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FINITE TYPE 3-MANIFOLD INVARIANTS, THE

MAPPING CLASS GROUP AND BLINKS

STAVROS GAROUFALIDIS & JEROME LEVINE

Abstract

The goal of the present paper is to �nd higher genus surgery formulas for the
set of �nite type invariants of integral homology 3-spheres, and to develop
a theory of �nite type invariants which will be applied in a subsequent
publication [7] in the study of subgroups of the mapping class group. The
main result is to show that six �ltrations on the vector space generated by
oriented integral homology 3-spheres (three coming from surgery on special
classes of links and three coming from subgroups of the mapping class group)
are equal. En route we introduce the notion of blink (a special case of a
link) and of a new subgroup of the mapping class group.

1. Introduction

1.1. Motivation

The motivation/goal for the present paper is threefold:

� To �nd higher genus surgery formulas for the set of �nite type
invariants of integral homology 3-spheres.

� To develop a theory of �nite type invariants that has applications
in the study of subgroups of the mapping class group.

� To propose a philosophical explanation of duality in the recent
idea of p-branes in string theory.
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En route to achieving the above goals we came across the notion
of a blink (a special kind of link, see de�nition 1.8) and across a new
subgroup of the mapping class group; see Section 1.3.

Finite type invariants of integral homology 3-spheres, though intro-
duced less than a year ago by T. Ohtsuki [22], play a crucial role in
understanding the quantum invariants of 3-manifolds and may play an
important role in the interaction between arithmetic, combinatorics, low
dimensional topology and mathematical physics. They may also play an
important role in understanding the properties of the Chern-Simons
path integrals , in a way that diverges from the measure-theoretic an-
alytic interpretation of the path integrals. And �nally, they may shed
some light on the obscure and not at all understood arithmetic prop-
erties of the quantum invariants of links and 3-manifolds. Finite type
invariants are de�ned in terms of decreasing �ltrations of the vector
space generated by oriented integral homology 3-spheres, for a review
see Section 1.2. In the present paper, there are two sources for such
�ltrations: one from cutting and pasting along embedded surfaces in
integral homology 3-spheres, (see Section 1.3) and the other from doing
surgery on (framed) links in integral homology 3-spheres (see Section
1.4). An equality of such �ltrations as shown in Corollary 1.21 answers
the �rst of the goals of the paper, and in fact characterizes �nite type
invariants of integral homology 3-spheres in terms of their higher genus
surgery properties.

The above equality of �ltrations can be used [7] to study subgroups
of the mapping class group generalizing the work of S. Morita [20], [21].
Due to the length of the present paper, we need to postpone the above
study to a subsequent publication; see [7].

Finally, a word about the third motivation for the present paper: p-
branes were introduced very recently in the physics literature; see [26].
Their role in explaining duality phenomena in string theory and �eld
theory has been exhibited in a number of ways. Since �nite type invari-
ants are related to Chern-Simons �eld theory (a gauge theory in three
dimensions with the Chern-Simons function as Lagrangian and (colored)
knots in 3-manifolds as the observables) we may learn something about
duality of gauge theories in three dimensions by studying equivalences
of �nite type invariants coming from surgery on one-dimensional (links)
or two-dimensional (surfaces) objects in 3-manifolds. This is a valid
thought since �nite type invariants can be thought of as the partition
function of observables of quantum �eld theories.
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1.2. Finite type invariants and �ltrations on M

All 3-manifolds are oriented and smooth and all di�eomorphisms are
orientation preserving unless otherwise mentioned. Let M denote the
vector space over Q on the set of orientation preserving di�eomorphism
classes of integral homology 3-spheres. Any decreasing �ltration F�
on M de�nes a notion of �nite type invariants of integral homology
3-spheres as follows: a map v : M ! Q is called of F-type m, if
v(Fm+1M) = 0. Examples of such �ltrations were originally introduced
by T. Ohtsuki [22] and by S. Garoufalidis [3]. For a review of them see
Section 1.4 below.

In the present paper we describe two main sources for such �ltra-
tions: completions of the (group rings) of subgroups of the mapping class
group and surgery on special classes of (framed) links. The �rst source is
essentially two-dimensional, examples of which will be FT

� M and FK
� M

and FL
� M (described in the next Section 1.3). The second source is one-

dimensional, examples of which will be Fas
� M;Fb

�M;F bl
� M, described

in Section 1.4. The equality of all such �ltrations may exhibit a dual-
ity between 1-branes and 2-branes in 3-dimensional gauge �eld theory
which has not yet been discovered by the physicists.

1.3. Filtrations on M from embedded surfaces

We begin by describing the �ltrations on M that come from subgroups
of the mapping class group. We recall �rst some well known facts about
mapping class groups from the work of D. Johnson [12], [13] and S.
Morita [20]. Let �g;1 denote the group of isotopy classes of orientation
preserving di�eomorphisms of closed oriented genus g surfaces �g which
are the identity on a disk Dg � �g. This group (which we refer to as
the mapping class group) acts on the fundamental group � of the open
surface �g �Dg. Note that � is a free group in 2g generators. For the
sake of simplicity in notation, we will suppress the dependence of � on
g; we hope that this will not cause any confusion. The above discussion
de�nes a map:

�g;1 ! Aut(�):(1)

For a group G, let Gk denote the lower central series, de�ned induc-
tively by G1 = G, and Gm+1 = [G;Gm]. Here for H;K subsets of G,
[H;K] denotes the subgroup of G generated by [�; �] = ��1��1��, for
� 2 H, � 2 K. The above action of the mapping class group induces



240 stavros garoufalidis & jerome levine

(for every non-negative integer k) an action on �=�k+1:

�g;1 ! Aut(�=�k+1):(2)

Let (�g;1)[k] denote the kernel of the above map. It is obvious that
f(�g;1)[k]gk�0 is a decreasing sequence of normal subgroups of �g;1. Note
that (�g;1)[k] is denoted by �g;1(k + 1) in [20]. The reason for shifting
the index by one in our present notation is to make the statements
of question 1 (in Section 1.7) easier. Much attention has been paid
to the �rst three members of the above sequence. The �rst, (�g;1)[0]
coincides with the mapping class group �g;1 itself. The second, (�g;1)[1]
is the Torelli group (i.e., the kernel of the map: �g;1 ! Sp(2g;Z),
in other words all di�eomorphisms of the surface that act trivially on
the homology), and will from now on be denoted by Tg;1. The third,
(�g;1)[2] was studied extensively in [12], [13] and [20] and, following their
notation, we will denote it by Kg;1.

In an alternative view, it was shown by Johnson ([12] and [13]) that
Tg;1 (resp. Kg;1) is the subgroup of the mapping class group generated by
Dehn twists on cobounding (resp. bounding) simple closed curves. We
will �nd this alternative view very useful in the present paper. Note that
all the above groups and maps behave well with respect to an inclusion
of a lower genus open surface into a higher genus one, and with respect
to the action of the mapping class groups given by conjugation.

Consider the lower central series subgroups (Tg;1)n or (Kg;1)n and
their "rational closures" which we denote by (Tg;1)(n), (Kg;1)(n). Here,
for a group G de�ne G(n) to be the normal subgroup consisting of all

elements g such that gk 2 Gn for some k > 0. Recall that, in a nilpotent
group, the set of all elements of �nite order forms a normal subgroup.
Thus, for every non-negative integer n, we can consider three interesting
sequences of normal subgroups of the mapping class group: (�g;1)[n],
(Tg;1)n and (Tg;1)(n). It was pointed out by Johnson [13] that (Tg;1)n �
(�g;1)[n]. In fact, the following, somewhat stronger, inclusion is true:

