
V (��pK)

�(��pK; � )n+p:
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From the polar coordinate formula for volume, we get

kfk n

n+p
= [V (K)=!n]

p=n; and kgk n

n+p
= [V (��pK)=!n]

p=n:

Thus, by (2.3) and Theorem A, we have

~V�p(K;��p�
�

pK)

V (K)
=

1

cn�2;p

Z
Sn�1

Z
Sn�1

ju�vjpf(u)g(v) du dv

� kfk n

n+p
kgk n

n+p

= [V (K)V (��pK)=!2
n]
p=n:

To obtain the inequality of Theorem B, recall that

[ ~V�p(K;��p�
�

pK)=V (K)] = 1;

by (2.6).

From the equality conditions of Theorem A, we see that equality in
the inequality of Theorem B would imply the existence of a c > 0 and
a � 2 SL(n) such that �(K;u)=V (K) = c=j�uj, for all u 2 Sn�1. This,
in turn, would show that, by (1.1), the star body K must be a centered
ellipsoid.

5. Open problems

Mahler (see e.g. [6, p. 339] and [12, p. 427]) conjectured that for
each centered (i.e., origin-symmetric) convex body, K, in Rn ,

V (K)V (K�) �
4n

n!
:

For zonoids (and thus also their polars) this is Reisner's inequality (see
e.g. [6, p. 339] and [12, p. 427]).

Bourgain and Milman [3] proved the existence of an absolute con-
stant c > 0, such that for each centered convex body K,

V (K)V (K�) �
cn

n!
:

Thus, there exists an absolute constant c > 0 such that

V (K)V (K�) � !2
nc

n;
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for each centered convex body, K, in Rn .

The following problem is of considerable interest.

Problem 5.1. For each real p � 1, is there a constant cp > 0,
independent of n (and perhaps even independent of p), so that for each
centered convex body K in Rn ,

V (K)V (��pK) � !2
nc

n
p?

For each K 2 S, the body �2K is an ellipsoid called the Legendre
ellipsoid ofK. For the case p = 2, the inequality of Problem 5.1 becomes

V (K)V (��2K) � !2
n c

n
2 :

This inequality is one of the (equivalent) forms of the slicing problem

(see, e.g., [6, p. 302]): Does there exist an absolute constant c > 0, such
that each centered convex body of unit volume in Rn , has an (n � 1)-
dimensional slice of (n� 1)-dimensional volume greater than c?

The body �1K, with a di�erent normalization, is called the centroid
body of K. Characterizations and inequalities for centroid bodies can
be found in [9] and [13]. The Busemann-Petty centroid inequality states:
If K is a convex body in Rn , then

V (�1K) � V (K);
with equality if and only if K is a centered ellipsoid.

This inequality was conjectured by Blaschke, for centered convex bodies,
and proved by Petty [11], for all bodies.

For the operator �2 there is a similar inequality: If K is a convex
body in Rn , then

V (�2K) � V (K);
with equality if and only if K is a centered ellipsoid.

A quick proof of this inequality can be found in e.g. [11]. Note that
this inequality is an immediate consequence of Lemma 2.8 and the fact
that �2K is an ellipsoid for every K.

It is tempting to conjecture that an inequality stronger (in view
of the Blaschke-Santal�o inequality) than the inequality of Theorem B
holds:
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Problem 5.2. Is it the case that for each real p � 1 and each
convex body K in Rn ,

V (�pK) � V (K);
with equality if and only if K is a centered ellipsoid?
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