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LAMINATIONS IN HOLOMORPHIC DYNAMICS

MIKHAIL LYUBICH & YAIR MINSKY

1. A missing line in the dictionary

There is an intriguing dictionary between two branches of confor-
mal dynamics: the theory of Kleinian groups and dynamics of rational
maps. This dictionary was introduced by Sullivan, and led him in the
early 80's to the no wandering domains theorem, deformation theory
and geometric measure theory for holomorphic maps. Thurston's rigid-
ity and realization theory, developed at the same time, was also moti-
vated by this analogy. More recently, McMullen has made important
contributions to the renormalization theory motivated by the analogy
with 3-manifolds which �ber over the circle [32], [33].

However, the translation from one language to another, as in usual
life, is not automatic. There are concepts and methods in each of these
�elds which only barely allow translation to the other one. And even
when it is possible, the results achieved are often complementary (see
Sullivan's table in [46] of the results on the structural stability and
hyperbolicity problems).

In this paper we explore a construction which attempts to provide
an element of the dictionary that has so far been missing: an explicit
object that plays for a rational map the role played by the hyperbolic
3-orbifold quotient of a Kleinian group. To build this object we replace
the notion of manifold by \lamination", which is a topological object
whose local structure is the product of Euclidean space by a (possibly
complicated) transverse space.

Another goal of this work is to study the space of backward orbits of
a rational function. Since Fatou and Julia, inverse branches of iterated
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rational functions have played a crucial role in the theory. Unfortu-
nately, the space of such branches, with its natural topology, is wild
(should be compared with the H�enon attractor), and may deserve to be
called a \turbulation". By imposing a �ner topology and completing,
we turn this space into an a�ne lamination, in the hope that this will
tame it.

Laminations were introduced into conformal dynamics by Sullivan,
whose Riemann surface laminations play a role similar to that of Rie-
mann surfaces for Kleinian groups (see [47], [48] or x3 and Appendix 1
of this paper). These are objects which locally look like a product of a
complex disk times a Cantor set. Sullivan associated such a holomor-
phic object to any C2-smooth expanding circle map. The construction
involves \conformal extension" of a non-analytic one-dimensional map
(see Appendix 1).

In this paper we go one dimension up and make a \hyperbolic three
dimensional extension" of a non-M�obius map. This object is called a
hyperbolic orbifold 3-lamination and can be constructed in the following
way.

Step 1: the natural extension. Consider the full natural extension
f̂ : Nf ! Nf of a rational map f (points of Nf are backward orbits
ẑ = (� � � 7! z�1 7! z0) of f).

Step 2: the regular leaf space. Restrict f̂ to the \regular part" Rf
of Nf where the inverse iterates branch only �nitely many times. This
space is a union of leaves which are non-compact Riemann surfaces, sim-
ply connected except for Herman rings, that is, hyperbolic or parabolic
planes. It can be viewed as a Riemann surface with uncountably many
sheets where all inverse iterates f�n live simultaneously.

Step 3: a�ne orbifold lamination. Consider the subset Anf of Rf
consisting of parabolic leaves. The parabolic leaves possess a canonical
a�ne structure preserved by the map. However this structure is not
necessarily continuous in the transverse direction. To make it continu-
ous, we re�ne the topology on Anf , obtaining a space A`f with a laminar

structure1. We then complete A`f to obtain a �nal object Af some of
whose new leaves may be 2-orbifolds.

This step is technically the hardest.

1A di�erent approach to this part was independently suggested by Meiyu Su who
imposed a laminar topology associated to the transversal measure structure [43].
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Step 4: three-dimensional extension. Each a�ne leaf is naturally
the boundary of a three-dimensional hyperbolic space (in the half-space
model). The union of these spaces forms a hyperbolic orbifold 3-lamina-
tion Hf with f̂ acting properly discontinuously, and by isometries on
the leaves.

Step 5: quotient. Finally taking the quotientHf=f̂ of this lamination
by f̂ we obtain the desired hyperbolic orbifold 3-lamination.

We also de�ne the convex core of the lamination Hf=f̂ and prove
that it is compact if and only if f is critically non-recurrent without
parabolic points. Using this criterion, we prove a rigidity Theorem
9.1 for critically non-recurrent maps which extends Thurston's rigidity
theorem for post-critically �nite rational maps (see Douady-Hubbard
[17]). Our three-dimensional proof gives an explicit connection between
Thurston's and Mostow's rigidity theorems.

The structure of the paper is as follows:
x2. Basic notions of laminations and orbifold laminations.
x3. The natural extension Nf , and its regular part Rf . The space

Rf consists of backward orbits which have neighborhoods whose pull-
backs hit the critical points only �nitely many times. This space can be
decomposed into leaves that admit a natural conformal structure. We
show that (with the exception of Herman rings) the leaves of Rf are
simply connected non-compact Riemann surfaces, i.e., either hyperbolic
or parabolic planes.

We discuss criteria for when Rf is all of Nf except for a �nite set,
and when Rf is open in Nf . This discussion crucially depends on a
theorem by R. Ma~n�e on the behaviour of non-recurrent critical points
[26].

x4. Here we discuss the a�ne part Anf of Rf , which leads us to the
type problem for the leaves. This problem seems to be intimately related
to the geometry of the Julia set. Parabolicity of leaves reects \some"
(but not necessarily uniform) expansion { see Lemma 4.1. We give
several simple criteria for parabolicity and apply them to some special
cases. In particular, all leaves of the real Feigenbaum quadratic are
parabolic. This follows from an expansion property of f with respect
to a hyperbolic metric (compare McMullen [30]). The only examples
known to us of hyperbolic leaves are the invariant lifts of Siegel disks
and Herman rings.

We also give an explicit formula for the a�ne coordinate on a parabo-
lic leaf. It generalizes the classical formulas for the linearizing K�onigs
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and Leau-Fatou coordinates near repelling and parabolic points. From
this point of view the a�ne structures on the leaves are just the lin-
earizing coordinates along the backward orbits of f .

x5. Here we carry out Step 3 of the construction for the post-
critically �nite case, the construction of an a�ne orbifold lamination
Af . We re�ne the topology on Anf to separate leaves which branch
inconsistently over the sphere, and enlarge Anf to Af by making several
copies of the post-critical periodic leaves, and replacing the original
a�ne structure on some of them by an orbifold a�ne structure. This is
the price we pay for having the a�ne structure transversally continuous,
while keeping the lamination complete (in an appropriate sense).

x6. We de�ne the notion of an orbifold a�ne extension f̂ : A ! A of
a rational map f , and show that it is naturally the boundary at in�nity
for an orbifold hyperbolic 3D extension f̂ : H ! H. We prove that the
action of f̂ on H is properly discontinuous, so that the quotient H=f̂
inherits the structure of a hyperbolic orbifold 3-lamination.

Then we introduce and discuss the notion of the convex core Cf in

Hf=f̂ , which will play a key role in the rigidity argument.

We also describe the topological structure of the 3-lamination asso-
ciated to quadratics p� : z 7! z2 + � with � inside of the main cardioid
of the Mandelbrot set. We show that it is homeomorphic to S � (0; 1)
where S is the Sullivan lamination. So, like in the case of quasi-Fuchsian
groups, the 3-lamination connects the 2-laminations associated to the
attracting basins of p�.

At the end of this section we discuss the \scenery ow" introduced
by A. Fisher as an analogue of the geodesic ow on 3-manifolds. The
phase space of this ow, constructed in [5] for rational maps satisfying
axiom A, is loosely speaking the set of \pictures", that is all possi-
ble rescalings of the in�nitesimal germs of the Julia set. This scenery
ow is topologically equivalent to the \vertical geodesic ow" on the
3-lamination over the lifted Julia set.

This vertical geodesic ow is an extra piece of structure which makes
a di�erence between 3-laminations of rational maps and 3-manifolds of
Kleinian groups. An equivalent way of viewing this structure is by
saying that there exists a preferred f̂-invariant cross-section, \1", at
the boundary of the lamination Hf .

x7. In this section we give a general construction of the a�ne and
hyperbolic orbifold laminations associated to a rational map. The main
hurdle is, as in the post-critically �nite case, the fact that a sequence
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of disks in Rf whose projection to the sphere is branched can limit
onto a disk on which the projection is univalent. In the general case
sorting out the di�erent branching types is more involved since the set
of points where this happens is no longer �nite. Thus many copies
of a leaf, possibly a continuum, must be added. One can keep track
of this, and de�ne an appropriate topology, using the a�ne structures
themselves and their limiting behavior.

The self-organizing idea for this construction is to observe that the
natural projection � : Nf ! �C gives a meromorphic function on each
leaf of Anf , and this family of functions has a natural topology which
induces a topology for Anf . In fact, the space of non-constant meromor-
phic functions on C with the right action of the a�ne group serves as a
\universal" lamination on which every rational function acts. For any
�xed f the structure of Af and Hf can be extracted from the attractor
of f in this universal space.

In conclusion, using Ahlfors' �ve islands theorem we prove that every
lamination Hf is minimal, except for the Chebyshev and Latt�es maps.
In these special cases, the lamination becomes minimal after removing
the invariant isolated leaf. This is the characteristic property of these
remarkable maps from the lamination point of view.

x8. In this section we prove that f is convex co-compact (that is,
its convex core Cf is compact) if and only if it is critically non-recurrent
and does not have parabolic periodic points. Note that thus convex
co-compactness di�ers from hyperbolicity, while these two notions are
equivalent for Kleinian groups (one more illustration of the loose nature
of the dictionary).

We also de�ne the conical limit set and give in these terms a crite-
rion of convex cocompactness. We then study ergodic properties of the
conical limit set by means of the blow-up technique (on the lamination
level) and Ahlfors' harmonic extension method. Along the lines we ob-
tain the lamination insight on the existence of invariant line �elds for
the Latt�es examples: it comes from the existence of the isolated leaves.

x9. This section contains the three-dimensional proof of rigidity for
convex co-compact maps.

We start by lifting the topological equivalence between the maps to
a quasi-isometry ĥ between their 3-laminations (using the convex co-
compactness). It follows that ĥ is quasi-conformal on the leaves of the
a�ne extension. This reduces the problem to the existence of invariant
line �elds on the Julia set of Af , which was analyzed in the previous
section.
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x10. Conjectures and further program.
x11. In the �rst appendix we outline Sullivan's costruction of the

Riemann surface lamination associated to an expanding map of the cir-
cle. We also give a globalization construction for the natural extension
of polynomial-like maps via the inductive limit procedure.

x12. Appendix 2 �lls in some necessary background, all of which is
well-known to those who work in either dynamics or geometry, but not
always to both. It also �xes some terminology and notation.

Acknowledgements. Since the �rst draft of this manuscript ap-
peared in spring 1994, we have received valuable feedback from many
people, and we take this opportunity to thank all of them. John Mil-
nor read parts of the manuscript and made many useful suggestions
and comments. He also gave a simpler proof of Lemma 3.4 on non-
compactness of the leaves. Alberto Baider simpli�ed the proof of Lemma
3.3 on simple connectivity of the leaves. We thank Dennis Sullivan for
several enjoyable discussions and stimulating questions, and Curt Mc-
Mullen for some useful comments on renormalization. We also enjoyed
talks with Alby Fisher about scenery ows, as well as discussions with
Meiyu Su who is independently working on the structure of the natural
extension of a rational map from a measure-theoretical point of view.
After the preprint was issued (IMS at Stony Brook, 1994/20) we have
found out that Jeremy Kahn has independently considered the idea of
a 3D lamination and its possible application to the measure problem.

2. Laminations: general concepts

In this paper, a lamination will be a Hausdor� topological space X
equipped with a covering fUig and coordinate charts �i : Ui ! Ti�Di,
where Di is homeomorphic to a domain in Rn and Ti is a topological
space. The transition maps �ij = �i���1j : �j(Ui\Uj)! �i(Ui\Uj) are
required to be homeomorphisms that take leaves to leaves (see Sulivan
[48] and Candel [11]).

Subsets of the form ��1i (ftg�D) are called local leaves. The require-
ment on the transition maps implies that the local leaves piece together
to form global leaves, which are n-manifolds immersed injectively in X .

As usual we may restrict the class of transition maps to obtain �ner
structures on X . If Di are taken to lie in C and �ij are conformal maps,
we call X a Riemann surface lamination and note that the global leaves
have the structure of Riemann surfaces. If �ij are further restricted to
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be complex a�ne maps z 7! az + b, then we call X a (complex) a�ne
lamination, and the global leaves have a (complex) a�ne structure. If
the leaves of an a�ne lamination are isomorphic to the complex plane,
we also call it a C-lamination. One can similarly consider real a�ne
laminations, but as they will not play a role in this paper we shall
assume from now on that \a�ne" means \complex a�ne".

If D are taken to lie inHn and �ij are hyperbolic isometries, then X
is an n-dimensional hyperbolic lamination, or hyperbolic n-lamination.
In the case where all leaves of the lamination are hyperbolic spaces, let
us call it an Hn-lamination.

When the laminated space X is a (smooth/analytic) manifold, the
lamination is usually called a foliation. It is called smooth/analytic if
there is a smooth/analytic atlas of laminar local charts.

We shall need the notion of distance between a�ne structures on a
Riemann surface. Let S be a Riemann surface supplied with two a�ne
structures A1 and A2. Let �1 and �2 be any two local charts of the
structures A1 and A2 respectively,  = �1 � ��12 : U1 ! U2 be the
transition function. Then we may de�ne

dist(A1;A2) = sup
�1;�2

Dis(�1 � ��12 );

where Dis stands for the distortion (see Appendix 2).
We will encounter situations where a Riemann surface lamination

R can be re�ned to give an a�ne lamination. Suppose that the global
leaves of R admit a�ne structure { that is, each global leaf L admits
a collection of conformal coordinate charts with a�ne transition maps.
We say that these a�ne structures vary continuously in R if, for any
product box U = T � D the induced family of a�ne structures on D
vary continuously with T , in the sense of the above notion of distance.

In other words, continuity of a�ne structure means that for each
coordinate chart � : U ! T � D there is a choice of coordinate  t :
��1(ftg�D)! C for each t 2 T , so that  t is a restriction of an a�ne
coordinate chart on a global leaf, and so that the family  t � ��1(t; �) :
D ! C varies continuously with t. The following is easy to check:

Lemma 2.1. A continuous family of a�ne structures on the global
leaves of a Riemann surface lamination R induces an a�ne lamination
structure on R compatible with the original structure.

Similarly the Riemann surface lamination can be viewed as a topo-
logical lamination with transversally continuous conformal structure on
the leaves.
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2.1. Orbifold laminations.

In analogy with Thurston's notion of orbifolds (see Thurston [51],
Scott [42] and also Satake's similar notion of V-manifolds, [41]), we may
de�ne an orbifold lamination to be a space for which every point has a
neighborhood that is either homeomorphic to a standard product box
neighborhood in a lamination, or to a quotient of such a box by a �nite
leaf-preserving group (called an orbifold box).

If the covering box has an a�ne (or conformal, or hyperbolic) struc-
ture which is preserved by the �nite group, then we say that the orbifold
box inherits an orbifold a�ne (or conformal, or hyperbolic) structure.

For example, let T �D be a product box, with D a two dimensional
disk, let � : T ! T be a �nite-order map, and let � : D ! D be a
�nite, order rotation of D. Then the map �� � generates a �nite cyclic
group action on T �D and the quotient is an orbifold box. Cycles of �
of order not divisible by the order of � (�xed points, for example) give
rise to quotient leaves with orbifold points.

See also [49], [17] for the use of (regular 2-dimensional) orbifolds in
the context of post-critically �nite maps.

Example 2.2. This example illustrates how orbifold boxes will arise
in x5. Let K be a Cantor set, K 0 = K n fag for some a 2 K, and
� : D̂ ! D be a doubly branched map. Let B denote

(K 0 � D̂) [ (fag �D);

topologized so that a sequence (bi; zi) in K
0 � D̂ converges to (a; z) in

fag �D if and only if bi ! a and �(zi)! z.

We can then express B as an orbifold box, by letting T be the double
of K, with both copies of a identi�ed, and � : T ! T the map that
interchanges copies. Let � : D̂ ! D̂ be the involution that interchanges
pairs of preimages of points in D. Then (T � D̂)=(� � �) is exactly B.

3. Natural extension and its regular part

3.1. Natural extension.

Let f : �C! �C be a rational endomorphism of the Riemann sphere.
Let us consider the space of its backward orbits:

N = Nf = fẑ = (z0; z�1; : : : ) : z0 2 �C; f : z�(n+1) 7! z�ng;
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with topology induced by the product topology in �C � �C � : : : . This
is a compact space projected down to �C by � : ẑ 7! z0. The en-
domorphism f naturally lifts to a homeomorphism f̂ : N ! N as
f̂(ẑ) = (fz0; z0; z�1; : : : ). (The inverse map forgets the �rst coordinate
of the backward orbit). Moreover, � � f̂ = f � �. In dynamics the map
f̂ is usually called the natural extension of f . In algebra this object is
also called the projective (or inverse) limit of

�C 
f

�C 
f

�C 
f
: : :

One can also think of a point ẑ 2 N as a full orbit fzng1n=�1, where
f : zn 7! zn+1. (But don't confuse them with grand orbits generated
by the equivalence relation z � � if there exist natural m and n such
that fmz = fn�). Along with the projection � � �0 let us also consider
projections �n : Nf ! �C such that �n(ẑ) = zn. Clearly �n = fn�m ��m
for n � m.

Given a (forward) invariant set X � �C, let X̂ � Nf denote its
invariant lift to Nf , that is, the set of orbits fzng � X. This is nothing
but the natural extension of f jX. Note that it di�ers from ��1X, unless
X is completely invariant (that is, f�1X = X).

Let ẑ = (z0; z�1; : : : ) 2 Nf , D be a topological disk containing z0,
and N be a natural number. Consider the pullback D0;D�1; : : : of D
along ẑ. That is, D�n is the component of f

�n(D) containing z�n. Let
us de�ne the following \boxes":

B(D; ẑ;N) = ��1�N (D�N )

= f�̂ = (�0; ��1; : : : ) 2 Nf : ��N 2 D�Ng;
(3.1)

which form a basis of the topology in Nf . For N = 0 we will shorten
the notation as B(D; ẑ) � B(D; ẑ; 0).

3.2. The regular leaf space.

Let us say that a point ẑ = (z0; z�1; : : : ) 2 N is regular if there
is neighborhood U of z0 in �C whose pullback U�n along the backward
orbit (z0; z�1; : : : ) is eventually univalent. Let R = Rf denote the set
of regular points of the natural extension. This set is clearly completely
invariant. Moreover, if z0 is outside the !-limit set !(C) of the critical
points, then ẑ 2 Rf (see Appendix 2).

The path connected components of R will be called the leaves and
denoted by L(ẑ) for ẑ 2 R.
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Lemma 3.1. The leaves L(ẑ) possess an intrinsic topology and ana-
lytic structure such that the projection � : L(ẑ) ! �C is analytic. The
branched points are the backward orbits passing through critical points.
Moreover f̂ : L(ẑ)! L(f̂ ẑ) is a biholomorphic isomorphism.

Proof. Let ẑ = (z0; z�1; : : : ) 2 R. Then there is a neighborhood
U 3 z0 whose pull-back U�n along the orbit z�n is eventually univalent.
Let us take Û = f�̂ = (�0; ��1; : : : ) : ��n 2 U�ng as a base neighborhood
of ẑ (also called a leafwise neighborhood).

Let f : U�(n+1) ! U�n be univalent for n � N . Then the map

��N : �̂ 7! ��N is a homeomorphism between Û and U�N . Let it be our
local chart. The transition functions are just appropriate iterates of f ,
so that this provides us with a complex structure.

The last two statements are obvious. q.e.d.

We may characterize the leaves in dynamical terms via the following
observation.

Lemma 3.2. Two points ẑ and �̂ in Rf belong to the same leaf
i� the following holds. There is a sequence of paths (�n) in �C such
that �n connects z�n to ��n, and f(�n) = �n+1. Furthermore, for n
su�ciently large there are neighborhoods U�n of �n such that there is a
branch g of f�1 de�ned on U�n and f(U�n) = U�n�1. In particular ��n
can be obtained from z�n by analytic continuation of f�1 along �n+1.

Proof. Assume that ẑ and �̂ are on the same leaf and let ̂ be a
path connecting them. We may represent any such path as a sequence
of paths (�n) in �C such that �n connects z�n to ��n, and f(�n) =
�n+1. Since each point in Rf has a neighborhood whose projections
are eventually univalent, we take a �nite covering of ̂ and consider its
projections by ��n for n su�ciently large. These are the neighborhoods
U�n.