(Tg;1)(n) � (�g;1)[n];(3)

because (�g;1)[n] is the kernel of a homomorphism from (�g;1)[n�1] into a
torsion-free abelian group (see [13]). Note that Johnson [13] has shown
that: (Tg;1)(2) = Kg;1 = (�g;1)[2]. He asked whether (�g;1)[n] = (Tg;1)(n)
for every n, but this was answered in the negative by Morita [20] for
n = 3 and by Hain [11] for n � 3.
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We now introduce one more subgroup of �g;1 which has apparently
not been considered in the literature up to now. Recall �rst that H1(�g)
is a symplectic 2g-dimensional vector space, the symplectic form being
the intersection form on the homology. Let L � H1(�g) be any La-
grangian, i.e., a direct summand of rank g on which the intersection
pairing vanishes. For example, if M is an integral homology 3-sphere,
i : �g � M is any embedding in M and M� is the closure of one
of the two components of M � i(�g), then kerfH1(�g) ! H1(M�)g
is a Lagrangian. Furthermore any two Lagrangians are conjugate via
an isometry of H1(�g) and so any Lagrangian arises from an embed-
ding this way. If i : �g � M is an embedding as above, then we set
Li
� = kerfH1(�g)! H1(M�)g, where M+ is the closure of the positive

component of M � i(�g), i.e., the component into which the positive
normal vector to i(�g) points, and the other component is M�. For a
�xed Lagrangian L de�ne LLg;1 � �g;1 to be the subgroup generated by
Dehn twists on simple closed curves representing elements of L; we will

call these L-twists. Note that if h 2 �g;1 then L
h�(L)
g;1 = h�1LLg;1h. Thus

LLg;1 depends upon the choice of L, but any two choices give conjugate

subgroups. Moreover Kg;1 � LLg;1 for any choice of L, and the intersec-

tion of all the conjugates of LLg;1 is contained in Tg;1 since every element
of H1(�g) belongs to some Lagrangian. We will often just use the no-
tation Lg;1 for LLg;1 when no confusion will arise. For an embedding

i : �g �M we will use the notation Lig;1 = L
Li
+

g;1 .

See the Appendix for more remarks on Lg;1.

In the present paper we will concentrate on the subgroups Kg;1;Tg;1
and Lg;1 of the mapping class group.

For a group G, let QG denote the rational group algebra of G, and
let IG denote the augmentation ideal in QG (generated by all elements
of the form g � 1, for all g 2 G). Let us now de�ne two decreasing
�ltrations on M as follows: Let M be an integral homology 3-sphere
and i : � ,! M an embedded, oriented, connected, separating genus
g surface in M . Such a surface will be called admissible in M . Given
any element f of the mapping class group of �, let Mf denote the
3-manifold obtained by cutting M along �, twisting by f and gluing
back. If f 2 Lig;1 and M is an integral homology 3-sphere, then it is
easy to see that the resulting manifold will also be an integral homology
3-sphere. The assignment f ! Mf de�nes maps QLig;1 ! M and

QTg;1 ! M. We will be interested in their restrictions to the mth
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power of the augmentation ideals (for every non-negative integer m):

(ILig;1)
m !M; (ITg;1)

m !M and (IKg;1)
m !M:(4)

We now propose the following three �ltrations on M:

De�nition 1.1. Let, respectively, FL
mM, FT

mM and FK
mM denote

the span of the images of the above maps for all admissible surfaces �
in all integral homology 3-spheres M .

For the sake of motivation, we make a few remarks which will be
proved later in Sections 2.1 and 2.3:

Remark 1.2. We will show, in Theorem 1, that the �ltration FK
mM

is equivalent to one considered by the �rst author in [3]. The other ones
are apparently new.

We now show how to describe these �ltrations using only Heegaard
embeddings, i.e., embeddings whose complementary components M+

and M� are handlebodies. For each g � 0 choose a Heegaard embed-
ding ig : �g ,! S3 and consider the associated maps: (ITg;1)m ! M
and (IKg;1)

m !M.

De�nition 1.3. Let FHT
m M and FHK

m M denote the union of the
spans, over the chosen ig, of the images of the maps, as de�ned above,
(ITg;1)m !M and (IKg;1)

m !M, respectively.

The �ltration FL
mM is more complicated to describe. If i : � � M

is a Heegaard embedding and L � H = H1(�g) is a Lagrangian, we
will say that i; L are compatible if L = (L \ Li

+) + (L \ Li
�), where we

recall that Li
� = kerfi�� : H ! H1(M�)g and i� : �g ,! M� are the

inclusions.

Suppose that h is any orientation-preserving di�eomorphism of �.
Then it is easy to see that Lih�1

� = h�(L
i). Thus i; L are compatible if

and only if ih�1; h�(L) are compatible.

Proposition 1.4. If i; L are compatible and h 2 LLg;1, then Mh is
an integral homology 3-sphere.

De�nition 1.5. For each genus g choose a Heegaard embedding
ig : �g � S3. Let FHL

m M denote the union of the span, over all g and
all L compatible with ig, of the images of (ILLg;1)

m !M.

Proposition 1.6. The �ltrations of M de�ned for Heegaard em-
beddings in de�nitions 1.3 and 1.5 are the same as those de�ned for all
admissible embeddings in de�nition 1.1
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These propositions will be proved in Section 2.3.

Remark 1.7. We mention another set of related, and perhaps
equal, �ltrations. Consider the lower central series subgroups (Tg;1)m or
(Kg;1)m and their "rational closures" (Tg;1)(m), (Kg;1)(m). We will show

in Section 2.1 that FT
mM (respectively FK

mM) contains the subspace of
M spanned by elements of the form M �Mf for all admissible surfaces
f : � ! M where f 2 (Tg;1)(m) (respectively (Kg;1)(m)). But these
subspaces also de�ne �ltrations of M worth considering.

1.4. Filtrations on M from framed links

In this section we recall �ltrations on M from special classes of framed
links (algebraically split and boundary) in integral homology 3-spheres,
and we introduce yet another �ltration from what we shall call blinks.
We begin by recalling some de�nitions from [22] and [3].

A link L in a 3-manifold M is called algebraically split if the linking
numbers between its components vanish. A link is called boundary if
each component bounds an oriented surface (often called Seifert), such
that these Seifert surfaces are all disjoint from each other. Of course,
the Seifert surfaces are not unique. Let jLj denote the number of compo-
nents of a link L. A framing of a link L in an integral homology 3-sphere
M is a choice of (isotopy class) of an essential simple closed curve in the
boundary of a tubular neighborhood of each of its components. SinceM
is an integral homology 3-sphere, then a framing f on a r component
link can be described in terms of a sequence f = (f1; � � � ; fr), where
fi 2 Q [ f1=0g, with the convention that fi = pi=qi is the isotopy class
of the curve pi(meridian)+qi(longitude). Note that a framing of a link
does not require the choice of an orientation of it. A unit framing f of
a link in an integral homology 3-sphere is one such that fi 2 f�1; 1g
for all i. A link is called AS-admissible (respectively, B-admissible) if
it is algebraically split (respectively, boundary) and unit-framed. It is
obvious that B-admissible links are AS-admissible. The converse is ob-
viously false, as the Whitehead link shows. If (L; f) is a framed link in
a 3-manifold M , we denote by ML;f the 3-manifold obtained by doing
Dehn surgery to each component of the framed link L. Let M denote
the set of integral homology 3-spheres. For an AS-admissible link (L; f)
in an integral homology 3-sphere M , let

[M;L; f ] =
X
L0�L

(�1)jL
0jML0;f 0 2M;(5)
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where the sum is over all sublinks of L (including the empty one), f 0

is the restriction of the framing f of L to L0, and jL0j is the number
of components of L0. Note that since (L; f) is an AS-admissible link,
ML0;f 0 is an integral homology 3-sphere for every sublink L0 of L.

Let Fas
mM (respectively, F b

mM) denote the subspace ofM spanned
by [M;L; f ] for all AS-admissible (respectively B-admissible) m com-
ponent links L in integral homology 3-spheres M . It is obvious that
Fas
� M;Fb

�M are decreasing �ltrations on the vector space M. Follow-
ing Ohtsuki [22] and Garoufalidis [3] we call a map v :M! Q an AS-
type (respectively B-type) m invariant of integral homology 3-spheres if
v(Fas

m+1M) = 0 (respectively, v(Fb
m+1M) = 0).

We now present an important de�nition for the present paper.

De�nition 1.8. A blink L = Lbl in an integral homology 3-sphere
M is a link with the following properties:

� The components of Lbl are partitioned into classes of two compo-
nents each. These classes will be called the pairs of Lbl.

� Lbl is an oriented link.

� The pairs fpg bound disjoint oriented surfaces f�pg in M (called
Seifert surfaces of Lbl) so that, if p = (l; l0), then @�p = l � l0

(using the orientations of l and l0).

