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COMPLETE EMBEDDED MINIMAL

SURFACES OF FINITE TOTAL CURVATURE

NIKOLAOS KAPOULEAS

Abstract

A general construction, for complete embedded minimal surfaces of �nite
total curvature in Euclidean three-space, is carried out. In particular, ex-
amples with an arbitrary number of ends are given for the �rst time. The
construction amounts to desingularizing the circles of intersection of a col-
lection of coaxial catenoids and planes. The desingularization process uses
Scherk's singly periodic surfaces for an approximate construction which is
subsequently corrected by singular perturbation methods.

1. Introduction

Historical background.

Among all minimal surfaces, those which are complete, embedded in
E3, and of �nite total curvature, form a very restricted class which has
fascinated many geometers. It is remarkable that besides the classical
examples of the catenoid and the plane no other examples were known
until the early eighties. At that time Costa [2], [3] discovered a new
complete minimal surface of �nite total curvature, which was proved to
be embedded [8]. This sparked a great deal of activity in this subject,
and some more new examples were �rst found by Ho�man and Meeks
[9], [10], and later by others [30], [31] [18] [12] [7]. We refer the reader to
the excellent survey article of Ho�man and Karcher [6] where a detailed
account is given and many more references can be found.

This paper is motivated by a systematic study of a sequence of such
surfaces of increasing genus by Ho�man and Meeks [11]. They proved
that the sequence in consideration tends to the union of a catenoid and
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a plane, the plane intersecting the catenoid through its waist. They
proved also that if the surfaces are appropriately scaled and positioned,
then the areas of high curvature tend to a classical singly periodic min-
imal surface, Scherk's �fth surface [26]. This motivated the following
question: Is it possible in general to desingularize the intersections of
intersecting minimal surfaces by replacing neighborhoods of the inter-
sections with Scherk's singly periodic surfaces?

Up to now all complete embedded minimal surfaces of �nite total
curvature have been found by using a global version [22], [23] of the
Enneper-Weierstrass representation. The nature of this method requires
that the Riemann surface structure of the minimal surface to be found
has to be speci�ed �rst, then the complex theoretic data be guessed, and
�nally analyzed to check period closing and embeddedness. It is only due
to remarkable e�ort and persistence that this somewhat implicit method
has given a satisfactory geometric understanding for some families of
such surfaces. The class of examples found this way is also quite limited
because each new example has to be studied anew. Even in simple cases,
like examples desingularizing two intersecting catenoids, there have been
no (existence) results up to now.

In this paper we present a construction which answers the question
above in cases of high symmetry. This way we obtain a geometrically
clear general construction for complete embedded minimal surfaces of �-
nite total curvature. This is the only construction up to now which gives
such surfaces with arbitrarily many|at least three|ends. Although the
genus of the surfaces can not be arbitrarily prescribed because of the
high symmetry, it takes arbitrarily high values, essentially all high val-
ues compatible with the symmetry. The main drawback of the method
is that due to its nature it has nothing to say about examples of low
genus.

We remark that with further work we have proved a more general
desingularization theorem, where the intersecting minimal surfaces lie
in a general three-dimensional Riemannian manifold, are required to
satisfy certain very general hypotheses, and no symmetry is assumed
[16]. Another general construction for complete minimal surfaces of
�nite total curvature, with proofs based on similar ideas to the ones
presented here, allows one to take connected sums of complete minimal
surfaces by using catenoids as bridges [32]. In this last construction
though, embeddedness has to be sacri�ced.

Before we proceed with a more detailed discussion we mention that
Traizet working independently [29] has found new examples of singly
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periodic embedded minimal surfaces in E3, by a construction similar in
spirit, but di�erent in the general strategy|it follows [13] rather than
[14]|to ours. Also that properties of the spaces of embedded minimal
surfaces of �nite total curvature have been studied before in the abstract
[25] [24].

The main results.

The main result is as follows: Consider the space M whose points are
arrangements of NK coaxial catenoids and NP planes perpendicular to
the common axis (�gure 1); clearly M can be given the structure of a
manifold of dimension 2NK+NP . Then for each (large)m 2 N there are
open subsetsMm ofM such that

SMm is dense inM, and for each x 2
Mm we can desingularize the corresponding arrangement of catenoids
and planes to obtain a complete, embedded if NP � 1, minimal surface
M of �nite total curvature, which relates to the catenoids and planes of
x as follows:

Each circle of intersection Ck in the arrangement of the catenoids
and planes has been replaced by a suitably bent, slightly deformed, and
appropriately scaled down Scherk singly periodic surface where 2mmk

fundamental domains (that is mmk handles) are used along the full
length of the circle Ck. The mk's are small constants speci�ed before-
hand and for the simplest examples can all be taken mk = 1. The
removal of the Ck's decomposes the catenoids and planes to discs, an-
nuli, and ends, which after being slightly perturbed, become parts of
M , attached to the wings of the Scherk pieces replacing the Ck's. The
whole surface M is symmetric under re
ections with respect to a set
of planes through the axis, and where subsequent planes form an angle
�=m. The genus of M is clearly m

P
mk + C(x).

We discuss now to some more detail the change which the ends su�er.
Notice that the slight perturbation of the ends, which we mentioned,
makes them asymptotic at in�nity to catenoids or planes, which may
di�er slightly from the original ones in size and position. In particular
planar ends may become asymptotic to small catenoids. In order to
have well de�ned parameters for the minimal surfaces we construct, we
can and do arrange, that the top ends of each catenoid in x do stay
asymptotic to the original end. For the planar ends we can not do the
same, but we arrange at least that the catenoid to which they become
asymptotic, has its waist on the original plane. Hence the number of free
continuous parameters before we subtract homotheties and translations
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is 2NK +NP , that is the total number of ends.

The strategy of the construction and proof.

The theorem proved in this paper is an application of the gluing tech-
niques developed by Schoen [28] and Kapouleas [13] - [15], in the form
they evolved to in [14]. Actually the general philosophy of our approach
here is almost identical to the one in [14], and we proceed to outline it
now in a way which points out the similarities and some di�erences. In
both cases the surfaces we wish to construct can be decomposed into
\standard" pieces and pieces joining them. In the Wente fusion case as
standard pieces we consider the spherical and Enneper-like negatively
curved regions of the Wente tori, while the joining pieces are rather
complicated and in the appropriate intrinsic metric resemble long cylin-
ders growing out at regular intervals from another cylinder. In the
current construction the standard pieces are the Scherk surfaces, and
the discs, annuli, and ends, of the planes and catenoids to be desingu-
larized. The joining pieces are the wings of the Scherk surfaces, which
modulo the symmetries become very long|compared to the length of
the meridian|cylinders. In both cases we have two di�erent scales for
the standard pieces: The spheres in the Wente fusion and the discs,
annuli, and ends, in the current construction have size and curvature of
order 1, while the other standard pieces in both cases have small size of
order (by de�nition) � and curvature of order ��2.

The construction requires to construct �rst a surface which approx-
imately satis�es the desired geometric condition, and then �nd a graph
over it which satis�es the condition exactly, by solving the relevant
partial di�erential equation for the function whose graph we are consid-
ering. This function is to be found by singular perturbation methods
by solving the linearized equation and then correcting for the hopefully
much smaller nonlinear terms. It turns out that the initial mistake is
of order � , and the method works when � is small enough. The success
of the method rests on our ability to solve the linearized equation and
produce solutions of the same size as the inhomogeneous term.

Our approach requires that we solve the linearized equation sepa-
rately on each region consisting of a standard piece joined with those
joining pieces with which it is in contact, and then patch up the solu-
tions. The patching up introduces some error which should be small so
that it can be corrected by iteration. At this point we are faced with
two di�culties: First, the linearized equation on the standard pieces
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has kernel, which persists in the regions mentioned, in the form of small
eigenvalues. Second, for the patching up to give a small error, we need
decay of the solutions along the joining pieces, so that the solutions are
small close to the boundary of these regions. We can temporarily bypass
both problems by solving modulo functions w and w which we use as
follows: By adding w's we make the right-hand side orthogonal to the
eigenfunctions of small eigenvalue. By adding w's we can appropriately
change the solution so that we control the low harmonics on the cross
section of the joining cylinders at the end close to the standard piece.
This forces the required fast decay along the joining piece.

It remains to correct in the direction of the w's and w's. The phi-
losophy for that, which we have called the \geometric principle" in [14]
- [15], is that this can be achieved by introducing dislocations, that is
repositioning the pieces of the surface relative to each other. In the
current case the parameters which will control these dislocations are
the �i;j's and the 'i;j 's which change the angles between the wings of
a Scherk surface and the angles between the wings and the Scherk sur-
face respectively. In [14] we used relative translations and rotations of
various suitable pieces of the surfaces.

We point out �nally some di�erences between the two constructions.
In the current construction we do not have ready to use joining pieces
and this makes the construction of the initial surfaces subtler. On the
other hand, the joining pieces in the current case are much simpler, and
so are the decays we need along them. The last di�erence concerns the
small eigenvalues on the standard pieces. While in [14] the relevant
standard pieces were e�ectively disjoint (round) spheres, here we have
Scherk surfaces, which (see Section 2) can still be thought of as made
of spherical pieces, but which do not disconnect as � ! 0.

Outline of the paper.

The paper has three parts. The �rst part deals with the desingularizing
surfaces used to replace the circles of intersection and consists of Sections
2, 3, and 4. In Section 2 we study carefully the Scherk surfaces and
understand the approximate kernel well enough for our purposes in this
paper. In Section 3 we carefully construct the desingularizing surfaces
by appropriately deforming the Scherk surfaces. In Section 4 we de�ne
and study the functions w and w which we have discussed already, and
we estimate the mean curvature of the desingularizing surfaces.

In the second part we construct the initial surfaces. It consists of
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Section 5, where we study the con�gurations of the minimal surfaces to
be desingularized, and Section 6, where the initial surfaces are actually
constructed, and their aspects not known already, studied.

In the third part consisting of Sections 7 and 8 we solve the partial
di�erential equation to produce the desired minimal surfaces. In Section
7 we study the linear theory and in Section 8 the rest.

Finally the paper contains two appendices. In appendix A we study
the existence, uniqueness, and decay of solutions, to appropriate linear
equations along long cylinders, under conditions which occur repeatedly
in this paper. In appendix B we state some standard local facts for the
mean curvature of surfaces and graphs in E3 to facilitate reference to
them.

Notation and conventions.

We discuss now some notation and conventions we use throughout this
paper. First of all because we have many cut and paste situations it is
useful to de�ne functions  [a; b] : R ! [0; 1] by

(1:1)  [a; b](s) =  ((s� a)=(b� a));

where  is a �xed cuto� function which is smooth, increasing, vanishes
on (�1; 1=3) and  � 1 on (2=3;1). Notice that  [a; b] transits from
0 at a to 1 at b.

We often have a function s de�ned on the surfaces which we de�ne
with values in R [ f1g. If V is subset of such a surface we use the
notation

(1:2) V�a := fp 2 V : s(p) � ag; V�a := fp 2 V : s(p) � ag:
E3 denotes the 3-dimensional Euclidean space equipped with the

usual Euclidean metric. Sn denotes the standard round n-sphere of
radius 1. �, g, A, H, K denote respectively the oriented unit normal,
induced metric, second fundamental form, mean curvature, and induced
Gauss curvature of an immersed surface in E3. The invariants of a
surface S are occasionally distinguished by using S as a subscript, for
example �S denotes the Gauss map of a surface S. If F : S1 ! S2 is a
di�erentiable map between manifolds, then we use F�(f) and F

�(f) to
denote the push-forward and pull-back respectively of tensor �elds and
functions f by F .

We very often consider in this paper graphs over surfaces. To facil-
itate reference to them we �x now some terminology: Suppose we have
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an immersed surface S in E3, which is immersed by X : S ! E3 and
has Gauss map � : S ! S

2. If we have a C1 function f : S ! R,
and X + f� is an immersion, we denote by Sf the immersed surface
de�ned by X + f�, and we call it the graph of f over S. Moreover
we use X + f� and its inverse to de�ne projections � : S ! Sf and
�0 : Sf ! S associated to the graph. When we refer to projections of
S to Sf or Sf to S we mean always these projections. Finally, we often
use these projections to push-forward or pull-back functions and tensor
�elds from S to Sf or from Sf to S.

We use C (sometimes with subscripts) to denote positive constants
throughout the paper, each time a possibly di�erent one. These con-
stants are always assumed to depend only on parameters explicitly men-
tioned except for certain parameters according to conventions discussed
later. Because we have many small constants in this paper (mainly �'s
and �'s), we have developed the habit of distinguishing between them
by using subscripts which serve as mnemonic devises to help recalling
in what context the constant was de�ned.

Weighted H�older norms are de�ned by

(1:3)



� : Ck;�(
; g; f)




 := sup
x2


f�1(x)k� : Ck;�(
 \B(x); g)k;

where 
 is a domain, g is the metric with respect to which we take the
Ck;� norm, f is a weight function, and B(x) is the geodesic ball centered
at x of radius 1. We often omit the domain or the metric when implied
by the context, or the function f when f � 1.

j : j denotes unless otherwise stated the maximum norm of elements
of �nite vector spaces.
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2. The Scherk surfaces

As we have already mentioned in the introduction the surfaces we
use to desingularize the intersections in the initial approximate construc-
tion are constructed by using Scherk's singly periodic surfaces. These
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form a one-parameter family of singly periodic embedded minimal sur-
faces. The most symmetric of them was discovered by Scherk in 1835
[26], who also discovered the doubly-periodic conjugates of all of them.
They are referred to usually as Scherk's �fth surfaces, Scherk's singly
periodic surfaces, or Scherk-towers [21] [11] [4] [17], but we will refer
to them as Scherk surfaces �(�) for simplicity, where � 2 (0; �=2) is
the nontrivial parameter of the family. We assume that E3 is equipped
with a Cartesian coordinate system O:xyz; �(�) is de�ned then by the
equation [21]

(2:1) cos2� cosh
x

cos�
� sin2� cosh

y

sin�
= cos z:

Because these surfaces degenerate as � ! 0; �=2, and we do need uni-
form bounds on their geometry, we assume from now on that � is re-
stricted by

(2:2) � 2 [10 �� ;
�

2
� 10 ��]

for some small �� > 0 which will be determined later. Before we discuss
further the Scherk surfaces it is convenient to develop some new notation
in order to facilitate their description:

Notation 2.3. We use ~ex, ~ey, and ~ez to denote the coordinate
unit vectors of our Cartesian coordinate system O:xyz. ~e [�] and ~e 0[�]
stand for ~ex and ~ey rotated by an angle � around the z-axis, that is

~e [�] = cos � ~ex + sin � ~ey; ~e 0[�] = � sin � ~ex + cos � ~ey:

To facilitate referring to the symmetries of �(�) we denote the identity
map by R1, the re
ection with respect to the yz-plane by R2, the re-

ection with respect to the z-axis by R3, and the re
ection with respect
to the xz-plane by R4. Finally we denote by H+ the closed half-plane
and denote the standard coordinates on it by s 2 [0;1) and z 2 R, so
that H+ = f(s; z) 2 R2 : s � 0g.

In the next proposition we enumerate the properties of the Scherk
surfaces which are relevant to our constructions later. Notice that these
surfaces can be decomposed into a \core" which is within a �nite dis-
tance from the z-axis, and four \wings" (see De�nition 2.5 below). The
wings depend up to Euclidean motion only on the parameter � of the
Scherk surface in consideration. The wing contained in the quadrant
f(x; y) : x; y � 0g is denoted by W� and we can describe it as the graph
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of a small function o� a half-plane to which the wing decays exponen-
tially away from the z-axis. Appropriate parametrizations of the wing
and the asymptotic half-plane are denoted by F� and A� respectively,
while f� denotes the function used to de�ne the wing as a graph over
the half-plane. The half-plane is parallel to the z-axis and makes an
angle � with the xz-plane; this is actually the geometric signi�cance of
the parameter �. Finally notice that the other wings of �(�) are images
of W� under Ri (i = 2; 3; 4); this reduces their description to that of
W�.

We will need later to know that f� and its derivatives, as well as
the rate of change of f� as the parameter � changes and its derivatives,
are small enough. This is ensured in 2.4.v. We will also need that the
angle seen from the z-axis between the boundary line of the asymptotic
half-plane of W� and the plane parallel to the asymptotic half-plane
through the z-axis, as well as the rate of change of this angle with
respect to �, are small. This is implied by 2.4.vi. The smallness of these
quantities is controlled by a small number that we call " and is assumed
to be given. It is arranged by excluding from the wings a large enough
neighborhood of the z-axis, utilizing this way the asymptotic decay of
the wing to ensure 2.4.iv, and being forced to observe the height b�
(see below) from afar, to ensure the smallness of the angles above. The
largeness of the excised neighborhood of the z-axis is controlled by a
constant a which depends on " and ��|recall that the latter is used
to ensure uniform control of the geometry of the Scherk surfaces in
consideration through 2.2.

Proposition 2.4. �(�) is a singly periodic embedded complete min-

imal surface which depends smoothly on � and has the following proper-

ties (�gure 2):

(i) �(�) is invariant under the Ri's above and also under re
ections

with respect to the planes fz = n�g (n 2 Z).
(ii) For given " 2 (0; 10�3) there is a constant a = a(��; ") > 0 and

smooth functions f� : H
+ ! R, A� : H

+ ! E3, and F� : H
+ !