Conversely, given the sequence �n satisfying the conditions, it is
immediate that the path ̂ in Nf that they de�ne in fact lies in Rf .

q.e.d.

By local leaves in a box B(D; ẑ;N) we will mean the components of
intersection of the global leaves with this box.

Unfortunately these boxes in general don't have a product structure,
so that Rf is not always a Riemann surface lamination. For this rea-
son Rf will be called a conformal leaf space, that is, a space which is
decomposed into the union of leaves supplied with conformal structure.
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Actually the leaves behave so wildly (keep in mind the Henon map) that
one might rather call the space a \turbulation".

However, if the orbits of the critical points don't meet D�N , then
B(D; ẑ;N) � T � D�N , where T may be identi�ed with the �ber
��1(z�N ). The local leaves in this box correspond to slices ftg �D�N .

3.3. Topology of the leaves.

Our main tool in this section will be the Shrinking Lemma (see
Appendix 2), which states roughly that, in a uniform sense, backward
iterates of a region on which the branching of f is bounded have (spher-
ical) diameters that shrink to 0. This holds except if the iterates remain
in a rotation domain { a Siegel disk or Herman ring { for all time.

Let us �rst consider some exceptional cases: If a component W of
the Fatou domain Ff is a rotation domain, then its invariant lift Ŵ ,
consisting of all orbits which remain in W for all time, is a full leaf of
Rf , and � : Ŵ ! W is a conformal equivalence. The second part is
obvious since f jW : W ! W is a 1-1 conformal map. It only remains
to check that Ŵ is not properly contained in a leaf. That is, we must
check that any point on @Ŵ in Nf does not lie in Rf . Such a point ŵ is
an orbit which stays in @W for all time, and in particular is on the Julia
set. If w0 had a neighborhood D0 which pulled back along ŵ eventually
univalently, then by the Shrinking Lemma (after possibly trimming D0

to a slightly smaller disk), diam(D�n) ! 0. However D0 \W is being
pulled back by the univalent map f jW , and so the diameter of D�n\W
cannot shrink.

We shall adopt the convention of using rotation domain, Siegel disk
or Herman ring, to refer also to the leaves of Rf which are invariant
lifts of these domains.

Except in the case of rotation domains, the structure of a leaf reects
the behavior of f at small scales { this is another consequence of the
Shrinking Lemma. The following two lemmas show that, barring the
obvious exception, all leaves are topologically trivial.

Lemma 3.3. All leaves of Rf which are not Herman rings are sim-
ply connected.

Proof. By the above discussion the invariant lift of a Siegel disk is a
disk, so we may from now on consider a leaf L which is not either kind
of rotation domain. That is, for ẑ 2 L there is some n for which z�n is
not in a rotation domain.

Let ̂ : S1 ! L be a simple closed smooth curve on L, which does not
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pass through the branched points of �. We need to show that ̂ bounds
a disk on the leaf L. Let us consider the corresponding sequence of
smooth curves on the Riemann sphere: �n = ��n � ̂ : S1 ! �C.
Deforming ̂ slightly, we can get 0 to have only �nitely many points of
self intersection, all of which are double points. Clearly, the �n have
no more points of self intersection than 0, since if �n(a) is a simple
point for some a 2 S1, so is �(n+1)(a).

Let us now consider a point of self intersection, 0(a) = 0(b), where
a; b 2 S1, and a 6= b. Since ̂(a) 6= ̂(b), there is an n0 such that
�n(a) 6= �n(b) for n � n0, so that �n has strictly fewer points of self
intersection than 0. It follows that eventually all the curves �n are
simple.

Furthermore, by the Shrinking lemma, diam�n ! 0 as n ! 1.
Let D�n be the component of C n �n of small diameter. Then it
contains at most one critical point of f for n su�ciently large. IfD�(n+1)
actually contained a critical point, the curve �(n+1) (obtained by ana-
lytic continuation of f�1 along the simple curve �n) would not be
closed. Hence the D�n eventually do not contain the critical points.

It follows that the maps f : D�(n+1) ! D�n are univalent for n

su�ciently large: n � N . Hence the set D̂ of backward orbits

f(z�n) : z�n 2 D�n for n � Ng

represents a topological disc in L bounded by ̂ (with a homeomorphic
projection ��N : D̂ ! D�N ). q.e.d.

The following lemma excludes elliptic leaves (that is, conformal
spheres).

Lemma 3.4. If deg f > 1, there are no compact leaves in the lam-
ination R.

Proof. Assume that a leaf L is compact. Then the projection � :
L ! �C is a �nite-sheeted branched covering. However, we can also
express � as fn � � � f̂�n, so deg � � (deg f)n for any n. This is a
contradiction. q.e.d.

3.4. Criteria for regularity.

Let us consider some cases where we can say which part of Nf is
regular.
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Axiom A case.

(See Appendix 2 for de�nitions) We will call these functions \Axiom
A" instead of the more common \hyperbolic" in order to avoid sentences
like \in the hyperbolic case all leaves are parabolic".

If f satis�es axiom A then Rf = Nf n f�nite set of pointsg, namely
the attracting cycles of f̂ . Note that the backward orbits like
(�; : : : ; �; �; : : : ), where � is an attracting �xed point and � 6= � is
another preimage, are included into Rf , since � 62 !(C).

Critically non-recurrent case.

We will use the notation �(ẑ) � �C for the limit set of the backward
orbit ẑ = (z�n)n>0.

Lemma 3.5. Let ẑ = (z�n) 2 Nf be a backward orbit satisfying
the property that for some N , z�N does not belong to an attracting or
parabolic cycle, nor to the !-limit set of a recurrent critical point. Then
ẑ 2 Rf .

Proof. Let C1 be the set of critical points such that for c 2 C1,
z�n 2 !(c), n = 0; 1; : : : , and C2 be the complementary set of criti-
cal points. Without loss of generality we can assume that already z0
does not belong to an attracting or parabolic cycle, nor to the closure
cl(orb(c)) for any c 2 C2.

By the assumption, C1 consists of non-recurrent points. Hence there
is an � > 0 such that dist(z�n; C1) � �; n = 0; 1; : : : . For � > 0 let
U0 = D(z0; �), and U�n be the pull-back of U0 along z�n. By Ma~n�e's
Theorem ([26] and x12), there is a � > 0 such that diam U�n < �. Hence
U�n does not hit the critical points of C1.

Moreover, if � is su�ciently small, the orbits of the critical points
c 2 C2 clearly don't meet U0. Hence U�n does not hit these critical
points either, so that the pull-back fU�ng is univalent. q.e.d.

When we refer to an attracting/parabolic etc. cycle in Nf , we mean
the invariant lift of the corresponding cycle in �C. Let us recall from
Appendix 2 that Cr denotes the set of recurrent critical points in the
Julia set.

Lemma 3.6. The closure of the set Nf n Rf of irregular points in
Nf coincides with the invariant lift !̂(Cr) together with attracting and
parabolic cycles.

Proof. If ẑ 62 !̂(Cr), nor is an attracting or parabolic periodic point,
then it follows from Lemma 3.5 that B(D; ẑ) � Rf for su�cently small
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neighborhood D 3 z. Thus ẑ 2 intRf .
Vice versa, let ẑ 2 !̂(Cr). Let D be a neighborhood of z0, N > 0 be

any integer, and B0 = clB(D; ẑ;N) be a closed neighborhood of ẑ. We
should show that B0 contains an irregular point.

Since D�N \ !(Cr) 6= ;, there is a critical point c 2 Cr such that
fn1c 2 D�N for some n1 > 0. Let ẑ(1) be any backward orbit with

z
(1)
�(N+n1)

= c, and

B1 � clB(D; ẑ(1); N + n1) � B0:

Then all leaves of B1 over D are at least double branched.
Let us now consider a neighborhood base D � D1 � D2 � : : : of z,

and let D2
�(N+n1)

3 c be the pullback of D2 along the orbit ffkcgN+n1
k=0 .

Since c is recurrent, there is an n2 such that fn2c 2 D2
�(N+n1)

. Take

any backward orbit ẑ(2) with z
(2)
�(N+n1+n2)

= c, and cosider the closed

box B2 = clB(D2; ẑ(2); N +n1+n2) � B1. All leaves of B2 over D
2 are

at least triple branched.
Proceeding in this way, we will construct a nest

B0 � B1 � B2 � : : :
of closed boxes, such that all leaves of Bn are at least n times branched
over Dn. Hence the intersection of these boxes consist of irregular
points. q.e.d.

Let us call a map f critically non-recurrent if all its critical points
on the Julia set are non-recurrent. The following fact was proved by
Carleson, Jones and Yoccoz [13] (in di�erent language).

Corollary 3.7. A map f is critically non-recurrent if and only if

Rf = Nf n fattracting and parabolic cyclesg:
Let us call a map f persistently recurrent if any backward orbit

U0; U�1; : : : of a neighborhood U0 along !(Cr) hits a critical point. In
other words, all points of !̂(Cr) are irregular. Lemma 3.6 also yields
the following criterion of openness of the regular leaf space.

Corollary 3.8. The regular leaf space Rf is open in Nf if and only
if f is either critically non-recurrent or persistently recurrent. In the
latter case

Rf = Nf n (!̂(Cr) [ parabolic and attracting cycles):
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3.5. The Julia and Fatou sets.

Let us consider the pull-backs J rf � J r = ��1J \ Rf and Frf �
Fr = ��1F of the Julia set J and the Fatou set F to the space Rf .

Note �rst that Fr is obtained from the pullback of F to Nf just
by removing the attracting cycles. Also, if we remove from Fr the
invariant lifts of Siegel disks and Herman rings, then we obtain a Rie-
mann surface lamination. Indeed, if U is compactly contained in the
Fatou set, and a backward trajectory U0; U�1; : : : eventually does not
meet either attracting cycles, Siegel disks or Herman rings, then there
is an N such that F�kU�N does not meet the critical points for k �
0. In particular, the boxes B(U0; ẑ; N) have a product structure if
ẑ 2 Fr n fSiegel disks and Herman ringsg and N is large.

Note further that f̂ acts properly discontinuously on Fr with Siegel
disks and Herman rings removed. Indeed for any ẑ 2 Fr which is not
in a rotation domain, z�n lies either in an attracting or parabolic basin
and pulls back toward its boundary, or eventually ends up in preimages
of a periodic domain. Thus there is a neighborhood V of z�N for some
N such that all further pullbacks of V accumulate onto J . It follows
that f̂�nB(V; z�N ) eventually escapes every compact subset of Fr.

Thus, Fr=f̂ is a Hausdor� topological space, and in fact a Riemann
surface lamination, since it inherits its local structure from R.

So to each basin of the Fatou set we can associate a Riemann surface
lamination. These play the role of the Riemann surfaces associated to
a Kleinian group.

In [48], [47] Sullivan considered the natural extension of the attract-
ing basin of in�nity for a polynomial, and obtained a \solenoidal Rie-
mann surface lamination", called S (see Appendix 1). A similar object
appears as a subset of Fr=f̂ in general. Let us consider the topological
structure of these laminations in somewhat greater detail.

Attracting domains.

Consider a cycle of basins U1
f! � � � f! Um

f! U1 for an attracting
(or super-attracting) cycle, and let G denote the subset of Fr consisting
of orbits ẑ that are attracted (in forward time) to this cycle. This
sublamination divides naturally into two pieces: let G1 contain orbits
which stay in [Ui for all time, and let G2 consist of orbits which, before
some time, lie outside the Ui.

Suppose that all of the domains are simply connected. We claim that
G1=f̂ is Sullivan's solenoidal Riemann surface lamination (of appropriate
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degree), and G2=f̂ is a �nite union of copies of (plane domain)�(Cantor
set), which accumulates onto the solenoidal part. The full quotient G=f̂
is, in particular, compact.

We can study G1=f̂ by considering just the return map fm to U1,
and the quotient of the set of orbits of this map that stay in U1 for
all time. On a neighborhood of @U1, f

m is topologically conjugate to
z 7! zd acting on a neighborhood of the boundary in the unit disk D,
and every orbit in G1 accumulates in backward time onto @U1 (note that
we omit the orbit which remains on the attracting periodic cycle, since
it does not lie inRf ). It follows that the quotient G1=f̂ is homeomorphic
to the quotient of the Fatou domain of 0 (or 1) for the lamination of
z 7! zd, namely Sullivan's solenoidal Riemann surface lamination.

Now consider an orbit ẑ which escapes [Ui in backward time. Let ez
denote the full orbit (: : : ; z�1; z0; z1; : : : ). There is a �nite list V1; : : : ; Vp
of preimages of U1 such that no Vi contains a post-critical point, and
every full orbit ez with ẑ 2 G2 passes through a unique Vi. Let q denote
the smallest integer for which zq 2 [Vi. Since G2=f̂ is just the space
of these full orbits modulo shift, we can identify it with ([Vi) � �,
where � is a Cantor set, so that the [Vi component is zq and the �
component speci�es the preimages of Vi which contain the preimages
zq�n, n = 1; 2; : : : .

It remains to see that the closure of G2=f̂ is in G1=f̂ . Let A denote a
fundamental annulus in U1. This is a compact annulus, surrounding the
�xed point of fm, through which every full orbit of G1 passes exactly
once (or twice if on the boundary). Now if we consider ẑ in G2, such
that zq 2 Vi, we see that zq+N passes through A where N > 0 gets
larger as zq approaches @Vi. Thus ẑ is very close to some orbit ŵ 2 G1
which agrees with ẑ for all moments n where zn 2 [Ui. It follows that
G2=f̂ accumulates on G1=f̂ , and in fact that all of G1=f̂ is obtained this
way.

If the domains Ui in the cycle are not simply connected, the topo-
logical structure of the quotient is more complicated and we shall not
describe it here. However let us sketch an argument showing that it is
compact. Let D be a small closed disk around the attracting �xed point
for fm in U1, so that D maps univalently to fm(D) � D. For any orbit
ẑ attracted to the cycle, there is a �rst moment q 2 Z when zq lies in
D.

Let A = D n int(fm(D)); this is the same fundamental annulus
described above. Let D1 denote all orbits ẑ 2 G for which z0 2 A. Let
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D2 denote all orbits ẑ 2 G for which z0 2 fm(D) and z�n =2 D for
n > 0. Then modulo the action of f̂ every orbit is uniquely represented
in D1 [ D2, except for some identi�cations on the boundaries. Since
both D1 and D2 are compact, it follows that G=f̂ is compact.

Leau (parabolic) domains. For a cycle of domains with a parabolic
periodic point, the quotient of the corresponding lamination is not com-
pact. One should think of these as obtained from the solenoidal Rie-
mann surface laminations by a \pinching", but we will not try to elab-
orate on this case in this paper.

4. The Type Problem and a�ne structure on the leaves

By Lemmas 3.3 and 3.4 every leaf of Rf is either a parabolic (a�ne)
or hyperbolic plane, except possibly for (invariant lifts of) Herman rings,
which are hyperbolic annuli. Siegel disks are the only example we know
of hyperbolic planes.

Type Problem. Are there any other cases of hyperbolic leaves
except Siegel disks and Herman rings?

4.1. Criteria for parabolicity of leaves.

Let us look at the type problem in some special cases.

Repelling �xed point.

Let � be a repelling �xed point for f with multiplier �, and �̂ =
(�; �; : : : ) be its invariant lift to Nf . Let us consider the invariant leaf
L(�̂) = fẑ : z�n ! �g through �̂. This leaf is parabolic since the
quotient of L n f�̂g by the action of f̂ is a torus. Similar reasoning
applies to the case of a repelling periodic point.

Parabolic �xed point.

Let now � be a parabolic �xed point with combinatorial rotation
number p=q. Then f q has s = ql invariant repelling petals Pi. Let us
consider the set Li = Li(�̂) consisting of backward orbits ẑ such that
the suborbit z�qn; n = 0; 1 : : : ; eventually lands in Pi. (Observe that �̂

itself does not belong to these leaves.) The map f̂ permutes the leaves
Li organizing them into cycles of order q. These leaves are parabolic
since their quotients by the f̂ q-action are \Ecalle-Voronin cylinders"
with in�nite modulus (that is, conformally equivalent to C�). The case
of parabolic periodic points is treated similarly.
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General conditions.

Let us now give a couple of general conditions for a leaf to be
parabolic. Let D(z; �) denote the spherical disk of radius � centered
at z, and D̂(ẑ; �) denote the component of L(ẑ)\��1D(z; �) containing
ẑ.

Lemma 4.1. Let a backward orbit

ẑ = fz0; z�1; : : : g 2 Rf n (rotation sets)

satisfy the following property. There is an � > 0 and a subsequence
fn(k)g such that the disk D(z�n(k); �) can be univalently pulled back
along the rest of the orbit, fz�mgm�n(k): Then the leaf L(ẑ) is parabolic.

Remark. In terms of the natural extension the assumption of the
lemma means that the D̂�k � D̂(f̂�n(k)ẑ; �) univalently project down
to the sphere.

Proof. Assume without loss of generality that n(0) = 0. By the
Shrinking Lemma, diam(��mD̂0) = �(m) ! 0 as m ! 1. Hence for
su�ciently large k the annulus D̂�k n f̂�n(k)D̂0 is univalently mapped
to an annulus on the sphere containing a round annulus with outradius
� and inradius �(n(k)). Its modulus can therefore be estimated via

mod (D̂�k n f̂�n(k)D̂0) � 1

2�
log c�=�(n(k)) !1;

where the constant c accounts for distortion between the spherical and
Euclidean metrics. This is equal to the modulus of its univalent image,

Âk = f̂n(k)(D̂�k) n D̂0;

which is an annulus in L(ẑ) surrounding D̂0. Since mod (Âk) ! 1,
the leaf L(ẑ) must be parabolic. q.e.d.

Recall that C denotes the set of critical points of f . The following
is an immediate consequence of Lemma 4.1.

Corollary 4.2. If a backward orbit ẑ = fz0; z�1; : : : g 2 R does not
converge to !(C), then the leaf L(ẑ) is parabolic.

Note that the set C can be replaced here by the set Cr of recurrent
critical points.

Lemma 4.3. Let ẑ 2 Rf . Assume that for some sequence n(k)

there exist annuli Â�n(k) � L�n(k) = L(f̂�n(k)ẑ) enclosing f̂�n(k)ẑ and
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a branched point of the projection � : L�n(k) ! �C, whose moduli stay
away from 0. Then the leaf L(ẑ) is parabolic.

Proof. Let B�n � L�n be the set of branched points for the pro-
jection � : L�n ! �C. Since every branched point is represented by
a backward orbit �nitely many times passing through a critical point,
f̂�1B�n � B�(n+1), and moreover for any ĉ 2 B0 there is an n such

that f̂�nĉ is not a branched point any more. Let Pn = f̂nB�n � L0.
Then P0 � P1 � P2 � : : : , and \Pn = ;. As P0 is discrete, the sets Pn
escape to 1. Thus, if the leaf L0 were hyperbolic, then the modulus
of any annulus Rn enclosing ẑ and a point of Pn would tend to 0 as
n!1, which would contradict our assumption. q.e.d.

Lemma 4.4. Consider a backward orbit ẑ = fz0; z�1; : : : g 2 R
which does not hit the set !(C). Assume that kDf�n(z)k ! 0 as n!1
where f�n is the branch of the inverse map which sends z to z�n, and
k � k means the hyperbolic metric in C n !(C). Then the leaf L(ẑ) is
parabolic.

Proof. Let L�n = L(f̂�nẑ). Then the projection

� : L�n n ��1!(C)! �C n !(C)

is a covering map, and hence a local hyperbolic isometry (with respect
to the corresponding hyperbolic metrics).

Assume now that the leaf L0 is hyperbolic. Then all L�n are also
hyperbolic. Since the inclusion i : L�nn��1!(C)! L�n is a hyperbolic
contraction, the projection � is expanding from the hyperbolic metric
of L�n to the hyperbolic metric of �C n !(C).

Note �nally that f̂�n : L0 ! L�n is a hyperbolic isometry. Hence
kDf�n(z)k � kD�(ẑ)k�1 > 0 where the last norm is measured from the
hyperbolic metric on L0 to the hyperbolic metric of �C n !(C). Contra-
diction. q.e.d.

Remark. We don't know whether the above contracting prop-
erty along the backward orbits is always satis�ed (unlike the expansion
propery along the forward orbits: see McMullen [30, Theorem 3.4]). See
also Lemma 4.6 below.

Axiom A case.

Let f satify Axiom A. Let us consider a backward orbit ẑ = fz�ng 2
Rf . Then this backward orbit converges to the Julia set, and hence stays
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bounded distance away from !(C). By Corollary 4.2, all leaves of Rf
are parabolic.