An example is given in Figure 1. An r-pair blink Lbl is one such that
jLblj = 2r. A subblink L

0

bl of a blink Lbl is a sublink L
0

bl of Lbl which
is a union of some of the pairs of Lbl. Thus an r-pair blink Lbl has 2

r

subblinks.
We next discuss admissible framings of blinks. Recall that every

component of a blink is oriented (as a knot). A zero Seifert-framing
of a blink is the (isotopy class of a) parallel of it in the Seifert surface
that the blink bounds. The result is independent of the Seifert surface
chosen, and depends only on the orientation of the blink. A zero Seifert-
framing (together with the orientation of the blink) de�nes, for every
choice of a pair of integers (n;m), an (n;m) Seifert-framing of a 1-pair
blink. A unit Seifert-framing of a 1-pair blink is a (�;��) Seifert-framing,
where � = �1. A unit Seifert-framing of a blink is the choice of a unit
Seifert-framing to each of its pairs. A blink is called BL- admissible if
it is unit Seifert-framed.

Remark 1.9. Every r-component link in an integral homology 3-
sphere has a zero framing, which, for a choice of integers (f1; � � � ; fr)
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de�nes a (f1; � � � ; fr)-framing. For a 1-pair blink, an (n;m) Seifert-
framing is equal to a (n+l12;m+l12) framing of it, where l12 is the linking
number between the two components of the blink. Note that a blink
is not necessarily an algebraically split link. The two components of a
pair may have a non-zero linking number, and components of di�erent
pairs may also have non-zero linking number.

Remark 1.10. If a unit-framed link (L; f) is included (as a disjoint
union of simple closed curves) in the image of an embedded surface
i : � ,! M , then ML;f = Mi;�(L;f) where �(L; f) is an f -dependent
product of Dehn twists along the simple closed curves on � represented
by L.

For a BL-admissible r-pair blink Lbl in an integral homology 3-
sphere M , we denote

[M;Lbl; f ] =
X
L
0

bl

(�1)1=2jL
0

bl
jM

L
0

bl
;f 0
2M;(6)

where the sum is over all subblinks L
0

bl of Lbl (including the empty
one), and f 0 is the restriction of the framing f of Lbl to L

0

bl. The above
de�nition makes sense (i.e., each 3-manifold obtained by surgery on
some pairs of the blink is an integral homology 3-sphere) because of the
following lemma:

Lemma 1.11. If (Lbl; f) is a BL-admissible blink in an integral
homology 3-sphere M , then MLbl;f is an integral homology 3-sphere.

Proof. Since the order of the �rst homology ofMLbl;f is the absolute
values of the determinant of the linking matrix of Lbl, we only need
to check that the linking matrix of Lbl is unimodular. We proceed by
induction on the number of pairs of jLj. If Lbl = (L1; L2) is a 1-pair
blink, consisting of two components L1 and L2 with unit Seifert-framing,
then the linking matrix of Lbl is:�

l12 + � l12
l12 l12 � �

�
;

where l12 is the linking number between L1 and L2 (which does not
necessarily vanish) and � = �1. It is clear that this is a unimodular
matrix. In general, if Lbl = L

0

bl [ (L1; L2) is an r-pair blink which is the
union of an r � 1 pair blink (with unimodular linking matrix A) and a
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1-pair blink, then the linking matrix of Lbl is:0BBBBB@
a1 a1

A
...

...
am�1 am�1

a1 : : : am�1 km + � km
a1 : : : am�1 km km � �

1CCCCCA :

We leave it as an exercise for the reader to show that this matrix is
unimodular. q.e.d.

We denote by Fbl
mM the subspace of M spanned by [M;Lbl; f ] for

all BL-admissible m-pair blinks Lbl in integral homology 3-spheres M .
It is obvious that Fbl

� M is a decreasing �ltration on the vector spaceM.
We call a map v :M! Q a BL-type m invariant of integral homology
3-spheres if v(Fbl

m+1M) = 0.

Figure 1. An unblink bounding a genus 0 surface.

Remark 1.12. The motivation and usefulness of the above notion
of blink comes from several facts.

� Blinks are closely related to bounding pairs of simple closed curves
in an embedded oriented surface in the 3-manifold; see Theorem 1.
We will show that the �ltration F bl

� M on M coming from blinks
is equal to the �ltration FT

� M coming from the I-adic completion
of the Torelli group, in much the same way that (see Remark 1.2)
the �ltration Fb

�M coming from boundary links is equal to the
�ltration FK

� M; see Theorem 1.

� Johnson [12] proved that Dehn twists on bounding pairs of simple
closed curves generate the Torelli group and that Dehn twists on
bounding closed curves generate Kg;1.

Remark 1.13. For later reference, let us point out that Fb
mM �

Fbl
mM. Indeed, given any framed boundary link we can convert it to a

blink by punching a small hole in each Seifert surface and putting the
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appropriate unit framing on the boundary of the hole. Framed surgery
on this blink obviously gives the same result as surgery on the original
boundary link.

Remark 1.14. We claim that Fbl
mM can be generated by [M;Lbl; f ]

for BL-admissible m-pair blinks such that each pair bounds a genus-1
surface. Indeed, this follows from the following identity (and induction
on the genus) where L1; L2;K1;K2 are as in Figure 2:

[M;Lbl; f ] =M �ML1;L2 = [M;L1
bl; f

1] + [ML1
bl

; L2
bl; f

2];(7)

where Lbl = (L1; L2), L
1
bl = (L1;K1) and L

2
bl = (K2; L2) are unit Seifert-

framed 1-pair blinks.

L1 K1 K2 L2

Figure 2. Shown here is a 1-pair blink (L1; L2) of genus 2,
and two (parallel) knots K1;K2 on the Seifert surface that it
bounds. The knots separate the surface in two genus-1 surfaces,
and are oriented and framed in an opposite way.

We will �nd later on the following notation useful.

De�nition 1.15. If N is any subspace of M, then

bN = \n(N + Fas
n M):

At this point we have introduced six �ltrations on M:

FT
mM; FK

mM; FL
mM; Fas

mM; F b
mM; F bl

mM:

The purpose of the paper is to show, among other things, that the six
associated �ltrations

FT
mM; \FK

mM; FL
mM; Fas

mM; \F b
mM; F bl

mM

are actually equal (after renumbering); see Corollary 1.21.
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1.5. Statement of the results

We are now ready to formulate the main results of the paper which
consist of three parts. The division in three parts is for the convenience
of the reader, since the methods used in each part are very di�erent.

In the �rst part, we compare mapping class group �ltrations and
link �ltrations as follows:

Theorem 1. For every non-negative integer m we have:

(a) FT
mM = Fbl

mM,

(b) FK
mM = Fb

mM,

(c) FL
mM = Fas

mM,

as subspaces of M.

A part of the argument used in the proof of Theorem 1 will also
yield the following interesting fact.

Proposition 1.16. Every integral homology 3-sphere can be ob-
tained by surgery on a boundary link in S3.

The above proposition (which, as the referee informs us, was already
known to C. Lescop using a di�erent argument) implies the following
corollary:

Corollary 1.17. The Casson invariant �C of an integral homology
3-sphere (which we may assume is di�eomorphic to S3

L;f for a unit-
framed boundary r-component link L) is given by

�C(M) =

rX
i=1

fi�(Li);(8)

where fLig are the components of the link, and �(Li) is the second
derivative of the (normalized) Alexander polynomial of the knot Li; see
[14]. The point, of course, is that the Casson invariant of an integral
homology 3-sphere can, therefore, be calculated in terms of the associated
knot invariant (i.e., the second derivative of the normalized Alexander
polynomial).

A generalization of the above corollary appears in [4].
In the second part we compare the three �ltrations Fas

� M, F b
�M

and Fbl
� M coming from special classes of links in integral homology

3-spheres. We have the following results:
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Theorem 2. For every non-negative integer m we have that:

Fbl
2m�1M� Fas

3mM(9)

as subspaces of M.