E3, such that W� := F�(H
+) � �(�) and

A�(s; z) = (a+ s)~e [�] + z~ez + b� ~e
0[�];

F�(s; z) = A�(s; z) + f�(s; z)~e
0[�];

where b� = sin 2� log(cot �). Moreover f� and F� depend smoothly

on � 2 [10 �� ;
�
2 � 10 ��] and (iii)-(vi) below are satis�ed.
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(iii) �(�)n[4
i=1Ri(W�) is connected and lies within distance a+1 from

the z-axis.

(iv) W� � f(r cos�; r sin�; 0) : r > a; � 2 [9 ��;
�
2 � 9 ��]g.

(v) kf� : C5(H+; e�s)k � " and kdf�=d� : C5(H+; e�s)k � ".

(vi) jb�j+ jdb�=d�j < "a. (Notice that the right-hand side is not small
because a is large.)

Proof. That �(�) is a singly periodic embedded complete minimal
surface which depends smoothly on � follows from 2.1. (i) also follows
from 2.1 by inspection. By substituting the expression for F� into 2.1,
\solving" for f�, and choosing a large enough, we easily conclude (ii)-
(vi). q.e.d.

Now that a precise description of the Scherk surfaces is available
we give precise de�nitions for the wings and related concepts. Notice
that the de�nitions below depend on having �xed the constant a above,
something we assume from now on.

De�nition 2.5. If R is a Euclidean motion of E3 which �xes
the z-axis we call R(W�) a (�-)wing asymptotic to R � A�(H

+) and
directed by R(~e [�]). We consider as standard coordinates on R(W�)
the coordinates (s; z) de�ned by (s; z) = (R � F�)�1. We call Ri(W�)
the ith wing of �(�). We extend the function s de�ned on the wings
of �(�), to a continuous function s de�ned on �(�), by requiring s to
vanish on the rest of �(�). Following the notation in (1.2) we de�ne
��0(�) to be the core of �(�).

Notice that we have �(�) = ��0(�) [
S4
i=1Ri(W�), where the core

and the wings, whose union makes the right-hand side, have disjoint
interiors.

We proceed now to discuss the Gauss map of the Scherk surfaces.
Notice that by the next proposition we can view �(�) equipped with
the (nondegenerate) metric ��gS2, as an isometric cover of

S
2 n f(� sin �;� cos �; 0)g;

with covering map the Gauss map �. �(�) equipped with this pullback
metric can be thought of as the union of a sequence of closed hemi-
spheres Sn from which the four points (� sin �;� cos �; 0) (which lie on
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the boundary equators of the hemispheres) have been removed. Sub-
sequent hemispheres Sn and Sn+1 cover opposing hemispheres of S2.
They are joined through two opposing open arcs, which are two of the
four arcs into which the equator is subdivided by the four points that
we had removed. In the next junction between Sn+1 and Sn+2 then, the
other two arcs are used. Each of the four points removed corresponds
to the 1 of one of the four wings. Preimages of small neighborhoods
of such a point under the Gauss map are the complements of periodic
neighborhoods of the z-axis extending a bounded distance from the z-
axis.

Proposition 2.6. The Gauss map � of �(�) has the following

properties (see �gure 3):

(i) � restricts to a di�eomorphism from �(�) \ fz 2 [0; �]g onto

S
2\ fz � 0g n f(� sin �;� cos �; 0)g.

(ii) Let Ei (i = 1; :::; 4) be the arcs into which the equator S2\fz = 0g
is decomposed by removing the points (� sin �;� cos �; 0), num-
bered so that (1; 0; 0) 2 E1, (0; 1; 0) 2 E2, (�1; 0; 0) 2 E3, and

(0;�1; 0) 2 E4. We then have

�(�(�) \ fz = 0g) = E1 [E3; �(�(�) \ fz = �g) = E2 [E4:

(iii) �(�) has no umbilics and ��gS2 =
1
2 jAj2g.

Proof. The easiest way to establish this is to use the Weierstrass-
Enneper representation for �(�) [17]. q.e.d.

The above discussion and proposition motivate the de�nitions in 2.7.
The metric h and the operator Lh will be useful later in understanding
the behavior of the linearized operator, that is the linearization of the
operator which gives the mean curvature of a graph of a given function
over the minimal surface. Lh in particular is just the linearized operator
followed by multiplication by a function|see B.1, and is often more
convenient to use than the linearized operator itself.

De�nition 2.7. Let h := ��gS2 = 1
2 jAj2g (recall 2.6.iii) and

Lh := �h + 2.

By a fundamental region of �(�) we will mean a fundamental region
for the action of the group consisting of the re
ections with respect to
the planes fz = n�g (n 2 Z).
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Clearly now the translations induce eigenfunctions in the kernel of
the linearized operator on �(�), because translating the surface leaves
its mean curvature unchanged. These eigenfunctions are just � � ~e for
any constant vector ~e. When ~e is a unit coordinate vector, � � ~e is the
pullback by � of a coordinate function on S2. We know independently
that the coordinate functions on S2 are the �rst harmonics of the sphere,
that is, they are eigenfunctions for the spherical Laplacian of eigenvalue
2. Hence the � �~e 's are in the kernel of Lh, as they should be, since Lh
and the linearized operator are related as described above.

Notice that � � ~ex is odd with respect to R2 and even with respect
to R4, while � � ~ey is even and odd respectively, and � � ~ez is even with
respect to both. With respect to re
ections across the planes fz = n�g
both � �~ex and � �~ey are even, while � �~ez is odd. Notice �nally that � �~ex
and � � ~ey tend asymptotically on the wings|away from the z-axis|to
(nonzero) constants � sin � and � cos � respectively, while � � ~ez decays
exponentially fast to 0.

Understanding in detail the eigenfunctions of Lh whose eigenvalues
are small is an integral part of the general case of this construction [16].
Contrary to the case in [13] - [14] taking � ! 0 does not decompose
the surfaces in the h metric to disjoint spheres, actually changing � in
our case, that is scaling our surfaces, has no e�ect because h is scale-
invariant. Such a decomposition would occur if we were taking � ! 0,
but this is clearly forbidden by the construction. These considerations
however are not important for this paper, because the symmetry which
we impose simpli�es considerably this and other aspects of our problem,
as we can see from the following proposition:

Proposition 2.8. Let G be the group generated by re
ections across

the planes fz = 0g and fz = mG�g for some mG 2 N. Let � := �(�)
where � satis�es 2.2. There is an �� = ��(mG; ��) > 0 such that, the

only (bounded) eigenfunctions of Lh on �=G whose eigenvalues lie in

[���; ��], are the ones in the kernel of Lh on �=G. This kernel is two-
dimensional and is spanned by � � ~ex and � � ~ey.

Moreover, there are at most C(mG; c) eigenfunctions of Lh on �=G
whose eigenvalues are � c, for some given c 2 R.

Proof. Clearly � � ~ez does not survive the imposed symmetry while
� � ~ex and � � ~ey do. All that is needed then is to check that there are
no \exceptional" eigenfunctions in the kernel. This situation has been
studied before and we can refer the reader to [20, Theorem 14], where
further references can also be found to �nish the proof. q.e.d.
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3. The desingularizing surfaces

The surfaces �[T ].

Recall that the four wings of a Scherk surface �(�) are symmetrically
arranged around the coordinate planes and directed by ~e [�] and its im-
ages under the Ri's. We will need perturbations of the Scherk surfaces
which have wings directed by any four vectors which fail only slightly
from describing a symmetric con�guration. This does destroy minimal-
ity, but, as we will see later in Section 7, it relates to the way we handle
the approximate kernel.

In order to systematically de�ne these surfaces we �rst give the next
de�nition (see �gure 4), where we describe the collections of vectors we
will be using to direct the wings of such perturbed Scherk surfaces. We
also de�ne some quantities associated to such a tetrad T : �(T ) is going
to be the �-parameter of the corresponding unperturbed Scherk surface,
and the �i(T )'s measure the failure of the vectors in T to be opposite
to other vectors in T . The �i(T )'s should be thought of as being rather
small.

De�nition 3.1. An acceptable tetrad of vectors, or tetrad for
short, is de�ned to be a tetrad of vectors T = (~v1; ~v2; ~v3; ~v4) such that
~vi = ~e [�i]|recall 2.3|for some �i 2 R (i = 1; :::; 4) satisfying

0 < �2 � �1 < �3 � �1 < �4 � �1 < 2�:

For such a T we also de�ne

�(T ) :=
3�3 � �1 � �2 � �4

4
; �1(T ) :=

�3 � �1 � �

2
;

�2(T ) :=
�4 � �2 � �

2
:

Notice that in the case of a tetrad T whose ith vector is the vector
directing the ith wing of �(�) we have �1 = �, �2 = � � �, �3 = � + �,
�4 = 2� � �, and hence �(T ) = � and �1(T ) = �2(T ) = 0. Conversely,
given a tetrad T with �1(T ) = �2(T ) = 0, we can rotate �(�(T )) around
the z-axis to get a Scherk surface whose wings are directed by the vectors
in T . Rotating is not enough though for a general T , and we then
need to introduce some \bending" which we describe precisely in the
following de�nition. Notice that Zx(�) is designed to rotate \most" of
the interiors of the �rst and fourth quadrants apart, while leaving the
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second and third quadrants pointwise �xed. (The quadrants here are
taken with respect to the x and y coordinates.) Zy(�) pulls apart the
�rst and second quadrants instead.

De�nition 3.2. We �x once and for all a smooth family of dif-
feomorphisms Zx(�) : E

3 ! E3 parametrized by � 2 [�2��; 2��] such
that:

(i) Zx(�) is the identity on fx � 0g.
(ii) Zx(�) is equivariant under R4.

(iii) On f(r cos �0; r sin �0; z) : r > 1; �0 2 [9 ��;
�
2 � 9 ��]g Zx(�) acts by

rotation around the z-axis by �.

We de�ne also for � as above Zy(�) := R � Zx(�) � R, where R is
the re
ection with respect to the fy = xg plane.

We assume now we are given a T as in 3.1 which satis�es

(3:3) �(T ) 2 [20 �� ;
�

2
� 20 �� ]; �1(T ); �2(T ) 2 [�2��; 2��];

and we proceed to describe the perturbed Scherk surface �[T ] whose
wings are directed by the vectors of T . Notice in 3.4 that if �1(T ) =
�2(T ) = 0, then �[T ] is simply �(�(T )) appropriately rotated by R.
Otherwise Zx(�x) and Zy(�y) are used to appropriately rotate the wings
relative to each other. (That Z[T ] is just a rotation on each of the wings
follows from 3.2 and 2.4.iv.) The core of the unperturbed Scherk surface
on the other hand gets genuinely deformed by Z[T ] and its minimality
is destroyed|unless �1(T ) = �2(T ) = 0 of course.

De�nition 3.4. For a T satisfying 3.3 we de�ne

Z[T ] := R � Zy(�y) � Zx(�x);
where �x = ��1(T )��2(T ), �y = �1(T )��2(T ), and R denotes rotation
around the z-axis by an angle 1

4 (�1 + �2 + �3 + �4) � �. We de�ne a
surface �[T ] := Z[T ](�(�(T ))) and we call the image of the ith wing of
�(�(T )) under Z[T ] the ith wing of �[T ]. Finally we de�ne RT;i to be
the rotation by which Z[T ] acts on the ith wing of �[T ].

Lemma 3.5. �[T ] is a periodic embedded complete surface, and

Z[T ] induces a di�eomorphism from �(�(T )) onto �[T ] which is equiv-

ariant under re
ections with respect to the planes fz = n�g (n 2 Z).

RT;i � Ri(W�) � �[T ] is the ith wing of �[T ] and is directed by ~ei.
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Proof. This follows easily from the de�nitions. To check the last
statement in particular we need to verify that (see Figure 5)

~e [�1] = ~e [�(T ) + �x � �y + (1=4)(�1 + �2 + �3 + �4)� �];

~e [�2] = ~e [� � �(T ) + �y + (1=4)(�1 + �2 + �3 + �4)� �];

~e [�3] = ~e [� + �(T ) + (1=4)(�1 + �2 + �3 + �4)� �];

~e [�4] = ~e [2� � �(T )� �x + (1=4)(�1 + �2 + �3 + �4)� �];

which are readily obtained by substituting from the de�nitions. q.e.d.

The desingularizing surfaces �[T; '; � ].

At this point we have expanded the class of the Scherk surfaces so that
we have surfaces whose wings are directed by the vectors in tetrads
which are rather general. This allows us to \unbalance" the Scherk
surfaces in a controlled way, and hence deal later with the di�culties
due to the existence of approximate kernel. Even these surfaces though,
�[T ], are not yet ready to be used as desingularizing surfaces: First
of all we want to desingularize circles, but these surfaces desingularize
straight lines. Second, they are at a scale much larger than the scale of
the surfaces which we want desingularized, although this is clearly very
easy to correct. Third, there are two reasons why we need to be able
to \bend" each of the wings of the surfaces so that the complement of
a \small" neighborhood of the boundary gets repositioned relative to
the core of the Scherk surface (see �gure 6): The �rst reason relates to
the general philosophy of the construction and has been mentioned in
the introduction already, and it is that we can use the freedom to bend
the wings to adjust things so that exponential decay along the wings of
various appropriate solutions to our partial di�erential equations can be
achieved. The second reason is less important and more technical and
it is to facilitate the constructions in Section 6 by allowing corrections
in the �nal stages in �tting the wings as needed.

In this section we mostly ignore the issue of the appropriate scale|
an exception is in 3.8 and 3.9 where it is convenient to keep an eye on
both scales for future reference|and we resolve the other two (�rst and
third) issues as follows: New surfaces �[T; '; � ] are constructed which
depend on more parameters than before. The new parameters on top of
T are a tetrad of numbers ' and a nonnegative number � . When the new
parameters vanish, �[T; '; � ] is simply the already de�ned �[T ]. The
parameter � controls the bending of the surface introduced to make it
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desingularize a circle rather a straight line. Actually � is exactly the
curvature of the circle to which the axis gets bent. The ith number in
', 'i, controls the bending of the ith wing, and amounts to the angle
by which the wing gets bent relative to its previous position.

Before we proceed with the actual construction of the desingularizing
surfaces, we have to discuss a fundamental di�culty which arises in
bending the axes of the Scherk surfaces to circles: If we do this naively,
for example we bend the whole surfaces instead of just the cores by using
the maps B� (see 3.6), we will get wings which decay to cones. This is
unacceptable because the cones are not minimal surfaces, and hence the
mean curvature created will be impossible to correct. We bypass this
di�culty as follows: Recall that the wings are graphs over planes which
are themselves minimal surfaces. If we want to \bend" the planes to
minimal surfaces we have to bend them into catenoids rather than cones.
We build then the \bent" wing as a graph over the appropriate catenoid,
using the \same" function which gives the \unbent" wing as a graph
over the plane. In this way the \bent" wings decay exponentially to
minimal surfaces, and the mean curvature decays, also exponentially, to
0. The idea which we just described is simple, but plays a fundamental
role in this paper, and so does its analogue in [16].

We start the actual construction by de�ning the maps which will
be used to bend the cores of the surfaces �[T ]. In the next de�nition
notice that B� depends smoothly on the parameter � , �xes the xy-plane
point-wise, and when � 6= 0 it wraps the z-axis isometrically around the
circle f(��1+x)2+ z2 = ��2; y = 0g while moving planes orthogonal to
the z-axis to planes orthogonal to the same circle.

De�nition 3.6. For � 2 R we de�ne B� : E3 ! E3 by

B� (x; y; z) = (��1 + x) (cos �z; 0; sin �z) + (���1; y; 0)
when � 6= 0, and by taking B0 to be the identity map.

We will need next to give a careful description of the catenoids on
which we will build the bent wings. We really need to have \half-
catenoids"parametrized by H+, in a way similar to that we had the
asymptotic half-planes parametrized in 2.4.ii. Moreover we need to
have smooth dependence on � which as we have already mentioned con-
trols the amount of \bending" being done|at � = 0 the half-catenoids
should smoothly deform to half-planes. This forces us to take the axes
of the half-catenoids at positions depending on �|we have seen this
phenomenon already in the de�nition of B� . Notice also that besides
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� we need a few more parameters before the half-catenoid is uniquely
speci�ed. One way to visualize the parameters we use is as follows:
\Unwrap" the catenoid to a surface invariant under translations in the
direction of the z-axis by taking its preimage under B� . The x and y
coordinates of the boundary line of this surface are then our r0 and y0
parameters, while the angle which the inward conormal makes with the
xz-plane is the parameter �. Notice that in 3.9 we carefully discuss again
the properties of these parametrizations of the half-catenoids, which we
now give explicitly.

De�nition 3.7. We de�ne �[�; r0; y0; �] : H
+ ! E3 for given

�; r0; y0; � 2 R by

�[�; r0; y0; �](s; z) =(r0 + ��1)(cosh �s+ cos� sinh �s) (cos �z; 0; sin �z)

+ (���1; y0 + [(1 + �r0) sin�]s; 0);

when � 6= 0, and by �[0; r0; y0; �](s; z) = (cos� s; sin� s; z) otherwise.

As we have already mentioned, the constructions carried out here,
give us surfaces which are too large to �t in the scale of the surfaces
we want to desingularize. The appropriate correction is to shrink them
by a factor of order 1=� . It is worthy of the e�ort to make this explicit
for the parametrizations of the catenoids which we just de�ned and we
do so in the next de�nition, while the exact relation with 3.7 becomes
clear in 3.9.ii. The rescaling removes the dependence on � and so our
maps in 3.8 depend only on three parameters which are more or less
like in 3.7, except for that we always \unwrap" by B1. Notice though
the di�erent limiting behavior we get as � ! 0 between the scaled and
the unscaled versions. In the next de�nition we use a tilde to denote
scaled quantities and we �nd it convenient|because of 3.9.ii|to scale
the coordinates of H+ as well.