Critically non-recurrent case.

Proposition 4.5. Assume that all critical points on the Julia set
are non-recurrent. Then

Anf = Rf = Nf n fattracting and parabolic cyclesg;
so that all regular leaves are parabolic.

Proof. The second equality

Rf = Nf n fattracting and parabolic cyclesg
was proved above (Corollary 3.7).

In order to prove the �rst one, let us consider the following ordering
on the set of critical points in J(f): c1 � c2 if cl(orb(c1)) 3 c2. Given a
ẑ 2 Rf , let ~C denote the set of critical points belonging to �(ẑ).

Assume �rst that ~C 6= ;. Then let us take a critical point a 2 ~C
which is a maximal element of this ordering. Let � > 0 be such that
z�n stay distance at least � from all critical points c 62 ~C. By Ma~n�e's
theorem (Appendix 2), there is a � > 0 such that for all n all components
of f�nD(a; �) have diameter at most �. Hence if z�k 2 D(a; �), and we
pull D(a; �) back along fz�(k+n)gn, then we don't hit the critical points

c 62 ~C. Clearly we will not hit the critical points c of ~C either (provided
� is small enough), since their forward orbits don't accumulate on a.
Hence this pull back is univalent.

Select now a sequence k(l) such that z�k(l) ! a, and apply Lemma
4.1 (Note that the lemma applies since there can be no rotation domains
in the non-recurrent case).

If ~C = ; then take any point a 2 �(�z), and repeat the above argu-
ment. q.e.d.

Remark. By a minor modi�cation of the above argument one can
check that the leaf L(ẑ) is parabolic, provided ẑ is not an attracting or
parabolic cycle, and �(ẑ) is not contained in !(Cr), where Cr is the set
of recurrent critical points.

Invariant measures with positive characteristic exponent.

Let � be an invariant measure of f , and suppose that for �-a.e. z
the characteristic exponent

�(z) = lim
1

n
log jDfn(z)j
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exists and is positive (j � j means the spherical norm).
Let �̂ be the lift of � to the natural extension. The Pesin local

unstable manifolds for �̂ are the sets D̂(ẑ; �(ẑ)) � L(ẑ) which univa-
lently project down to the sphere and whose backward orbits shrink
exponentially. Moreover, �(z) > 0 �̂-a.e.

Let X� = fẑ : �(z) > �g: It follows from the Poincar�e recurrence
theorem that for �̂-a.e. ẑ there is an � > 0 such that the backward orbit
f̂�nẑ in�nitely many times visits X�. By Lemma 4.1 the leaves L(ẑ) are
parabolic for �̂-almost all ẑ (compare [4], [53]).

In�nitely renormalizable quadratics.

We refer to the papers of Douady and Hubbard [16] and McMullen
[30], [33] for the background in holomorphic renormalization theory.
Here we will briey recall the basic concepts.

Let U 0 and U be two topological disks such that clU 0 � U . A
double branched covering map f : U 0 ! U is called quadratic-like.
We assume that its critical point is located at the origin 0. The set
K(f) = fz : fnz 2 U 0; n = 0; 1; : : : g is called the �lled Julia set; its
boundary is called the Julia set J(f). The Julia set is connected i� the
critical point 0 is non-escaping, that is, 0 2 K(f).

Any quadratic polynomial can be viewed as a quadratic-like map
with U being a round disk of su�ciently big radius, and U 0 being its
pullback. By the Straightening Theorem of Douady and Hubbard any
quadratic-like map f : U 0 ! U is quasi-conformally conjugate to some
quadratic polynomial z 7! z2 + c. Moreover, if mod (U 0 n U) � � > 0,
then there is a conjugacy with dilatation bounded by K(�).

We can specify a distinguished �xed point of f as follows: Take
an arc  � U n K with endpoints a and f(a). Choosing appropriate
pullbacks of this arc by f we obtain a curve � �  such that f(�n) = �.
It turns out that if J(f) is connencted, then this curve lands at a speci�c
�xed point of f , usually denoted by �. This point is repelling for any
quadratic polynomial z 7! z2 + c except c = 1=4.

A quadratic-like map f is called renormalizable under the following
circumstances:

� Some iterate g = fp (p > 1) restricted to an appropriate topolog-
ical disk U 0 3 0 is quadratic-like with connected Julia set;

� The sets fkK(f), k = 1; : : : ; p � 1, do not touch K(f) except
perhaps for the �-�xed point of g.
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Under these circumstances the map g is called a renormalization of f .
If there is a sequence of renormalizations gn : U

0
n ! Un with increasing

periods pn, the map f is called in�nitely renormalizable. If this sequence
can be selected in such a way that the ratios pn+1=pn are bounded, then
one says that f is of bounded type.

We say that f is an in�nitely renormalizable map with a priori
bounds if there is a sequence of renormalizations as above and an � > 0
such that

mod (Un n U 0n) � �; n = 0; 1; : : :

Let us say that a map is Feigenbaum-like if it is in�nitely renor-
malizable of bounded type with a priori bounds. Any in�nitely renor-
malizable real quadratic of bounded type is Feigenbaum-like: complex
a priori bounds were established by Sullivan (see [47], [35]).

For a Feigenbaum-like map the set !f (0) is a Cantor set of bounded
geometry, and f j!f(0) is an invertible minimal dynamical system (con-
jugate to a translation on a group). In particular, f is persistently
recurrent and hence, by Corollary 3.8, Rf = Nf n !̂f (0).

Lemma 4.6. Let f be a Feigenbaum-like quadratic polynomial. Then
all leaves of the lamination Rf are parabolic.

Proof. Let ẑ = fz0; z�1; : : : g 2 R. Then this orbit eventually stays
out of the set !(0), so we can assume that z0 2 C n !(0).

Let g : U 0 ! U be a renormalized map, mod(U nU 0) > � > 0. Let �
be its distinguished �xed point, as above. Since f is of bounded type,
g is K(�)-quasi-conformally conjugate to a polynomial z 7! z2 + c with
jc � 1=4j > � > 0 (with � depending on the type and a priori bounds).
Hence

kDg(�)k � � > 1:(4.1)

Because of Corollary 4.2, we can assume that z�n converge to !(0).
Let !g(0) be the closure of the postcritical set of g. Then there is
a backward orbit ��l of g converging to !g(0) which is a part of the
backward orbit ẑ. Let us take the second element ��1 of this backward
orbit. Clearly ��1 2 U 0 n U 00, where U 00 is the g-pullback of U 0.

The set of Feigenbaum-like maps is compact in the Caratheodory
topology (see McMullen [30]). Hence there is a path  in U n !g(0)
joining ��1 and � of bounded hyperbolic length, such that the analytic
continuation of g�1 which �xes � carries ��1 to ��2. It follows from this
and (4.1) that kDg(��2)k � � > 1 for some � depending on �, � and the
hyperbolic length of  only.
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Hence kDf�n(z)k ! 0 as n!1 (where f�nz = z�n), and Lemma
4.4 yields the desired result. q.e.d.

Remark. The above way to get hyperbolic contraction is, modulo
the details, due to Curt McMullen (compare [33], Proposition 5.9). It is
actually possible to weaken the assumptions of the lemma: McMullen
has an argument showing that his notion of \robustness" su�ces to give
the desired contraction.

4.2. A�ne structures on the leaves and linearization.

Being unable to resolve the type problem in full generality, let us
de�ne a new leaf space Anf by throwing away from Rf all hyperbolic
leaves. All leaves in Anf are conformally equivalent to the complex plane
C and hence possess a unique a�ne structure compatible with their
conformal structure.

We can express this a�ne structure as a limit of rescalings of back-
ward branches of f :

Lemma 4.7. Let f be a rational map with1 a critical point. Given
ẑ 2 Anf , there exists a sequence of similarities An(w) = �nw + �n such
that the maps

�n = An � � � f̂�n : L(ẑ)! C

converge (uniformly on compact sets) to a conformal isomorphism
� : L(z)! C.

Remark. The condition that 1 is critical can always be arranged
by conjugation with an appropriate M�obius transformation. For poly-
nomials it is automatic.

Proof. Take a disk neighborhood Û = (U0; U�1; : : : ) of ẑ in L(ẑ)
with compact closure. Since the leaf L(ẑ) is parabolic, for any M > 0
Û is contained in a disk V̂ = V̂ (M) with modulus mod(V̂ n Û) =M .

Let l = l(M) be such that ��n = � � f̂�n is univalent on V̂ for n � l
(possible by de�nition of Rf ). Thus for n > l, V�n = ��n(V̂ ) contains
no critical points and in particular lies in C. Choose the similarity An
such that An(z�n) = 0 and A0n(z�n) = (�0�n(ẑ))

�1. Therefore �n =
An � ��n have been normalized by �n(ẑ) = 0, �0n(ẑ) = 1. (In order for
these derivatives to make sense on L we should �x some local coordinate
chart).

For n > l and k > 0, we can write �n+k = �n �Gn;k, where Gn;k =
An+k � f�kn � A�1n , with f�kn denoting the branch of f�k taking V�n to
V�n�k. Note that Gn;k is de�ned and univalent on An(V�n) = �n(V̂ ),
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and is normalized so that Gn;k(0) = 0, G0n;k(0) = 1. By the Koebe

1/4 theorem �n(Û ) contains a disk of de�nite radius � > 0. Since �n is
univalent the modulus of �n(V̂ )n�n(Û) isM , so by the Koebe distortion
theorem (see appendix 2) the nonlinearity of Gn;k on the �-disk around
0 is small, and goes to 0 as M !1, independently of k.

LettingM , and therefore l and n, go to1, it follows that Gn;k ! id
uniformly on a �=2 disk around 0 as n!1. Thus f�ng form a Cauchy
sequence, and so converge uniformly on a neighborhood of ẑ. Since
f�njÛg is a normal family, they must converge on all of Û .

Applying this argument to a sequence of disks Ûm exhausting L(ẑ),
we conclude that �n converge uniformly on compact sets to a global
map � : L(ẑ)! C, which is univalent. Since L(ẑ) is parabolic its image
must be all of C, so � is an isomorphism. q.e.d.

In the particular case where � is already univalent on a leafwise
neighborhood of ẑ 2 Rf (i.e., no z�n is a critical point for n > 0), we
can identify this neighborhood with a neighborhood of z0 and obtain
this local formula for the a�ne chart:

�ẑ(�̂) = lim
n!1

(fn)0(z�n)(��n � z�n)(4.2)

(if f is appropriately normalized, e.g., if 1 is critical). In the case of a
leaf corresponding to a repelling �xed point this exactly corresponds to
the classical formulas for the linearizing coordinate. Note however that
uniform expansion is not necessary for this formula to hold.

Namely, if � is a repelling �xed point, then the a�ne map
� : L(�̂)! C is given by the classical K�onigs linearizing function:

�(�̂) = lim��n(��n � �):
Note that �(f̂�1�̂) = ��1�(�̂); � 2 L(�̂), so that � conjugates f̂�1 on
the leaf to the linear map z 7! ��1z.

Let now � be a parabolic �xed point with combinatorial rotation
number p=q. An explicit a�ne map from the associated leaves Li(�̂) to
C is given by the Leau-Fatou linearizing function:

�(�̂) = lim(h(
1

(��nq � �)s )� n);

where s is the number of petals at �, and h is an appropriate local chart
at a sectorial region at 1 (compare Milnor [36], x7). This function
conjugates f̂�q on the leaf to a translation z 7! z+a. This corresponds
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to a variation on the construction in Lemma 4.7, where the rescaling
map An is precomposed with a �xed local chart in �C, in this case w 7!
h(1=(w � �)s).

In general, a�ne structure on the leaves of Anf can be viewed as a
simultanuous linearization of the dynamics along the backward orbits.
Indeed, f̂ becomes an a�ne map between the leaves. In the a�ne local
charts (4.2) these maps become just multiplications by the derivative at
the base point:

�f̂ ẑ(f̂ �̂) = f 0(z) � �ẑ(�̂);(4.3)

provided no z�n is critical for n > 0.

4.3. Density of leaves.

Let us say that a leaf space X is minimal if all leaves are dense in
X.

Lemma 4.8. Any parabolic leaf L is dense in Nf . Thus the leaf
space Anf is minimal. Moreover, J r \ L is dense in the pullback ��1J
of the Julia set to Nf .

Proof. Since ��n is a non-constant analytic map on the parabolic
leaf L, it can miss at most two points in �C. Now consider any ẑ 2 Nf ,
and large n > 0. Since ��n(L) is dense, there is some ŵ 2 L with w�n
as close as we like to z�n. If it is su�ciently close, then the spherical
dist(w�j ; z�j) will be small for all 0 � j � n. Thus L is dense. If
ẑ 2 ��1J , then clearly ŵ can be selected from J r. q.e.d.

We remark that it seems plausible that L is dense even if it is hy-
perbolic, provided that it is not a rotation domain.

Let J nf denote J rf \Anf , the Julia set in the a�ne leaf space.

Corollary 4.9. The Julia set J nf � Anf is compact if and only if f
is critically non-recurrent.

Proof. If f is critically non-recurrent, then by Proposition 4.5
J nf = J rf = ��1(J), which is a closed subset of Nf , and thus com-
pact.

Otherwise, by Lemma 3.6, f has irregular points on ��1J . On the
other hand, by Lemma 4.8, J = J nf is dense in ��1J . Hence J is not
closed in Nf , thus not compact. q.e.d.
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4.4. Local leaves on a global leaf.

Let �̂ be a repelling periodic point, and L = L(�̂) the leaf of �̂. Let
D � �C be a topological disk which does not contain � = �(�̂), and let �
be a topological disk compactly contained inD. Let D̂i be the connected
components of ��1(D)\L which univalently project down onto D, and
let �̂i � D̂i be the corresponding components of �

�1(�) \ L.
The following lemma is a \natural extension" of the Shrinking Lemma

(see Appendix), and will be applied in x5.
Lemma 4.10. The size of the �̂i shrinks relative to their distance

to �̂:

diamL �̂i

distL(�̂i; �̂)
! 0; as i!1;(4.4)

where diamL and distL are measured in any uniformizing chart � : L!
C.

Remarks. 1. Clearly the ratio in (4.4) does not depend on the
choice of uniformizing map �.

2. The result is still valid if we take all components D̂i with some
uniform bound on their branching over D.

Proof. Clearly we can assume that �̂ is �xed. Note then that the
�̂i escape to in�nity in L (that is, eventually don't intersect any given
leaf-compact subset in L), since they have disjoint collars D̂i n �̂i of
de�nite modulus.

Let Û � L be a leafwise neighborhood of �̂ such that cl Û � f̂(Û ),
and f̂ Û is univalently projected down onto f(U) � �C. Let ni be the
�rst positive integer such that f̂�ni(�̂i) � Û . As �i escape to in�nity
in L, ni goes to 1.

The disks �f̂�ni(�̂i) are univalent pullbacks of � which are not con-
tained in a rotation domain, so by the Shrinking lemma their (spherical)
diameters go to 0 as i ! 1. As �jÛ has bounded distortion (from the

a�ne structure on Û to the spherical structure on U), we have

diamL(f̂
�ni�̂i)

distL(f̂�ni�̂i; �̂)
! 0 as i!1.

But since f̂ preserves the a�ne structure on L, the ratio in the last
equation is equal to the ratio in (4.4). q.e.d.
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5. Post-critically �nite maps

The a�ne leaf space Anf which we have constructed so far is not, in
general, a lamination. The missing ingredients are both topological {
the lack of a local product structure { and geometric { non-continuity
of the a�ne structures in the transverse direction, even where there is
a product structure. As we shall see, these two problems are related.

In this section we will give an explicit rearrangement of Anf { a
change of topology and the addition of new leaves { in the special case
of post-critically �nite rational maps. This should serve as a motivat-
ing example, an indication of the kind of structure that arises, and a
demonstration of how orbifold leaves appear in a natural way.

In x7, we will give a completely general construction of an a�ne
orbifold lamination for any rational map, emerging naturally from the
a�ne group action on a space of meromorphic functions. Thus one
could read that section without �rst reading this one, but the reader
may �nd that the explicit examples given here help to illuminate the
more abstract approach.

We will �rst construct the orbifold lamination topologically, and
then discuss continuity of a�ne structures.

5.1. Topological orbifold lamination.

To �x ideas, assume for the moment that f is a post-critically �nite
quadratic polynomial, and moreover that the critical point is actually
pre-�xed: there is a �xed point � such that f lc = � for some l > 1. (We
will discuss the general postcritically �nite case in x5.3). It is standard
that � is a repelling �xed point (see discussion in x5.3).

As usual, let �̂ = f�; �; : : : g denote the invariant lift of � to Nf ,
and let L � L(�̂) denote the f̂ -invariant leaf of �̂ in Nf .

Recall that Anf and Rf are both equal to Nf n1̂ (Lemma 3.7). Our
orbifold lamination Af will consist of Anf , with the leaf L replaced by
two copies named Lr and Ls. The topology �` and orbifold structure
are described as follows.

Let q : Af ! Rf be the map that re-identi�es Lr and Ls. Let us
consider the pull-back topology q�1�n, where �n is the natural topology
of R as a subset of N . Note that f̂ is naturally lifted to a homeomor-
phism ~f of Af with this topology. However the pull-back topology is not
Hausdor� since it does not separate the leaves Lr and Ls. The actual
topology �` will be the minimal strengthening of the pullback topology
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q�1�n, which separates these leaves, keeps ~f as a homeomorphism, and
gives Af the structure of an orbifold lamination.

Let ẑ = (z0; z�1; : : : ) 2 Nf , D be a topological disk containing z0
and at most one postcritical point fkc, 1 � k � l, and let N be a natural
number. Let B(D; ẑ;N) and B(D; z0) = ��1D � B(D; ẑ; 0) be the �n
box neighborhoods de�ned as in (3.1), and recall that D0;D�1; : : : are
the pullbacks of D along ẑ.

If D�N does not intersect the postcritical set, then B(D; ẑ;N) has
a natural product structure T � D�N . Moreover, the projection � :
B(D; ẑ;N)! D is either univalent or two-to-one branched covering on
all leaves. The latter occurs when D contains a postcritical point fkc,
and then this point is the projection of the branched point on any leaf.

This situation always occurs if ẑ 6= �̂, and N is su�ciently high.
It is more complicated for ẑ = �̂. In this case some of the leaves are
univalent and some are branched, so that B(D; �̂;N) does not have a
natural box structure.

Let us call a backward orbit ẑ with z0 = � singular if it contains c
(i.e., it is a branch point of �), and regular if it does not contain c, and
is not equal to �̂.

Given a topological disk D 3 � (not containing other postcritical
points), let Br(D; �̂;N) consist of the union of local leaves inB(D; �̂;N)
containing regular orbits, and Bs(D; �̂;N) be the union of local leaves
containing singular orbits. These are disjoint open sets in Nf with
a natural product structure. Moreover, together with the local leaf
D̂ = D̂(�̂) containing the �xed point �̂, they make up all of B(D; �̂;N).
We set B�(D) � B�(D; �̂; 0), where � stands for r or s.

Given a set X � Nf , let ~X � Af denote q�1X. Let also ~D� denote

the component of q�1(D̂) lying in the corresponding leaf L�. The similar
meaning is given to a point ~z� 2 ~D� corresponding to ẑ 2 D̂.

Let

Q�(D; �̂;N) = ~B�(D; �̂;N) [ eD�;
and Q�(D) � Q�(D; �̂; 0):

(5.1)

These sets are going to be neighborhood bases for points ~��.
Let us now de�ne the topology �` as the minimal strengthening of

the pull-back topology q�1�n for which the sets ~fn(Q�(D)) are open for
all n � 0.

Lemma 5.1. With the new topology, Af is an orbifold lamination
with one singular point, ~�s. The projection q : Af ! Nf is continuous,
and ~f acts homeomorphically.
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Proof. Given a ẑ 2 D̂ and a topological disk � � D containing z0,
let

Q�(�; ẑ; N) = Q�(D) \ ~B(�; ẑ; N):(5.2)

When ẑ = �̂, we go back to the sets Q�(D; �̂;N) introduced above.

Let ~B be the family of all sets ~B(�; ẑ; N) for ẑ 2 Rf and any disk
� 3 z0. Let Q be the family of sets Q�(�; ẑ; N), where ẑ 2 ~D� and
� � D contains z0. Let T = ~B [ Sn�0

~fnQ. We claim that T is a
neighborhood basis for the topology �`.

All elements of T are open in �`, by de�nition. We need to check
that, for any U; V in T and x 2 U \ V there is some W 2 T such that
x 2W � U \ V .