Corollary 1.18. Let v be an AS-type 3m invariant of integral ho-
mology 3-spheres, M an integral homology 3-sphere and � an oriented
embedded genus g surface. Let f 2 (Tg;1)(2m+1) be an element of the
rational closure of (Tg;1)2m+1 in the Torelli group, as in Remark 1.7(b).
Then, using that remark, we have that v(M) = v(Mf ).

Theorem 3. There is an increasing function f : N ! N such that
for every non-negative integer m we have that:

Fas
f(m)M� Fbl

mM:(10)

Remark 1.19. In fact, since Fas
� M and F bl

� M are decreasing �l-
trations, the proof of Theorem 3 shows that we can take f(m) = cm13,
for some positive integer constant c.

Remark 1.20. En route to proving Theorem 3 we give, in Proposi-
tion 3.14, a 4-term relation that holds inM. The relation is apparently
new. The relation between the 4-term and existing relations on M
(namely the AS and the IHX, see [9]) is addressed in question 2.

Theorem 4.

� With the notation of de�nition 1.15, for every m we have:

Fas
3mM� \F bl

2mM:(11)

� Together with Theorem 2 and Theorem 3 this implies that, for
every m:

Fbl
2mM = Fbl

2m�1M = Fas
3mM:(12)

Combining Theorem 4 and Theorem 2 from [6], we obtain the fol-
lowing corollary:

Corollary 1.21. For every non-negative integer m, the six �ltra-
tions on M shown below are equal:
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\FK
mM FT

2mM FL
3mM

\Fb
mM F bl

2mM Fas
3mM

Note that in the top row the three �ltrations on M come from subgroups
of the mapping class group, and on the bottom row are their equivalent
�ltrations that come from special classes of links (boundary, blinks and
algebraically split).

In the third part of the paper we discuss the relation between blink
surgery equivalence and the Seifert matrix of a blink. In [22] and [5]
it is observed that if two AS-admissible n-component links are surgery
equivalent, then the associated elements in Gasn M are equal. Since it
is known [19] that surgery equivalence is determined by the triple ��-
invariants of Milnor, these numerical link invariants provide a set of
generators of Gasn M. We now present an analogous result for blinks
and GblnM. This gives, as a consequence, a set of generators for GblnM.
Although Gbl2nM = Gas3nM, the above mentioned two sets of generators
seem to be di�erent. We hope to explore this point further some time
in the near future.

De�nition 1.22. Let (M;L) be a blink. An elementary (blink)
surgery equivalence on (M;L) is a surgery on a unit Seifert-framed blink
L00 �M �L such that L and L00 have Seifert surfaces which are disjoint
from each other. (Thus L [ L00 is a blink in M). We say (ML00 ; L)
is surgery equivalent to (M;L). More generally, surgery equivalence is
the equivalence relation among blinks generated by elementary surgery
equivalence.

Theorem 5. Two blinks are surgery equivalent if and only if they
admit equal Seifert matrices.

1.6. Plan of the proof

As mentioned in the abstract and the introduction, for the convenience
of the reader, the proofs of the results appear in three sections.

In Section 2 we review I-adic and nilpotent completions and prove
the claims in Remark 1.7, as well as Theorem 1 and Propositions 1.4, 1.6
and 1.16. The proofs in this section are mostly algebraic manipulations
in group algebras and a bit of cutting, pasting and tubing arguments.

In Section 3.1 we review the main identities in M in graphical and
algebraic form, as well as a few facts about blinks. There is a plethora
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of identities on M, coming from Kirby calculus, that is, from di�erent
ways of representing an integral homology 3-sphere by surgery on a link.
Most of the identities are known, however in Sections 3.2 and 3.3 we
introduce a new one (the 4-term relation) that will be used crucially in
the present paper.

The identities of Section 3.1 together with induction are the main
tools used in the proofs of Theorems 2, 3 and 4. We warn the reader that
though the statements of the above mentioned theorems seem similar,
the methods used to prove them are di�erent. Each theorem requires
its own use of the same identities.

In Section 4 we discuss the notion of blink surgery equivalence and
prove Theorem 5.

We collect in the appendix some results related to the subgroup Lg;1
of the mapping class group. These results are not directly used in the
present paper, but they may help clarify the structure of Lg;1.

1.7. Questions

In this section we propose a few questions that may lead to a better
understanding of the subject. They are addressed to di�erent audiences,
at least the way they are stated.

Question 1. Are the subspaces of M (de�ned in Remark 1.2)
spanned by elements of the formM�Mf , for (M;�) admissible and f 2
(Lg;1)(m); (Tg;1)(m) or (Kg;1)(m), respectively, the same as FL

mM;FT
mM

or FK
mM, respectively?

Question 2. In Sections 3.2 and 3.3 we show (three versions of) a
4-term relation that holds onM. In the �rst version this relation really
comes from the 4-term relation on the space of knots (in S3) via the
Dehn surgery map. On the other hand, one knows that an antisymmetry
(AS) and an IHX relation hold on M, see [9]. Is it true that the AS
and the IHX relation are equivalent to the 4-term relation onM? Note
that the AS and the IHX relation are equivalent to the 4-term relation
on the space of knots; see [1].

Question 3. The subgroup Lg;1 of the mapping class group which is
introduced in Section 1.3 is related to a larger subgroup �Lg;1 consisting
of all h 2 �g;1 such that hjL = identity. In the appendix we discuss
these two subgroups and, for example, show that �Lg;1 6= Lg;1. But is
the �ltration of M de�ned by the powers (I �Lg;1)m di�erent from that
de�ned by (ILg;1)m?
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In the appendix we also show that ( �Lg;1)5 � Kg;1 but ( �Lg;1)4 6� Kg;1.
Is (Lg;1)4 � Kg;1?

1.8. Philosophical comments

In this section we propose a few questions of philosophical interest that
may lead to a better understanding of the subject. They are not directly
related to the results of the present paper, and the questions themselves
are somewhat vague. Positive answers may nevertheless bring presents
to a variety of areas.

Question 4. Interpret the results of the present paper in terms of
the not-yet-discovered duality of three-dimensional gauge theories.

Question 5. Give a Hodge structure on the complexi�ed space
M
Q C in a way compatible with the �ltration discussed in the present
paper.

Acknowledgment

We wish to thank the Internet for providing the required commu-
nications. The �rst author wishes to thank D. Bar-Natan for intriguing
conversations that lead to some of the results of the present paper.

2. Equivalence of �ltrations from links and from surfaces

2.1. I-adic and nilpotent completions

In this section we recall some facts about the lower central series of
a group and its relation to the I-adic �ltration of the group algebra.
Let G be a group and QG the group Q-algebra, i.e., the vector space
over Q with G as basis. Multiplication is de�ned by linearly extending
the multiplication of G. The augmentation ideal IG � QG is the two-
sided ideal generated by all elements of the form g � 1; g 2 G. The
I-adic �ltration of QG is the sequence of powers (IG)n of IG. It is not
di�cult to show that if g 2 Gn the n-th lower central series subgroup
of G (see Section 1.3), then g � 1 2 (IG)n. In fact a bit more is true,
namely let G(n) denote the rational closure of the group Gn de�ned in
Remark 1.7. Then g � 1 2 (IG)n whenever g 2 G(n). This follows
from the fact that gm � 1 2 (IG)n for some m, and from the formula:
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gm�1 =
Pm

i=1

�m
i

�
(g�1)i. The point of considering the rational closures

is the Theorem of Jennings (see [23]) which says that the converse is
true: if g � 1 2 (IG)n, then g 2 G(n). This proves Remark 1.7 (b).

2.2. Proof of Proposition 1.4

Let h be as in the statement of Proposition 1.4. A Mayer-Vietoris
argument shows that

H1(Mh) �= H1(�)=L� + h�(L+):

Thus it su�ces to show that h�(L+) = L+ mod L�. First we show
that L has a complementary Lagrangian L0 which is compatible with i.
Assuming this then, since h is symplectic, h�jL0 is the identity mod L.
Thus if � 2 L+\L0, then h�(�)�� 2 L\L+ mod L�. So, with respect
to the direct sum decomposition L+ = (L\L+)� (L0 \L+), h�jL+ has
the form

�
I X
0 I

�
.