De�nition 3.8. We de�ne ~�[~r0; ~y0; �] : H
+ ! E3 for given

~r0; ~y0; � 2 R, by taking for (~s; ~z) 2 H+

~�[~r0; ~y0; �](~s; ~z) =(1 + ~r0)(cosh ~s+ cos� sinh ~s) (cos ~z; 0; sin ~z)

+ (�1; ~y0 + (1 + ~r0) sin� ~s; 0):

Lemma 3.9. Provided that �r0 6= �1 and ~r0 6= �1 the maps � =
�[�; r0; y0; �] and ~� = ~�[~r0; ~y0; �] satisfy the following:
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(i) They are conformal minimal immersions which depend smoothly

on their parameters. Moreover the pullbacks of the induced metrics

by � and ~� are %2(ds2+ dz2) and ~%2(d~s2 + d~z2) respectively where

%2 = (1 + �r0)
2(cosh �s+ cos � sinh �s)2;

~%2 = (1 + ~r0)
2(cosh ~s+ cos � sinh ~s)2:

(ii) ~�[�r0; �y0; �](�s; �z) � � �[�; r0; y0; �](s; z) for � 6= 0.

(iii) Their images lie on catenoids (or planes). Moreover �(fs = 0g) is
the circle of radius ��1+r0, centered at (���1; y0; 0), and parallel

to the xz-plane, while ~�(f~s = 0g) is the circle of radius 1 + ~r0,
centered at (�1; ~y0; 0), and also parallel to the xz-plane.

(iv) ~e [�] is the inward conormal of the image of � (or ~�) at �(0; 0) (or
~�(0; 0)).

Proof. Clearly the image lies on a catenoid (or plane), so minimality
yields. (i) is obtained then by straightforward calculation. (ii-iv) follow
by inspection and the de�nitions. q.e.d.

We concentrate our e�orts now to de�ne the \bent" wings. In order
to determine a bent wing we need to know the following parameters: � ,
which as we have already mentioned, amounts to the curvature of the
circle to which the z-axis is \bent" by the \bending" of the surface. ',
which is the angle by which the directing vector of the wing is rotated
in order to bend the wing relative to the core. �, which determines the
shape of the \unbent" wing and is the usual parameter of the Scherk
surface �(�) which contains the original wing. Finally, we need to know
the position of the \unbent" wing, which is always the wing of some
�[T ]. Hence the \unbent" wing is some R(W�) for some Euclidean
motion R which keeps the z-axis �xed. We use such an R as our fourth
parameter.

Before we de�ne the \bent" wings, we need to \bend" the half-
planes to which the wings are asymptotic. This amounts to relating
the parameters which we use to specify the \bent" wings to the pa-
rameters used in 3.7 to specify half-catenoids. (Recall that we intend
to \bend" the asymptotic half-planes to half-catenoids.) Notice in the
next de�nition that we have smooth dependence on the parameters and
that A[�; 0;R1; 0] is simply A� (recall 2.3 and 2.4.ii). Notice also that
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A[�; ';R; � ](@H+) justi�es its name because it is a line|when � = 0|
or a circle|when � 6= 0|which does not depend on '.

De�nition 3.10. Given � satisfying 2.2, ' 2 [���; ��], R a Eu-
clidean motion �xing the z-axis, and � 2 [0; 1), we de�ne A[�; ';R; � ] :
H+ ! E3 as follows: If � = 0 we take

A[�; ';R; 0](s; z) = R0 � R �A�(s; z);

where R0 is the rotation by an angle ' around the line R � A�(@H
+).

Otherwise we take

A[�; ';R; � ] = �[�; r0; y0; �];

where the parameters r0 and y0 are determined by the requirement that
�[�; r0; y0; �] and B� �R �A� agree on @H

+, and � is determined by the
requirement that ~e [�] is just R(~e [�]) rotated by an angle ' around the
z-axis.

We call A[�; ';R; � ](@H+) the pivot of A[�; ';R; � ].

In the next de�nition we de�ne at last the \bent" wings. As we
have already described they are de�ned as graphs of the appropriate
f� (recall 2.4.ii again) over the images of the maps which we have just
de�ned. This has to be modi�ed though somewhat, as we proceed to
explain. First, in order for the \bent" wing to attach to the appropriate
core, we need to transit to a di�erent de�nition close to the boundary
of the wing. This is the reason why  [1; 0] appears in the formula in
3.11 below.

Second, instead of having the \bent" wings decay exponentially to
the asymptotic half-catenoids, it is convenient for later use to (smoothly)
truncate f� at an appropriate distance from the boundary of the wing.
This distance has to be large enough to allow the exponential decay
to make the error term introduced by the truncation negligible. On
the other hand, it has to be small enough in the scale of the minimal
surfaces to be desingularized, so that to avoid unnecessary complications
in the discussion and construction of the initial surfaces. To achieve
these con
icting aims we make our constructions dependent on a small
constant �s > 0 which will be determined later, and we carry out the
truncation of f� at the region where s is of order �s=� (see the de�nition
of  s in 3.11).

Finally, it is convenient to start to assume that � is small enough for
our purposes. We phrase this in this next de�nition by assuming that
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� � �0� , where �
0
� is a positive constant which depends only on �� and

is �xed so small that A[�; ';R; � ] is ensured to be nondegenerate. The
existence of such a �0� is clearly implied by the de�nitions and 3.9. This
also allows us to choose the Gauss map �[�; ';R; � ] of A[�; ';R; � ] so
that it depends smoothly on the parameters and satis�es the orientation-
choosing reduction �[�; 0; R; 0] � R(~e 0[�]) (recall 2.3 and 2.4.ii).

Notice in the next de�nition that as usual the dependence on the
parameters is smooth, and that F [�; 0; R; 0] is simply R � F� (F� was
de�ned in 2.4.ii). Notice also that the restriction of F [�; ';R; � ] to a
small neighborhood of @H+|to H+

�1=3 for example|does not depend
on '.

De�nition 3.11. With �s and �
0
� as in the discussion above, we

de�ne for given � satisfying 2.2, ' 2 [���; ��], R a Euclidean motion
�xing the z-axis, and � 2 [0; �0� ], F [�; ';R; � ] : H

+ ! E3 by

F [�; ';R; � ](s; z) = [1; 0](s)B� � R � F�(s; z)
+ (1�  [1; 0](s)) (A[�; ';R; � ](s; z)

+  s(s) f�(s; z) �[�; ';R; � ](s; z));

where  s is de�ned by  s(s) =  [4�s�
�1; 3�s�

�1](s) if � 6= 0, and  s � 1
if � = 0, and �[�; ';R; � ] is as in the discussion above.

We are now ready to describe how �[T ] bends to give the desin-
gularizing surfaces (see �gure 6). As usual the maps de�ned in 3.12
depend smoothly on their parameters, and if ' and � vanish, then
Z[T; '; � ] = Z[T ]. To facilitate future reference we also develop no-
tation for the immersions of the wings and of their asymptotic half-
catenoids. Notice �nally that the pivots of Z[T; '; � ] do not depend on
'.

De�nition 3.12. Given a tetrad T satisfying 3.3, ' = f'ig4i=1

such that j'j � ��, and � 2 [0; �0� ], we de�ne Z[T; '; � ] : �(�(T ))! E3,
and for i = 1; :::; 4, Fi[T; '; � ] : H

+ ! E3 and Ai[T; '; � ] : H
+ ! E3 by

taking

Z[T; '; � ] = B� � Z[T ]
on the core of �(�(T )), and requesting for i = 1; :::; 4 that:

Z[T; '; � ] � Ri � F�(T ) = Fi[T; '; � ] := F [ �(T ); 'i;RT;i � Ri ; � ] ;

Ai[T; '; � ] := A [ �(T ); 'i;RT;i � Ri ; � ] ;
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which de�nes Z[T; '; � ] on the ith wing of �(�(T )), Fi[T; '; � ], and
Ai[T; '; � ].

Finally we call the pivot of the right-hand side of the last equation
the ith pivot of Z[T; '; � ] and we denote it by Ci[T; '; � ].

In the next proposition we discuss the fundamental properties of
Z[T; '; � ], and then in De�nition 3.14 we de�ne the desingularizing
surfaces and some more notation associated to them. Notice that we
�nd convenient to truncate the desingularizing surfaces at s = 5�s=� ,
in this way a neighborhood of their boundary when � 6= 0 is precisely
catenoidal|recall that f� is truncated in 3.11 at a smaller value of s.

Proposition 3.13. There is �00� = �00� (��) 2 (0; �0� ] such that for T
and ' as in 3.12, and � 2 [0; �00� ], Z[T; '; � ] satis�es the following:

(i) It is a smooth immersion depending smoothly on its parameters.

(ii) For each n 2 Z it is equivariant under re
ection of the domain with

respect to the plane fz = n�g, and of the range with respect to the

plane fz = n�g|when � = 0|or the plane through (���1; 0; 0),
parallel to the y-axis, and forming an angle n��1� with the positive

x-axis|when � 6= 0.

(iii) If ��1 is a positive integer then Z[T; '; � ](��5�s=� (�(T ))) is an

embedded surface. It contains 2��1 fundamental regions under

the re
ections in (ii), and its boundary consists of four (round)

circles which have exactly-catenoidal neighborhoods.

Proof. This follows from the various de�nitions by inspection.
q.e.d.

De�nition 3.14. If T , ', and � are as in 3.13, and ��1 2 N, we
de�ne a smooth embedded surface with boundary by

� = �[T; '; � ] := Z[T; '; � ](��5�s=� (�(T ))):
If ��1 =2 N we de�ne similarly �[T; '; � ] as an immersed surface.

We also de�ne s on �[T; '; � ] to be simply the pushforward by
Z[T; '; � ] of s on �(�(T )). The ith wing of � is de�ned to be the
image under Z[T; '; � ] of the intersection of the ith wing of �(�(T ))
with the preimage of �. Finally we de�ne @i[T; '; � ] to be the boundary
circle of �, which is contained in the ith wing, and we call the ith pivot
of Z[T; '; � ], Ci[T; '; � ], the ith pivot of � as well.
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By reviewing 2.4 and using the smooth dependence on �|� = 0
included|we can summarize as follows: We have de�ned the surfaces
�[T; '; � ] which are embedded if ��1 2 N, or immersed in general, have a
\core" ��0[T; '; � ] which is within a uniformly bounded distance from
a circle of radius 1=� and is locally a small deformation of the core
��0(�(T )), and four wings which are the four connected components of
the complement of the interior of the \core". �[T; '; � ] is immersed by
Z[T; '; � ] de�ned on �(�(T )). The ith wing of �[T; '; � ] is immersed

by Fi[T; '; � ] restricted to H+
�5�s=�

. We can distinguish �ve regions on

the wing: Where s � 1=3 the wing is de�ned in the same way as the
\core" was de�ned and does not depend on '. Where s 2 [2=3; 3�s=� ]
the wing is the graph of|essentially|f�(T ) over an annulus contained
in the catenoid passing through Ci[T; '; � ] and @i[T; '; � ]. Notice that
we have also a parametrization Ai[T; '; � ] of this catenoid in which these
circles correspond to fs = 0g and fs = 5�s=�g respectively. Where s 2
[4�s=�; 5�s=� ] the wing lies on the catenoid and Fi[T; '; � ] = Ai[T; '; � ].
Finally the two remaining regions, that is where s 2 [1=3; 2=3] and
where s 2 [3�s=�; 4�s=� ], are regions of transition between their adjacent
regions.

4. The mean curvature of the desingularizing surfaces

Introductory discussion.

The initial surfaces which we shall construct later in Section 6 con-
sist of the desingularizing surfaces that we constructed in the previous
section|homothetically changed|and pieces of catenoids and planes.
The minimal surfaces which we construct in this paper are graphs over
these initial surfaces. The functions de�ning these graphs satisfy a non-
linear partial di�erential equation. We initially concentrate on the lin-
earization of this equation which is inhomogeneous with the inhomoge-
neous term involving the mean curvature of the initial surface. Since
catenoids and planes are minimal surfaces, the mean curvature of the
initial surfaces is supported on the desingularizing surfaces. This sec-
tion is devoted to understanding the mean curvature of a desingularizing
surface � = �[T; '; � ].

The mean curvature on � is the result of the various bendings which
we had to introduce. The bending controlled by � , which bends the axis
of a Scherk surface to a circle, is really forced to us by the need to �t
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the desingularizing surface to the minimal surfaces that we are desin-
gularizing. It creates mean curvature which feeds the inhomogeneous
term in the linearized equation and needs to be corrected by solving
the equation. Hence this part of the mean curvature has to be care-
fully estimated so that appropriate estimates for the solutions can be
obtained.

Now as we have mentioned in the introduction, in order to solve the
linearized equation and obtain appropriate estimates for the solutions,
we only solve modulo functions w and w, which we will de�ne later in
this section. The functions w correspond to the small eigenvalues which
the operator in the linearized equation has, and allow us to make the
inhomogeneous term orthogonal to the corresponding eigenfunctions.
We can solve then as if there were no small eigenvalues. The functions
w are accompanied by functions u on which if we acted by the linearized
operator we would obtain the functions w. By adding multiples of the
u's to the solutions we can modify them in ways which allow us to
achieve fast exponential decay along the wings.

As we discussed in the introduction and we will see in detail in
Sections 7 and 8, since we are solving modulo the w's and w's, we have
to be able to cancel arbitrary (small) linear combinations of them. The
way we achieve this is by modifying geometrically the construction so
that the mean curvature of the initial surfaces is modi�ed by prescribed
such linear combinations. As we mentioned in the introduction this is
achieved by \dislocating" the pieces of the initial surfaces relative to
each other.

We have already implemented these dislocations in the constructions
in the previous section. This re
ects in the estimate in Proposition 4.20:
We see there that the mean curvature of a desingularizing surface can
be decomposed into three parts: A linear combination of w's with coe�-
cients �i;� which measure the relative bending of opposing wings|they
amount to �i(T ) modi�ed by the further relative bending of opposing
wings away from the core controlled by '. This part is due to the defor-
mation of the core of the Scherk surfaces introduced in the construction
of the �[T ]'s in the beginning of the previous section. The second part
is a linear combination of the w's with the 'i's as coe�cients. This part
is due to the bending of the wings relative to the core. The third part is
the \unwelcome" mean curvature which feeds the inhomogeneous term
in the linearized equation. Most of this part is due to the �tting of the
desingularizing surface to the minimal surfaces to be desingularized as
we mentioned above, and its size is controlled by � . The rest of it is due
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to nonlinear interactions in the creation of the previous parts and is of
higher order in the parameters already mentioned.

It is interesting to re
ect on the de�nition of the w's, u's, and
w's. We more or less de�ne them to be the linearized changes of mean
curvature|for w and w|or position|for u|due to change of the cor-
responding parameters. This seems conceptually clearer than the de�-
nition of �� in [14, Proposition 6.7] for example|�� in [14] corresponds
to the combination of the w's in 4.20|but it requires a certain amount
of work: In our case the wings in particular are de�ned as graphs over
catenoids, where both the catenoid and the function depend on the pa-
rameters. Understanding hence the linearized changes requires a careful
use of Lemma 4.11 combined with a study of how the changes in pa-
rameters change the various quantities.

Estimates on the wings.

The main objective in this subsection is to estimate the mean curva-
ture and its linearized change under change of the 'i's on ��2. Be-
fore we proceed with that, we want to discuss in the next lemma the
\straightening-up" of the wings, where by \straightening-up" we mean
the change of the ' parameters towards vanishing values. Notice that we
want to \straighten-up" (see Figure 7) in such a way that @� does not
move, or, to be more precise, we impose the boundary condition that the
\straightened-up" new surfaces|perhaps extended beyond their bound-
ary by using Z[T 0; ' � '0; � ]|pass still through @�. This condition is
part of 4.1.iv. It implies the possibility that the surface which we start
with satis�es �i(T ) = 0, and yet the \fully-straightened-up" surface|
which in the statement of the next lemma corresponds to '0 = '|may
have �i(T

0) 6= 0. This explains in particular why �i;� in 4.20 has to
involve '.

Lemma 4.1. There are �� = ��(��) 2 (0; ��) and|recall 3.13|

�� = �� (��) 2 (0; �00� ) such that for given a tetrad T as in 3.1, ' 2 R4 ,

and � 2 (0; �� ], where

�(T ) 2 [30 �� ;
�

2
� 30 ��]; �1(T ); �2(T ) 2 [���; ��]; j'j � ��;

we have for each '0 = f'0ig4i=1 2 R4 with j'0j � ��, a T 0 which de-

pends smoothly on T; '; � and '0, and is characterized by the following

properties:
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(i) (T 0; ' � '0; �) satis�es the conditions in 3.13 and hence

Z[T 0; ' � '0; � ] satis�es 3.13.i-iii.

(ii) T 0 = T when '0 = 0.

(iii) T 0 = f~e [�0i]g4i=1 where each �0i depends smoothly on '0 and����� @�
0
i

@'0j
� �ij

����� � C�:

(iv) There is a smooth function f'0 on �[T; '; � ] which depends smooth-

ly on T; '; � and '0, satis�es f'0 � 0 on @�[T; '; � ], and its graph

over �[T; '; � ] is contained in the image of Z[T 0; '�'0; � ] (which
contains �[T 0; '� '0; � ]).