Clearly the sets ~B(�; ẑ; N) form a basis for the pullback topology
q�1�n. Also, restricting � or increasing N without changing other pa-
rameters clearly makes a set from T smaller. Taking additionally into
account (5.2), we conclude that it is enough to check the case where
U = ~fmQ�(D) and V = ~fnQ�(D) (Here � and � are independently
either r or s). By pulling back, we may assume that m = 0.

Assume that x does not belong to the local leaf ~D� of ~�� in Q�(D).
Note that 
 = Q�(D) n ~D� is open in the pullback topology. Hence
~f�n
 contains a basic X 3 ~f�nx of family ~B. By (5.2) Q�(D)\X 2 Q.
Thus ~fn(Q�(D) \X) 2 T is a desired set W .

Assume now that x 2 ~D�. We can select the basis of disks D in
such a way that f̂D̂� overows D̂�. Then ~f�nx 2 ~D�, and hence � = �.
Moreover, the component X of Q�(D) \ f̂�nQ�(D) containing ~f�nx is
just Q�(D; �̂; n), a set of family Q. Now the desired statement follows.

It is clear that Af is Hausdor� { the doubled points have separating
neighborhoods, by the construction. Note that, away from the postcrit-
ical points, the topology has been changed only in the �ber direction,
where a dense set of �bers has been doubled.

Let us now check that ~f : Af ! Af is a homeomorphism. Obviously
~f�1 is continuous. To verify that ~f is continuous, it is enough to check
that ~f�1Q�(D) are open. Let f�1D = D0 [ D1 where D0 3 � while
D1 3 f l�1c. Then

~f�1Q�(D) = Q�(D0) [B(D1; f
l�1c):

Finally let us check that all sets of the basis T are orbifold boxes.
Indeed, all sets B(D; ẑ;N) � D�T are regular lamination boxes. Hence
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the sets ~B(D; ẑ;N) � D� ~T are also regular boxes with ~T obtained from
T by doubling points coresponding to the leaf L.

The sets Qr(D; �̂;N) are also regular boxes D�T with the transver-
sal T consisting of all backward orbits �; : : : ; �; : : : (at least N �'s)
which never pass through c.

Let us now consider the setK of singular backward orbits �; : : : ; �; : : :
(at least N �'s) together with the point a = �� (in the natural extension
topology). Then Qs(D; �̂;N) is homeomorphic to the orbifold box with
transversal (K; a) described in Example 2.2.

Finally if ẑ 6= �̂ and D 63 �, then the sets Q�(D; ẑ;N) are regular
boxes with the same transversal K.

Thus Af is indeed an orbifold lamination. q.e.d.

5.2. Orbifold a�ne structure.

By Corollary 3.7 all leaves of the lamination Af are parabolic. Let
us supply all leaves except Ls with their unique a�ne structure. As to
the leaf Ls, let us consider a branched double covering p : �s ! Ls with
a single branched point over ~�s. Then �s is a parabolic plane which
hence has a unique a�ne structure. Pushing this structure down to Ls

we obtain an orbifold a�ne structure on Ls with one singular point at
~�s.

There is no ambiguity in the above construction as the double cov-
ering p is uniquely de�ned up to pre- and post-compositions with a�ne
maps. So after appropriate selection of the a�ne coordinates z and � on
Ls and �s correspondingly, p just becomes the quadratic map z = �2.
But z is a linearizing coordinate on the leaf Ls (see x4.2). Thus the
orbifold a�ne coordinate � on Ls can be viewed as the square root of
the linearizing coordinate.

Let SN denote the family of a�ne structures on the leaves of Anf ,
and let SL denote the family of orbifold a�ne structures on the leaves
of Af . Let us also consider the pullback a�ne structures q�1SN on the
leaves of Af . They coincide with SL on all leaves except the singular
leaf Ls.

Lemma 5.2. The orbifold a�ne structures SL on the leaves of Af
make it an a�ne orbifold lamination.

Proof. We need to check that the a�ne structure depends continu-
ously on the leaf. We will use the box basis of Af described above and
the explicit formula for the a�ne coordinates of x4.2.

Take an x 2 Af with qx = ẑ = (z0; z�1; : : : ) 2 Nf . Let us �rst



laminations in holomorphic dynamics 47

assume that ẑ does not lie on the invariant leaf L = L(�̂). Then there
is a subsequence z�n(k) staying distance at least an � > 0 from the
postcritical set.

Take now a neighborhood D 3 z0 containing at most one point
of the postcritical set. Let D�k denote the pullback of D along ẑ.
Let us consider boxes Bn = B(D; ẑ; n). Take a big k and let �̂ 2
Bn(k). By Lemma 4.7 the a�ne structure on the leaf D̂(�̂) of such a

box is given by rescaling ��m = � � f̂�m and passing to limit. But for
m > n(k), ��m = f�(m�n(k)) � ��n(k) for an appropriate branch of the
inverse function. Since diam(D�n) is small for n su�ciently large, and
f�(m�n(k)) allows analytic extension in the � neighborhood of z�n(k), by
the Koebe Distortion Theorem it is almost linear on D�n(k) uniformly

in �̂. It follows that the variation of the a�ne structure on the leaves of
Bn(k) is small, provided k is su�ciently large.

Hence the variation of the pullback structure q�1SN on the leaves
of the box ~Bn(k) � ~B(D; ẑ; n(k)) is also small for large k. Thus the

variation of the structure SL on all regular leaves of ~Bn(k) is small as
well.

Let now y 2 ~Bn(k) \ ~Ls, and ~Ds(y) be the singular local leaf of y

in ~Bn(k). Let � : (~Ls; ~�) ! (C; 0) be a regular uniformization of ~Ls.
Then according to the discussion preceeding this lemma, an orbifold
a�ne chart on ~Ds(y) is given by

p
�. But the image �( ~Ds(y)) escapes

to 1 in C when y ! x. Moreover, by Lemma 4.10 its size relative to
the distance to the origin is vanishing. Hence the non-linearity of the
square root map on this set goes to zero. Thus the a�ne structure SL
on ~Ds(y) is close to the pullback structure q�1SN on this local leaf.
Consequently, it is close to the a�ne structure on the leaf ~D(x) when y
is close enough ot x. We are done with the case where ẑ 62 L.

Let now ẑ 2 L, so that x 2 ~L� for � = r or � = s. We wish to check
that the a�ne structures SL on leaves ~�(y) of a box fnQ�(�; ẑ; N)
de�ned by (5.2) approach the a�ne structure on ~�(x). By pulling back
and enlarging the box, we see that it is enough to check this for x = ~��

and boxes Q�(D) de�ned in (5.1).
Let �rst x = ~�r. Let us consider a regular orbit

�̂ = (�; : : : ; �; ��(N+1); : : : ) 2 Br(D; �̂;N):

Then the inverse branches of f�(n�N) : (D�N ; �)! (D�n; ��n) along �̂
allow a uniform � > 0-enlargement, and hence have small non-linearity
for large N . It follows that the a�ne structure SN on the local leaf D̂(�̂)
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is close to the regular a�ne structure on D̂r(�̂) (given by the linearizing
coordinate near �). Now we can pass to the orbifold structures onQr(D)
in the same way as in the above case ẑ 62 L.

Finally let x = ~�s. Let us now consider a singular orbit

�̂ = (�; : : : ; �; ��(N+1); : : : ; ��n = c; : : : ) 2 Bs(D; �̂;N);

where n = N + l. Then for su�ciently large N the rescaled branch
f�(n�1) : D ! D�(n�1) 3 fc is close to the linearizing coordinate near
�. The next inverse branch f�1 : D�(n�1) ! D�n is almost the square
root map (since D�n is small), while all further inverse iterates are
almost linear on D�n. It follows that the a�ne coordinate on the local
leaf D̂s(�̂) is close to the square root of the linesrizing coordinate, which
is exactly the orbifold a�ne coordinate on D̂s(�̂).

Now we again can pass from the box Bs(D) to Qs(D) in the same
way as above. q.e.d.

5.3. General post-critically �nite construction.

Let f be an arbitrary post-critically �nite map. If a critical point
lands in a cycle, then the cycle is either repelling or super-attracting
(contains a periodic critical point) { see e.g. [24, Thms. 1.4, 1.6, Prop.
1.11]. In the latter case this cycle is omitted fromRf . Thus we need only
consider repelling cycles. It also follows that there is a uniform bound
on the branching index of � at all points in Rf , since a backward orbit
in Rf can only hit the critical set a bounded number of times. Given
a postcritical repelling periodic point �, let us consider all occurring
branching indices 1 = d1(�) < : : : < dl(�)(�) of the leaves over �.

A general construction of the orbifold lamination for a post-critically
�nite map has the following di�erences as compared with the previous
particular case:

� Make l(�) copies of the post-critical periodic leaf L(�̂).

� Supply these copies with orbifold structures of degrees di(�).

� Organize the leaves of the lamination over �̂ into the boxes accord-
ing to their branching indices and then compactify them by adding
the corresponding orbifold leaves. These boxes will be open in the
new topology.
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5.4. Structure of the Chebyshev and Latt�es laminations.

Let us consider the quadratic Chebyshev polynomial p : z 7! 2z2�1,
J(p) = [�1; 1]. Let T (z) = z2, and �(z) = 1=2(z + 1=z). Then � � T =
p � �, so that p is conformally equivalent to T on the quotient space of
C� by the involution � : z 7! 1=z.

Thus the natural extension Np is the quotient of the natural exten-
sion NT modulo the involution �̂ : (z0; z�1; : : : ) 7! (�z0; �z�1; : : : ). The
only invariant leaf of this involution is the invariant leaf L = L(1̂) of
p̂. Since AnT = RT is a regular a�ne lamination, we obtain a natural
orbifold a�ne lamination structure on Anp (with one singular leaf L).
The orbifold lamination Ap constructed above is obtained from this one
by adding an isolated copy of L (with regular a�ne structure).

The situation for the higher degree Chebyshev polynomials is com-
pletely analogous.

Similarly, the regular leaf associated with the post-critical �xed point
of a Latt�es map is isolated. Proposition 12.1 shows that these are the
only postcritically �nite maps with isolated leaves (see Proposition 7.6
for a more general statement). After removing this leaf, the lamina-
tion becomes the quotient of the \torus solenoid" (that is, the natural
extension of the torus endomorphism) modulo an involution.

6. Hyperbolic 3-laminations

6.1. A�ne extensions in the abstract.

In this section, let us forget the speci�c construction of Section 5
and take an \axiomatic" approach to what we call a�ne extensions.
The general construction of Section 7 will yield objects of this type.

Let f : �C ! �C be a rational map. An a�ne extension of f is an
a�ne (orbifold) 2-lamination A with simply connected leaves, together
with a homeomorphism f̂ : A ! A, acting by conformal automorphisms
on leaves, and a projection � : A ! �C, such that

1. f � � = � � f̂ .
2. � is continuous, and restricted to any leaf is non-constant and

complex-analytic.

Condition (1) immediately implies that � factors through a map p :
A ! Nf , given by

p(z) = (�(z); �f̂�1(z); �f̂�2(z); : : : ):
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Let �k = � � f̂k, as usual.
In fact p is continous by (2), and we immediately see that p(A) is

contained in Rf : on any leaf L, � factors through fn for any n > 0 and

so the pullbacks � � f̂�n(U) for any disk U � L with compact closure
are eventually unbranched. Thus p restricted to each leaf is a complex
analytic map to a leaf of Rf , and we further conclude that the leaf must
be parabolic. Hence p : A ! Anf .

The construction in x5 yields just such an object, and as in that
case the map p need not be injective: it re-identi�es the leaves which
we separated in our construction.

6.2. Extending to three dimensions.

Even before we consider the action on A we can associate to it a
naturally de�ned H3-lamination H, by attaching a copy of hyperbolic
3-space, realized as its upper half-space model, to (a �nite cover of)
every leaf. Since transition maps for a�ne charts on the leaves of A are
a�ne, they extend naturally to isometries on the hyperbolic 3-spaces.

In particular given two a�ne charts �; �0 : C! L, the corresponding
transition map from H3 to H3 multiplies heights by the norm of the
derivative of ��1 � �0. Thus we can consider a copy of H3 for each
chart �, and de�ne the leaf HL attached to L as the identi�cation of all
these copies via the transition maps. However, we prefer to make the
following de�nition, which will be easier to work with:

Consider the group A� of complex-a�ne maps A : C ! C (hence-
forth just \a�ne"). We can identify the complex plane C and the
hyperbolic space H3 � C� (0;1) (with a preferred point at 1) as ho-
mogeneous spaces for A�, namely C �= A� =C� and H3 �= A� =S1. In
other words, consider the projections p1 : A� ! C and p2 : A� ! H3

given by

p1 : g 7! g(0) 2 C(6.1)

and

p2 : g 7! g(0; 1) = (g(0); jg0j) 2 H3:(6.2)

Fibres of p1 are orbits of the right action of the subgroupC� = Fix(0) �
A�, that is fz 7! �z : � 6= 0g: Fibres of p2 are orbits of the right action
of S1, that is the group fz 7! �z : j�j = 1g: The left-action of A� on
itself projects to complex-a�ne maps onC, and to hyperbolic isometries
on H3.
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Now suppose �rst that A has no orbifold leaves, and for a leaf L
consider the set f� : C ! Lg of a�ne isomorphisms (\charts") from
C to L, which admits a �xed-point-free right-action by A�. We may
identify L with f�g=C� by taking � to �(0). The space f�g=S1 is
naturally identi�ed with H3 as above, and we call this the hyperbolic
leaf HL associated to L.

Thus, the total space H may be de�ned as f� : C! Ag=S1, where
the maps � vary over all charts for leaves of A. This clearly inherits the
structure of a hyperbolic 3-lamination. We will usually write [�] for an
equivalence class of charts modulo rotation in S1.

The same construction works for the orbifold leaves, with the charts
replaced by �nite coverings. Thus an orbifold a�ne 2-lamination ex-
tends to a hyperbolic 3-orbifold lamination.

One should think of a chart � : C ! L as determining a point
and a choice of scale for the leaf L. Changes of scale correspond to
vertical motion in the upper half-space model. Indeed, let eR denote
the subgroup of C� acting by scaling without rotation. The R-action
induced on A by the right-multiplication r : [�] 7! [� � er] is simply
the vertical geodesic ow in each leaf, where r measures arclength and
increasing r corresponds to increasing heights in each leaf, as is evident
from (6.2).

Finally, we remark that this extension of an orbifold a�ne lamina-
tion to an orbifold H3-lamination is unique, in the sense that if H0 is
another orbifold H3-lamination with a projection H0 ! A such that
on each leaf, �bres of points are geodesics with a common endpoint at
in�nity, then H and H0 are related by an isomorphism �xing A.

6.3. Proper discontinuity of actions.

The action f̂ on A (even without assuming that it projects to a
rational map) extends naturally to an action, which we also call f̂ , on
H by hyperbolic isometries, namely

f̂ : [�] 7! [f̂ � �]:(6.3)

It is useful to note that we now have two commuting actions on
A: a Z-action generated by f̂ on the left, and an R-action, the vertical
geodesic ow, generated by eR on the right. These actions have a certain
coherence: forward iterates of f̂ tend to increase heights, as a result of
the general expansive properties of the rational map f . Let us make
this precise with the following statement:
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Lemma 6.1. Let (A; f̂ ; �) be an a�ne extension of a rational map
f , and let H be the hyperbolic 3-lamination associated to A. For any two
points p; q 2 H there are neighborhoods Up; Uq for which the following
holds: if ni; ri are sequences such that

(f̂ni � Up) \ (Uq � eri) 6= ;;

then ni ! +1 if and only if ri ! +1, and ni ! �1 if and only if
ri ! �1.

In other words, whenever a high forward/backward iterate of z 2 Up
is comparable with � 2 Uq in the sense that these points lie on the same
vertical geodesic, the former point is much higher/lower than the latter.

Proof. Represent p by a chart � : C! A and q by a chart  : C!
A. Recall that � �� is analytic, and hence its image misses at most two
points in �C. Thus there exists an open set W which meets the Julia
set Jf , and a disk D � C around 0 such that W � � � �(D). Let Up
be small enough that for any [�0] 2 Up, �(�0(D)) contains W . This is
possible since � is continuous in A. In addition choose Up small enough
that there is some upper bound on the degree of � � �0 in D (here by
\degree" we mean the maximal degree over any point in the image).

Now we can see that � � f̂n � �0(D) will tend to blow up as n!1,
and down (in diameter) as n! �1. Indeed, there is some n0 such that
fn(W ) contains all of Jf for n > n0, and as n!1 the degree of fn on

W increases without bound { hence the same is true for � � f̂n � �0 on
D, for any [�0] 2 Up.

To see what happens to � � f̂�n ��0(D) = ��n(�
0(D)) as n!1, we

may invoke the Shrinking Lemma given in Appendix 2, once we observe
two things: (1) the degree of fn on ��n�

0(D) is bounded by the degree
of � on �0(D), and hence uniformly over Up. (2) Since every leaf of
A is a�ne, ��n�

0(D) is eventually outside the closure of the rotation
domains, so that diam(��n�

0(D)) ! 0 as n ! 1, uniformly for all
[�0] 2 Up.

Now let us choose Uq such that for [ 0] 2 Uq the degree of � �  0 on
D is uniformly bounded. Suppose that we have f̂ni � �0i �  0i � eri in
A for [�0i] 2 Up and [ 0i] 2 Uq. Then if ni ! 1 then ri ! 1 as well,
so that the degree of � �  0i on eri(D) can go to in�nity. Conversely,
suppose that ni ! �1. Then the above Shrinking Lemma argument
implies that diam� �  0i(eriD) ! 0, and so ri must go to �1. The
other two implications are similar. q.e.d.
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Recall that a group action on a space X is proper if, for any two
points p; q 2 X, there exist neighborhoods U 3 p and V 3 q so that the
subset of group elements g such that gU \ V 6= ; has compact closure
in the group. If the group has the discrete topology, this set must be
�nite, and we say the action is properly discontinuous.

A consequence of the Shrinking Lemma, as used in Lemma 6.1, is
the following central fact:

Proposition 6.2. Let (A; f̂ ; �) be an a�ne extension of a ratio-
nal map f , and let H be the hyperbolic 3-lamination associated to A.
The induced action of f̂ on H is properly discontinuous. Similarly, the
vertical geodesic ow on H is a proper R-action.

Proof. Given p and q inH, choose Up and Uq as in Lemma 6.1. Then
in particular (f̂n�Up)\Uq = ; for all but �nitely many n. Geometrically,
we say that forward iterates of Up cannot continue to intersect Uq, since
their heights are going to in�nity whenever comparison is possible.

Similarly, Up \ (Uq � er) = ; for all but a bounded set of r. q.e.d.

At this moment we can conclude that the quotient H=f̂ is a Haus-
dor� space which inherits the structure of the hyperbolic orbifold 3-
lamination. On the other hand, the quotient via the ow action recovers
the a�ne lamination A. This duality between H=f̂ and A will be useful
in what follows (see Proposition 8.5).

6.4. Convex Hulls.

In analogy with the situation in Kleinian groups, we denote by C(J )
the convex hull in H of the lift J = ��1(J) of the Julia set to A. This
is simply the union of the convex hulls of (J \L)[f1g in HL for every
leaf HL of H bounded by a leaf L of A. The quotient C(J )=f̂ can be
called the convex core of Hf=f̂ .

Using Lemma 12.3 we can obtain the following. Let C� denote the
leafwise �-neighborhood of C(J ).

Corollary 6.3. For � > 0, C� inherits the structure of a 3-lamination
with boundary. In fact C� is homeomorphic to H [ F=f̂ , where @C� is
taken to the \boundary at in�nity" F=f̂ .

Except when the Julia set of f is smooth, the above holds for � = 0,
and we note also that @C inherits a metric from Hf which makes it into
a hyperbolic 2-lamination.

Proof. Since Jf is the pullback of Jf by � and � varies continuously
in the transverse direction, for any product box T�D, if T is su�ciently
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small then the intersections of Jf with the local leaves ftg�D are close
to each other in the Hausdor� topology in D. The same applies to the
�nite covers of orbifold boxes, and hence for any (large) closed disk on
a leaf we can take a small transversal neighborhood so that the Julia
sets vary only slightly in the Hausdor� topology.

It follows, applying Lemma 12.3, that any point x 2 C� has an
(orbifold) box neighborhood inH which intersects C� in a set of the form
T � C up to bilipschitz homeomorphism. Here C is the intersection of
C� with a leafwise neighborhood of x.