To construct the complementary Lagrangian L0 �rst choose any com-
plementary summand L0+ of L \ L+ in L+. Then let L0� � L� be the
annihilator, under the intersection pairing, of L0+. Since L \ L� must
pair non-singularly with L0+, then L

0
� must be complementary to L\L�

in L�. It is clear that L
0
++L

0
� is the desired complementary Lagrangian.

This completes the proof of Proposition 1.4.

2.3. Proof of Proposition 1.6

We will �rst prove FHK
m M = FK

mM; FHT
m M = FT

mM and FL
mM �

FHL
m M. Suppose that i : �g � M is an admissible surface in M

and f 2 Lig;1. Then i(�g) separates M into the two components
M+;M�. Using handle decompositions of M+ and M� we can �nd
two handlebodies H+ � M+;H� � M� such that the connected sum
�g0 = i(�g) ] @H+ ] @H� is a Heegaard embedding.Note that the com-
plementary components of �g0 areM

0
� = (M��H�) ] H�, using bound-

ary connected sum. Thus we see that Mf =Mf 0 , where f
0 2 �g0;1 is the

image of f under the canonical inclusionLg;1 � �g;1 � �g0;1. Note that if
f 2 Tg;1 then f 0 2 Tg0;1, and if f 2 Kg;1 then f

0 2 Kg0;1. To complete the
proof that FL

mM� FHL
m M we will need to show that there is a compat-

ible Lagrangian L � H1(�g0) so that L � kerfi+ : H1(�g)! H1(M+)g.
(Note that kerfi+ : H1(�g) ! H1(M+)g = L+ * L0+ = kerfi+ :
H1(�g0) ! H1(M

0
+)g.) We show this below. If g0 is large enough it

follows from [20] that M = S3
h for some h 2 Kg0;1 using our chosen

Heegaard surface ig0(�g0). Thus Mf = S3
f 0h.
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Now a generator of FL
mM is, by de�nition, a linear combinationP

aiMfi , where
P

aifi 2 (ILig;1)
m and all terms are de�ned with re-

spect to the same embedding in M . But the discussion above shows
that we can rewrite this as

P
aiS

3
f 0
i
h. Note that

P
aif

0
i 2 QL

L
g0 is

the image of
P

aifi 2 (ILig;1)
m and so belongs to (ILLg0)

m. ThereforeP
aif

0
ih 2 (ILLg;1)

m since h 2 Kg;1. The same argument works for Tg;1
and Kg;1. Note that we have completed the proof of Proposition 1.6 for
FK
mM and FT

mM.

To complete the proof that FL
mM � FHL

m M we need to construct
the compatible Lagrangian L � H1(�

0). Let A� � H1(�
0) denote

the subgroup generated by the boundary circles of the meridian disks
of H�. Note that A� � L0�. We now de�ne L = L+ + A+ + A�.
To show that this is compatible, i.e., L = (L \ L0+) + (L \ L0�), we
�rst observe that L+ � L0+ + A+. This can be seen geometrically as
follows. If  is a closed curve in � representing an element of L+, then
i() bounds a (singular) surface in M+. This surface will intersect H+

generically as a union of meridian disks. Thus �the corresponding
element of A+ bounds a surface in M 0

+ and so represents an element
of L0+. Now suppose � 2 L. Then we write � = l+ + h+ + h�, where
l+ 2 L+; h+ 2 A+; h� 2 A�. Now we can write l+ = l0+ + h0+, where
l0+ 2 L0+; h

0
+ 2 A+. So now we have � = l0+ + h0+ + h+ + h�. Since

h0++h+ 2 L\L0� and h� 2 L\L0+, we have l
0
+ 2 L. Thus l0+ 2 L\L0+

and we conclude that � 2 (L \ L0+) + (L \ L0�). This shows that L is
compatible.

This completes the proof that FL
mM� FHL

m M. To prove the reverse
inclusion FHL

m M � FL
mM we will make use of Theorem 1 which says

that FL
mM = Fas

mM. Thus we want to show FHL
m M � Fas

mM. Since
the ideal (ILLg;1)

m is generated by elements of the form (1� h1) � � � (1�
hm), where hi is a Dehn twist along a simple closed curve li representing
an element of L, it su�ces to prove the following lemma.

Lemma 2.1. Let l1; � � � ; lm be simple closed curves in � represent-
ing elements of a Lagrangian L which is compatible with an admissible
embedding i : � � M . Let l0j be translates of i(lj) into disjoint parallel
copies of i(�) in M . Then the link fl01; � � � ; l

0
mg is algebraically split in

M .

Proof. Write [li] = �+i + ��i , where �
�
i 2 L \ L�. Then ��i bounds

a surface N�
i in M� (translated). Suppose that l0i lies on the M+ side

of l0j . Then N+
i is disjoint from N�

j and the linking number of l0i and l0j
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is just the intersection number of N�
i with N+

j . But this is the same as

the intersection number of ��i with �+j in �. Since these both represent
elements of the Lagrangian L, the intersection number is zero. q.e.d.

This completes the proof of Proposition 1.6.

2.4. Proof of Theorem 1(b) and Proposition 1.16

We will need the following observation. Suppose that M = M1 [M2,
where N = @M1 = @M2. Let f; g be di�eomorphisms of N and consider
the manifold Mh where h = fg. We can describe Mh alternatively
using f and g separately by writing M =M1 [ (I �N) [M2, splitting
M along two parallel copies of N � M . Then it is easy to see that
Mh =M1 [f (I �N) [g M2.

We �rst prove Proposition 1.16. This will follow from the preceding
observation and a Theorem of Morita ([20, Proposition 2.3]) which says
that any homology 3-sphere M can be written in the form S3

f for some
f 2 Kg;1 and some g. Let us write g = g1 � � � gk, where each gi is a
Dehn twist along some bounding simple closed curve i in the Heegaard
surface �g in S3. According to the observation we can split S3 along k
parallel copies of �g in S3 and obtain M by simultaneously regluing by
Dehn twists along the now disjoint copies of i in the parallel copies of
�g. This is the same as doing simultaneous �1 surgeries along the link
L formed by these disjoint copies of i. But since each i is a bounding
simple closed curve we see that L is, in fact, a boundary link. q.e.d.

We now turn to Theorem 1(b). Suppose [M;L; f ] is a generator of
F b
mM. The components of L bound disjoint Seifert surfaces V1; : : : ; Vm.

Let � be a connected sum of the boundaries of tubular neighborhoods
of these surfaces. Thus � is an admissible surface in M and the com-
ponents of L are disjoint bounding simple closed curves i on �. Let
h1; : : : ; hm be the di�eomorphisms of � de�ned by Dehn twists along
1; : : : ; m, so that, according to Remark 1.10, cutting M along � and
regluing using hi is the same as framed surgery along i using f ji. Note
that the hi commute with each other. If L0 is any sublink of L, then,
since the i are disjoint ML0;f jL0 is obtained from M by cutting along
� and regluing using the composition of those hi corresponding to the
components which appear in L0. Now [M;L; f ] =

P
L0�L(�1)

jL0jML0;f 0 ,
which is, therefore, the image, under the map Kg;1 !M of the sumX

1�i1�����ik�m

(�1)khi1 � � � hik = (1� h1) � � � (1� hm):
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But this is obviously an element of IKg;1.

Conversely suppose � 2 (IKg;1)
m. Then � is a linear combination of

elements of the form h(1�g1) � � � (1�gm), where h; gi 2 Kg;1. Now each
gi is a product �1 � � � �k, where each �i is a Dehn twist along a bounding
simple closed curve. Using the identity

�1 � � � �k � 1 =
kX
1

�1 � � � �i�1(�i � 1)

and the normality of Kg;1 again we can assume that each gi is a Dehn
twist along a bounding simple closed curve. Now suppose � is an ad-
missible surface in an integral homology 3-sphere M . Let �0; : : : ;�m

be parallel copies of � in M . If gi is a Dehn twist along i 2 �, then
any Mhgi1 ���gik

can be obtained by cutting M along �0;�i1 ; : : : ;�ik and
then regluing using h; gi1 ; � � � ; gik on these copies of �. But this is the
same as considering the link L in Mh de�ned by the fi 2 �ig with
the framing f de�ned by the directions of the twists given by the fgig.
From this we see that the image of h(1�g1) � � � (1�gm) inM is exactly
[Mh; L; f ]. q.e.d.