Proof. Fix for a moment a T , ', and � satisfying the assumptions
and suppose that T = f~e [�i]g4i=1. By inspecting the de�nition and using
3.9 and 2.4.v we see that given �0 = f�0ig4i=1 with j�i � �0ij � 2�� and
'0 as in the lemma, there is a function f on �[T; '; � ] which depends
smoothly on �0, '0, and (T; '; �), and whose graph over �[T; '; � ] is
contained in the image of Z[T 0; ' � '0; � ] where T 0 = f~e [�0i]g4i=1. By
the de�nitions f is a constant fi on the boundary circle of �[T; '; � ]
contained in the ith wing of �[T; '; � ]. Moreover by using 3.9 it is easy
to see that the matrix (@fj=@�

0
i) has an inverse of norm � C� and that

the matrix (@fi=@�
0
j+@fi=@'

0
j) has norm � C. By applying the implicit

function theorem then we can �nish the proof. q.e.d.

As we have mentioned we need to study the variations along families
of surfaces|the wings|which are de�ned as graphs of varying functions
over varying surfaces|the catenoids. It is helpful to introduce some
notation now to facilitate reference to the geometric invariants of the
catenoids and of the wings of � = �[T; '; � ]. Recall from 3.12 that the
immersion of the half-catenoid on which the ith wing of � is de�ned
as a graph is Aj = Aj[T; '; � ], while the immersion of the wing itself is

Fj = Fj [T; '; � ]. The map Fj � A�1j maps points of the catenoid to the
corresponding points of the graph above them.

Notation 4.2. Let 
j be the component of ��1 contained in the
jth wing. Abusing the language we adopt the convention of using the
same symbols for the functions and tensor �elds on 
j, as well as their
pullbacks by Fj �A�1j , to 
0j := Aj � F�1j (
j), and vice versa. To avoid
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confusion we use symbols without subscripts for the geometric invari-
ants of 
0j contained in the asymptotic catenoid, while the geometric
invariants of 
j � � are distinguished by the use of a subscript �, with
the exception of the mean curvature of � which is denoted by H.

By abuse of notation also we de�ne % on 
j as the pushforward
by Aj of the % > 0 de�ned in 3.9.i|recall that Aj is just some � =
�[�; r0; y0; �]. We have then g = %2 (Aj)�(ds

2 + dz2). We denote by �
the di�erence of the connections induced by (Aj)�(ds

2 + dz2) and g.

Finally, with '0 as in 4.1 and a �xed i 2 f1; :::; 4g, we use a dot _ to
denote the di�erentiation @=@'0ij'0=0.

In the rest of this section we will be tacitly assuming that all surfaces
�[T; '; � ] which we consider have T; '; � satisfying the hypotheses in
4.1. In the next lemma we estimate the geometric quantities and their
variations on the catenoids over which the wings are de�ned as graphs.
In the following corollary we estimate some geometric invariants of the
wings of �. We will use the lemma and its corollary repeatedly later in
this section to understand the various quantities on the wings.

Lemma 4.3. j(�(T 0))�j � C and the following are valid on

��1[T; '; � ]:

k%2 � 1 : Ck(g; 1 + s)k � C�; kA : Ck(g)k � C�;

k _% : Ck(g)k � C�; k _A : Ck(g)k � C�2;
k _� : Ck(g)k � C; k� : Ck(g)k � C;

k� : Ck(g)k � C�;

k _� : Ck(g)k � C�2;

k _� : Ck(g)k � C�;

where %2, g, A, �, �, �, and _, are as in 4.2, and all the constants C
depend only on k.

Proof. The �rst estimate follows by 4.1.iii and the various def-
initions. Let ~� = ~�[�r0; �y0; �] where Aj is � = �[�; r0; y0; �]. We
identify ~s = �s and ~z = �z|recall 3.9.ii|and by 3.9.i we have then
%2 = (1 + ~r0)

2(cosh ~s+ cos � sinh ~s)2: We also have by 4.1 and its proof
that

j _~r0j � C�; j _�j � C�:
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The estimates follow then by assuming without loss of generality �s
small enough, by using 3.9, and �nally scaling back to the right scale.
q.e.d.

Corollary 4.4. The following estimates are valid on ��1[T; '; � ]
where ` = 5�s=� :

k%2 � 1 : C3(g)k � C�s;

kg� � g : C3(g; e�s)k � C";

kjAj2� : C3(g; e�s + `�2)k � C"+ C�2s :

In particular, g, g�, and Fj�(ds
2 + dz2) are all uniformly equivalent on

the components of ��1[T; '; � ] by assuming without loss of generality �s
and " small enough.

Proof. The �rst two estimates follow from 2.4.v and 4.3, and they
immediately imply the equivalence of the metrics by the de�nitions. For
the last estimate we have

kjAj2� : C3(g; e�s+`�2)k � kjAj2��jAj2 : C3(g; e�s)k+`2kjAj2 : C3(g)k;

and the proof is concluded by estimating the �rst summand by C" by
2.4.v, and the second by C�2s by 4.3. q.e.d.

We proceed now to estimate the mean curvature and its variations
under changing '. Since the wings decay exponentially to catenoids, we
expect that the mean curvature and its variations decay also exponen-
tially like e�s. Because of the truncation of f� however due to  s|recall
3.11|the mean curvature and its variations are larger than expected by
the decay, by a factor of � in the region where  s is not locally constant,
and where s � 3�s=� . This is accommodated by reducing the rate of
decay in the estimates to 
, which will be determined later, and should
be thought of as a constant slightly smaller than 1. From now on we
will be assuming tacitly that � is small enough in terms of 
.

Lemma 4.5. For 
 2 (0; 1) we have

kH : C2(��1[T; '; � ]; e
�
s)k � C�;

where H is the mean curvature of �[T; '; � ].

Proof. By 2.4.v, the minimality of �, and by assuming � small
enough in terms of 
, we can ensure that the estimate is valid where
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s � 3�s=� because then in that region e
�s < e�
s� . We can concentrate

thus our attention to the region where s � 3�s=� and where the stronger
estimate is valid with 1 instead of 
 as we prove now.

In this region we have  s � 1. Since A� and F� are minimal, and
the former's second fundamental form vanishes, we can apply Lemma
B.1 to conclude that

(1) �f� = �2Q;

where Q is the Qf of Lemma B.1 with X = A� and f =  s f�(T ), and �
is the Laplacian of the 
at metric induced by A�. Similarly then since
� is minimal by 3.9 we have

H =
1

2
(�g + jAj2)f� +Q0;

where Q0 is the Qf of Lemma B.1 corresponding to X = � and
f =  s f�(T ), and �g is the Laplacian induced by g. By (1) we ob-
tain

(2) H =
1

2
jAj2f� +Q0 � %�2Q:

Using 2.4.v, 4.3, and B.1 we conclude the proof. q.e.d.

Lemma 4.6. k _H : C1(��1[T; '; � ]; e
�
s)k � C� .

Proof. We have

_H =
1

2
(%�2)��f� +

1

2
(jAj2)�f� + 1

2
(�(T 0))�jAj2 @f�

@�
+Q;

where Q = _Q0 � %�2 _Q, and Q0, Q, and � are as in the proof of 4.5.
Using 2.4.v, 4.3, and B.1 we conclude the proof. q.e.d.

The functions ui and wi.

In this subsection we de�ne and estimate the functions ui and wi which
are related with the \bending" of the wings|controlled by '|we have
introduced. The properties of these functions are presented in Lemma
4.17. Notice that wi is supported close to the core by 4.17.ii. The main
use of the ui's is that they allow us to modify solutions to the appropriate
Dirichlet problem on � = �[T; '; � ] so that we have exponential decay
with respect to s in the spirit of A.3. This is based on 4.17.iv and is
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done at the expense of introducing wi's in the inhomogeneous term of
the linear equation. As we have mentioned already, we can cancel these
unwelcome wi's by choosing appropriately ' and appealing to 4.20|see
the proof of 8.2.

Our strategy is to de�ne ui to be more or less the change in the im-
mersion due to the straightening-up of the wing in the spirit of 4.1, while
wi corresponds to the change in the mean curvature. It is more practi-
cal for future use to employ the linearized changes and concentrate on
the normal variation of position. Finally, if we did not modify slightly
these de�nitions, we would obtain nonvanishingwi's on the wings, which
would make their future use awkward. Fortunately the nonvanishing
quantities on ��1 are small, and so we can carry out a correction by solv-
ing the appropriate linear equation. We start by de�ning|De�nition
4.7|and estimating|Lemma 4.8|the components of the variation �eld
corresponding to changing 'i. We then de�ne the uncorrected version
of ui in 4.9, and the appropriate linearized operator in 4.10.

De�nition 4.7. Let Y be the variation vector �eld on ��1[T; '; � ]
due to changing '0i, that is on the component contained in the jth wing

Y = (Fj [T
0; '� '0; � ])�;

and let Yk := Y � (Y � ��)�� be the its tangential component of Y .

Lemma 4.8. kYk : C1(��1[T; '; � ])k � C and

kY � �� : C1(��1[T; '; � ])k � C:

Proof. By 4.2 we have on the component contained in the jth wing

Y = (�+  sf�(T )�)
� = _�+  s (�(T

0))�
@f�
@�

� +  s f�(T ) _�;

and the result follows by using 4.3 and|to estimate ��|2.4.v. q.e.d.

De�nition 4.9. We de�ne functions u0i (i = 1; :::; 4) on �[T; '; � ]
by

u0i :=
@

@'0i

����
'0=0

f'0 ;

where f'0 is as in 4.1.
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De�nition 4.10. Given any smooth surface S in E3 we de�ne
LS := 1

2(�S+ jAj2S), where gS , jAj2S , and �S denote the �rst fundamen-
tal form, the square length of the second fundamental form, and the
induced Laplacian on S.

The next lemma decomposes the variation of the mean curvature
which we have already estimated in 4.6, to the part due to the tangential
variation of position which we want to discard and do so in the following
corollary, and to the rest which is the part which we really need to
control.

Lemma 4.11. On ��1[T; '; � ] we have u0i = Y � �� and _H =
Yk(H) + L�u

0
i.

Proof. By 4.1.iv we can factor the immersion of the component
of ��1[T

0; ' � '0; � ] contained in the jth wing, Fj [T
0; ' � '0; � ], as

the composition of a local di�eomorphism of the domain|contained
in H+|followed by X + f'0��, where X and �� are the immersion and

Gauss map of the component above when '0 = 0. By applying _ to this
and referring to 4.9 we conclude then that Y = Yk+ u0i��. The proof is
completed thus by appealing to B.2. q.e.d.

Corollary 4.12. kL�u
0
i : C

1(��1[T; '; � ]; e
�
s)k � C� .

Proof. Follows from 4.11 by referring to 4.6, 4.5, and 4.8. q.e.d.

We proceed now to correct u0i to ui so that L�ui � 0 on ��2. To
achieve this we apply Proposition A.3 to solve a Dirichlet problem as
follows: Consider the cylinder 
 = [1; 5�s=� ] � R=G0 where G0 is the
group generated by (s; z) ! (s; z + 2�). Recall that Fj = Fj [T; '; � ]
is the immersion of the jth wing of � = �[T; '; � ]. Because of the
symmetries we can consistently de�ne

(4:13) � := %�2F �j (g�); d := %2 jAj2� � Fj :

By the usual slight abuse of notation we have then

(4:14) L = 2%2L�;

where L is as in A.2. By the next lemma we thus can apply A.3 and
hence obtain the desired ui and wi in the next de�nition.

Lemma 4.15. By assuming without loss of generality " and �s
small enough, we can ensure that N(L) is small enough as required by

the hypotheses in A.3.
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Proof. Since �� g0 = %�2F �j (g�� g) and d is as in 4.13 this follows
easily by 4.4. q.e.d.

De�nition 4.16. We �x now once and for all an � 2 (0; 1), and
we apply A.3 to obtain vi = R(0; E), where E = �2%2L�u

0
i = �Lu0i, on

each component of ��1[T; '; � ]. We de�ne then ui and wi on �[T; '; � ]
by

ui := u0i + ( [1; 2] � s)vi; wi := L�ui:

Lemma 4.17. The functions ui and wi (i = 1; :::; 4) de�ned as in

4.16 on � = �[T; '; � ] satisfy the following:

(i) They depend continuously on (T; '; � ).

(ii) wi is supported on ��2, kwi : C0;�(�)k � C, and

kwi : C
0;�(��1)k � C� .

(iii) kui : C2;�(�)k � C.

(iv) L�ui = 0 on ��2[T; '; � ], ui = 0 on @�, and jui� a�ij j � C"a on

the component of @��2 contained in the jth wing.

Proof. From 3.13, 2.4.v, and 4.1 it follows that ku0i : C3(��2)k � C.
By 4.8 and 4.11 we have ku0i : C3(��2)k � C. Thus using 4.12 and the
estimates provided by A.3 we can conclude (ii) and (iii). (i) follows from
reviewing the construction. Finally from reviewing the construction and
using 2.4.vi, 4.1.iii, 3.7, and 2.4.v we obtain (iv) and �nish the proof.
q.e.d.

The functions wi.

In this subsection we de�ne and study the functions wi which play the
role of a \substitute kernel" in the sense of [13]. The mean curvature
introduced by the \bending" which changes �(�(T )) to �[T ] is close to
a linear combination of the wi's and can be chosen at will by choosing
�i(T ) (see 4.20). This can be used to cancel any unwelcome combination
of wi's which is introduced when we solve the linear equation modulo
the wi's.

De�nition 4.18. Let H� be the mean curvature on the surface
Zx[�](�(�)) and let wx : �(�)! R be de�ned by

wx :=
d

d�

����
�=0

H� � Zx[�]:
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Similarly de�ne wy using Zy instead of Zx. We also denote by wx and
wy the pushforwards on �[T; '; � ] by Z[T; '; � ] of these functions. We
de�ne then functions w1 and w2 on �[T; '; � ] by

w1 := �wx + wy; w2 := �wx �wy:

Lemma 4.19. The functions wi (i = 1; 2) de�ned as in 4.18 on

� = �[T; '; � ] satisfy the following:

(i) They depend continuously on (T; '; �).

(ii) wi is supported on ��0[T; '; � ] and kwi : C
0;�(�)k � C.

(iii) Let P : R2 ! V , where V is the span of the pushforwards by

Z[T; '; � ] of � � ~ex and � � ~ey on �(�(T )), be the linear map which

assigns to (�1; �2) the orthogonal projection in

L2(�[T; '; � ]; jAj2�g�=2)

of (�1w1 + �2w2)=jAj2�|which is well de�ned by (ii)|into V . P
is then invertible and kP�1k � C.

Proof. (i) follows easily by reviewing the construction. (ii) follows
from the smooth dependence on parameters in 3.13 and the de�nitions.
(iii) amounts to checking that the 2� 2 matrix�

d

d�

Z
H� � Za[�] � � ~eb

�
;

where a and b are either x or y, has a bounded by C inverse. Because
of the symmetries the matrix is diagonal. The diagonal entries can be
easily calculated by using the balancing formula [27], [19], or a linearized
version of it [15], and the proof is complete. q.e.d.

The decomposition of the mean curvature.

We are �nally ready to decompose the mean curvature to a part due
to the deformation we employed to introduce nonvanishing �i(T )'s and
which part we can prescribe, a part due to the \bending" of the wings
and which we can also prescribe, and �nally the rest which we can only
estimate as in the next proposition.
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Proposition 4.20. For (T; '; � ) as in Lemma 4.1 the mean curva-

ture H on � = �[T; '; � ] satis�es

kH �
2X

i=1

�i;�wi �
4X

i=1

'iwi : C
0;�(�; g�; e

�
s)k � C (� + j��j2 + j'j2);

where �� = (�1;�; �1;�) = (�1(T ) + '3 � '1; �2(T ) + '4 � '2).

Proof. On ��1, where wi = L�u
0
i, this follows from the smooth

dependence on the parameters in 3.13, 4.1.iii, and B.1. On ��1 it follows
from 4.17.ii, 4.19.ii, and 4.5. q.e.d.

5. The initial con�gurations

A description of the initial con�gurations.

To describe the construction of our surfaces we introduce a new Carte-
sian coordinate system O:x1x2x3 in E

3. \Horizontal" and \vertical" will
be used instead of \on a plane parallel to the x1x2-plane" and \parallel
to the x3-axis" respectively. In this section all objects de�ned are taken
to be rotationally invariant with respect to the x3-axis. Quali�cations
referring to \height" like above, below, and various others, refer to the
x3 coordinate.

Also by \catenoids" we mean \catenoids (with axis the x3-axis in
accordance with our convention above) or (horizontal) planes". The size
of a catenoid is de�ned to be its distance from its axis (hence 0 for a
plane). The \position parameter" or \position" for short of a catenoid
is de�ned to be the x3-coordinate of its \waist", that is of the circle on
the catenoid closest to its axis, when the size is nonzero, and the x3
coordinate of any point on the plane when the catenoid has size 0 and
is therefore a plane.

A catenoidal end is de�ned to be the intersection of a non-planar
catenoid with a halfspace of horizontal boundary, or the complement of
an open disc in a plane. A catenoidal disc or annulus is de�ned to be
a (rotationally invariant) topological closed disc or closed annulus lying
on a catenoid.