The homeomorphism from C� to H [ F=f̂ comes directly from the
leafwise homeomorphism discussed in Section 12.2. The case where Jf
is smooth corresponds exactly to the case where J \ L is contained in
a straight line in L (again, the Shrinking Lemma), and this is the only
case where the discussion fails for � = 0. q.e.d.

The z2 + � case.

The simplest possible quadratic polynomial is f(z) = z2+ � where �
is small (more precisely, let � lie in the main cardioid of the Mandelbrot
set, so that f has one attracting �xed point). In this case J is a quasi-
circle, the Fatou domain lifts to two components in Rf , each of which
has quotient homeomorphic to Sullivan's solenoidal Riemann surface
lamination S (see Appendix 1), and in fact Rf is already an a�ne
lamination (Proposition 4.5).

In each leaf, J is a quasi-line separating the plane into two com-
ponents, where one component projects to the outside and one to the
inside of J in C. We claim that the convex core C is (for � 6= 0) simply
a product S � [0; 1]. This makes concrete the analogy between z2 + �
and a quasi-Fuchsian group.

To prove this, or the equivalent fact that H[F=f̂ �= S � [0; 1], make
the following leafwise construction. Let H be a leaf of H bounded by L.
Foliate each component D of F \L by Poincar�e geodesics coming from
in�nity in L (vertical geodesics in the upper half-plane uniformization).
Above each such ray r lies a \curtain" in H, bounded by the vertical
line above the point r \ J . Let l be the union of two rays on opposite
sides meeting at J . The curtain above l is, in the induced metric,
isometric toH2, and the vertical line v above l\J is a geodesic. Use the
orthogonal projection to v in this surface to de�ne a product structure.
This varies continuously with the lines l in L, and varies continuously
in the transverse direction of the lamination. Thus it gives a product
structure for the entire lamination, which is also preserved by f̂ , since
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it is clearly a�nely invariant.
Note in particular that the convex core is compact. In Section 8 we

will discuss this phenomenon more generally.

6.5. The scenery ow.

In Bedford-Fisher-Urbanski [5] a construction called the \scenery
ow" is discussed, which is related to the constructions of this paper, in
the case of an axiom A rational map f .

The scenery ow is, roughly, the set of all \pictures" of the Julia
set at small scales. That is, one considers all (complex) a�ne rescalings
(and rotations) of J in C and takes limits in the Hausdor� topology.
The resulting collection of subsets of C is indexed by backward orbits
of f , using the linearization formula (4.2): for each backward orbit ẑ
we consider the Hausdor� limit J(ẑ) of the sets Jn = An(J) where
A(z) = (fn)0(z�n)(z � z�n). The natural action of f on such a set is
f̂(J(ẑ)) = J(f̂(ẑ)) = f 0(z0) � J(ẑ). The ow on the set of pictures is
de�ned by J(ẑ) 7! etJ(ẑ).

Translating this into our terminology, given ẑ 2 J a point inH lying
above ẑ can be written as [�] where � : C ! L(ẑ) is a chart such that
�(0) = ẑ. The corresponding picture J(ẑ) is given by ��1(J \L(ẑ)), and
the scaling ow is exactly the vertical geodesic ow (this interpretation
of rescaling as geodesic ow was part of the original motivation for [5]).
Thus the scenery ow is taken to the \curtain" above the lift of the
Julia set.

7. Universal orbifold laminations

In this section we introduce the machinery for a general construction
of an a�ne orbifold 2-lamination and accompanying hyperbolic orbifold
3-lamination, for any rational map.

In the original construction we were faced with the following issue:
A small disk D in the a�ne part could be approached (in Nf ) by a
sequence of disks Di in such a way that the projections � on Di do
not converge in any sensible way to the projection on D. For example
there could be branching on the Di whereas D projects univalently.
We resolved this in the post-critically �nite case by creating new leaves
and rede�ning the topology so as to sort out the di�erent branching
possibilities.

From the point of view of this section, the projection maps them-
selves from the a�ne leaves to the sphere will be the basic objects, so
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that the topology will automatically include convergence of the maps.
Thus we will consider a space of meromorphic functions, with an asso-
ciated action by a�ne transformations of the domain which gives rise
to a leaf structure (that is, we can think of a leaf as a set of choices of
basepoint for a meromorphic function, with precomposition with a�ne
maps giving the change of basepoint). This will be our \universal" orb-
ifold foliation, and any rational map will act naturally on it and give
rise to an invariant lamination in which our original a�ne space Anf will
be a subset. The new topology A`f is induced from this space, and a
�nal closure step will yield the added leaves.

7.1. Leaves of the a�ne action in the Universal space.

Let ~U denote the space of meromorphic functions on C, with the
topology of uniform convergence on compact sets, and let U denote
the open subset of non-constant functions. Since ~U is a complex vector
space, U can be viewed as an in�nite dimensional complex analytic mani-
fold (anlyticity amounts to analytic dependence on Taylor coe�ecients).

The space U admits two natural commuting analytic actions: a left-
action  7! f �  by the semigroup of rational maps f : �C ! �C,
and a right-action  7!  � A by the group A� of complex-a�ne maps
A : C! C.

Let us �rst consider the structure of the individual orbits  �A� of
the right-action of A� on U , and later show that they �t together into
a foliation. On each orbit we place the leafwise topology, in which open
neighborhoods are sets of the form u �V where u 2 U and V is an open
set in A�. Note that this may be a stronger topology (more open sets)
than the induced topology from U , since a leaf may accumulate on itself
in U .

The map A� !  �A� is locally non-singular { that is, the deriva-
tive map D : Tid(A�) ! T (U) is non-singular, as one may check
by explicit computation. Note that the tangent space T (U) can be
identi�ed with the space ~U . It follows that, for h su�ciently close to
but not equal to the identity,  � h 6=  . Thus the isotropy subgroup
� = f� 2 A� :  � � =  g is discrete in A�. We may therefore make
the identi�cation

 � A� �= � nA� ;
which is a homeomorphism if  �A� is taken with the leafwise topology.
(The quotient is on the left since A� acts on the right, so that  � g =
 � h () g = � � h for � 2 � .)
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Note also that � must in fact consist of isometries of C since a non-
constant meromorphic function cannot be invariant under a dilation.

Now as in Section 6, we may think of C and H3 as the quotients
C �= A� =C� and H

3 �= A� =S1, with associated left-action of A�.
Since right and left actions commute, we may form the quotients

La�( ) �  �A� =C�
�= � nA� =C�

�= � nC;

which is a Euclidean 2-orbifold, and

Lhyp( ) �  � A� =S1 �= � nA� =S1 �= � nH3;

which is a hyperbolic 3-orbifold. Note that the singularities, always
arising from rotations in � , are cone axes.

The natural projection Lhyp( )! La�( ) is a one-dimensional �ber
boundle whose leaves are the orbits of the vertical ow Vr : � 7! � � er
(this ow is well-de�ned since C� is commutative).

As an example, consider  (z) = zm, so that � is the cyclic group
generated by � : z 7! e2�i=mz. The leaf  � A� =C� is then the orb-
ifold h�inC with one order m cone point. More interesting examples
are Chebyshev polynomials associated with trigonometric functions and
Latt�es maps associated with elliptic functions.

A local (orbifold) a�ne chart on a leaf La�(�) near � is given by
translations t 7! �(z + t), where t 2 C is small. In these coordinates
the map f : La�(�)! La�(f � �) becomes the identity. Thus f is a�ne
on the leaves. Hence it is automatically a covering.

Similar statements are valid for the hyperbolic leaves of Lhyp(�),
with local charts (t; er) 7!  (erz + t).

7.2. Foliation structure.

With this point of view on individual leaves, let us consider how
they �t together into the total space U , and its quotients.

Lemma 7.1. The A� action supplies the space U with an analytic
foliation with two complex dimensional leaves.

Proof. This is a generality about any non-singular analytic Lie group
action. However, rather than using deep Implicit Function Theorems
(see [22]), we can check the statement directly.

Let � 2 U . Without loss of generality we can assume that �0(0) 6= 0.
Let

T = f� 2 U : �(0) = �(0); �0(0) = �0(0)g:
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We will show that T is a local transversal to the action of A�. Indeed
take a  2 U near � and a  2 A� near id, (z) = az+b. The condition
that  �  2 T amounts to the following system of two equations for a
and b:

 (b) = �(0); a 0(b) = �0(0):(7.1)

If  is close to �, then the �rst equation has a unique root b near 0 by
the Hurwitz theorem. Thus the second equation has a unique root a
near 1.

It follows that the A� action has a local product structure near �
given by the map T�A� ! U , (�; ) 7! �� near (�; id). This structure
is analytic since this map is so. The inverse map is also analytic as the
solutions of (7.1) analytically depend on the Taylor coe�cients of  (by
the Implicit Function Theorem). q.e.d.

Now we may form the quotients Ua = U=C� and Uh = U=S1, and
we claim that they are orbifold 2- and 3-foliations, respectively.

This follows from the following general fact. Suppose L is a lamina-
tion with �nite-dimensional smooth leaves, and a Lie group G acts on
L (say from the right) preserving leaves. We call the action smooth if
its leafwise derivative exists, and is continuous in L (in the transverse
direction as well).

Lemma 7.2. Let L be a lamination with �nite-dimensional leaves,
admitting a nonsingular proper smooth action by a Lie group G. Then
L=G is an orbifold lamination, where the leaves have dimension equal
to the codimension of G-orbits in the leaves of L. If L is actually an
analytic foliation and the action of G is anlytic, then L=G is an analytic
orbifold foliation as well.

Proof. Note �rst that the properness of the action ensures that the
quotient L=G is Hausdor�.

Let now p 2 B � U where B is a product box B = T � V , with
V a leafwise neighborhood. Write p = (t; v) 2 B. Then because the
G-action is smooth and non-singular, we can �nd a continuous family of
transversals Ks to the G-orbits in each local leaf fsg�V . The union K
is a transversal to the G action, which itself has a product box structure.

The subgroup Gp �xing p is discrete by the non-singularity assump-
tion, and is �nite by the properness assumption. We now get a \�rst re-
turn" action of Gp on a small enough neighborhood of p in the transver-
sal K, and the quotient of this neighborhood by this action is our orb-
ifold box in the quotient L=G. To see this, note that ifK 0 is a su�ciently
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small neighborhood of p in K, then for any q 2 K 0 and g 2 Gp, qg is in
the original neighborhood B, and hence can be uniquely pushed to K
along its G-orbit in B. Thus each element of Gp induces a map K

0 ! K
�xing p and altogether we obtain a �nite group action on the union of
images of K 0.

Finally, it is obvious that if the lamination L and the action of
G have some transversal regularity (e.g., analytic), then the quotient
lamination inherits it. q.e.d.

Let us summarize the above discussion:

Corollary 7.3. The quotient Uh = U=S1 is a hyperbolic orbifold
3-foliation. The quotient Ua = U=C� is an a�ne orbifold 2-foliation,
and the projection Uh ! Ua is a �ber bundle. On the leaves of Uh it is
identi�ed with the vertical projection in each half-space to the bounding
plane.

Remark. The projection U ! Uh is similar to a Seifert �bration.
A function admitting rotational symmetries around 0 gives rise to a
singular �ber: its S1 orbit is �nitely covered by the S1 action, whereas
for nearby functions without the symmetry the orbit is an injective
image of S1. However, note that singular �bers are not isolated, as they
are in Seifert-�bred three-manifolds.

Proof. To apply Lemma 7.2 we need to check that the actions of C�

and S1 are proper. For S1 this is clear since it is compact. For C� we
just have to consider the vertical ow  7!  � er; r 2 R (as in Section
6). But it is easy to see that as r goes to �1  � er diverges in U {
it becomes a constant in one direction, and blows up at every point in
the other. In fact for a small enough neighborhoods U 3  and V 3 �
there is a �xed R so that for jrj > R the rescaling u � er is outside V
for any u 2 U . This proves that C� acts properly.

Note �nally the local a�ne charts are transversally analytic, so that
we obtain an a�ne foliation. Indeed taking an analytic transversal K
to the foliation Ua, the map ( ; t) 7!  (z + t), where  2 K, t 2 C is
small, provides us with an orbifold a�ne box. Similarly, the hyperbolic
structure on Uh is transversally analytic. q.e.d.

We remark that it is easy to see that U is metrizable, and in fact
one can give it a complete metric which is invariant under the right
C�-action. However, we shall not need this explicitly.
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7.3. Characteristic laminations.

Now given a rational map f : �C! �C, we extract from our universal
space U the characteristic orbifold laminations for f . First consider the
\global attractor"

Kf � K =
\
n�0

fn(U);

which is the maximal invariant subset for which f : K ! K is surjec-
tive. Note also that K is naturally a sublamination since it is leafwise
saturated.

Let us show that K is closed in U . It is enough to check that for any
rational map g, g(U) is closed. Let g � �n !  . Then f�ng is a normal
family. Indeed, given any point a 2 C, consider two neighborhoods
U c V 3 a. Then eventually for all n, �n(V ) � g�1 �  (U). Take U so
small that the complement of g�1 �  (U) has non-empty interior. By
Montel's Theorem, the family f�ng is normal on V . As normality is a
local property, f�ng is normal. Let � : C ! �C be any limit function.
Then  = g � �, and we are done.

It is not necessarily true that f jK is injective (see remark below).
Thus we take the natural extension, or inverse limit, of the system
K  

f
K  

f
� � � . Call this new system f̂ : K̂f ! K̂f . Elements in K̂ � K̂f

are simply sequences  ̂ = f n 2 Ugn�0 such that  n+1 = f �  n.
Note that K̂ is still naturally a leaf space: K is invariant under the

right action of A�, which then extends to K̂ via f ng�A = f n �Ag, so
that the leaves project down to (orbifold) cover leaves in K. We want
to check that K̂ is in fact a lamination, i.e., that there is a local product
structure.

Lemma 7.4. K̂f is a lamination whose leaves are the right A�-

orbits. The projection from K̂f to Kf is an orbifold covering on leaves.

Similarly, K̂af � K̂f=C� and K̂hf � K̂f=S1 are orbifold a�ne 2- and
hyperbolic 3-laminations, respectively.

Proof. Fix  ̂ = f ng in K̂. We will describe the structure of a
neighborhood of  ̂ as follows. Let D be some disk in C on which  0
is univalent, and let D00

b D0
b D be nested open disks. Let U be

an open neighborhood of  0 in K for which any u 2 U is univalent in
D0 and such that  0(D

00) � u(D0). Note that we may assume U is a
product neighborhood of the form T � V where V is a neighborhood of
the identity in A�.
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The preimage Û of U in K̂ consists of sequences û = fung for which
u0 2 U . For any such û, notice that, since u0 = fn � u�n for any
n � 0, u�n is univalent on D0 and fn is univalent on u�n(D

0). Thus û
determines an in�nite sequence of univariant pullbacks of u0(D

0), and
hence of  0(D

00). Conversely û is determined by this sequence and u0,
using analytic continuation.

Let � denote the set of all possible in�nite pullback sequences
W0;W�1; : : : where W0 =  0(D

00) and f is univalent at each step.
With the natural topology, this is closed subset of the set of all pos-
sible pullback sequences for W0, and hence a closed subset of a Cantor
set. We thus have an injection of Û into ��U , which is also a topolog-
ical embedding: Suppose for a sequence ûi that the images ((W i

�n); u
i
0)

in � � U coverage. Then ui0 coverage as meromorphic functions, and
for each n > 0 eventually W i

�n are constant. The functional equation
ui0 = fn � ui�n therefore implies that ui�n coverage locally on D00 as
i!1, and in fact form a normal family so that they coverage globally.
Thus ûi coverage. The other direction is easy.

The subset of ��U obtained is saturated in the leaf direction, since
any composition u0 � A lying in U (with A 2 A�) can be pulled back
along the same sequence as u0. Hence there is some subset Q � �� T
so that we may identify Û with Q�V . This is the desired product box.

The fact that K̂=C� and K̂=S1 are orbifold laminations now follows
by another application of Lemma 7.2. q.e.d.

Remark. We expect that in most cases the natural extension step
is unnecessary; that is, f is already injective on K. Counterexamples
are maps with symmetry: for example, the leaf of  0(z) = ez in U=C�

is a cylinder C=2�i, and if f(z) = zd then f is a d-fold cover from this
leaf to itself. It follows that the lift of this leaf to K̂f=C� is a solenoidal
Riemann surface lamination (in fact it is just the original Anf in this
case). We conjecture that non-injectivity only happens when f or a
power of f has a M�obius symmetry.

7.4. Completion.

There is an equivariant inclusion of Anf into our new object K̂a, as
follows. Let ẑ be a point on a leaf L of Anf , and let � : C ! L be
an isomorphism such that �(0) = ẑ. Then for n � 0, �n � � is an
element of K (compare x6). The choice of � was determined only up to
precomposition by C�, so that ẑ determines a well-de�ned sequence in
Ka, which gives an element �(ẑ) 2 K̂a.
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The map � takes leaves to leaves, since another element of L can be
written as �(A(0)) with A 2 A�. � is injective, since at least one of the
coordinates zn must di�er for di�erent points on Anf .

On the other hand, K̂a is also an a�ne orbifold extension of f , in the
sense of Section 6.1, and hence there is also a continuous, equivariant
projection p : K̂a ! Anf . That is, for any [ ̂] = f[ n]g 2 K̂a, let p([ ̂])
be the backward orbit f n(0)g.

It is immediate from the de�nitions that p � � is the identity, but
we note that the opposite is false, since in fact p is not injective and
hence � is not surjective. Indeed, let g : C! C be any non-a�ne entire
function and L a leaf of Anf with chart � : C ! L. Then the sequence

f�n � � � gg is on a leaf of K̂=C� which projects to L but is di�erent
from �(L).

Note that the topology on Anf induced from K̂a is in general stronger
than its own topology, induced from Nf (so that the inclusion � is dis-
continuous). This is in fact the main point of the construction. Let A`f
denote �(Anf ), with the topology induced from K̂a. We also think of Anf
and A`f as being the same underlying space, with di�erent topologies,
which we call \natural" and \laminar".

Our �nal step is to take the closure, in K̂a, of A`f , obtaining auto-
matically an a�ne orbifold extension of f (in the sense of x6) which we
call Af . We think of Af as a completion of A`f .

Going through the same construction replacing C�-action with S1-
action, we obtain the hyperbolic 3D-extension Hf � K̂=S1 � K̂h, with
the hyperbolic action of f̂ .

Remark. The laminated space Af inherits from the universal space
U the quality of a metrizable separable space. Moreover, it has a natural
uniform structure coming from the linear structure of U , and complete
with respect to it. However, Af may presumably inherit from U also
the bad fortune of not being locally compact.

7.5. Induced topology.

Let us give a dynamical description of the new laminar topology A`f
on the leaf space Anf .

By a local leaf Lloc(ẑ; V ) over a domain V � �C containing �(ẑ) we
mean the connected component of L(ẑ) \ ��1V containing ẑ.

Proposition 7.5. A sequence ẑn 2 A`f converges to �̂ 2 A`f if and
only if the following hold:
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(i) ẑn ! �̂ in the natural topology.

(ii) For any N and a neighborhood V of ��N , if the local leaf
Lloc(f̂

�N �̂ ; V ) is univalent over V , then for su�ciently large n,
Lloc(f̂

�N ẑn; V ) is univalent over V as well.

We remark that convergence to a point in Af nA`f is more subtle to
characterize in general. Proposition 8.2 does this in the post-critically
non-recurrent case.

Proof. Assume �rst that conditions (i) and (ii) are satis�ed.
Represent �̂ as a sequence  ̂ = f jg in K̂f , and each ẑn as �̂n = f�nj g,

in particular noting  j(0) = �j and �
n
j (0) = znj .

The statement that Lloc(f̂
�N �̂ ; V ) is univalent over V is equivalent

to saying that  �N is univalent in the component W of  �1N (V ) con-
taining 0 (henceforth we say \ �N is locally univalent over V "), and
similarly for f̂�N ẑn and �n�N .

Whenever, for some n;N; V , both  �N and �n�N are locally univalent
over V , there is a unique univalent map hn : W ! C satisfying  �N =
�n�N �hn onW . Note that, applying f a �nite number of times, we have

 �j = �n�j � hn(7.2)

on W for any j � N . Thus if we increase V or change N (but preserve
the local univalence), we obtain hn equal to the original on the original
domain, or in other words hn is locally independent of N and V . Choose
the normalization of each �̂n (mod C�) so that (h

n)0(0) = 1.
Because �̂ 2 A`f , for any disk Dr around 0 there is some N(r) for

which  �N is univalent on Dr whenever N > N(r). Let V =  �N (Dr).
For su�ciently large n(r), by (i), �n�N (0) = zn�N 2 V , and by (ii), �n�N
is locally univalent over V . Thus we have hn de�ned as above on Dr if
n > n(r).