2.5. Proof of Theorem 1(a)

The proof of Theorem 1(a) is very similar to that just given for (b). We
need to use the result of Johnson that Tg;1 is generated by what he calls
BP maps if g � 3. A BP map is obtained by doing Dehn twists along
two disjoint simple closed curves in �g, which form a bounding pair, i.e.,
they are homologous or, equivalently, form the boundary of a subsurface
of �g. The twists are in opposite directions. Note that the 2-component
link associated to a BP map is nothing but a 1-pair blink. This gives
the main motivation for the role of blinks in the present paper. Suppose
we have a product g1 � � � gm of BP maps. If we have m parallel copies
of an admissible surface � in an integral homology 3-sphere M and, in
the i-th copy, a pair of such curves associated to gi, then the totality of
these curves forms a blink Lbl with a unit Seifert framing f de�ned by
the directions of the twists. Thus, just as with boundary links above,
we see that the manifold obtained by cutting M along � and regluing
by g1 � � � gm is homeomorphic toMLbl;f . The proof of Theorem 1(a) now
is identical to the proof of Theorem 1(b) with the substitution of blinks
for boundary links and Tg;1 for Kg;1.
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2.6. Proof of Theorem 1(c)

Suppose [M;L; f ] is a generator of Fas
mM. Consider a tubular neighbor-

hood of L and de�ne a connected submanifold M1 � M by connecting
these components by solid tubes inM . For each component li of L there
is a canonical longitude �i � @M1 de�ned by the requirement that �i
be null-homologous in the complement of li. Since L is algebraically
split, f�ig span KerfH1(@M1)! H1(M �M1)g which is a Lagrangian
in H1(@M1). The result of doing �1-surgery on any sublink of L is
the same as cutting M along @M1 and regluing by simultaneous Dehn
twists on the corresponding �i � @M1. If we choose an identi�cation
�g

�= @M1, these Dehn twists de�ne elements hi 2 Lig;1, where i is the
composition �g

�= @M1 �M . As in Section 2.4 we see that [M;L; f ] is
the image, under the map Lg;1 !M de�ned by i, of (1�h1) � � � (1�hm).

We now prove the converse statement. Suppose � 2 (ILg;1)m. Then
� is a linear combination of elements of the form h(1� g1) � � � (1� gm),
where h; gi 2 Lg;1. Now writing each gi as a product of L- twists and
using repeatedly the identity 1 � gh = g(1 � h) + 1 � g, we can write
this as a sum of elements of the form h(1� �1) � � � (1� �m), where each
�i is an L- twist.

We now proceed as in Sections 2.4 and 2.5. We see that the image
of h(1 � �1) � � � (1 � �m) in M is an element [M;K; f ] which can be
described as follows. We begin with an embedded surface � in some
integral homology 3-sphere M 0 and let M1 be the closure of one of
the components of M 0 � �, so that L = kerfH1(�) ! H1(M1)g. Let
�;�1; � � � ;�m be parallel copies of � appearing in that order as we
move away from M1. Then �i is a Dehn twist on a curve �i � �i, and
�i is null-homologous in M1. Thus M is obtained by cutting M 0 along
� and reattaching with h, K is the link consisting of the f�ig and f is
the framing de�ned by the signs of the Dehn twists. To complete the
proof we need to see that K is algebraically split. But since �i bounds a
chain inM1 and h does not alter this, it follows that the linking number
of �i with any �j, when j > i, is zero.

3. Equivalence of AS, B and BL �ltrations

In this section we prove Theorems 2, 3 and 4.
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3.1. A review of relations on M in graphical and algebraic form

In this section we review the forms of notation used in this paper as well
as some important identities among the elements of M. We follow the
conventions of [22], [5], [8]. For the convenience of the uninitiated reader,
we review them again here. The notation comes in two forms: algebraic
and graphical. By algebraic notation we mean [M;L; f ]. Note that the
various �ltrations on M have been written in algebraic notation. The
rules of the graphical notation are summarized in Figure 3. Since we are
talking about identities of (linear combinations) of integral homology 3-
spheres obtained by framed links in other integral homology 3-spheres,
it is almost unavoidable to use graphical notation to represent framed
links, and surgeries on them.

Remark 3.1. We mention once and for all that any link (whether
algebraically split or boundary or blink) drawn in a �gure corresponds
to a linear combination of integral homology 3-spheres, and therefore
represents an element of M. The �gures represent identities of these
elements. We cannot stress too strongly the fact that in papers prior
to the ones talking about �nite type invariants �gures corresponded to
links or 3-manifolds, but never to linear combinations of them. Never-
theless, this point of view is very fundamental in the world of �nite type
invariants.

== == ==

�1 + 1

Figure 3. Some drawing conventions for bands. Shown here
are ribbon parts of AS-admissible links that represent (linear
combinations of) integral homology 3-spheres. The numbers in
the bottom of each band indicate the number of twists that we
put in the band.

We are now ready to review identities of elements of M. We begin
with the following fundamental identity, (in algebraic notation) for an
AS-admissible link (L; f) in an integral homology 3-sphere M :
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Let Lbl [ L be the union of an AS-admissible link L and a BL-
admissible blink Lbl (in the complement of L). Let l denote either a
component of L, or a 1-pair of Lbl. De�ne

L0 =

(
L if l =2 L;

L� l if l 2 L;

and

L0bl =

(
Lbl if l =2 Lbl;

Lbl � l if l 2 Lbl:

Let f 0 (respectively, f jl) denote the restriction of the framing f
of Lbl [ L to L0bl [ L0 (respectively l). Then we have the following
fundamental relation:

[M;Lbl [ L; f ] = [M;L0bl [ L
0; f 0]� [M(l;f jl)L

0
bl [ L0; f 0]:(13)

The proof of the above equation follows by de�nition of the symbol
[M;Lbl [ L; f ] and the following exercise, left to the reader:

Exercise 3.2. Show that the unit-Seifert framing f jLbl of Lbl in M
is the same as the one of Lbl in M(l;f jl).

Remark 3.3. This extends the notation of previous papers [3], [5],
[6], [8], [9], where Lbl is the empty blink. If l is a knot that bounds a
disk D in M , then M(l;f jl) is di�eomorphic to M and we may construct
the link in M corresponding to L0bl [L

0 in M(l;f jl) from L0bl [L
0 by just

giving the bundle of strands of L0bl [ L0 which pass through D a full
clockwise twist if f = +1 or counterclockwise twist if f = �1.

Examples of equation (13) in graphical notation are given in Figures
4, 5 and 6.

+1 � 1

�1 + 1

Figure 4. A special case of equation (13) in a graphical way.
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= � + = �
�1 + 1

Figure 5. Another special case of equation (13). The �gure
represents an identity inM. There are two interpretations of the
above �gure. Either each of the crossings shown belongs to the
same component (of an algebraically split link), or each of the
crossings shown is part of a ribbon of a piece of a Seifert surface
of a 1-pair blink. It will be clear each time we use the identity
shown in the �gure which interpretation we have in mind.

= � + +
�1

�1
�1

Figure 6. Another special case of equation (13). The �gure
represents an identity in M. Crossings are in the same compo-
nent of the link.
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3.2. A 4-term relation on M

In this and in the two sections we introduce three versions of a 4-term
relation on M, which will be used crucially in the proof of Theorem 3.

We begin by noting that there is a map from +1-framed knots in S3

toM, de�ned by K ! [K;S3;+1] = S3�S3
K;+1 originally introduced in

[3]. Dually this map induces a map from invariants of integral homology
3-spheres to invariants of knots in S3. Furthermore it is trivial to show
that �nite type invariants of integral homology 3-spheres map to �nite
type invariants of knots. Actually much more is known, namely that
AS-type 3m of integral homology 3-spheres map to type 2m invariants
of knots; see [10] and [6]. The vector space on the set of knots satis�es
a basic relation, the 4-term relation. This relation plays an important
role in studying �nite type invariants of knots. According to the above
de�ned map, we have a 4-term relation satis�ed on the image of this
map inM. Strangely enough, the above relation has not been explicitly
introduced or noticed before. In the present paper we describe the 4-
term relation onM and use it in a crucial way in the proof of Theorem 3.
Furthermore, in Section 1.7 we pose the question of a possible relation
between the 4-term relation and the more well known AS and IHX
relations on M. With these preliminaries and motivation in mind, we
begin to describe the 4-term relation on M.