Here, as well as later, we will need to have acceptable tetrads as in
3.1, but associated to the new coordinate system O:x1x2x3. To this end
we just replace the x, y, and z coordinates in De�nition 3.1 (and 2.3),
with the coordinates x1, x3, and x2 respectively. The con�gurations
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we de�ne here, will be used to guide us in the construction of initial
surfaces in the next section. Notice that the circles in C will be replaced
with scaled down desingularizing surfaces.

In the next de�nition � is a small positive constant which is used
to provide uniform control to the geometry of the con�guration. Notice
that by 5.1.iii the constant �� which we have been using will be de�ned
from now on in terms of �.

De�nition 5.1. An initial con�guration I controlled by � 2
(0; 10�3) consists of two �nite sets C = fCkgNCk=1 and A = fAjgNAj=1 such
that the following hold:

(i) Each Ck is a circle whose radius is in [�; ��1].

(ii) Each Aj is a catenoidal disc, annulus, or end, such that its bound-
ary circles are contained in C. Moreover if Ai is not a disc its
distance from the x3-axis is at least �.

(iii) Each Ck 2 C is a boundary circle of exactly four members AJ(i;k)

(i = 1; :::; 4) of A, where J is a map from f1; :::; 4g�f1; :::; NC g to
f1; :::; NAg. Moreover there exists a tetrad T (Ck) such that its ith
vector is inward tangent to AJ(i;k) at Ck \ f(x1; 0; x3) : x1 > 0g.
T (Ck) is required to satisfy the conditions that T is required to
satisfy in 4.1 with �� = 5�.

(iv) Each Aj which is compact|not an end|has the property that
the Dirichlet problem for LAj

|recall 4.10|has no eigenvalues in
[��; �] corresponding to rotationally invariant eigenfunctions.

The above de�nition describes essentially the situation where we
have a number of catenoids intersecting along circles which we have
identi�ed, but where we allow the following modi�cation: The regions
of a catenoid bordering such a circle do not need to have opposing
conormals anymore, that is we allow some change of the catenoid as we
cross each of these circles. This amounts to \unbalancing" in the follow-
ing sense: Notice that the (surface tension) force exerted on a circle's
length element by the four catenoidal pieces adjoined to it vanishes if
and only if the four pieces belong to two intersecting catenoids, which is
equivalent to balancing in the sense of 5.2, where we also de�ne simple
quantities to keep track of this unbalancing.
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De�nition 5.2. Let V� := (R2 )NC . If I is as in 5.1 we de�ne
#(I) = f�k = f�i;kg2i=1gNCk=1 2 V� by

�i;k = �i(T (Ck)):

If #(I) = 0 we call I balanced.

When we want to construct embedded minimal surfaces we will need
our initial con�gurations to satisfy a number of further conditions which
we present in the next de�nition. Conditions 5.3.i and 5.3.ii are obvi-
ously needed. Condition 5.3.iii will be used to ensure that the ends,
whose size we can not really control during the construction later, do
not get perturbed to intersect each other. It may be though, that in
certain cases violating this last condition, the ends get perturbed in such
a way during the construction, that they still avoid each other, giving
rise this way to an embedded minimal surface. Further study would be
needed to settle this issue.

De�nition 5.3. If I is as in 5.1 we call it �-embedded if it satis�es
the following:

(i) The distance between any two circles in C is at least 5�.

(ii) The interiors of the elements of A are pairwise disjoint. Moreover
the distance between any two sets

Ai n fp 2 E3 : dist (p; @Ai) < �g

is at least �2.

(iii) The sizes of any two catenoidal ends in A di�er by at least �, so
in particular there is at most one planar end.

The construction of our minimal surfaces can not be based on a single
initial con�guration because we do not know a priori what is the exact
amount of \unbalancing" we will need. Instead we need to start with
families of initial con�gurations which are perturbations of each other.
These families are built around a distinguished con�guration I which
is balanced. The other con�gurations in the family are parametrized
by parameters which specify the amount of unbalancing introduced and
also changes in position and size of certain ends. These last changes
are introduced, so we can cancel any changes introduced during the
construction to ensure that the minimal surface constructed has some
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of its ends asymptotic to chosen ends of I|and some more agreeing in
position if not size.

De�nition 5.4. A con�guration I as in 5.1 is called a (�; E 0; E 00)-

exible con�guration if the following are true:

(i) I is controlled by � and consists of C = fCkgNCk=1 and A = fAjgNAj=1.

(ii) E 0 = fEigN
0
E

i=1 � A and E 00 = fEigN
00
E

i=1 � A are two disjoint subsets
of ends.

(iii) I is a balanced initial con�guration as in 5.2. Moreover it is
equipped with a family of initial con�gurations I[#; b], each of
which controlled by � and consisting of C[#; b] = fCk[#; b]gNCk=1 and

A[#; b] = fAj [#; b]gNAj=1, and such that the following are also true:

(iv) # takes values from f# 2 V� : j#j � �2g.

(v) Let Vb := R2N
0
E
+N 00

E . b = (a01; :::; a
0
N 0
E

; b01; :::; b
0
N 0
E

; b001 ; :::; b
00
N 00
E

) takes

values from fb 2 Vb : jbj � �2g.

(vi) I = I[0; 0] and the maps J|recall 5.1.iii|are independent of
(#; b).

(vii) Each Ck[#; b], and the position and size of the catenoid on which
each Aj[#; b] lies, depend smoothly on the parameters (#; b).

(viii) # = #(I[#; b]).

(ix) For each Ei 2 E 0 the position and size of the catenoid on which
Ei[#; b] lies di�er from those for Ei = Ei[0; 0] by a0i and b0i respec-
tively.

(x) Similarly for each Ei 2 E 00 the position of the catenoid on which
Ei[#; b] lies di�ers from the corresponding for Ei = Ei[0; 0] by b00i .

Finally the next de�nition determines the families which we will be
using for constructing embedded minimal surfaces.

De�nition 5.5. If I is as in 5.4 and each I[#; b] is �-embedded as
in 5.3, then we call I an embedded (�; E 0; E 00)-
exible con�guration.
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Constructions of initial con�gurations.

In this subsection we construct various initial con�gurations on which
we will apply our main theorem to obtain the desired minimal surfaces.
For a balanced initial con�guration

SNA
j=1Aj has clearly to be the union

of a �nite number of catenoids. Reversing this we will construct initial
con�gurations from a given collection of catenoids. We start with a
de�nition.

De�nition 5.6. Given a �nite set of non-planar catenoids K =
fKigNKi=1 and a �nite set of planes P = fPigNPi=1 we say that (K;P) is in
general position if the following conditions are satis�ed:

(i) Any two of the planes or catenoids intersect transversely along
circles which do not intersect any other plane or catenoid. Let
C = fCkgNCk=1 be the collection of these circles.

(ii) For each catenoid in K or plane in P consider the connected com-
ponents of the complement of

SNC
k=1 Ck. Let A = fAjgNAj=1 be the

collection of the closures of all these components. We request
that for each catenoidal annulus A 2 A the kernel of LA on A
with vanishing boundary data contains no rotationally invariant
functions.

If the above conditions are satis�ed, we call (C;A) the induced con-
�guration by (K;P). We also de�ne E 0 � A to be the set of the top
ends of each catenoid in K, and E 00 � A to be the set of the ends of each
plane in P .

Lemma 5.7. Given sets of catenoids and planes (K;P) in general

position as in 5.6, there is a � > 0 and a (�; E 0; E 00)-
exible con�guration
I consisting of C and A, where C, A, E 0 and E 00, are as in 5.6. More-

over, by reducing � if necessary, we can ensure that I is an embedded

(�; E 0; E 00)-
exible con�guration, provided that there are no two catenoids

of the same size in K and there is at most one plane in P.
Proof. It is easy to see that if we choose � small enough, then the

conditions in 5.6 guarantee that C and E de�ne an initial con�guration
I as in 5.1 controlled by �. Next we have to de�ne I[#; b] as in 5.4.
We de�ne �rst instead of I[#; b] I(#; b) for which we require the same
conditions as for I[#; b] except for the following modi�cation for 5.4.x:
For an end E 00 2 E 00, consider the planar disc A 2 A, which is contained
in the same plane in P as E 00. Instead of comparing then the positions
of E 00[#; b] and E 00, we compare the positions of A[#; b] and A instead.
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Before we proceed to de�ne I(#; b) we renumber if necessary C =
fCigNCi=1 so that for each Ci either Ci lies above Ci+1, or Ci and Ci+1 are
at the same height, and the radius of Ci+1 is larger than the radius of Ci
(see for example �gure 1). We proceed now to de�ne I(#; b). First of all
the current variant of 5.4.x speci�es the catenoids on which those Aj's
which correspond either to top ends of catenoids in K or to innermost
discs contained in planes in P lie. Using 5.4.viii we specify then the
circles in C(#; b), and the catenoids on which the remaining elements of
A(#; b) lie, inductively as follows: At the nth inductive step we specify
the position of Cn(#; b), and the catenoids on which the AJ(i;n)(#; b)'s
lie (recall 5.1.iii). This is possible because by our way of numbering
the Cn's we already know the catenoids on which exactly two of the
AJ(i;n)(#; b)'s lie.

It is clear now that if # and b are small enough, then I(#; b) is
well de�ned. Thus we can �nd b0 such that I(#; b) = I[#; b0]. The
map (#; b) ! (#; b0) is clearly smooth and maps (0; b) to (0; b) by the
geometry of the construction. Using the inverse function theorem then
we can invert it and de�ne I[#; b] for small enough # and b. Finally
checking that the remaining conditions in 5.1 and 5.4 are satis�ed is
straightforward provided that we choose � small enough. Moreover if
there are no two catenoids of the same size in K, and at most one plane
in P, then we can arrange for the conditions in 5.3 to be satis�ed by all
I[#; b] by choosing � small enough. q.e.d.

The signi�cance of the last lemma is that, as we will see in Section
8, a collection of catenoids and planes in general position can be desin-
gularized to give us a minimal surface which will be complete, of �nite
total curvature, and embedded if the above extra conditions are satis-
�ed. It is exceptional for the catenoids and planes not to be in general
position, and to present this in a systematic way we give the following
de�nition.

De�nition 5.8. Let M be the \con�guration space" of NK non-
planar catenoids and NP � 1 planes. We identifyM with (R+�R)NK�
RNP , and hence we induce a topology on M, by using the sizes and
positions of the catenoids and the positions of the planes as coordinates.
LetM(�) �M consist of those x 2M such that there is a neighborhood
of x inM such that if y belongs to this neighborhood, then the following
is true: The arrangement of the catenoids and planes corresponding
to y induces a I as in 5.7, which is an embedded (�; E 0; E 00)-
exible
con�guration.
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We give the same de�nitions when NP > 1 but without requiring
embeddedness.

Lemma 5.9. In all cases M(�) is an open subset of M increasing
as � decreases, and [�M(�) is an open dense subset of M.

Proof. From the proof of 5.7 it is clear that all we need to check
is that those arrangements of the catenoids and planes which are not
in general position, or have two catenoids of the same size in the case
NP � 1, form a set whose complement is dense. But this is easy to see
because by arbitrarily small changes in the sizes and positions of the
catenoids and planes we can ensure the required conditions one by one.

q.e.d.

The above constructions admit modi�cations which we will only
mention but not carry out in detail. We will discuss them somewhat
more in Section 8. The required changes in the exposition are minimal
and we hope that the reader will have no problem carrying them out
without further help.

Remark 5.10. The above constructions of 
exible con�gurations
could be modi�ed as follows: We could choose not to include some of
the circles of intersection in C. This would result in minimal surfaces
which have these circles as circles of self-intersections. We could also
impose certain symmetries in the construction from the beginning. This
would result in minimal surfaces with some extra symmetries.

6. The initial surfaces

The construction of the initial surfaces.

In this subsection we assume a 
exible con�guration I as in 5.4 given
and we construct a smooth family of initial surfaces we will use later.
Our constructions will be highly symmetrical. We de�ne next the group
of imposed symmetries.

De�nition 6.1. We �x an m 2 N, m > 3, and de�ne G to be the
group of symmetries generated by re
ections with respect to the planes
passing through the x3-axis and forming an angle k�=m (k 2 Z) with
the x1-axis.

Notice that the number of the fundamental regions with respect to G
in each initial surface will be then 2m. Before we proceed with the con-
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struction, we need to determine also the number of fundamental regions
which the Scherk surface desingularizing Ck will have per fundamental
region of the initial surface. To this end we preassign an mk 2 N to
each Ck 2 C. We also de�ne

(6:2) � := 1=m; �k := �=mk = 1=mmk; m := fmkgNCk=1:

�k will be the � parameter of the surface desingularizing Ck while � con-
trols the overall size of the � parameters. From now on unless explicitly
stated otherwise we will also tacitly assume the following:

(i) Our constants C depend on � and m.

(ii) m is large enough|and hence � small enough|in terms of � and
m so that our constructions and estimates are valid.

Now since we have �xed m and m, we can proceed to the construc-
tion of the initial surfaces. These will depend on parameters: # which
control the unbalancing introduced, b which control the change of po-
sition and perhaps size of chosen ends, and �nally � which control the
bending of the wings relative to the core of each desingularizing surface
used. In the next de�nition we specify the ranges of these parameters.
Recall that V� was de�ned in 5.2 and Vb in 5.4.v.

De�nition 6.3. Let V' := (R4 )NC and V := V��Vb�V'. We also
�x a � > 0, which will be determined in the proof of 8.2, and we de�ne
�V := f� 2 V : j�j � ��g.

We �x now a � = (#; b; �) 2 �V , where # is as in 5.2, b is as in 5.4,

and � = f'
k
gNCk=1 where '

k
= ('i;k)

4
i=1, and we proceed to construct

the initial surface M = M(�) = M(#; b; �). Let us concentrate our
attention to I[#; b]. To make use of the desingularizing surfaces which
we constructed in Section 3 where we used a di�erent coordinate system,
let a \suitable homothety" be given by

(x; y; z)! (x1; x2; x3) = c(x; z; y);

where c 2 R+ . There is a unique composition of a suitable homothety
followed by a translation which maps the circle B�k(z-axis) onto Ck[#; b].
We call this composition Hk suppressing the parameters (#; b) on which
it depends. We also de�ne a tetrad Tk(�) = f~ei;kg4i=1 as follows: If the
tetrad T (Ck[#; b]) has the relation to the �i;k's which T has to the �i's
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in 3.1, then Tk(�) has the same relation to the �i;k+'i;k's (i = 1; :::; 4).
We thus de�ne a surface Sk(�) by
(6:4) Sk(�) := Hk(�[Tk(�); ~'k(�); �k]);

where ~'
k
(�) = f ~'i;kg4i=1 will be determined later. Notice however that

the ith pivot of �[Tk(�); ~'k(�); �k] does not depend on ~'
k
(�)|recall

3.12|and hence we can de�ne independently of ~'
k
(�)

C0i;k(�) := Hk(Ci[Tk(�); ~'k(�); �k]):
Consider now AJ(i;k)[#; b]. If it is an annulus, then there are i0,

k0 6= k such that J(i; k) = J(i0; k0) and

@AJ(i;k)[#; b] = Ck[#; b] [ Ck0 [#; b]:
By 5.1.iv, for j = J(i; k) = J(i0; k0) there exists a catenoidal annulus
A0
j(�), which is a small perturbation of Aj[#; b], and is uniquely deter-

mined by the requirement

@A0
j(�) = C0i;k(�) [ C0i0;k0(�):

There is clearly a unique value for ~'i;k such that

Hk(@i[Tk(�); ~'k(�); �k]) � A0
j(�);

that is|recall 3.14|Sk(�) has both the image of the pivot and the
corresponding boundary circle lying on A0

j(�). This implies that there
is a neighborhood of this boundary circle in Sk(�) which lies in A0

j(�),
that is, the two surfaces would \match" each other if we were to remove
an appropriate neighborhood of the boundary of A0

j(�). To this end we
de�ne

A00
j (�) := A0

j(�)n
�
Hk � Ai[Tk(�); ~'k(�); �k](H

+
�4�s=�

)[
Hk0 � Ai0 [Tk0(�); ~'k0 ; �k0 ](H

+
�4�s=�

)
�
;

(6.5)

where ~'i0;k0 has been de�ned similarly to ~'i;k above.
Since we have taken care of the case that AJ(i;k) is an annulus and

has two boundary circles, we concentrate in the case where AJ(i;k) is a
planar disc or a catenoidal end, and hence has only one boundary circle.
Let j = J(i; k). Then we have @Aj[#; b] = Ck[#; b], de�ne

A0
j(�) := H[c+; c](Aj [#; b]);
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where H[c+; c](x1; x2; x3) := c+(x1; x2; x3 + c) with c+ 2 R+ and c 2 R
chosen by the requirement that

H[c+; c](Ck[#; b]) = C0i;k(�):

As before we can de�ne ~'i;k by requesting

Hk(@i[Tk(�); ~'k(�); �k]) � A0
j(�);

and we also de�ne

(6:6) A00
j (�) := A0

j(�) n Hk � Ai[Tk(�); ~'k(�); �k](H
+
�4�s=�

):

At this point we have de�ned ~'i;k for all (i; k) and hence all the
~'
k
(�)'s. In the next de�nition besides de�ning M(�) we also de�ne

quantities which will be useful in discussing the changes that the param-
eters in � \su�ered" during the construction: ~#(�) describes the precise
unbalancing adopted, ~b(�) describes the changes of positions and sizes
of chosen ends from those they had in I[#; b], and ~�(�) describes the
actual bending of the wings relative to the cores. We also de�ne M 0,
because part of M is built as a graph over M 0 and we will occasionally
need to refer to it.