If we let xn be the preimage of zn�N in Dr by  �N (note that xn is
independent of N if N > N(r)), then hn(xn) = 0, and by (i), xn ! 0
as n!1.

Thus, the sequence of functions hn now has these properties:
(hn)0(0) = 1, hn(xn) = 0 where limn!1 xn = 0, and hn is eventu-
ally de�ned on any compact set in C. It is an application of the Koebe
distortion lemma now to show that hn converges to the identity on
compact sets, and indeed that the image of hn eventually contains any
compact set in C so that (hn)�1 converges to the identity on compact
sets as well.
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Applying (7.2) for any j, we conclude that �nj !  j on compact sets

for all j. Thus ẑn ! �̂ in A`f .
Conversely, let ẑn 2 A`f converge to �̂ 2 A`f . Assertion (i) is obvious;

it is just the statement that p : K̂f ! Anf is continuous, which we have
already observed.

For (ii), let V be a neighborhood of ��N such that Lloc(f̂
�N �̂; V )

is univalent over V , and let  �N : C ! �C be as above. If W is the
component of  �1�N (V ) containing 0, we then have  �N univalent onW .

Because a slight enlargement V 0 of V (so that V b V 0) pulls back
along the rest of �̂ with bounded branching (by de�nition of Anf ), it
follows that W has compact closure in C. Let W b W 0

b W 00 be a
pair of enlargements of W , also with compact closure. By de�nition of
convergence in A`f , there are representatives '̂n = f'nj g of ẑn in K̂f such
that 'n�N converges on W 00 to  �N . It follows that for large enough n,
'n�N is univalent on W 0 and 'n�N (W

0) contains V , and thus (ii) holds.

q.e.d.

7.6. Uniqueness.

Let us now consider, for an abstract a�ne orbifold extension A of f
in the sense of Section 6.1, what properties force it to be equal to our
universal construction K̂a.

There is a natural map I : A ! K̂a, de�ned similarly to �: for any
z 2 A, let � : C! L(z) be (the inverse of) any a�ne chart for the leaf
of z that takes 0 to z. Then the sequence f[�n ��]g gives a well-de�ned
element of K̂a, where �n are the projections of A to �C. The di�erence
between I and � is that I is automatically continuous because of the
transverse continuity of the a�ne structures in A.

We now observe that I(A) is equal to K̂a if the following conditions
hold:

1. The map I is an embedding,

2. A`f is dense in I(A), and
3. I(A) is closed

In particular, the �rst condition reduces to checking that I is both
injective and proper: i.e., that an element of A is determined uniquely
by the sequence of functions �n � �, and that convergence in A follows
from convergence of the sequence of functions.
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For the construction of Section 5 of orbifold laminations for post-
critically �nite maps, these properties evidently hold, and therefore the
general construction produces the same object.

7.7. Minimality.

Let us show that the laminations which we constructed are minimal.
Note that this does not follow from Lemma 4.8 since the topology of
Af is stronger than that of Nf .

Proposition 7.6. The laminations Af and Hf are minimal except
for the Chebyshev and Latt�es examples. In those cases the lamination
becomes minimal after removing the isolated invariant leaf associated
with a post-critical �xed point.

Hence every open set K of either lamination contains a global cross-
section for it (except the isolated leaves in the above special cases).

Proof. Clearly it is enough to consider Af . Since A`f is dense in Af ,
it su�ces to demonstrate the density of leaves in A`f .

Let us �rst show that any invariant leaf L is dense. Take a point ẑ =
fz0; z�1; : : : g in A`f , and a �nitely branched pullback of neighborhoods
fU0; U�1; : : : g along it. In the case where f is Latt�es or Chebyshev
assume that ẑ is not a postcritical �xed point. Then Proposition 12.1
and the expansion property of f on the Julia set easily yield the existence
of a limit point a 2 �C for ẑ and � > 0 such that one of the local leaves
Lloc over D(a; �) is not branched.

For su�ciently large N , U�N pulls back univalently along the rest
of ẑ, and by the Shrinking Lemma, there is a sequence Ni ! 1 such
that U�Ni

� D(a; �).
Thus Lloc is univalent over U�Ni

. Let b̂i be the point on this local
leaf which projects to z�Ni

. Then by Proposition 7.5, the sequence
f̂Ni b̂i 2 L converges to ẑ in the Af topology as i ! 1, which proves
the density of L.

Replacing f by its iterate, we conclude that every periodic leaf is
dense in Af .

Let us now show that every leaf L(ẑ) � A`f accumulates on some
periodic leaf. To this end take �ve periodic points �k and associ-
ated periodic leaves Lk � L(�k). Select �ve disjoint topological discs
Dk 3 �k. By Ahlfors' Five Islands Theorem (see [52, Theorem VI.8]),
for any n, each f̂�nL(ẑ) has a univalent local leaf over one of the do-
mains Dk. Take a k for which this happens for in�nitely many n's.
Then by the same argument as above L(ẑ) accumulates on the periodic
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leaf Lk. q.e.d.

8. Convex-cocompactness, non-recurrence and conical points

De�ne the Julia set Jf inAf to be the pullback of Jf by � : Af ! �C.
Let J `f denote Jf \A`f . Note that J `f and J nf have the same underlying

set and di�erent topologies, and that Jf is the closure of J `f .
We say that f is convex cocompact if the quotient C(Jf )=f̂ of the

convex hull is compact. In this section we prove several criteria for
convex cocompactness. The main criterion is the following:

Theorem 8.1. A rational map f is convex cocompact if and only if
it is postcritically non-recurrent and has no parabolic points.

Remark. This criterion is closely related to the \John domain
criterion" given by Carleson, Jones and Yoccoz for polynomials [13]. See
also McMullen [34] for the connection between convex-cocompactness
and the John condition in the setting of Kleinian groups.

8.1. Convergence and compactness.

For a critically non-recurrent map f without parabolics, we can give
a dynamical criterion for convergence in Af (note that Proposition 7.5
only applied to convergence within A`f . This criterion includes the pos-
sibility that a bounded amount of branching persists in the limit and
yields a point outside A`f ). Let p : Af ! A`f denote the natural projec-
tion.

Proposition 8.2. Let f be critically non-recurrent without parabol-
ics. A sequence of points ẑn 2 A`f converges to � 2 Af , with p(�) = �̂,
if and only if

(i) ẑn ! �̂ in the natural topology and

(ii) For any N and a neighborhood V of ��N , if the local leaf
Lloc(f̂

�N �̂; V ) is univalent over V , then the following holds:

There is a �nite set of points fckg � V such that for any neigh-
borhood 
 of fckg there exists M = M(
) so that, if n > M , the
local leaf Lloc(ẑ

n; V n 
) covers V n 
 without branching, and for
any n;m > M the coverings are topologically equivalent.

Moreover, the projection L(�) ! L(�̂) is a �nitely branched covering
with uniformly bounded degree.
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Proof. By Ma~n�e's Theorem, there is a neighborhood W of Jf , and
�0 > 0 and K0 with the following property: for any backward trajectory
ẑ = fz0; z�1; : : : g 2 Nf with z0 2 W , the pullback of the disk D(z0; �0)
along ẑ branches at most K0 times. (Compare the proofs of Lemma 3.5
and Proposition 4.5).

Furthermore, for any ẑ which is not an attracting cycle, there is an
N0(ẑ) such that z�n 2W for n > N0.

Assuming that (i) and (ii) hold, represent �̂ using a sequence f �Ng 2
K̂f . For any disk D � C, for large enough N > N0 the map  �N is
univalent in D and has image in W , and in fact in D(��N ; �0). For
su�ciently close ẑn to �̂, zn�N is also in W , and hence the pullback of
D(zn�N ; �0) along the rest of ẑ

n has uniformly bounded branching.

Condition (ii) now gives a branched cover of D which is conformally
equivalent to the coverings of Lloc(f̂

�N ẑn;  �N (D)) !  �N (D) away
from a small neighborhood of the critical points, for large enough n.
This branching is uniformly bounded no matter how large D is taken,
so we obtain a polynomial h : C ! C. The sequence f �N � hg 2 K̂f
will represent the limit � of the ẑn in Af , by an argument similar to that
in Proposition 7.5, where condition (ii) keeps the branching consistent.

More precisely, let D0 = h�1D and assume that D0 is large enough
that the (�nite) set C of critical points of h is separated from @D0 by an
annulus of modulus M > 0. For each n represent ẑn by a sequence of
functions �n�N : C! �C, normalized so its 1-jet agrees with  �N � h at
a �xed non-critical point w 2 D0. Let Y be a neighborhood of C so that
D0 n Y contains an annulus of modulusM around each puncture. Then
condition (ii) gives, for large enough n, a univalent map un : D

0nY ! C
such that  �N � h = �n�N � un, and un(w) = w; u0n(w) = 1. Note
that un, once de�ned on D0 n Y , remains the same there as we enlarge
D0, shrink Y and increase N , and that  �N � h = �n�N � un wherever
it is de�ned. Again using Koebe distortion (this time on a multiply
connected domain), we have un ! id on compact subsets of C n C. It
follows that for every N , �n�N !  �N � h, so that ẑn ! � as n!1.

Moreover, p : L(�) ! L(�̂) is a �nitely branched covering with
bounded degree since h is.

Conversely, suppose that the sequence ẑn converges in Af . Since by
the same discussion the branching over each disk D(z; �0), z 2 Jf , is
eventually uniformly bounded, there must be some subsequence of the
ẑn for which the branching converges in the sense of (ii), and so the
limit is equal to the limit de�ned in the previous paragraph. It follows
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that the same holds for any subsequence, so that in fact (ii) holds for
the whole sequence. q.e.d.

Corollary 8.3. Let f be critically non-recurrent without parabolics.
A set K � A`f is pre-compact in Af if and only if its closure in the
natural extension Nf does not contain attracting cycles.

Proof. If a sequence fẑng � A`f does not accumulate on attracting
cycles, then Mane's Theorem easily yields the existence of a subsequence
satisfying (i) and (ii) of the previous proposition. q.e.d.

8.2. Proof of Theorem 8.1.

Let us split the proof into two steps represented by the following
two criteria.

Lemma 8.4. The Julia set Jf is compact if and only if f is criti-
cally non-recurrent and has no parabolic points.

Proof. If Jf is compact, then J nf is compact inAnf , since J nf = p(Jf )
where p : Af ! Anf is the natural continuous projection. Hence by
Corollary 4.9 f is critically non-recurrent without parabolic points.

Vice versa, if f is critically non-recurrent without parabolic points,
then the compactness of Jf follows from Corollary 8.3. q.e.d.

Proposition 8.5. A rational map f is convex cocompact if and only
if the Julia set Jf is compact.

Proof. Let V = V(J ) denote the \curtain" over J = Jf in H. That
is, the union of vertical geodesics over points of J . We will �rst show
that V=f̂ is compact if and only if J is compact.

Observing that J is just the quotient V=eR by the vertical geodesic
ow, we may view this equivalence in slightly generalized terms:

Let X be a Hausdor� space admitting commuting actions by two
closed non trivial subgroups G and H of R. Let G act on the left and
H on the right, for clarity. Suppose G and H both act properly, and
that they are coherent in the sense of Lemma 6.1: any x; y 2 X are
contained in neighborhoods Ux; Uy for which giUx \ Uyhi 6= ; only if
gi; hi both remain bounded, both go to +1 or to �1. We claim that
GnX is compact if and only if X=H is compact.

Suppose without loss of generality that GnX is compact, and let
K � X be a compact fundamental domain, i.e., GK = X. Let x 2 K
and consider the positive return time g+(x) for the orbit xH to return to
KH under G. That is, let g+ be the smallest positive element of G such
that g+xH \ KH 6= 0. We claim this is bounded for x 2 K. Choose



laminations in holomorphic dynamics 69

h < 0 in H su�ciently far from 0 that Kh \ K = ; (by the proper
action of H), and that gK \Kh 6= ; only for g < 0 (this is possible by
coherence, after covering K with a �nite number of neighborhoods Up).

Thus the point xh is not in K, so there is some g+ > 0 such that
g+xh 2 K. Hence g+Kh \K 6= ; for each g+, so that �xing h we have
an upper bound for g+ independent of x, by the proper action of G.

Reversing the signs in the argument we also obtain a bounded neg-
ative return time for every x 2 K. We conclude that, in the action of G
on X=H, every point has a bounded negative and positive return time
to the projection KH of K. Since X=H is covered by G-translates of
KH, it follows that there is a bounded subset I of G such that IKH
covers X=H. Thus X=H is compact.

In our situation the groups are Z and R, and we conclude that V=f̂
is compact if and only if V=eR = J is compact (note: it would be more
consistent to denote the �rst quotient f̂nV). It remains to check that
compactness of V=f̂ is equivalent to compactness of the convex core
quotient. Since the curtain is closed in the convex core, one implication
is clear. Conversely, if we know that V=f̂ is compact, we need only
to observe that the convex core lies in a bounded neighborhood of the
curtain. That is, let p 2 C be some point, represented as (z; t) in a
half-space model of the leaf Lhyp(p) of H. If z0 is the nearest point to z
in the local Julia set J \L, then t > jz� z0j because otherwise p lies in
a hemisphere over z disjoint from J , and therefore outside the convex
hull. It follows that the hyperbolic distance from p to (z0; t), which lies
in V, is less than 1.

It is easy to check that a leafwise 1-neighborhood of a compact
subset of a hyperbolic 3-lamination is itself compact, so this concludes
the proof. q.e.d.

8.3. Conical points.

Given a point z 2 J , let z be the vertical geodesic in Hf termi-
nating at z. By analogy with Kleinian groups, let us say that z 2 A
is a conical point if the projection of the geodesic z to the quotient
lamination H=f̂ does not escape to in�nity (which means that there
is a sequence of points pn 2 z tending to z whose projection to H=f̂
converges). Note that in this de�nition the vertical geodesic can be re-
placed by any geodesic terminating at z since all of them are asymptotic
in the hyperbolic metric.

Equivalently, z 2 Af is conical i� its forward orbit ff̂nzg1n=0 is non-
escaping in Af , that is, the !-limit set !(z) is non-empty. Indeed, given
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two proper commuting group actions G andH on a space X, the G-orbit
of a point x 2 X is non-escaping in the quotient by H if and only if its
H-orbit is non-escaping in the quotient by G, since either is equivalent
to non-escaping of the double orbit GxH in X. In our situation we have
a Z-action by f̂ on Hf , and the R-action of the vertical geodesic ow

(as in Section 6). The directionality of our statement (forward f̂-orbits
accumulate inHf=eR = Af if and only if backwardR-orbits accumulate

in Hf=f̂) comes directly from the coherence of the actions, Lemma 6.1.
Let � = �f denote the set of conical points.

We further note that the property of being conical depends only on
the projection to �C. Let us say that a set X � A is �ber saturated if
X = ��1(�(X)). The reason is that the �bers play the role of local
stable manifolds for f̂ (the proof below makes precise the sense of this
statement).

Proposition 8.6. The set of conical points is �ber saturated.

Proof. Let us show that the !-limit sets of z and w are equal,
up to �nite branched cover. Represent z and w in K̂af by sequences
of meromorphic functions f�ng and f ng such that �0(0) =  0(0) =
�(z). To compute the !-limit sets it su�ces to consider just the �rst
coordinate functions, � = �0 and  =  0. Suppose �rst that � is
non-singular at z and w, so that we may assume  0(0) = �0(0) = 1.

Now suppose that h is a limit point of fn � � in Ua. This means
that for some sequence ni, and �i 2 C�, f

ni � � � �i converges to h on
compact subsets of C. By Lemma 6.1, we know that j�ij ! 0. Now
�xing a disk D � C around 0, we see that for i su�ciently large, �
and  are both invertible in �iD, and by the Koebe distortion theorem,
the combined map ( � �i)�1(� � �i) converges to the identity on D. It
follows that fni �  � �i also converges to h.

If, on the other hand,  and/or � have branched points at 0, say with
degrees k and m respectively, let d = lcm(k;m) and write e =  � bd=k
and e� = � � bd=m, where bj(z) = zj . Now e and e� both have degree

d at 0, and for small j�ij we still make sense of ( e � �i)�1(e� � �i) as
a univalent map. Hence the Koebe distortion argument goes through
and we may conclude that ffn � e g and ffn � e�g have the same !-limit
points in Ua. q.e.d.

Let � = �� � Jf � �C. By the above proposition, it is justi�ed to
call the points of this set conical as well. Let us show that it is trapped
in between two well-studied sets.
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First, let �1 denote the set of points z 2 Jf such that there is an
r > 0 and a sequence ni ! 1 (depending on z) such that the multi-
valued inverse branch f�ni : D(fniz; r)! Ui 3 z has a bounded degree
(compare [23]).

The second set, �0 is the union of all expanding subsets of the Julia
set (a compact invariant set X � �C is called expanding if f : X ! X is
surjective and some iterate fnjX has spherical derivative strictly greater
than 1).

Proposition 8.7. �0 � � � �1.

Proof. Let us start with the right-hand inclusion. Let z = �(z) for
z 2 �f . Then there exists a sequence ni !1 such that f̂niz! � 2 Af .
Translation of this to the language of meromorphic functions provides
us with a desired family of inverse branches with bounded degree.

For the left-hand inclusion, take a point z in an expanding set
X � �C. First notice that by Lemma 4.1 any backward orbit ẑ in
the invariant lift X̂ � Nf belongs to a parabolic leaf. Then, take any

convergent subsequence fni ẑ ! �̂ 2 X̂ in the natural topology and
apply Proposition 8.2 to see that it is convergent to the same point in
the laminar topology as well (the local leaves in condition (ii) of this
proposition can be selected univalent). q.e.d.

Proposition 8.8. If f is convex cocompact, then all points of the
Julia set Jf are conical.

Conversely, if the lamination Af is locally compact and all points of
the Julia set Jf are conical, then f is convex cocompact.

Proof. Assume f is convex cocompact, that is, the convex core Cf=f̂
is compact. Since z � Cf for any z 2 Jf , the conical property of z
follows.

For the converse, suppose the lamination Af is locally compact.
Then there is a compact set K with non-empty interior. By Proposi-
tion 7.6, K meets every leaf of the lamination. Since the set K\Lhyp(p)
is closed in the intrinsic leaf topology, for any p 2 H, there is a length
minimizing geodesic �p joining p to K. Let dist(p;K) denote the hy-
perbolic length of this geodesic. It can be also de�ned as the in�mum
of lenths of all curves joining p and K.

Given a set X � H, let N(X; r) = fp 2 H : dist(p;X) < rg denote
the leafwise R-neighborhood of X. Then any compact set Q � H is
covered by some N(K;R). Indeed, for every q 2 Q there is a curve 
joining q with a point in the interior of K. If the length of this curve is
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r, then all su�ciently nearby points can be joined with intK by a curve
of length less than r + �. Now compactness of Q yields the statement.

Note also that the space G of one-sided geodesics beginning in K is
parametrized by the unit tangent bundle over K and hence is compact.

Assuming that the convex core Cf=f̂ is not compact let us construct

in it an escaping geodesic. Consider a sequence of points qn 2 C=f̂
escaping to 1 and the corresponding minimizing geodesics �n � �qn .
By compactness of G, there is a limit geodesic � beginning at K. Let
us show that this geodesic escapes to 1.

Indeed, otherwise there is a compact set Q � C=f̂ which � does not
escape. Let us consider the leafwise 1-neighborhood N(Q; 1) of Q. Its
closure is compact and hence is contained in some leafwise neighborhood
N(K;R) of K.

Since the �n accumulate on �, for some n there are two points
a; b 2 �n \ N(Q; 1) such that the distance berween them along �n is
greater than R. On the other hand, there is a curve from b to K of
length less than R which contradicts the minimality of �n. q.e.d.

Let us say that a set X � A is locally �ber saturated if for any point
p 2 X there is a box neighborhood U 3 x such that if q 2 U \X, then
the whole �ber ��1(�q)\U belongs to X. We can then say that such a
set X is measurable and has \zero", \positive" or \full" measure if the
corresponding property is satis�ed leafwise, that is for its intersection
with every leaf. Note that these notions are well de�ned on the a�ne
leaves though the Lebesgue measure is not. Note also that they don't
require any transversal measure.

Given a measurable locally �ber saturated f̂-invariant set X � A,
we say that f̂ jX is ergodic if every measurable locally �ber saturated
f̂-invariant subset Y � X has either zero or full measure.