Let C [K be a two-component sublink of an AS-admissible link L
in S3, such that the following hold:

� The intersection of K with a 3-ball B in S3 consists of 3 arcs
shown in Figure 10.

� C is an unknot that bounds a disc D which lies in the interior of
the ball B. The disc D intersects K in two points, b; c. See Figure
10.

Choose 4 disjoint discs Dj (for j = s; n; e; w) (s; n; e; w stands for
south, north, east and west) in the ball that intersect K in the 4 tuples
of points (j; a), as shown in Figure 12 with the abbreviations of Figure
11. Let Cj (for j = s; n; e; w) denote the boundary of Dj with framing
�1. Note that Cj[L is an AS-admissible link in S3. Let us momentarily
abbreviate the elements [S3; Cj [ L;�1 [ f ] by [Cj [ L], where f is the
framing of the AS-admissible link L. We can now state the following
proposition:
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=

+1

0 0 0 0 0 0 +1 +1 +1 +1 +1 +1

- -

- - -

+ + +

+1 +1 +1 +1 +1 +1 +1 +1 +1

+1 +1 +1 +1 +1 +1 +1 +1 +1

Figure 7. A �gure showing an identity inM. The links shown
are algebraically split. For a proof, see [5]. The numbers in the
bottom of each band represent twists, with the conventions of
Figure 3. The framings in all the horizontal components are +1.
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+1
+1 � 1

�1

Figure 8. A �gure showing an identity in M. The links
shown are algebraically split. For a proof, see [5]. This �gure is
used to change the +1 framing of an unknot to a �1 and vice
versa.

Figure 9. Another special case of equation (13). We assume
that all the arcs in the band lie in the same link component.
Then the link shown in the third picture from the left contains
a unit Seifert-framed 1-pair blink (indeed, it bounds a Seifert
surface obtained by tubing the obvious disc along the strands
contained in the band). The fourth picture from the left contains
a 1-component boundary link in the complement of the rest of
the link, and thus (using Remark 1.13) a 1-pair blink.

b

a c

Figure 10. We show the intersection of a 3-ball B with a knot
K, which consists of 3 arcs (two of them are shown, the third
is perpendicular to the page pointing towards you). Shown also
are 3 points a; b; c on the knot K, as well as an unknot that
bounds a disc which intersects K in b; c.
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Proposition 3.4. With the above notation, we have the following
relation on M:

[Cs [ L]� [Cn [ L] = [Ce [ L]� [Cw [ L]:(14)

We call the above relation the (�rst version of the) 4-term relation on
M.

Figure 11. Some abbreviation conventions for drawing the
next �gure.

Figure 12. The terms s; e; n; w appearing in the 4-term rela-
tion on M with the drawing conventions of the previous �gure.

Proof. The proof of the 4-term relation on M is the same as the
proof of the 4-term relation on the space of knots; see [1]. In both
proofs, we move the arc a of Figure 10 from the SW quarter, to the
NE quarter in two ways: by passing through either the NW quarter, or
the SE quarter. Using Figure 13, the di�erence in the �rst (respectively,
second) way equals to the left (respectively, right)-hand side of equation
(14), thus proving the proposition. q.e.d.

Figure 13. An identity useful for the 4-term relation.

Remark 3.5. The points a; b; c; s; w; e; n (on the knot K) are dis-
played in the order shown in Figure 14.
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b we

a

s c n

Figure 14. The order various points on a knot K.

Remark 3.6. If we represent the knot K by a circle and the knots
C;Cj (for j = s; n; e; w) by chords (that intersect the above mentioned
circle in two points each, namely the points of intersection K \ Dj),
then the 4-term relation reads as in Figure 15. The 4-term relation will
be used, in the form of Figure 15, in the proof of Theorem 3.

Figure 15. The �rst version of the 4-term relation on M,
with the notation of Remark 3.6.

3.3. Two more versions of the 4-term relation on M

In this section we will introduce two more re�ned versions of the 4-term
relation on M.

Let C [K1 [K2 be a three-component sublink of an AS-admissible
link L in S3, such that there is a three-ball B in S3 with the following
properties:

� The intersection of K1 with B consists of 3 arcs shown in Figure
16.

� The intersection of K2 with B consists of 2 arcs shown in Figure
16.

� C is an unknot that bounds a disc D which lies in the interior of
the ball B. The disc D intersects K1 in two points and intersects
K2 in two points. Furthermore, D intersects no other component
of L. See Figure 16.
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Let Dj (for j = s; n; e; w) be 4 discs as in Section 3.2 (with Figure
16 replacing Figure 10). Let Cj be the boundary of the disc Dj .

$K_1$

$K_2$

Figure 16. Shown here are the 3 arcs along which a ball B
intersects the knot K1 and the 2 arcs along which it intersects
the knot K2. Shown also with bold are points of K1 and K2

where they intersect D.

Proposition 3.7. With the above notation, we have the following
relation on M:

[Cs [ L]� [Cn [ L] = [Ce [ L]� [Cw [ L] + [E
0

1]� [E
0

2];(15)

where E1; E2 are links shown in Figure 17. In the rest of the paper, the
above relation will be called the (second version of the) 4-term relation
on M.

$K_1$

$K_2$

$K_1$

$K_2$

Figure 17. Shown here are the two linksE
0

1 and E
0

2 mentioned
in equation (15). Note that E

0

1 contains a 1-pair blink and E
0

2

contains a 1-component boundary link.

Proof. Moving the arc of K (of Figure 16) from the SW quarter to
the NE quarter as in Proposition 3.4, it follows that:

[Cs [ L]� [Cn [ L]� [Ce [ L] + [Cw [ L] = [E1]� [E2];(16)
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where E1; E2 are as in Figure 18. Using Figure 9 the result
follows. q.e.d.

$K_1$

$K_2$

$K_1$

$K_2$

Figure 18. Shown here are the links E1 and E2 of equation
(16).

A few remarks are in order:

Remark 3.8. In analogy with Remark 3.6, if we represent the
knots K1;K2 by two circles and the knots C;Cj (for j = s; n; e; w) by
chords (that intersect the above mentioned circles in two points each,
namely the points of intersection K1\Dj and K2\Dj) then the 4-term
relation reads as in Figure 19. Note also that the error terms contain
1-pair blinks in the complement of the link L�C. The 4-term relation
will be used, in the form of Figure 19, in the proof of Theorem 3.

$-$ $=$ $-$ \$+$\text{error terms}

Figure 19. The second version of the 4-term relation on M,
with the notation of Remark 3.8.

Remark 3.9. Proposition 3.7 implies Proposition 3.4. Indeed, con-
sider Figure 20. Notice that in this case, the error terms vanish. The
reason that we introduced Proposition 3.4 at all was as a warm-up ex-
ercise to make the proof of Proposition 3.7 more accessible, in light of
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the similarity between Proposition 3.4 and the 4-term relation in the
theory of �nite type knot invariants; see [1].

K1

K2

Figure 20. A special link that reduces Proposition 3.7 to
Proposition 3.4.

We close this section with the third (and most re�ned) version of
the 4-term relation on M.

Proposition 3.10. Let C [ K1 [ K2 [ K3 be a four-component
sublink of an AS-admissible link L in S3. Assume that there is a ball B
such that the intersection of L with B is as in Figure 21. Let D and Dj

(for j = s; n; e; w) be discs as in Section 3.2 (with Figure 21 replacing
Figure 10). Let Cj be the boundary of the disc Dj and C the boundary
of D. Then, with the abbreviations before the statement of Proposition
3.4, we have the following:

[Cs [ L]� [Cn [ L] = [Ce [ L]� [Cw [ L] + error terms;(17)

where the error terms include 1-pair blinks in the complement of
L� (C [j Cj). In the rest of the paper, the above relation will be called
the (third version of the) 4-term relation on M.