De�nition 6.7. Continuing from the above exposition we de�ne

M =M(�) =M(#; b; �) :=

NC[
k=1

Sk(�) [
NA[
j=1

A00
j (�);

M 0 =M 0(�) =M 0(#; b; �) :=

NA[
j=1

A0
j(�);

S = S(�) :=
NC[
k=1

Sk(�):

We push forward the function s by Hk to each Sk; and then extend
it to a discontinuous function on the whole M by taking s = maxS s on
the rest of M . Similarly we de�ne s on M 0.

Finally we de�ne ~# = ~#(�) 2 V�, ~b = ~b(�) 2 Vb, and ~� = ~�(�) 2 V',
as follows:

(i) ~# = f~�kgNCk=1 where
~�k = f~�i;kg2i=1 and

~�i;k = �i(Tk(�)).
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(ii) ~b = (~a01; :::; ~a
0
N 0
E

;~b01; :::;
~b0N 0

E

;~b001 ; :::;
~b00N 00

E

), where for each Aj = E 0l 2
E 0, the size and the position of the catenoid, on which A0

j(�) lies,

di�er, by ~a0l and
~b0l respectively, from those of the catenoid on

which Aj [#; b] lies and for each Aj = E 00l 2 E 00, the position of the
catenoid on which A0

j(�) lies, di�ers by
~b00l from the position of the

catenoid on which Aj[#; b] lies.

(iii) ~� = f ~'
k
gNCk=1, where ~'

k
has already been de�ned.

Recall that as we discussed in the introduction, our strategy re-
quires that we cover the initial surfaces by neighborhoods of the stan-
dard pieces, where each neighborhood of a standard piece consists of
the standard piece and the joining pieces next to it. For the standard
pieces which are (cores of) Scherk surfaces we can use the Sk(�)'s as
the corresponding neighborhoods. In the next de�nition we de�ne the
neighborhoods which we will be using for the remaining standard pieces
that are catenoidal ends and annuli or planar discs.

De�nition 6.8. Let a := 8jlog� j = 8 logm. Notice that for
M = M(�) as in 6.7, each component of M�a contains exactly one
A00
j (�). The component which contains A00

j (�) will be called Nj = Nj(�).

In the next proposition we present the most striking properties of
the initial constructed surfaces. However when more precise information
is required, a review of the details of the construction will be needed.
Recall that j : j stands for the maximum norm, C depends only on � and
m, and G and a were de�ned in 6.1 and 6.8 respectively. Also notice
that when the (#; b) parameters of circles or catenoidal pieces are not
speci�ed, we are referring to those of I = I[0; 0] (recall 5.4).

Proposition 6.9. M = M(�) with � 2 �V is well de�ned by 6.7,

and has the following properties:

(i) M is a complete (boundaryless) smooth surface which depends

smoothly on �.

(ii) M respects the symmetries in G.
(iii) There is a large ball B such that M nB is the union of catenoidal

ends which are in one-to-one correspondence with the catenoidal

ends in A in such a way that the sizes and positions of the catenoids

on which the corresponding ends lie are close. Moreover for each
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end E 0j 2 E 0 there is a catenoidal end ~E 0j � M n B such that the

sizes and positions of the catenoids on which the two ends lie di�er

by a0j +~a0j and b
0
j +

~b0j respectively. Similarly for each end E 00j 2 E 00
there is a catenoidal end ~E 00j � M n B such that the positions of

the catenoids on which the two ends lie di�er by b00j +
~b00j .

(iv) For all i = 1; 2 and k = 1; :::; NC we have ~�i;k = �i;k+'i+2;k�'i;k.
(v) j~bj � C� and j~�+ �j � C� .

(vi) M�1 is a graph over M 0
�1 by a function fM such that

kfM : C5(M 0
�a)k � �3.

(vii) Consider a sequence of initial surfaces M with varying �'s but

increasing m's. Let U be a neighborhood of
SNC
k=1 Ck. Then the

sequence of the initial surfaces tends uniformly in Ck norm toSNA
j=1Aj on any compact subset of E3 n U . Similarly H�1

k (M)

tends uniformly on compact subsets of E3 to a Scherk surface.

Proof. That M is well de�ned and satis�es (i) is clear from the
construction and preceding discussion. (ii) follows from 3.13. (iii) fol-
lows by searching through the de�nitions and 6.7.ii in particular. The
expression for ~# in (iv) follows by the de�nition of the Tk(�)'s and 6.7.i.
The �rst estimate in (v) follows easily by the construction and the sec-
ond one because the conormals at the boundary of each A0

k di�er from
the corresponding ones for Ak by � C� since the corresponding bound-
aries have been moved by � C� . (vi) follows from the de�nitions and
rescaling 2.4.v (fM is clearly supported on S(�)). Finally (vii) follows
from the construction and 6.3. q.e.d.

In the next corollary for future reference we review the control which
we have over the parameters of the desingularizing surfaces that we use.

Corollary 6.10. The parameters of each �[T; '; � ] = H�1
k (Sk(�))|

recall 6.4|satisfy the following:

(i) 50� � �(T ) � �
2 � 50�.

(ii) j�i(T )j � 3�� .

(iii) j'j � (� + C)� .

(iv) �=jmj � � � � .
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Proof. Recall from 6.4 that T = Tk(�), ' = ~'
k
(�), and � = �k.

(i) follows then by referring to the de�nition of Tk(�), 5.4.iii, 5.1.iii, 6.3,
and by assuming � small enough in terms of �. (ii) follows by 6.9.iv and
6.3. (iii) follows from 6.9.v and 6.3. (iv) follows from 6.2. q.e.d.

The ends of the initial surfaces.

While the desingularizing surfaces have been studied already and the
geometry of the catenoidal annuli and discs in an initial surface is more
or less fully controlled by 6.9.vi, in the case of the ends we will need some
more information which we present in this subsection. This information
is needed in solving the linearized equation in the next section. We start
with a lemma which gives parametrizations for catenoidal ends in the
style needed for applying Lemma A.3.

Lemma 6.11. A catenoidal end E of size a and boundary circle

of radius r admits a parametrization KE : H+=G0 ! E where G0 is

the group generated by (s; z) ! (s; z + 2�), such that the pullbacks by

KE of the �rst and second fundamental forms are %̂2(ds2 + dz2) and

a(ds2 � dz2) respectively, where %̂ := r cosh s�pr2 � a2 sinh s and the

dubious sign is � if and only if E contains the waist of the catenoid on
which it lies.

Proof. By using the Enneper-Weierstrass representation it is easy to
check that the general form of the expressions is correct. The correctness
of the coe�cients can be checked then by direct calculation. q.e.d.

It turns out that depending on the size of the Gauss image of a
catenoidal end, di�erent strategies are adopted for solving the linearized
equation on it. In preparation for this we give the following de�nitions.
Notice that as we state in 6.14 later h-small or h-large refers to the size of
the punctured disk which is the Gauss image of the end in consideration.
Notice also that in the case of an h-large end, the boundary circle of
~Nj(�) is large enough to ensure that fM = 0 on the circle.

De�nition 6.12. We �x once and for all an �K 2 (0; �) which will
be determined later.

Suppose M = M(�) and M 0 = M 0(�) are as in 6.7, and Aj is an
end for some j = 1; :::; NA. We then de�ne ~Nj(�) � Nj(�) as follows:
Let r be the radius of the boundary circle of Aj and a the size of the
catenoid on which Aj lies. If r > a=�K and Aj does not contain its
waist, then we de�ne ~Nj(�) := Nj(�)|recall 6.8; otherwise we de�ne
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~Nj(�) by demanding that it is a catenoidal end contained inNj(�) which
does not contain its waist and has a boundary circle of radius 2a=�K .
We call Aj and Nj(�) h-small in the �rst case, or h-large in the latter
case.

For such a j we also de�ne the following: A parametrization Kj(�)
of ~Nj(�) by Kj(�) = � �K ~N 0

j
|recall 6.11|where ~N 0

j = ��1( ~Nj(�)) �
A0
j(�) and � :M 0

�1 !M�1 is the projection ofM
0
�1 to the graph over it

M�1|recall 6.9.vi. A map ~� : Nj(�)! S2 by requiring ~� �� = �M 0 on
��1(Nj(�)). And �nally a metric h on Nj(�) by h := jAj2Nj(�)

gNj(�)=2.

Notice that Nj(�) = ~Nj(�) if and only if Nj(�) is an h-small end.
Otherwise|by assuming �K and �s small enough| ~Nj(�) does not in-
tersect S(�). The next lemma prepares us to apply A.3 on the ~Nj(�)'s
in the next section.

Lemma 6.13. Let Kj(�) : 
! ~Nj(�) be as in the above de�nition

where 
 = H+=G0 is as in 6.11, and let g0 = dŝ2+dz2, � := %̂�2K�
j gM ,

and d := %̂2jAj2M �Kj , where we rename into ŝ the coordinate s on 
 to

avoid confusion with the s already de�ned on M . Then we have

k�� g0 : C
3(
; g0; e

�ŝ)k � � ;

kd : C3(
; g0; e
�ŝ)k � C�2K :

Proof. Notice that � = g0 unless Nj is a small end in which case
�� g0 is supported where ŝ � 4�s and the �rst inequality follows easily.
The second one follows from 5.1, 6.11, and 6.12. q.e.d.

For h-large ends we will use the following lemma to study the lin-
earized equation on them.

Lemma 6.14. An h-large end Nj(�) as in 6.12 has as image under

~� a round, geodesic, punctured at the center, disc of radius � C�K.
Moreover h = ~��(gS2) on ~Nj(�) and

kh� ~��(gS2) : C
3(Nj(�); h)k � � :

Proof. The �rst part follows from 6.12 by rescaling to the unit
catenoid. This shows also that ~� is the Gauss map on ~Nj(�). The
estimate then follows by 2.4.v and the de�nitions. q.e.d.
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7. The linearized equation

Introductory discussion.

In this section we study the solutions to (the appropriately modi�ed)
linearized equations and we produce the required estimates for them.
As we have mentioned before, the strategy for solving the linearized
equation is to \quasi-localize" by concentrating our attention to neigh-
borhoods of the \standard pieces" consisting of the standard piece in
question joined with the adjacent \joining pieces". In this paper we can
take as standard pieces the|perturbed during the construction of the
initial surfaces|cores of the Scherk surfaces augmented with a bit of
\margin", and the|also modi�ed to �t the initial surfaces|catenoidal
pieces which appear in the initial con�gurations. As joining pieces we
take the wings of the Scherk surfaces. The exact position where the line
between the various pieces can be drawn is more or less arbitrary. We
found it convenient to draw it so that the neighborhoods of the stan-
dard pieces mentioned above turn out to be the Sk(�)'s and the Nj(�)'s
(de�ned in 6.4 and 6.8).

To solve now the inhomogeneous linear equation on the initial sur-
faces, according to our approach, we have to distribute the inhomo-
geneous term to these neighborhoods of the standard pieces, by using
a suitable partition of unity subordinate to the neighborhoods. Then
we solve the linear equation with the appropriate inhomogeneous term
on each such neighborhood and with boundary data which can be for
example Dirichlet, or whatever else may seem convenient in each case.
As we have mentioned before these \quasi-local" solutions have to be
patched-up to make a global one.

This creates an error though, which we may be able to correct by
iterating the process, provided it is small compared to the initial inho-
mogeneous term. The error can actually be arranged to be small, by
using the u and w functions, as we have outlined in the introduction
and Section 4. Notice that we do not need such functions on all the
neighborhoods of the standard pieces in consideration; we just need one
per joining piece. In our case we have indeed one u and one w per
wing, and they are supported on the Sk(�) containing the wing. This
is convenient since the main inhomogeneous term which we are dealing
with|the mean curvature of the initial surfaces|is supported on these
pieces. Finally, on those neighborhoods on which we have small eigen-
values, that is the Sk(�)'s in this paper, we are forced to solve modulo
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the w's which we have discussed before.
This approach, where we \quasi-localize" and iterate to solve the

linear equation modulo the w's and w's, appeared �rst in embryonic
form in [13]. Its purpose there was limited: It allowed us to simplify the
study of the approximate kernel keeping it �nite dimensional, and per-
haps simpli�ed some of the arguments and the intuition behind them.
In [13] though the decay along the joining pieces was not studied care-
fully enough and we used no w's. Because of this, the estimates, which
we could get following the approach in [13], turned out to be insu�cient
for the problem solved in [14], where the full method applied here was
developed. The main advantage of this approach seems to be that it
provides a systematic way of setting up the construction, highlighting
the idiosyncratic di�culties of each problem, and suggesting through
the \geometric principle" [14] - [15] a way to resolve some of them.

In the next subsection we concentrate on solving the linearized equa-
tion on the Sk(�)'s, then in the following one on the Nj(�)'s, and in the
�nal subsection we put everything together applying it also to the main
case where the inhomogeneous term is the mean curvature of the initial
surface.

The linearized equation on the Sk(�)'s.

In this subsection we state and prove Proposition 7.1, in which we solve
and estimate the inhomogeneous Dirichlet problem for the linearized
equation on the Sk(�)'s. Actually it is better to work in the natural
scale of these pieces. To this end we �x in this subsection a Sk(�),
which is as in 6.4, and we concentrate our attention to the corresponding
desingularizing surface � = �[T; '; � ] = H�1

k (Sk(�)) whose parameters
we control by 6.10. The symmetry group of our construction G induces a
group of symmetries G� on � which is generated by the re
ections with
respect to the xy-plane and the plane B� (fz = mG�g), where mG = mk

really, and so it satis�es 1 � mG � jmj. In the rest of this subsection
we assume that all the functions on � which we consider are invariant
under the action of G� . From now on we �x a 
 2 (3=4; 1) (recall 4.5).

Proposition 7.1. Given E 2 C0;�(�) there are

�E = f�E;ig2i=1 2 R2 ; '
E
:= f'E;ig4i=1 2 R4 ;

and vE 2 C2;�(�), such that:

(i) �E, 'E, and vE are uniquely determined by the construction below.
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(ii) L�vE =
P2

i=1 �E;iwi+
P4

i=1 'E;iwi+E on � and vE = 0 on @�.

(iii) j�E j � CkEk, where kEk := kE : C0;�(�; g�; e
�
s=mG)k.

(iv) j'
E
j � CkEk.

(v) kvE : C2;�(�; g�; e
�
s=mG)k � CkEk.

The rest of this subsection is devoted to the proof of 7.1. We �rst
reduce to the case where E is supported on ��2.

Lemma 7.2. If 7.1 is valid when E is supported on ��2, then it is
valid in general.

Proof. Assume we are given an E whose support is not restricted.
We argue in a similar way as in 4.13-17: We concentrate our attention
to the component of ��1[T; '; � ] which is contained in the ith wing of �
for some i = 1; :::; 4. Consider the cylinder 
 = [0; 5�s=mG� �1]�R=G0

where G0 is the group generated by (s; z) ! (s; z + 2�). Let F =
Fj [T; '; � ] � R be the reparametrization of the jth wing by using the
scaling R de�ned by R(s; z) = (mGs + 1;mGz). As in 4.13 we can
consistently de�ne because of the symmetries

� := m�2
G %�2F �(g�); d := m2

G%
2jAj2� � F:

By the usual slight abuse of notation we then have

L = 2m2
G%

2L�;

where L is as in A.2. As in 4.15 we can thus ensure that we can apply
A.3 to obtain v0E = R(0; 2m2

G%
2E). We call also v0E the pushforward

by F of v0E. We repeat the same in the other components of ��1 and
de�ne on �

E0 := E �L�( [1; 2] � s v0E):
Clearly E0 is supported on ��2, and we can apply 7.1 by our assumption
to obtain vE0 , �E0 , 'E0 as in 7.1. We then de�ne �E = �E0 , 'E = '

E0
,

and vE = vE0 + ( [1; 2] � s)v0E. The proof is hence complete by the
estimates in A.3. q.e.d.

In the next de�nition we de�ne h on � in analogy with 2.7. Our
motivation is that we can then understand the low spectrum for the
appropriately modi�ed linearized equation by comparing with the situ-
ation in 2.8. Notice that in the next de�nition we employ a small positive
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constant �h to ensure that the metric h is non-degenerate. Apart from
this, �h has no e�ect and can be ignored.

De�nition 7.3. We de�ne a metric h on � by h := (12 jAj2�+�h)g�,
where �h > 0 depends on � , m, and �, and will be determined in the
proof of 7.4. Given c > 0 we de�ne the c-approximate kernel to be
the span of those eigenfunctions of the Dirichlet problem for Lh :=
�h+2jAj2�=(jAj2�+2�h) on �=G� which have corresponding eigenvalues
in [�c; c].

It turns out that (�=G� ; h) and (�(�(T ))=G; h)|G is as in 2.8|
are close to being isometric except for small|in the h metrics|regions
which do not in
uence the lower spectrum much. This allows us to un-
derstand the lower spectrum of (�=G� ; h) in terms of that of
(�(�(T ))=G; h), and then making use of 2.8 and 4.19 we prove in the
next proposition that the inhomogeneous term can be corrected by using
the w's as we have outlined before.