An invariant line �eld on A is a measurable real one-dimensional
distribution in the tangent bundle TA over a set of positive measure,
which is transversally continuous in measure and invariant under f̂ . We
say that the line �eld is constant if it is constant in the a�ne chart on
any leaf. Note, if we are considering an orbifold leaf, then this must
take place in a �nite cover { this allows the case of an orbifold point of
order two, and a line �eld with a simple pole singularity. This is exactly
what occurs for the deformable Latt�es example.

Given a measurable set X and a set of positive Lebesgue measure Y
on an a�ne leaf L, let dens(XjY ) = meas(X \ Y )=meas(Y ) (note that
this is a well de�ned quantity). Let us formulate some general ergodic
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properties of the conical set:

Proposition 8.9. � The set �f of conical points has either zero
or full Lebesgue measure.

� In the latter case f is ergodic, except for the Latt�es examples.

� Any invariant line �eld on �f is constant, except for the isolated
leaves of Latt�es examples.

Proof 1. This proof demonstrates how the blow-up method works in
the lamination context.

Take any invariant locally �ber saturated set X � �f of positive
measure. Then X \ L has positive measure for any leaf L � A. Take
a leaf L and a density point z of X in L. Since z is conical, there is a
convergent sequence f̂n(k)z! �. Take an arbitrary round discD � L(z)
and a box neigborhood D � T of z. Let � = (�; �); zn(k) = (zk; tk) 2
D � T .

Let us consider round discs �k = f̂�n(k)(D � tk) on the leaf L(z).
By the Shrinking Lemma, they shrink to z and hence dens(Xj�k)! 1.
Since f̂ is leafwise a�ne, dens(Xj(D � tk)) ! 1 as k ! 1. Since X
is �ber saturated, dens(Xj(D � �)) = 1. Since the disc D is arbitrarily
big, X has full measure on the leaf L(�).

Since the leaf L(�) is dense in Af (except the isolated leaves in the
Latt�es examples) and X is locally �ber saturated, it has full measure on
every leaf. This proves the �rst two statements, except for the Latt�es
examples.

Finally, the �rst statement holds for the Latt�es examples since �f =
Af by Theorem 8.1 and Proposition 8.8. The second statement fails
for the trivial reason that the isolated leaf is an invariant locally �ber
saturated subset of Af . However, the previous argument shows that
this leaf and its complement are the only subsets like this.

If now X supports an invariant line �eld �, take z to be a Lebesgue
continuity point for this �eld on the leaf L(z), so that � is almost con-
stant on �k \ X n Y where dens(Y j�k) ! 0 as k ! 1. It follows
that �j(D � tk) accumulates in measure on constant line �elds. Since
� is transversally continuous in measure, �j(D � �) is constant almost
everywhere, and hence almost everywhere on the leaf L(�). As this leaf
is dense in A, except for the isolated leaves of Latt�es examples, the last
statement follows as well. q.e.d.

Proof 2. This proof (for �rst two statements only) exploits Ahlfors'
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harmonic extension method. Namely, let X � � be a locally �ber sat-
urated set of positive measure. Then we construct a harmonic function
on H=f̂ by solving a Dirichlet problem on each leaf. That is, given an
a�ne leaf L � A and the attached hyperbolic leaf HL � H, construct
harmonic h : HL ! R+ whose boundary values are 0 on F and 1 on
� \ L. It is perhaps best to think of h(x) for x 2 HL as the area of
�\L as measured in the \visual metric" at x. That is, we map HL [L
by M�obius transformation to the unit ball taking x to 0, and measure
the area of the image of J \ L on the unit sphere. This is the same
as integrating the Poisson kernel against the characteristic function of
� \ L.

One must check that h is continuous (in the transverse direction).
But if we �x a box neighborhood T�D for a largeD in L (in the orbifold
case this should be the �nite cover of a box neighborhood), then for
points near x (in the transverse direction) the visual measure induced
on the leaves near L changes continuously on D (and if we choose D
large enough, is very small on the complement of D in each leaf). The
intersections of � with nearby leaves is a continuous family of analytic
branched covers. It follows that area measure on � varies continuously
in the transverse direction, and therefore so does its integral with respect
to the visual measure.

Consider now a density point z 2 X and the geodesic z � L(z)
terminating at this point. Then h(p) ! 1 as p ! z along z, since the
visual are of X as seen from p is going 1.

Observing also that h is invariant by f̂ , we obtain a continuous
leafwise harmonic function g on the quotient H=f̂ . Since z is conical,
the projection of z to H=f̂ has a limit point q. By continuity, g(q) = 1.
By the Maximum Principle, g is identically equal to 1 on the whole
leaf L(q). By Proposition 7.6, this leaf is dense, except for the Latt�es
examples, and thus g is identically equal to 1 on the whole lamination.
It follows that X has full measure. q.e.d.

Remark. Given Proposition 8.7, the results of the above proposi-
tion are not really new (compare [23], [7, Lemma 10], [30, Theorem 3.9]).
However, the laminations give a new insight on them, and strengthen
the connection to the corresponding results for Kleinian groups.

Corollary 8.10. If f is not Latt�es, then there are no invariant line
�elds on �f which come from the sphere C.

Proof. It is easy to see that one can always �nd two leaves L(ẑ1)
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and L(ẑ2), with �(ẑ1) = �(ẑ2) � z such that L(ẑ1) is branched at ẑ1
while L(ẑ2) is regular at ẑ2. Then the push-forward of a constant line
�eld from L(ẑ1) has a singularity, while the push-forward from L(ẑ2)
does not.

The only case when this does not lead to a contradiction is when
one of the above leaves is isolated, so that the invariant line �eld is not
necessarily constant on it. But this may happen only for the Latt�es
examples. q.e.d.

8.4. Elliptic structure of the Latt�es examples.

Let us show in conclusion how the invariant line �eld imposes the
\elliptic structure" of the Latt�es examples. We have seen that the in-
variant line �eld may exist only if there is an isolated leaf Lr. But
then there should exist a non-isolated orbifold leaf Ls with an orbifold-
constant line �eld.

Considering the projection � : Ls ! �C we see that the line �eld on
�C is locally (a.e.) the image of the constant line �eld under a branched
cover. It follows that the branching of � can be at most degree 2,
and that the line �eld on �C can only have isolated index �1=2 (pole)
singularities. By the index theorem on line �elds, there must be exactly
four of these. Thus �C has the structure of an orbifold with four order-2
singular points, the (2,2,2,2) orbifold (this is exactly Thurston's orbifold
for this map).

Let X � �C denote the above set of four singular points. It is clearly
forward invariant under f . The property that the leaf Lr is isolated
means that all backward orbits ẑ with z0 2 X eventually escaping X
hit a critical point. In other words, � : Ls ! �C is double branched at
all points of Ls \ ��1X, except the singular periodic point. Thus this
map is an orbifold cover. (See e.g. Thurston [51] or Scott [42] for a
discussion of orbifolds and orbifold covers).

Let q : eLs ! Ls be the double covering associated to the orbifold
structure of Ls, eLs � C. It follows that � � q : eLs ! ( �C;X) is an
orbifold universal cover. The group of deck translations for such a cover
is generated by a lattice of translations and the involution z 7! �z.

Let m be a period of the leaf Ls. Note that f̂m : Ls ! Ls lifts (in
two ways, because of choice of sign) to a multiplication map g : z 7! nz
on eL. The constant n must be real, since g preserves the line �eld. On
the other hand g commutes with � � q, so it preserves the lattice. Hence
n is an integer. In other words the original map f is the projection of
an integral torus endomorphism, i.e., a deformable Latt�es example.
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9. Quasi-isometries and rigidity

9.1. Rigidity.

In this section we will use the convex-cocompactness of the quotient
3-lamination to prove rigidity of critically non-recurrent maps without
parabolic points, which extends Thurston's rigidity theorem (see [17]).

Theorem 9.1. Let f and g be two critically non-recurrent rational
maps without parabolic periodic points.

1. If f and g are topologically conjugate, then they are quasi-confor-
mally conjugate.

2. If the conjugacy is equivariantly homotopic to conformal on the
Fatou sets, then f and g are M�obius conjugate, except for the
Latt�es examples.

In particular, the second case holds automatically when the Julia sets of
f and g coincide with the whole sphere.

Remarks.

Thurston's proof of rigidity for post-critically �nite maps used a
contraction principle on a Teichm�uller space, which is another aspect
of the connection between rational maps and Kleinian groups (see [31],
[32]).

Our proof uses another familiar scheme from both dynamics and hy-
perbolic geometry, which is roughly as follows. In step one, a topological
conjugacy is promoted to a quasi-conformal conjugacy, using some geo-
metric information. In step two, the quasi-conformal conjugacy is found
to be conformal by an ergodic reasoning, because it induces an invariant
line �eld on the Julia set.

In the convex cocompact case, the topological conjugacy is almost
immediately quasi-conformal, because it gives rise to a homeomorphism
on compact sets (the convex cores), which is automatically a quasi-
isometry of the 3-laminations. This is directly analogous to the proof of
Mostow's rigidity theorem in the case where the Fatou domain is empty,
and to Marden's isomorphism theorem otherwise.

The second step, absence of invariant line �elds, follows from the
properties of the conical limit set given in the previous sections.
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Proof.

Let Af and Ag be the a�ne orbifold laminations constructed from
the natural extensions of f and g, and let Hf and Hg be the hyperbolic
orbifold 3-laminations built over Af and Ag.

Let � : �C ! �C be the homeomorphism conjugating f to g. Let
�̂ : Nf ! Ng denote the natural extension of �, which conjugates the

action of f̂ to that of ĝ. This map admits a continuous extension to a
homeomorphism, which we also call �̂, fromAf toAg, again conjugating
f̂ to ĝ, and preserving orbifold a�ne structure. Indeed, Proposition 8.2
describes convergence in Af in dynamical terms which are respected by
topological conjugacy. (Note: this is not obvious and maybe not true
for critically recurrent maps.)

We may assume that � is quasi-conformal on the Fatou set F (f),
possibly after applying an equivariant homotopy. Let us give a sketch
of this well-known procedure. Let �a be an attracting cycle. If it is not
superattracting, we may choose a fundamental annulus around one of
its points a. On this annulus we may homotope �, �xing it on the post-
critical points, to some C1 di�eomorphism which conjugates f to g on
the boundary. This homotopy can then be transported by the action of
f and g to the rest of the attraction basin B of �a. By a Poincar�e length
argument the tracks of the homotopy have vanishing Euclidean length
near @B, so that it can be extended as the identity to @B. Finally,
Man�e's Theorem implies that the diameters of the Fatou components
tend to 0, so that the homotopy can be extended as the identity to the
rest of the sphere.

If �a is superattracting, the B�ottcher coordinate provides us with an
invariant circle foliation in a punctured neighborhood of a. Moreover,
this foliation is a�ne (that is, there is a canonical a�ne structure on
the leaves), as the B�ottcher coordinate is unique up to scaling and rota-
tion. Select now a fundamental annulus, with the a�ne circle foliation
inside and marked post-critical points. There is a homotopy of � in
the fundamental annulus to some di�eomorphism, which respects this
extra structure, and conjugates f and g on the boundary. By means of
dynamics this homotopy can be spread around the whole basin B. By
the same reason as above it can be extended to the rest of the sphere
as the identity.

In the post-critically �nite case the action of a power of f on the
immediate basin of a (that is, the component of D containing a) is
conjugate to z 7! zd, and similarly for g (see [24], Theorem 1.6). Then
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� can be homotope in the fundamental annulus to a di�eomorphism
which is linear in the B�ottcher coordinates. Hence it is conformal on
the basin, and we are in case (2) of the theorem.

We next extend �̂ to a conjugacy of the 3-laminations, using the
following elementary fact:

Lemma 9.2. For any homeomorphism � : C! C there is a home-
omorphism e(�) : H3 [ C ! H3 [ C which restricts to � on C, such
that the following are satis�ed:

1. The extension is a�nely natural: If �; � are (complex) a�ne maps
of C, then e(�) and e(�) are the unique possible similarities of H3,
and

e(� � � � �) = e(�) � e(�) � e(�):
2. e(�) depends continuously on �, in the compact-open topology on

maps of C and H3.

3. e(�)�1 depends continuously on � or, equivalently, on ��1.

Proof. The de�nition of e(�) is the following:

e(�)(z; t) =

�
�(z);max

jwj=t
j�(z + w)� �(z)j

�
:

Note in particular that the vertical line over each z 2 C is mapped
homeomorphically to the vertical line over �(z), since the max is mono-
tonic in t as a result of the assumption that � is a homeomorphism.
Hence the map is a homeomorphism. The other properties follow easily.
Note that part (3) is not completely automatic since e(�)�1 is not in
general equal to e(��1). q.e.d.

As a corollary, we can extend �̂ leafwise to a map Ê : Hf ! Hg,
which is a homeomorphism on every leaf. The extension is well-de�ned
because it is a�nely natural. Note that, on the orbifold leaves, we must
apply the lemma to the appropriate branched cover of the leaf. Since
the map back to the orbifold leaf is quotient by rotations, the a�ne
naturality of the extension implies that the extension is well-de�ned
downstairs.

Continuity of Ê follows from part (2) of Lemma 9.2, applied to a
local trivialization, i.e., a product-box (or orbifold-box) neighborhood
in Hf and in Hg. Continuity of Ê�1 follows from the same argument,

using part (3) of Lemma 9.2. Thus Ê is a homeomorphism.
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Again the a�ne naturality of the extension and the fact that f̂ and
ĝ act by a�ne isomorphisms on the leaves imply that Ê conjugates f̂
to ĝ. We conclude that it projects to a homeomorphism

E : Hf=f̂ !Hg=ĝ:

We next show that the E can be deformed to a quasi-isometry:

Lemma 9.3. There exist K; � > 0 and a map Ê0 : Hf !Hg, which
agrees with Ê on Af and is a (K; �)-quasi-isometry on each leaf.

Proof. Note that to show a map h : H3 ! H3 is a quasi-isometry it
su�ces to show that there exist �1; �2 such that for all balls B of radius
�1, diam(h(B)) � �2, and similarly for h�1. Let us call this property
quasi-Lipschitz, so that quasi-isometry is equivalent to quasi-Lipschitz
in both directions.

Consider �rst the case that f (and therefore g) has no Fatou domain.
In this case the convex cores are the entire quotients, and by Theorem
8.1 Hf=f̂ and Hg=ĝ are both compact. If we �x �1 > 0, then the

function x 7! diam(Ê(B(x; �1))) is continuous in x 2 Hf { as one can
see by considering a local trivialization of the lamination. Here B(x; �1)
is a leafwise hyperbolic ball of radius �1, and diam refers to diameter
measured inside a leaf. By compactness, then, it has a �nite upper
bound. Since we can do the same for Ê�1, we are done in this case.

In the case where the convex core Cf is not all of Hf , we �rst adjust
the map so that it takes a small neighborhood of Cf to Cg.

Let Cf (�) denote the closed �-neighborhood of Cf , by which we mean
the union of leafwise �-neighborhoods. Note that Cf (�)=f̂ is still com-
pact. Recall the product structure on H n Cf (�), discussed in Appendix
2 for the leafwise case, but extended to the global lamination by virtue
of the discussion in x6.4 and Lemma 12.3 on continuous variation of
convex hulls. This product structure (in particular projection along the
gradient lines) gives a C1 identi�cation between @Cf (�) and Ff , and
moreover we obtain a homeomorphism Pf : Hf [ Ff ! Cf (�) which is
the identity on Cf , and equal to �� on Ff . On each leaf Pf is the map
h�1�;J discussed in the proof of Lemma 12.3. Because the construction is

natural, Pf commutes with f̂ .

Letting Pg denote the corresponding construction for g, we then have
(�xing � > 0) a map

Ê0 = Pg � Ê � P�1f : Cf (�)! Cg(�);



80 mikhail lyubich & yair minsky

which is a homeomorphism that restricts to a C1 di�eomorphism on
@Cf (�), and conjugates f̂ to ĝ. We can extend this to a map, also called

Ê0, on all of Hf , using the product structure; that is, sending gradient
lines to gradient lines at unit speed.

This map is the desired quasi-isometry. On Cf (�) it is quasi-Lipschitz
as before, by the same compactness argument on the quotient; and sim-
ilarly for (Ê0)�1 on Cg(�). In the exterior, Proposition 12.2 determines
the metric up to bilipschitz homeomorphism in terms of the metric on
the boundary of Cf (�) (or Cg(�)). It follows that it is bilipschitz on the

exterior, since Ê0 is a C1 di�eomorphism on the boundary. (We are also
using the fact that @Cf (�)=f̂ is compact to bound the derivatives of the
map on the boundary).

Since Ê0 is a quasi-isometry, it extends continuously to a quasicon-
formal homeomorphism on the boundary at in�nity, namely Af . It

remains to check that the boundary values of Ê0 agree with the ori-
gional ones of Ê, namely �̂. In the Fatou domain this is automatic
from the construction. For any point in Jf , we note that it lies in the

closure of Cf . For any point x 2 Cf , the maps Ê and Ê0 di�er by an
application of Pg, so their leafwise distance is (again by compactness
of the quotient) uniformly bounded. It follows that the two maps have
identical boundary values on Jf . q.e.d.

We can now complete the proof of Theorem 9.1. Lemma 9.3 implies
that �̂ extends to a quasi-isometry of the 3-laminations { that is, a map
which is a quasi-isometry on every leaf, with uniform constants. and
therefore (Lemma 12.4) �̂ is in fact a quasiconformal map on every leaf,
with uniform constant. Since �̂ is just the lift of the original conjugacy
�, we conclude that � itself is quasiconformal.

This concludes step one of the proof (that topological conjugacy
implies quasi-conformal), which is case (1) of the theorem. To �nish
the proof we need to show that a quasi-conformal conjugacy which is
conformal on the Fatou set is M�obius, except for the Latt�es examples.
But this is equivalent to the absence of invariant line �elds on the Julia
set which follows from Proposition 8.8 and Corollary 8.10.

10. Further program

Let us outline some possible directions for further development,
problems and conjectures.

1. Regular leaf space. Study the regular leaf space Rf in more
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detail. What is the behaviour of the leaves of Rf near irregular points?
In particular, look at the Feigenbaum case. What happens to Rf at
a parabolic bifurcation? Other than rotation domains, are there any
leaves which are not dense? (Lemma 4.8 shows that all parabolic leaves
are dense.) Can it happen that a leaf other than a rotation domain does
not intersect the Julia set?

2. Type Problem (see x4). Are there hyperbolic leaves in Rf except
for Siegel disks and Herman rings? It seems that the right place to
look for hyperbolic leaves are maps with non-locally connected Julia
set (Cremer points or in�nitely renormalizable polynomials of highly
unbounded type; see [37]). Prove that all leaves of a \fake Feigenbaum"
quadratic (that is, a rational map which is topologically equivalent to the
Feigenbaum quadratic) are parabolic. Conjecturally there are no fake
Feigenbaum maps (a special case of the rigidity problem), but this would
be the �rst step of trying to apply the laminations to this problem. More
generally does the topological type of the map determine the conformal
types of the leaves?

3. Uniqueness problem. In general, can one reconstruct f from its
3-lamination? How does the lamination detect the di�erence between
polynomial and polynomial-like maps?

4. Geometric �niteness. There are many de�nitions of geometrically
�nite Kleinian groups, all equivalent for dimensions 2 and 3 (see Maskit
[29], Bowditch [8]). The de�nition in terms of �nite-sided fundamental
domain (see Ahlfors [1]) seems to fail altogether in the lamination con-
text; it is also not equivalent to the others for hyperbolic manifolds in
higher dimensions [8]. The de�nition in terms of conical and parabolic
points (Beardon-Maskit [3]) can be translated into the lamination set-
ting. We expect it to pick out critically non-recurrent maps with or
without parabolic points. Thurston's de�nition in terms of �nite vol-
ume of a neighborhood of the convex core, or compact thick part of the
convex core (similar also to Marden's de�nition in [27]) seems harder to
transport to laminations. Is there a good replacement for the notions of
volume and injectivity radius which would make this translation work?

5. Deformation theory. Describe the space of H3 laminations, or
a�ne 2-laminations, or just those arising from rational maps. A funda-
mental di�culty here is that there is no common \universal cover", as
there is for hyperbolic manifolds.

6. Topology of Hf=f̂ . What is the topological structure of Hf and

Hf=f̂? Does Hf=f̂ always have two ends for quadratic f?
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Particular cases are the Axiom A polynomials (take z 7! z2�1 �rst)
and the Feigenbaum quadratic. Is there an internal structure to Hf that
mirrors the sequence of bifurcations going from z 7! z2 to f (degree 2
case)?