Lemma 7.4. There are positive constants C and c depending only

on � and m such that given E 2 L2(�=G� ; h) there is �E = (�E;1; �E;2)
such that (E�P2

i=1 �E;iwi)=(jAj2�=2+ �h) is L2(�=G� ; h)-orthogonal to
the c-approximate kernel and

j�j � CkE=(jAj2� + 2�h) : L
2(�=G� ; h)k:

Proof. We focus our attention �rst to eigenfunctions of Lh on
(�=G� ; h) (de�ned in 7.3) of low eigenvalue, say less than 10. We prove
a uniform estimate for them as follows: Let f be such an eigenfunction,
that is Lhf + �f = 0, where � < 10. It is clear by the uniform control
of the geometry of ��2 that

kf : C0(��1)k � Ckf : L2(�=G� ; h)k:
To estimate on ��1 we de�ne �, 
, and F as in the proof of 7.2. Then
by writing f for f �F as well we have on 
 Lf = 0 where L is as in A.2
with d = m2

G%
2((1+�=2)jAj2� �F +��h). As in 4.15 we can ensure that

we can apply A.3, and by referring to A.3.vi we conclude that

(1) kf : C0(�)k � Ckf : L2(�=G� ; h)k:
Consider now (�(�(T ))=G; h) de�ned as in 2.8, and Lh on it de�ned

as in 2.7. It follows from standard theory that the eigenfunctions of low
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eigenvalue|say < 10 again|for Lh on (�(�(T ))=G; h) satisfy

(2) kf : C0(�(�(T )))k � Ckf : L2(�(�(T ))=G; h)k:

We de�ne now for a function f on �(�(T ))=G a function F1(f) on
�=G� as follows: Let � : S

2 ! R denote the distance from
f(� sin �;� cos �; 0)g, which by 2.6.i is the complement of the Gauss im-
age of �(�(T )). We de�ne a logarithmic cuto� function  2

S
: S2! [0; 1]

by

 2
S(p) =  [2; 1](log �(p)= log �h);

where �h is a small positive constant to be determined in the course of
the proof. Notice that  2

S
vanishes at distance � �2h from these points,

and  2
S
� 1 at distance � �h from them. Then we de�ne F1(f) =

Z�(f  
2
S
� �), where Z = Z[T; '; � ]. In other words F1 is the push-

forward by Z after an appropriate truncation. Similarly for f on �=G�

we de�ne F2(f) on �(�(T ))=G by F2(f) = (f � Z)( 2
S
� �).

Consider the region on �(�(T ))=G where  2
S
� � 6= 1. By 2.6.iii

and the de�nition of  2
S
we can ensure that its h-area is arbitrarily

small by choosing �h small enough. Similarly the region on �=G� where
Z�( 

2
S
� �) 6= 1, by 4.4, has arbitrarily small area if we choose �h and �h

small enough. With �h chosen now, we can ensure that on the region of
�(�(T ))=G where  2

S
� � 6= 0, Z is as close to an isometry as we like, by

appealing to the smooth dependence on parameters in 3.13. (� by our
conventions can be assumed as small as needed depending on all other
constants except for �h.)

The above imply that if we have eigenfunctions of unit L2(h) norm,
and of eigenvalue < 10, satisfying thus (1) or (2), and we apply Fi (i
either 1 or 2), then their inner product can be ensured to change by
an arbitrarily small amount, and the L2(h) norms of their gradients to
increase also by arbitrarily small amounts. This implies that the low
eigenvalues for Lh on (�(�(T ))=G; h) are arbitrarily close to the ones
for Lh on (�(�(T ))=G; h).

Moreover the Fi's carry such eigenfunctions to functions which have
arbitrarily small distance in L2(h) from linear combinations of eigen-
functions of eigenvalue close to the original one. The proof of these
statements is based on the variational characterization of the eigenfunc-
tions and eigenvalues [1]. The argument uses the fact that the Fi's
can not increase much the Rayleigh quotients, and is by induction in
increasing eigenvalues. The details are technical and elaborate though,
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and rather unilluminating, and since the reader can �nd them in [13,
appendix B] we omit them.

We de�ne now c = ��=2 by referring to 2.8. Using 2.8, 4.19, and the
statements above we thus complete the proof. q.e.d.

We are ready now to �nish the proof of 7.1. Notice that the only
use of the h-metric is in obtaining L2 estimates for the solution.

Proof of Proposition 7.1. By 7.2 we can assume that E is supported
on ��2. By the smooth dependence in 3.13 and by assuming � small
enough we have uniform control on the geometry of ��2 and hence

(1) kE=(jAj2� + 2�h) : L
2(�=G� ; h)k � CkEk:

Now we can apply 7.4 to obtain �E = (�E;1; �E;2) as in 7.4. Moreover,
consider the Dirichlet problem on �

(2) Lhv0E = (E �
2X

i=1

�E;iwi)=(jAj2�=2 + �h)

with vanishing boundary Dirichlet data. The inhomogeneous term is
L2(�=G� ; h)-orthogonal to the c-approximate kernel, (iii) is satis�ed by
(1) and 7.4, and the L2(�=G� ; h) norm of the inhomogeneous term is
� CkEk by 4.19 and the above. Then by the implied L2 estimate, the
fact that (2) is equivalent to

(3) L�v
0
E =

2X
i=1

�E;iwi +E;

the uniform control on the geometry of ��3, and the standard linear
theory, we conclude that there is a unique solution v0E that satis�es

(4) kv0E : C2;�(��2; g�)k � CkEk:

It remains to arrange the exponential decay along the wings. We
de�ne

vE = v0E +
4X

i=1

'E;iui;

where the 'E;i's are determined as follows: First of all we can set up
the situation exactly analogous to the proof of 7.2 so that A.3 applies
for L as in that proof, and by using F we can pull-back the restrictions
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of v0E and the ui's on the component of ��2 contained in the jth wing
of �, to functions with the same names on 
, a cylinder as in A.1 of
length (5�s=� � 2)=mG. We then de�ne

aj = avg@0 v
0
E �B(v0E; 0); ai;j = avg@0 ui �B(ui; 0);

where @0 and B are as in A.1 and A.3. By A.3.ii and the uniqueness in
A.3.vi we have that vE = R(vE ; 0) if and only if

aj +
4X

i=1

'E;iai;j = 0:

Using A.3.v, the above, and 4.17.iv, we can solve the above system of
equations (j = 1; :::; 4) to obtain unique 'E;i's with appropriate esti-
mates. Hence we can �nish the proof by the above, 4.17, and A.3.iv.

q.e.d.

The linearized equation on the Nj(�)'s.

In this subsection we �x an N = Nj(�) and �nd a solution to LN v =
E on N , where LN is the linearized operator LS of B.1 for S = N .
This is a simpler undertaking than the one in the previous subsection
because of the absence of the approximate kernels, w's, u's, and w's.
There is no decay required, and the geometry is simple and in uniform
control, except that we have to distinguish between compact N 's and
various kinds of ends. We start by de�ning appropriate norms for v
and E. Notice that on the ends appropriate decay has to be imposed.
Sometimes we need to exclude the function from the strict control of
these norms on S(�), and for this reason we de�ne the primed versions
of these norms.

De�nition 7.5. For v 2 Cr;�(N ) (r = 0; 2) we de�ne kv : Nkr as
follows:

(i) If N is a disc or an annulus, then

kv : Nkr := kv : Cr;�(N ; gN )k:

(ii) If N is an h-small end, then

kv : Nkr := k%̂2�rv : Cr;�(N ; g0; e�
ŝ)k;
where ŝ and g0 are as in 6.13.
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(iii) If Nj is an h-large end, let ~N = ~Nj(�) and ŝ and g0 be as before.
We then de�ne

kv : Nkr := kv : Cr;�(N n ~N ; gN )k+ k%̂2�rv : Cr;�( ~N ; g0; e�
ŝ)k:
Finally we de�ne kv : Nk0r by replacing N with N n S(�) in the

above de�nitions.

Lemma 7.6. If N is as above, then there is a unique vE 2 C2;�
loc (Nj)

by its construction below, such that LNvE = E on N , and

kvE : Nk2 � CkE : Nk0:

Proof. Suppose �rst that N is a disc or an annulus. Then by 5.1.iv
and the fact that N is a small perturbation of Aj the Dirichlet problem
for LN has no small eigenvalues. Thus there is a unique solution vE to
LN vE = E on N , vE = 0 on @N , and it satis�es the required estimate
by the standard linear theory and the uniform control which we have
on the geometry.

If N is a h-small end as in 6.12, we can apply A.4 on the setting pro-
vided by 6.13 in a way entirely analogous to the use of A.3 in the proof
of 7.2, where without loss of generality we assume �K small enough. We
de�ne thus vE = R(2%̂2E), and all conditions are satis�ed by A.4.

Suppose �nally N is a large end. By applying A.4 as we just did on
~Nj(�), and arguing as in 7.2, we can assume that E is supported on a
region where h|recall 6.12|and gN are uniformly equivalent. We can
rewrite our equation as (�h + 2)vE = 2E=jAj2N . We identify, via ~�, N
with its image. Then by 6.14, �h + 2 is a small perturbation of � + 2
where � is the standard Laplacian on S2.

In order to solve for vE we need to specify also the boundary con-
ditions. To ensure the absence of small eigenvalues for � + 2 and
hence �h + 2 as well, we impose boundary conditions as follows: Let
Aj 2 A = A[0; 0] be the corresponding end to N = Nj(�). If its Gauss
image is close to being a hemisphere, then we impose Neumann bound-
ary conditions, otherwise we impose Dirichlet boundary conditions. In
both cases we get a solution vE which is smooth on the closure of ~�(N ).
By adding to it a multiple of �N � ~e3, that is of the coordinate on S2

which has an extremum at the puncture, we can ensure that vE van-
ishes at the puncture and still LN vE = E on N . This vanishing by 6.11
translates in our language to decay like e�ŝ. The estimates thus follow
by the standard theory. q.e.d.
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The linearized equation globally on M .

We combine now the results of Lemmas 7.1 and 7.6 to obtain global
solutions on the initial surfaces. We �x �rst an initial surface M =
M(�). We �rst need to de�ne appropriate norms so that we can state our
estimates later. We basically combine the norms that we have already
de�ned on the various pieces. Notice though that when the Hk's are
used to relate the Sk(�)'s with the desingularizing surfaces, they induce
a change of scale. To keep things consistent, our functions have to
undergo a corresponding change of scale as well. This is the reason for
the factor �1�rk in 7.7.i and the factor 1=�k in 7.9.

The factors b�1r in 7.7.ii now are weights re
ecting that the decay
functions have su�ered along the wings of the desingularizing surfaces|
notice that we are using the primed version of the norms so that we do
not interfere with the situation on S(�)|and whose decay is of order
e�5
�s=mk�k = e�5
�s=� . The extra factor in b2 is to accommodate for
some powers of � which we loose during the process of solving the lin-
earized equation globally on M , and is insigni�cant compared to the
exponential factor. To be consistent we have to modify also the decay
in 7.7.i so that it does not exceed the one allowed in 7.7.ii; this is the
reason the br's appear in 7.7.i as well.

De�nition 7.7. Given v 2 Cr;�
loc (M) (r = 0; 2) we de�ne kvkr to

be the maximum of the following quantities, where b0 = e�5
�s=� and
b2 = b0=�

10:

(i) For each k = 1; :::; NC we have|recall 6.4 and 6.2|

� = �[Tk(�); ~'k(�); �k] = H�1
k (Sk(�)):

Consider the quantity

�1�rk kv � Hk : C
r;�(�; g�;max(e

�
s=mk ; br))k:

(ii) For each j = 1; :::; NA consider the quantity b�1r kv : Nj(�)k0r.

Notice that the imposed decay along the ends by these norms|see
7.5{is rather slow. This is because in this part we have not used the
imposed symmetry. If we did and the proof of 7.6 made use of it, we
could have much faster decay on the ends as stated in 7.8.

Remark 7.8. The rate of decay at the ends could be accelerated
by replacing e�
ŝ in 7.5 with e�
ŝ=m, and our theorems would be still
valid.



150 nikolaos kapouleas

Since on the �'s we solve the linearized equation modulo the w's
and the w's, we have to transplant them to M by using the Hk's and
solve on M modulo these transplanted versions. In the next de�nition
we make this systematization to facilitate future reference.

De�nition 7.9. Let V 0 := V� � V'. We de�ne a linear map
� : V 0 ! C1(M) by

�(#0; �0) =

NCX
k=1

1

�k
Hk�

 
2X

i=1

�0i;kwi +

4X
i=1

'0i;kwi

!
;

where #0 = f�0k = f�0i;kg2i=1gNCk=1 2 V�, �0 = f'0
k
= f'0i;kg4i=1gNCk=1 2 V',

and Hk� denotes pushforward by Hk of a function on �[Tk(�); ~'k(�); �k]
to a function on Sk(�) extended to vanish on the rest of M .

We are ready �nally to state the main result of the section, Proposi-
tion 7.10, where the linearized equation is solved globally on M . As we
have discussed in more detail earlier, we partition the inhomogeneous
term to the Sk(�)'s and theNj(�)'s, use 7.1 and 7.6 to solve and estimate
on these pieces, patch up the solutions which introduces some error, and
�nally iterate to correct the error. A more careful examination of the
proof shows that we e�ectively �rst solve on the Sk(�)'s, and then cut
o� this solution and include the error in the inhomogeneous term on the
Nj(�)'s; here we use the exponential decay along the wings to ensure
that the error is small even under the demanding norm which we have
on the Nj(�)'s. We then solve on the Nj(�)'s and cut o� close to their
boundary. Finally we iterate. Notice that while we cut o� the solutions
and estimate we may loose some powers of � , but this is accommodated
either by the exponential factors or the de�nition of b2.

Proposition 7.10. Given E 2 C0;�(M) with �nite kEk0 there are

(#E ; �E) 2 V 0 and vE 2 C2;�(M), uniquely determined by the construc-

tion below, such that

LMvE = E +�(#E; �E)

j#j � CkEk0; j�j � CkEk0; kvEk2 � CkEk0:

Proof. We take E0 := E and proceed inductively where given
En�1 we de�ne En, vn, #n, and �n, as follows: First we partition En�1.

We de�ne a cut-o� function  on M by  :=  [5�s�
�1
k ; 5�s�

�1
k � 1] � s
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on each Sk(�) for k = 1; :::; NC , and by  � 0 on the rest of M . For
k = 1; :::; NC we apply 7.1 with � = �[Tk(�); ~'k(�); �k] = H�1

k (Sk(�))
and E = �k( En�1) �Hk to obtain vE , �E , and 'E. We rename �E and
'
E
to �n;k and 'n;k respectively, and de�ne v = �kHk�(vE), where Hk�

is as in 7.9. By carrying this out for all k we obtain v de�ned on S(�),
#n := f�n;kgNCk=1, and �n := f'

n;k
gNCk=1, satisfying on S

(1) LMv =  En�1 +�(#n; �n):

For j = 1; :::; NA we apply now 7.6 with N = Nj(�) and E =
(1� 2)En�1�[LM ;  ]v, where [LM ;  ]f := LM( f)� LMf , to obtain
a function vE which we rename v0. By carrying this out for all j we have
v0 de�ned on M�a|recall 6.8|where it satis�es

(2) LMv0 = (1�  2)En�1 � [LM ;  ]v:

We proceed to patch-up v and v0 to a function on M . To cut-o� v0

we introduce  0 :=  [a; a+1]�s de�ned onM , and de�ne vn =  v+ 0v0.
Since  0 � 1 on the supports of 1 �  2 and [LM ;  ], we conclude from
(1) and (2) that on M

(3) LMvn = En�1 + [LM ;  0]v0 +�(#n; �n):

We de�ne En = �[LM ;  0]v0. By the estimates in 7.1 and 7.6 and the
various de�nitions we obtain

kEnk0 � e��s=�kEn�1k0:

By taking vE :=
P1

n=1 vn, #E :=
P1

n=1 #n, and �E :=
P1

n=1 �n, and us-
ing the available estimates from 7.1 and 7.6, we �nish the proof. q.e.d.

We can apply now 7.10 to the most important case where the inho-
mogeneous term is the mean curvature of M .

Corollary 7.11. There are vH 2 C2;�(M) and (#H ; �H) 2 V 0 such
that

LMvH = H +�(#H ; �H);

j#H � #j � C�; j�
H
+ �j � C�; kvHk2 � C�;

where M =M(�) =M(#; b; �).
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Proof. Recall that M =M(�) with � as in 6.3 and the subsequent
discussion. By 6.9.iv, 6.10, and 4.20 we have

(1) kH +�(#+ #0; ~�)k0 � C�;

where ~� is as in 6.7 and #0 = f�0k = f�0i;kg2i=1gNCk=1, with �
0
i;k = ~'i+2;k �

~'i;k+'i+2;k�'i;k. Applying the proposition with E = H+�(#+#0; ~�)

we obtain vE , #E , and �E . By de�ning #H = #+#0+#E and �
H
= ~�+�

E
we thus complete the proof because the required estimates follow by (1),
7.10, and 6.9.v. q.e.d.

8. The main results

The nonlinear terms.

At this stage we have all the information needed to state and prove our
theorem except for estimating the nonlinear part of the mean curvature
of a graph over the initial surfaces. Therefore we �x an initial surface
M = M(�) and state the following proposition where the nonlinearity
is estimated appropriately. Notice that in the proof the speci�c form of
nonlinearity is only used when estimating over the ~N 's, and even there
the information we need is minimal.

Proposition 8.1. Given v 2 C2;�(M) with kvk2 smaller than a
suitable constant, we have that the graph Mv of v over M is a smooth

immersion and moreover

kHv �H �LMvk0 � Ckvk22;
where H and Hv are the mean curvature of M and Mv pulled back to
M respectively.

Proof. Suppose �rst that � = H�1(Sk(�)) for some k = 1; :::; NC .
By appealing to 3.13 where the parameters take values on a compact set,
we can ensure that kA : C3(��2; g�)k � C. Then we have
kA : C3(�; g�)k � C by using on ��2 2.4.v and 4.3, and can apply
B.1 to assert that if kf : C2;�(�; g�; e

�
s=mk + b2)k is small enough,
then the graph of f over � is an immersed surface and

kHf �H �L�f : C0;�(�; g�; e
�
s=mk)k

� Ckf : C2;�(�; g�; e
�
s=mk + b2)k2:

(1)
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Suppose now that Aj for some j = 1; :::; NA is either a disc or
annulus, or an h-large end. Then we take A to beNj(�)nS(�) in the �rst
case, orNj(�)n( ~Nj(�)[S(�)) in the latter. In both cases we have uniform
control of the geometry of A by 5.1, and hence kA : C3(A; gA)k � C.
We thus apply B.1 to conclude that if kv : C2;�(A; gM )k is small enough,
then Mv is an immersed surface above A and

(2) kHv �H �LMv : C0;�(A; gM )k � Ckv : C2;�(A; gM )k2:
Suppose �nally that Aj is an end. Let ~N = ~Nj(�). We would like

to use the metric g0 instead of gM in the expression for the nonlin-
earity (recall 6.11 and 6.13). We can do this and replace contractions
and covariant derivatives with respect to gM in the expression for Q
in B.1, with the corresponding ones with respect to g0, provided that
we replace A with %�2A, rA with %�3(r0A + � � A) where r0 is the
connection induced by g0 and � the di�erence of the connections, and so
on. Applying then B.1 we easily conclude that if kv : C2;�( ~N ; g0; e�
ŝ)k
is small enough, then Mv is an immersion over ~N and

k%̂2(Hv �H �LMv) : C0;�( ~N ; g0; e�
ŝ)k
� Ckv : C2;�( ~N ; g0; e�
ŝ)k2:

(3)

The Sk(�)'s, A's, and ~N 's above cover M , hence by (1), (2), (3) and
De�nitions 7.7 and 7.5 the statement follows. q.e.d.

The main theorem.

We combine now the results of the previous section with the estimates
above to prove the main theorem of this paper.

Theorem 8.2. Given a (�; E 0; E 00)-
exible con�guration I as in 5.4

and m as in 6.2, there is ~m 2 N depending only on � and m such that

the following are true for any m 2 N such that m > ~m: There is � > 0
which depends only on � and m, and �0 2 �V with �V as in 6.3, such

that there is a smooth function v on the initial surface M(�0)|de�ned
in Section 6|such that kvk2 � C(�;m)=m|recall 7.7|and the graph

Mm by v over M(�0) has the following properties:

(i) Mm is a complete (boundaryless) minimal smooth surface of �nite

total curvature.

(ii) If I is an embedded 
exible con�guration as in 5.5, then Mm is a

properly embedded surface.
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(iii) The planes through the x3-axis forming an angle k�=m (k 2 Z)

with the x1-axis are planes of symmetry of Mm.

(iv) There is a large ball B such that Mm nB is the union of annular

ends in one-to-one correspondence with the ends in A in such a

way that the following are true: The ends contained in Mm n B
which correspond to an end in E 0 decay exponentially at in�nity

to the corresponding end of I = I0;0. The ones that correspond

to an end in E 00 decay exponentially at 1 to a catenoidal end of

the same position as the the corresponding end of I = I0;0, but
of perhaps di�erent size, the di�erence being at most C(�;m)=m.

Finally the remaining ends decay to catenoidal ends whose size

and position di�er from the corresponding ends of I = I0;0 by at

most C(�;m)=m.

(v) Let U be a neighborhood of [NCk=1Ck. Then as m ! 1 Mm tends

uniformly in Ck norm to [NAj=1Aj on any compact subset of E3nU .
Similarly H�1

k (Mm) tends uniformly on compact subsets of E3

to the Scherk surface in such a way, that a fundamental domain

under the symmetries in (iii) above tends to the union of exactly

mj fundamental domains of the Scherk surface.

Proof. Given a function f on M(0) we de�ne kf : Xk to be the
maximum of the following, where �0 2 (0; �) is some �xed constant:

(1) kf : C2;�0( ~Nj(0); g0)k for each end Nj(0) �M(0).

(2) kf : C2;�0(M(0) nS ~Nj(0); gM(0))k.
We de�ne then the Banach space

X = ff 2 C2;�0

loc (M(0)) : kf : Xk <1g:

It is easy to construct (but omit the details) a family of smooth
di�eomorphisms D� : M(0) ! M(�) for � 2 �V , which depend contin-

uously on � and satisfy the following: For every f 2 C2;�
loc (M(0)) and

f 0 2 C2;�
loc (M(�)) we have

(1) kf �D�1
� k2 � Ckfk2; kf 0 �D�k2 � Ckf 0k2:

Let � := f(�; u) 2 V � X : j�j � �� ; kuk2 � ��g. Then we de�ne a
map J : �! V �X as follows: Suppose we are given (�; u) 2 � where
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� = (#; b; �). Let v = (u �D�1
� )� vH where vH is de�ned on M =M(�)

as in 7.11. By 7.11 and (1) we have

(2) kvk2 � C (� + 1)� :

By applying 8.1 we conclude that Mv is well de�ned and

(3) kHv �H �LMvk0 � C(� + 1)2�2:

Using 7.10 with E = Hv �H � LMv we obtain vE and (#E ; �E) as in
7.10. Combining the equations and estimates of 7.11, 7.10, and (3), thus
yields:

Hv = LM (vE + (u �D�1
� ))��(#H + #E ; �H + �

E
);(4)

j#� #H � #E j � C� + C(� + 1)2�2;

j�+ �
H
+ �

E
j � C� + C(� + 1)2�2;(5)

kvEk2 � C(� + 1)2�2:(6)

We de�ne �nally

(7) J (�; u) = ((#� #H � #E;�~b; �+ �
H
+ �

E
); �vE �D�):

(5), (6) with (1) and 6.9.v for ~b imply that by choosing � large
enough, and assuming � small enough, we can ensure J (�) � �. Since
�0 < �, and because of the imposed exponential decay by the k : k2 norm
at the ends, � is compact in V � X , and is also clearly convex. Finally
it is easy to check by reviewing the constructions that J is a continuous
map. We can thus apply the Schauder �xed point theorem [5, Theorem
11.1] to assert the existence of a �xed point of J . By (4) and (7) we
�nd that the correspondingMv is a minimal surface. From the standard
regularity theory smoothness follows. The rest of the theorem can also
be proved by using 6.9 and the smallness of v. q.e.d.

The construction of new minimal surfaces.

We apply now the main theorem to the initial con�gurations which we
constructed in Section 5. We try to present the next statement in a
way as self-contained as possible for the reader who does not wish to
get involved with earlier technical de�nitions.

Corollary 8.3. Given a sequence of natural numbers m = fmjg,
there is an increasing sequence of open subsets Mm of the con�guration
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space of NK catenoids and NP � 1 planes,M, and a decreasing sequence

"m 2 R
+ , such that [Mm is dense in M and "m ! 0, and for each

x 2Mm there is a minimal surface M which satis�es the following:

(i) M is a complete embedded minimal surface of �nite total curva-

ture, genus m
P
mj + C(x), and 2NK +NP ends.

(ii) The planes through the x3-axis forming an angle k�=m (k 2 Z)

with the x1-axis are planes of symmetry of M .

(iii) Let U be the open tubular neighborhood of the x3-axis of radius

"�1m , X the intersections of x (that is points belonging to more than

one catenoid or plane), and Z the uni haveon of the planes and

catenoid in x. Then there is an open tubular neighborhood Y of X,

contained in the one of radius 2�m and containing the one of radius

"m, such that the following are true: Y � U . U \ (M n Y ) is a

graph over U\(ZnY ) by a function f such that jf j � "m. M nU is
a union of ends each of which is a graph over a catenoidal end by a

function f such that jf j � "m and moreover decays to it. Moreover

these catenoidal ends can be put in one-to-one correspondence with

the ends in Z n U in such a way that the positions and sizes of

corresponding ends di�er by "m at most. This di�erence vanishes

for the top ends of each catenoid x and the position of the planar

end (if there is one).

(iv) Each component Yj of Y is di�eomorphic to a tubular neighbor-

hood of the axis of periodicity of a Scherk surface quotiented out

by a period in such a way that Yj \M maps to the intersection

of the tubular neighborhood with the Scherk surface. Assuming a

systematic numbering of the components, Yj \M has 2mmj fun-

damental regions. If we rescale and reposition Yj \M suitably,
and take m!1, we get a Scherk surface in the limit.

Proof. This follows easily from 8.3 and 5.9. q.e.d.

Notice that since we can �x the position and size of the catenoid of an
end for each catenoid involved, and the position of an end for each plane
involved, we have N = 2NK + NP free continuous parameters in this
construction, two of which are redundant because of homotheties and
translations. We do not prove here the continuous dependence of these
families on these parameters to keep technicalities to the minimum.



complete embedded minimal surfaces 157

If we are interested in minimal surfaces which are not embedded,
we can allow more than one plane and also choose not to desingularize
some of the circles of intersection (recall 5.10). More interesting are con-
structions of embedded surfaces where extra symmetries are imposed.
There are then essentially only two cases: Impose re
ectional symmetry
with respect to a horizontal plane which is not a plane contained in P .
Or include in P a plane of symmetry of the con�guration of catenoids
and planes, but in this case the minimal surface can not be symmetric
with respect to the plane, it can be however symmetric with respect to
a system of straight lines on the plane. The second case is of interest
because it includes the �rst surfaces constructed by Ho�man and Meeks.
In both cases we can only �x the sizes of the catenoids involved which
serve as the continuous parameters of the construction. We leave the
details to the reader.

Appendix A. Estimates on long cylinders

In this appendix we estimate and solve a Dirichlet problem which
comes up repeatedly in the paper. We �rst de�ne the domain of the
Dirichlet problem. Recall that H+ and its standard coordinates were
de�ned in 2.3.

De�nition A.1. We de�ne (
; g0) to be the cylinder 
 = H+
�`=G

0,
where G0 is the group generated by (s; z)! (s; z+2�), and ` 2 (10;1)
is called the length of the cylinder, equipped with the standard metric
g0 := ds2+dz2. We have @
 = @0[@` where @0 and @` are the boundary
circles fs = 0g and fs = `g respectively.

We are interested in solving the Dirichlet problem on the cylinder
that we just de�ned for linear operators L, which are small perturbations
of the standard Laplacian �, in the sense that the quantity N(L) de�ned
in A.2 is small. Notice that we allow two di�erent kinds of perturbations:
One decays exponentially along 
, and one does not; the second one has
to be small in terms of the cylinder's length. In the applications we will
need both because the jAj2 on the wings consists of a part coming from
the catenoid, which does not decay but is small, and a part due to taking
the graph over the catenoid, which does decay but is not as small.

De�nition A.2. Let L denote an operator on 
 of the form

L = �� + d;
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where � is a C2 Riemannian metric, and d a C1 function on 
. We then
for c > 0 de�ne a given constant:

N(L) := k�� g0 : C
2(
; g0; e

�cs)k+ kd : C1(
; g0; e
�cs + `�2)k:

We want to solve the Dirichlet problem now for L on 
, with data an
inhomogeneous term E, and boundary data vanishing on @` and given
up to a constant on @0. We need the freedom to change the data on
@0 by constants because we want to ensure exponential decay for the
solutions assuming exponential decay for E. In the rest we assume that
a H�older exponent � 2 (0; 1) has been chosen. We work with decay
rates 
 which are supposed to be slightly smaller than 1.

Proposition A.3. If N(L) is small enough in terms of c, �, and
given 
 2 (0; 1) and � > 0 (but independently of `), there is a bounded

linear map

R : C2;�(@0; g0)� C0;�(
; g0; e
�
s)! C2;�(
; g0; e

�
s)

such that for (f;E) in R's domain and v = R(f;E) the following are

true, where the constants C depends only on � and 
:

(i) Lv = E on 
.

(ii) v = f � avg@0 f +B(f;E) on @0, where B(f;E) is a constant on
@0.

(iii) v � 0 on @`.

(iv) kv : C2;�(
; g0; e
�
s)k

� Ckf � avg@0 f : C2;�(@0; g0)k+ CkE : C0;�(
; g0; e
�
s)k.

(v) jB(f;E)j � �kf � avg@0 f : C0(@0)k+ CkE : C0;�(
; g0; e
�
s)k.

(vi) If v0 2 C2(
) satis�es Lv0 = E on 
, and v0 = v on @
, then
v0 = v on 
. Moreover, if E vanishes, then

kv : C0(
)k � 2kv : C0(@0)k:

Proof. If L = �, the standard Laplacian with respect to the

at metric g0, then the proposition is valid with a vanishing � in (v)
by the standard theory. We then allow a general L but restrict to
vanishing f �rst. The operator L �� thus has a small operator norm



complete embedded minimal surfaces 159

as an operator from C2;�(
; g0; e
�
s) to C0;�(
; g0; e

�
s), and hence
the statement follows in this case except for (vi). For vanishing E and
nonvanishing f we can use the previous case to correct the v which we
would have for the Laplacian.

It remains to prove (vi). By using the smallness of N(L) we can
ensure that the smallest eigenvalue of L on 
 with vanishing Dirichlet
conditions is at least 1=2`2. This follows by considering an arbitrary
smooth function on 
 which vanishes on @
, Fourier expanding on
the meridian circles, and estimating in terms of the L2 norm of the
gradient (see [14, Lemma 2.26] for a similar argument). The uniqueness
part follows then from the positivity of the smallest eigenvalue, and the
desired estimate reduces to the case where v = f � 1 on @0, because
otherwise we can produce a subdomain of 
 with a vanishing eigenvalue.

Now if L = � the solution is v = (` � s)=`. This can be corrected
to the solution for L of the form �+ d with kd : C1(
; `�2)k appropri-
ately small, by scaling the length of the cylinder to unit, while leaving
the meridian unchanged. We thus can have the estimate for v with a
constant 3=2 for example instead of 2. By using now the earlier proven
parts of the proposition we can correct this v to a v for a general L
while establishing the estimate at the same time. q.e.d.

We occasionally will need also the existence result in A.3 for the
case 
 = H+=G0, that is when the cylinder has in�nite length. Then
extending De�nition A.2 without change to this case except for remov-
ing the term `�2 from the expression for N(L), we have the following
standard result which we state here to facilitate reference.

Proposition A.4. For 
 = H+=G0 and L with N(L) small enough

in terms of � and 
 2 (0; 1), there is a bounded linear map

R : C0;�(
; g0; e
�
s)! C2;�(
; g0; e

�
s)

such that for E in R's domain and v = R(E), we have Lv = E on 
,
v is constant on @
, and

kv : C2;�(
; g0; e
�
s)k � C(�; 
)kE : C0;�(
; g0; e

�
s)k:

Proof. This is standard for L = �. The general case follows then
by treating L as a perturbation of �. q.e.d.
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Appendix B. The mean curvature of graphs

In this appendix we discuss some general facts which we use in the
paper. The notation which we adopt here is independent of the notation
in the rest of the paper. Let S be an immersed surface in E3, immersed
by X : S ! E3, of �rst and second fundamental forms g and A, Gauss
map �, and mean curvature H. For f 2 C2(S) we de�ne Xf := X+f�,
and when Xf is an immersion, we denote by Hf the mean curvature of
the surface Xf (S) pulled back by Xf to S. We thus have the following
lemma in which we decompose Hf into linear and nonlinear terms in f :

Lemma B.1. If jfAj < 1, then Xf is an immersion and Hf =
H + LSf +Qf where LS = 1

2 (� + jAj2) and

Qf =
Q1p
1 +Q0

+
Q2

1 +Q0 +
p
1 +Q0

:

Here Q0 is a sum of terms which are contractions of at least two �'s, �
stands for either rf or fA, and Q1 and Q2 are sums of terms which

are contractions of a number of �'s|possibly none|and one of the

following terms, where � denotes contraction|all contractions are taken

with respect to g:

(i) A � � � �.
(ii) frA � �.
(iii) fA � r2f .

(iv) r2f � � � �.

Proof. The proof amounts to a local calculation. We refer the
reader to [13, appendix C] for a detailed presentation. q.e.d.

Suppose now we have a variation of X : S ! E3, that is a C2 family
of immersions X� : S ! E3 for � in a neighborhood of 0 in R, where

X0 = X. Let _ denote @
@�

���
�=0

, and let Y = _X� be the variation vector

�eld of the variation. Let Yk be the tangential to S part of Y , that
is Y = Yk + (Y � �)� is a decomposition to tangent and normal parts.
In the next lemma we give an expression for the variation of the mean
curvature.

Lemma B.2. _H = Yk(H) + LS(Y � �).
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Proof. The proof is by observing �rst that the left-hand side is linear
in the variation Y , and hence the proof reduces to the cases where the
X�'s di�er only by di�eomorphisms of the domain, or they only di�er
by moving along the normal lines to the image. In the �rst case the
formula is clearly valid because H is a geometric invariant of the image.
In the second case the formula follows because the linearized change in
mean curvature of a graph over a surface is as implied by B.1.

q.e.d.
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Figure 1. Example of an arrangement of two catenoids and one plane
to be desingularized. (Intersection with a plane through the
axis.)
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6. Section of �[T; '; � ] and �[T; 0; � ] showing the core and por-
tion of the 1st wing

Figure 7. Section of �[T; '; � ] and �[T 0; '�'0; � ] with '�'0 showing
the 1st wing and the core only
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