Let us consider the following model. Let fc : z 7! z2 + c, c 2 [c0; 0],
where c0 is the Feigenbaum point, or any point preceding it. Let Kc and
Jc denote the �lled Julia set and the Julia set for fc. Consider their lifts
Kc and Jc to Rf . Consider the setM = f(c; ẑ) : c0 � c � 0; ẑ 2 Kcg.

There is a natural projection from Jc onto Jc0 , since Jc0 is obtained
from Jc by some \pinchings" (compare Douady [15]). This induces a
projection rc : Jc ! Jc0 . Let us consider the quotientM= � where the
equivalence relation � identi�es (c; ẑ), ẑ 2 Jc with (c0; rcẑ). The map
f induces a self-map ~f ofM= �.

Is ~f :M= �!M= � topologically equivalent to f̂c0 : Hfc0 [Afc0 !Hfc0 [Afc0?
7. Geometry of Hf=f̂ . Give a quasi-isometric model for Hf=f̂ .

Does topology of this lamination determine its geometry? (It is certainly
a quite strong version of the Rigidity Problem).

Can one place \pleated solenoids" inside Hf=f̂ , and use them in
analogy with pleated surfaces in hyperbolic 3-manifolds? (In the Feigen-
baum case, one can consider the pullback of the little Julia set J(Rnf)
to Af , R denoting the renormalization operator, take the boundary of

its convex hull in Hf , and spread it around by iterates of f̂).

8. Spectral Theory. We de�ne the three dimensional Poincar�e series
of f̂ by taking a transversalK ofHf , averaging exp(��(f̂�nx;K)) along
a natural transversal measure on K (where � stands for the leafwise
hyperbolic distance), and summing up over n (see Su [43] for a discussion
of the transversal measure). Is it true that the corresponding critical
exponent coincides with the Hausdor� dimension of the conical limit
set? A natural further project is to develop a spectral theory on the
lamination Hf=f̂ , and to study measure and dimension of the Julia sets
from this point of view (compare Sullivan [44, 45], Canary [10], Bishop-
Jones [6], Denker-Urbanski [18]). The Ahlfors-type argument used in
x8 of this paper is a �rst step in this direction.

9. Added leaves of Af . Can it happen that Af is not locally com-
pact? This problem requires understanding of the added leaves of Af .
What one can say about the entire function corresponding to the leaf
projection p : Laff (z) ! Laff (p(z))? Can it have asymptotic values?
(In the critically non-recurrent case it is polynomial.)
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10. Action of rational functions in the Universal space. It would be
interesting to have a general idea of this action. What is the structure
of the characteristic attractor Kf? Is a generic f : U ! U injective?
More precisely, let us consider a functional equation f �� = f � where
�;  2 U are meromorphic. Is it true that any solution of this equation
has a form � =  �  where  is a symmetry of f (that is, a M�obius
transformation such that f �  = f), or � =  0� where � is a rotation?
See Fatou [20] and Ritt [40] for further discussion of this problem (we
are grateful to A. Eremenko for providing these references).

11. Appendix 1: Circle and polynomial-like maps

11.1. Sullivan's laminations for circle maps.

Let f : S1 ! S1 be a C2 expanding map of the circle of degree d > 1.
The expanding property means that there exist constants C > 0 and
� > 1 such that jDfn(x)j � C�n, n = 0; 1; : : : Sullivan's construction
goes as follows (see Sullivan [48], [47], and de Melo-van Strien [35]):

Step (i). Consider the natural extension f̂ : Nf ! Nf . Topologically
Nf is the standard solenoid over the circle. Dynamically f̂ is a hyper-
bolic (in the sense of Anosov and Smale) map with one-dimensional
unstable leaves.

Step (ii). Supply the leaves with the a�ne structure by means of the
explicit formula (4.2); existence of the limit follows from the standard
distortion estimates for hyperbolic maps. The map f̂ preserves this
structure.

Step (iii). Attach hyperbolic planes to the leaves and extend f̂ to
the corresponding hyperbolic 2-lamination H2

f acting isometrically on
the leaves.

Step (iv). Take the quotient H2=f̂ . This is Sullivan's Riemann sur-
face lamination associated to f . Topologically it is a solenoidal �bration
over the circle.

The main di�erence between this construction and the one outlined
in the Introduction is related to the critical points on the Julia set.
These tend to distort the a�ne structures and complicate the transversal
behavior of the leaves. Also, as we have seen, even in the Axiom A case
the topological structure of the 3-lamination is not at all obvious.
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Sullivan constructed 2-laminations to build up the deformation space
of expanding circle maps. We try to study rigidity phenomenon by
means of 3-laminations. This is a usual philosophical di�erence between
dimensions two and three.

11.2. Polynomial-like maps: globalization of the leaves.

Polynomial-like maps are not globally de�ned, and certainly cannot
be in general extended to the whole sphere. However, such a global-
ization can be carried out on the natural extension level. Lemma 11.1
shows that it leads to the same object, provided the map was a priori
globally de�ned.

Let U and V be two open sets of C such that clU � V , and f :
U ! V be an analytic branched covering. Keep in mind Douady-
Hubbard polynomial-like [16] maps, generalized polynomial-like maps
[25], or a rational function R restricted on the sphere minus an invariant
neighborhood of attracting cycles.

For such a map we can consider the space Nf of backward orbits,
and lift f�1 to this space as the map which forgets the �rst coordinate:
ĝ � f̂�1 : Nf ! Nf . This map is injective but not surjective: its image
consists of the orbits which start with a z0 2 [U .

To make it invertible, let us consider the inductive (direct) limit of

N !̂
g
N !̂

g
N !̂

g
: : : ;

which is de�ned in the following way. Take in�nitely many copies Nm

of the same space N . Let us embed Nm into Nm+1 by means of the
map

im � ĝ : Nm = N ! N = Nm+1:

In other words, we identify a point ẑ 2 Nm with the point imẑ 2 Nm+1.
Thus we obtain an increasing sequence of the spaces

N 0 ,! N 1 ,! N 2 ,! : : :(11.1)

Let D � Df = [Nm. To de�ne a topology on D, let us call a setW � D
open if W = [Wi where Wi is an open set in N i.

The map ĝ : N k ! N k respects the embeddings im : Nm ,! Nm+1,
and hence induces the self-map of D, which we will denote by the same
letter. Moreover, ĝ homeomorphically maps Nm onto im�1Nm�1, m >
0, so that it is invertible on D. We will keep the notation f̂ for ĝ�1.
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Lemma 11.1. Assume that a branched covering f : U ! V is the
restriction of a rational endomorphism R : �C ! �C such that C n V is
contained in the basin of attraction of a �nite attracting set A. Then
f̂ : Df ! Df is naturally conjugate to R̂ : NR n Â! NR n Â.

Proof. Let us consider the following commutative diagram:

N 0 ,!
i0
N 1 ,!

i1
N 2 ,!

i2
� � �??yid ??yR̂ ??yR̂2

N ,!
i

R̂N ,!
i

R̂2N ,!
i
� � �

where N � Nf , the upper line is the sequence (11.1) for f̂ , while the
lower one is the sequence of natural inclusions. It induces a homeomor-
phism between Df and [R̂nN = NRnÂ, which is the desired conjugacy.

q.e.d.

12. Appendix 2: Background material

12.1. Dynamics.

We assume the following background in holomorphic dynamics:

� Classi�cation of periodic points as attracting, repelling, parabolic,
Siegel and Cremer, and the local dynamics near these points.

� Notions of the Julia set J(f) and the Fatou set F (f).

� Classi�cation of components of the Fatou set as attracting basins,
parabolic basins, Siegel disks and Herman rings; Siegel disks and
Herman rings will be also called the rotation sets.

� The notion of an Axiom A or hyperbolic rational function. There
are two equivalent de�nitions of this property:

{ All critical points are in basins of attracting cycles;

{ The map is uniformly expanding on the Julia set, that is,
there exist constants A > 0 and � > 1 such that for any
z 2 J(f),

kDfn(z)k � A�n; n = 0; 1; 2 : : : ;

where k � k denotes the spherical metric.



86 mikhail lyubich & yair minsky

All this material can be found in any book or survey in holomorphic
dynamics { e.g. [12], [24], [36].

As usual, !(z) � !f (z) denotes the !-limit set of a point z. A point
z is called recurrent if z 2 !(z). Given a set Z, let

orb(Z) =
[
z2Z

orb z; !(Z) =
[
z2Z

!(z):

Let C denote the set of citical points of f , and Cr the set of recurrent
critical points.

The critical values of fn are the points of fkC; 1 � k � n. So if a
simply connected neighborhood U does not meet orbC, then all inverse
branches of f�n are well de�ned univalent functions in U .

The non-linearity, or distortion of a conformal map  : U ,! C is
de�ned as

Dis( ) = sup
z;�2U

log

���� 0(z) 0(�)

���� :

Koebe Distortion Theorem. Let  : B(a; r) ,! C be a confor-
mal map, k < 1. Then the distortion of  in B(a; kr) is bounded by a
constant C(k) independent of  . Moreover C(k) = O(k) as k ! 0.

Let U � �C be any domain. Let us select a base point z 2 U ,
and count its n-fold preimages: zni . Let U�ni denote a component of
f�nU containing zni . This speci�es a \multi-valued branch" f�ni of
the inverse map. (The reader can think of these branches as functions
living on appropriate Riemann surfaces, or as equivalence relations, or
just as a convenient way of describing the situation). Singular points
for an inverse branch are critical values for the direct map. There is a
natural way of composing and restricting the inverse branches (with an
appropriate adjustment of the base points, which may change only the
way of counting).

The following lemma is a variation of a well-known fact (compare
[24], Proposition 1.10). As it plays a crucial role for this paper, we will
include the proof.

Shrinking Lemma. Let f be a rational map of degree d > 1.
Let U � C be a domain which is not contained in any rotation set
of f , and let k be a natural number. Let us consider a family ff�ni g
of all inverse branches in U with at most k singular points (counting
with multiplicities). Then for any domain W compactly contained in U ,
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diam(f�ni jW ) ! 0 as n ! 1 independently of i, where diam denotes
spherical diameter.

Proof. We �rst consider the case that U , and every pullback U�ni ,
are disks. Let z 2 U be a point outside any rotation domain of f .

Let �n;i : D ! U�ni be a Riemann mapping taking 0 to a preimage
of z, where D is the unit disk. Then �n;i = fn � �n;i is a proper
branched covering from D to U , with at most k critical points counted
with multiplicity. (One can think of the disk D here as the Riemann
surface over U for the corresponding branch of the inverse function.)

Let �1; : : : ; �k be a periodic cycle of f of length at least 3, not meet-
ing some neighborhood of z. Then no preimage of this neighborhood
meets the cycle either. By normality of the family f�n;ig, there must be
some disk D0 compactly contained in D such that �n;i(D

0) omits f�jg
for all n; i, and such that �n;i(D

0) 3 z. Thus f�n;ig is a normal family
on D0.

Because of the bound k on the number of critical points of �n;i, there
is some � such that the disk B = B(z; �) is contained in �n;i(D

0) for
all n; i; one can show this for example by noting that ��1n;i(U n B(z; �))
contains an annulus whose modulus is bounded below depending only
on k and �, and goes to 1 as � ! 0. We now claim that the diameters
diam(B�ni ) go to 0 uniformly.

If not, we can extract a convergent subsequence �nk;ik jD0 , and con-
clude that for the limit point z1 = lim�nk;ik(0) there is a neighborhood
B1 whose images under arbitrarily high iterates are in U . This implies
in particular that B1 (and therefore B) is disjoint from the Julia set, as
any neighborhood intersecting the Julia set covers it under some iterate
of f . By a smaller choice of � we may assume it is compactly contained
in the Fatou set. Thus, either forward iterates of B1 under f limit to
an attracting/parabolic periodic cycle, or B1 is contained in a rotation
domain. The former is impossible since fnk(B1) limits onto all of B.
The latter is ruled out by the choice of z.

It now follows that diam(W�n
i )! 0 for anyW compactly contained

in U , since �0n;i must converge to 0 uniformly on compact sets.

To treat the general case, take a �nite covering of W by disks D
compactly contained in U , none of which are contained in a rotation
domain. We must consider the possibility that some of the pullbacks
D�n
i are not disks. For any � > 0 there exists N = N(D; �) > 0 such

that, if D�n
i is a disk and n � N , then diamD�n

i � �. For if not, we
could �nd a subfamily of pullbacks, all disks, whose diameters fail to
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shrink to 0. The previous argument applies, so this is impossible.

Thus, let � be less than half the distance between any two critical
values of f . Then the preimage of any disk of diameter less than � is a
disjoint union of disks. It follows that, if some D�n

i is not a disk, then
some image D�m

i of it, with 0 � m � N , is also not a disk. That is, the
transition from disk to non-disk occurs in the �rst N levels. Thus, if
we remove from consideration the �nite number of non-disks D�n

j with
n � N , and all their preimages, we are left with a family in which all
preimages are disks. For this subfamily, we have uniform shrinking by
the previous arguments.

For each of the �nitely many non-disks D�n
j (n � N), we can now

repeat the argument, coveringW�n
j with disks not contained in rotation

domains, and so on. However now the bound on the number of singular
points is k� 2, since in the transition from disk to non-disk at least two
singular points must be used. We can therefore obtain a uniform rate of
shrinking for this family, by induction on k. This concludes the proof.

q.e.d.

A key result on critically non-recurrent rational maps is the following
theorem of Ma~n�e [26] closely related to the Shrinking Lemma.

Ma~n�e's Theorem [26]. Let f : �C ! �C be a rational map. If a
point x 2 J(f) is neither a parabolic periodic point, nor belongs to the
!-limit set of a recurrent critical point then, for all � > 0, there exists a
neighborhood U of x such that for all n � 0 every connected component
of f�n(U) has diameter � �.

Chebyshev and Latt�es examples. Let us �nally dwell on the
remarkable examples of rational functions whose dynamics often present
some special features.

The Chebyshev polynomial pd of degree d can be de�ned by means
of the functional equation pd(cosz) = cos(dz). In other words, consider
the dilation map Td : z 7! dz on the cylinder C = C=2�Z. Then pd is
the quotient of this map via the involution z 7! �z.

The Julia set of pd coincides with the interval [�1; 1]. The endpoint
1 is always �xed, while -1 is either �xed (for odd degrees) or pre-�xed
(for even degrees). Any critical point is mapped by pd to one of the
endpoints.

Similarly, the Latt�es examples come from the functional equations
fd(P (z)) = P (dz), where P : C ! �C is a Weirestrass P -functin,
deg fd = jdj2, d being not necessarily an integer. They can be viewed
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as quotients of torus endomorphisms. That is, let T = C=� be a torus,
where � is a lattice. Then identifying z with �z sends T to �C via a
two-fold branched cover. If Td(�) � �, then the dialtion Td induces
a torus endomorphism, which further projects to a rational map of �C
of degree jdj2. This occurs for all integer d's on any torus, but also
for some special tori and special non-real values of d: take, e.g., the
standard lattice � = Z2 and d = 1 + i.

The Julia set of the Latt�es examples is the whole sphere. Like in
the Chebyshev case, every critical point of a Latt�es map is pre-�xed.

The following dynamical characterization of these examples is well-
known:

Proposition 12.1. Assume that a rational map f has a periodic
point a 2 J(f) such that every backward trajectory a = a0; a�1; : : :
which passes through a only �nitely many times hits a critical point.
Then f is either Chebyshev or Latt�es.

We will see in this paper how this property manifests itself in the
lamination structure.

For integer values of d the Latt�es maps are quasi-conformally de-
formable, since � may be varied (or, since the constant line �eld on the
torus is dilation invariant). Conjectually they are the only examples
which admit quasi-conformal deformations on the Julia set. We will see
a lamination reasoning behind this conjecture.

12.2. Geometry.

Hyperbolic geometry and convex hulls.

We assume familiarity with the hyperbolic space H3 and its bound-
ary at in�nity, the Riemann sphere. (See e.g. Beardon [2], Thurston
[51]). Most natural for us will be the upper half space model C�R+.

We recall some fundamental facts about hyperbolic convex hulls.
Most of these facts appear in Epstein-Marden [19], or can be obtained
from that paper with a small amount of e�ort.

The convex hull C = C(E) � H3 of a closed set E on the Riemann
sphere �C is de�ned as the smallest convex set in H3 whose closure in
H3 [ �C contains E. Equivalently, C is the intersection of all closed
half-spaces in H3 containing E at in�nity. Provided E is not contained
in a round circle, C [E is homeomorphic to a closed 3-ball, and @C is
a subsurface of H3, which is isometric to a complete hyperbolic surface,
using the metric of shortest paths in @C.
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The geometry of the complement H3 � C is well-understood. We
begin with the projection � : H3 ! C assigning to x 2 H3 the point in
C nearest to x, which is unique by the convexity of C. This projection
also extends continuously to �C�E.

Let d : H3 ! [0;1) be the distance function d(x) = dH3(x;C).
This is a C1 function in H3 � C, and its gradient is the unit vector
tangent to the geodesic through x and �(x), and pointing away from
�(x) (Lemma 1.3.6 in [19]). In fact these geodesics are the integral
lines of this gradient �eld, and they foliate H3 nC. The gradient vector
�eld itself is Lipschitz, with a uniform constant outside a neighborhood
C� = d�1([0; �]), for any �xed � > 0 (see x2.11 in [19]).

The level surfaces S� = d�1(�) are, therefore, C1 submanifolds for
� > 0, and are all homeomorphic via the gradient ow. Since each
gradient line terminates at in�nity, the level surfaces can be identi�ed
with �C n E, which we may label S1. Thus we have a natural product
structure identifying H3 [ �C n (C [E) with (0;1]� S� for � 2 (0;1].

The identi�cation between S� and S1 is a quasiconformal map, and
in fact the following is a consequence of Theorem 2.3.1 in [19]:

Proposition 12.2. Let � denote the Poincar�e metric on S1 =
�C�E. Let � denote the metric on (0;1)�S1 given in�nitesimally as

d�2 = dr2 + (cosh2 r)d�2;

where r 2 (0;1) is the �rst coordinate. The identi�cation of (�;1)�S1
with H3�C�(E) is bilipschitz with constant L depending only on � > 0.

The dependence of C(E) (or C�(E)) on E is continuous, with respect
to the Hausdor� topology on closed subsets of the ball H3 [ �C. This
is easy in our setting; a proof for a more general context appears in
Bowditch [9]. In fact more is true: on compact sets in H3, a small
variation of E produces a locally homeomorphic deformation of C�:

Lemma 12.3. Let there be given a closed E0 � �C, a hyperbolic
R-ball B(x;R) around a point x 2 H3, and � > 0. For each � > 0
there is a neighborhood U of E0 in the Hausdor� topology on closed
subsets of �C such that, for any E 2 U , there is a (1+ �)-bilipschitz map
	E : B(x;R)! H3 �xing x, such that 	�1E (C�(E)) = C�(E0)\B(x;R).

Remarks. (1) In particular, note that (�-neighborhoods of) convex
hulls of su�ciently nearby sets are, locally, homeomorphic, even if the
sets themselves are not homeomorphic. (2) We take C� rather than C
itself here in order to avoid the exceptional case where E0 lies on a
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round circle. Then the convex hull fails to have interior, and is not
homeomorphic to convex hulls of nearby sets. In all other situations the
lemma holds for C0 = C.

Proof. We give only a sketch, and refer the reader to [19] for a
thorough treatment of the techniques.

Using the product structure on H3 � C�(E) discussed above, there
is a homeomorphism h�;E : C�(E) ! H3 [ S1(E), which expands
segments to gradient lines, and is the identity on C(E). Now note
that, for a �xed ball B(x;R) and E su�ciently close to E0, the image
h�;E0

(B(x;R) \ C�(E0)) misses E. Therefore the map h�1�;E � h�;E0
is

de�ned on B(x;R)\C�(E0). Extend to the rest of B(x;R), again using
the product structure. q.e.d.

Quasi-isometries and QC maps.

We call a map h : H3 ! H3 a (K; �) quasi-isometry if the following
holds for all p; q 2 H3:

1

K
d(p; q) � � � d(h(p); h(q)) � Kd(p; q) + �:

The connection (in one direction) of quasi-isometries to quasi-confor-
mal maps is given by the following lemma. For a proof, see Thurston
[50] or (in the more general context of hyperbolic spaces in the sense of
Gromov) [14], [21].

Lemma 12.4. Given (K; �) there exists L so that any (K; �)-quasi-
isometry h : H3 ! H3 extends continuously to an L-quasiconformal
homeomorphism eh : �C! �C.
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