Proof. The proof is similar to that of Proposition 3.7 and we briey
sketch it here. Using the equation of Figure 22, after moving the arc
of K (of Figure 21) from the SW quarter to the NE quarter, we get
the following equality involving the terms [Cj [L], as well as two kinds
of error terms: ET1 (respectively, ET2) that come from moving the K1
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$K_1$

$K_3$$K_2$
$K_1$

$C$

$K_1$

$K_3$$K_2$
$K_1$

$C$
$C_w$

Figure 21. Shown here on the left-hand side are the 3 arcs
along which a ball B intersects the knot K1, the 2 arcs along
which it intersects K2 and the 2 arcs that it intersects the knot
K3. Shown also is an unknotted component C which bounds a
disc D, and with bold dots are the points where D intersects K1

and K2. On the right-hand side of the �gure is shown one of the
links (Cw) that appears in equation (17).

arc around the K3 arcs (respectively, around the K2 arcs):

[Cs [ L]� [Cn [ L] = [Ce [ L]� [Cw [ L] +ET1 +ET2:(18)

By de�nition, we have:

ET1 =
X
i=1;2

([Ei;s]� [Ei;n])� ([Ei;e]� [Ei;w]);(19)

where Ei;j (for i = 1; 2 and j = s; n; e; w) are 1-pair blinks that come
from Figure 22. Each of the di�erences in the parentheses is a sum
(with signs) of four terms (recall that for a 1-pair blink E, [E] is a sum
(with signs) of two terms), two of which cancel. The remaining two
(with signs) can be combined as [e] for some 1-pair blink e. These 1-
pair blinks feg bound Seifert surfaces in the interior of the ball B (of
Figure 21), and these surfaces intersect the disc that C bounds, where
C is as in Figure 21. By the same argument as in Proposition 3.7, it
follows that ET2 can be written as a linear combination of links that
contain 1-pair blinks that bound surfaces in the interior of the ball B.
This proves Proposition 3.10. q.e.d.

Remark 3.11. In analogy with Remark 3.8, if we represent the
knots K1;K2;K3 by three circles and the knots C;Cj (for j = s; n; e; w)
by chords (that intersect the above mentioned circles in two points each,
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Figure 22. Moving an arc perpendicular to the page past
three others. On the left-hand side, there are four arcs shown,
one perpendicular to the plane, pointing towards your eyes. Of
these four arcs, the top horizontal one and the one represented
by a dot, belong to the same link component, and so do the two
others. Note that only two components of the link are involved,
and that this �gure is a redrawing of Figure 9. The two blinks
on the right-hand side are denoted by E1 and E2 respectively.

namely the points of intersection Ki \Dj (for i = 1; 2; 3), then the 4-
term relation reads as in Figure 23. Note that the error terms contain
1-pair blinks in the complement of the link L� (C [j Cj). The 4-term
relation will be used, in the form of Figure 23, in the proof of Theorem
3.

$-$ $=$ $-$ \$+$\text{error terms}

$K_2$ $K_3$

$K_1$

Figure 23. The third version of the 4-term relation on M,
with the notation of Remark 3.11.

3.4. Proof of Theorem 3

This section is devoted to the proof of Theorem 3. The proof is long,
and rather involved. For the convenience of the reader, we divide the
proof in three propositions, each of which needs independent arguments.

All links considered in this section are AS-admissible links in S3.
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Let us begin by introducing a de�nition that is useful in this section.

De�nition 3.12. An AS-admissible link (L; f) (in S3) is near to
another one (L0; f 0) (of not necessarily the same number of components)
if there is a �nite set of AS-admissible L00 containing L0 such that:

[S3; L; f ] =
X
L00

[S3; L00; f 00] 2 Fas
� M:(20)

We caution the reader that being \near to" is not a symmetric relation.
Note also that any link is near to an arbitrary sublink of it. A note on
transitivity of the relation \near to": if (L; f) is near to (L0; f 0), which
itself is near to a third one (L00; f 00), then it is not clear that (L; f)
is near to (L00; f 00). However, if (L00; f 00) is obtained from (L0; f 0) (and
(L0; f 0) is obtained from (L; f)) using the equalities of Figures 5, 6 and
7, then transitivity holds. We will use transitivity freely in the proof
of Proposition 3.13, because of the above note. As a variation, we call
a �nite linear combination of AS-admissible links (Li; fi) near to an
AS-admissible link (L0; f 0) if there is a �nite number of AS-admissible
links (L00; f 00) that include (L0; f 0) such that:X

i

[S3; Li; fi] =
X
L00

[S3; L00; f 00] 2 Fas
� M:(21)

With the above terminology we have the following:

Proposition 3.13. For every AS-admissible 4m-component link in
S3 there is a trivial Ltr(m) m-component link such that (L; f) is near
to (Ltr(m); f(m)).

Proof of proposition 3.13. We begin by remarking that the state-
ment in Proposition 3.13 is a �niteness statement, and not one using
downward induction. Furthermor, using Figure 8 it follows that if the
above proposition holds for one choice of unit framings, then it holds for
all. We will therefore omit mentioning the framings in the proof given
below.

We divide the proof of the proposition in two steps.

� Step 1 7 L is near to a (�nite linear combination of) L(�)
where L(�) are links obtained by trivalent vertex oriented graphs
with 4m edges as in [3], [5].

Proof. The proof is similar to the proof of [6, Theorem 4]. Note
that the theorem [6, Theorem 4] states that [S3; L; f ] 2 Gas4mM can be
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\simeq

i iii

\simeq

i i j jjjii

Figure 24. Two local moves that generate the relation of
surgery equivalence. Here arcs labeled by the same letter (i or
j) belong to the same link component.

written as a linear combination of terms of the form [S3; L(�); f ] where
� are trivalent vertex oriented graphs of 4m edges. In that theorem,
we �rst alter L by a surgery equivalent one (where surgery equivalence
is the relation generated by the local moves of Figure 24). Using a
relation shown in graphical form in Figure 7 we then replace L by a
linear combination of L(�) for trivalent vertex oriented graphs of 4m
edges.

Our present claim (of step 1) follows from the same argument (sket-
ched above) that shows [6, Theorem 4], after we use the equations
(shown in graphical notation) in Figures 5, 6 and 7. Note that in Fig-
ures 5, 6 and 7 the extra terms that are present give links that contain
the links obtained by trivalent graphs. q.e.d.

� Step 2 If L(�) is a link obtained by a trivalent graph of 4m
edges, then L(�) is near a trivial m-component link Ltr(m).

Proof. This essentially follows from Lemma 3.4 of [3]. For complete-
ness, we repeat the argument here. Take a forest Forest of � containing
all of the vertices of �, and consider L(Forest). This is a sublink of
L(�), therefore L(�) is near to L(Forest), and an Euler characteristic
argument shows that L(Forest) has at least m components. q.e.d.

The proof of Proposition 3.13 is complete. q.e.d.

We also have the following proposition, that depends crucially on
the existence of the 4-term relation shown in equation (14).
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Proposition 3.14. There is a positive constant c 2 N such that for
every AS-admissible link (L; f) in S3 that contains a sublink Ltr(cm

3)[
K with the following properties:

� Ltr(cm
3) is a trivial link of cm3 components which bounds a dis-

joint union of discs [iDi.

� Each disc Di intersects the knot K in two points, and intersects
no other component of L.

Hence we have that [S3; L; f ] 2 F b
mM, so (using Remark 1.13) that

[S3; L; f ] 2 Fbl
mM as well.

Before we give the proof of it, let us introduce one more de�nition
that will be useful in stating the proof. Recall (see e.g. [1]) the combi-
natorial notion of a chord diagram with support on a circle.

De�nition 3.15. A chord diagram is called m-boundary if it con-
tains m nonintersecting chords. For an example, see Figure 25.

1

2
3

1 2

Figure 25. Shown on the left is a chord diagram with 3
chords. Two of them (1 and 3) do not intersect thus the chord
diagram is 2- boundary. On the right is shown the result of
tubing it along the two nonintersecting chords. The result is a
boundary link of two components in the complement of a two
component link.

Proof. Let L and K be as in the statement of Proposition 3.14, and
let CDK denote the associated chord diagram of K, .i.e., the ordered
set of points of the intersection of K with the disk Di. The two points
of intersection of Di \K will be represented by a chord of CDK , as in
the theory of �nite type invariants of knots.

We now give the proof in six steps:
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� Step 1 If CDK is m-boundary, then [S3; L; f ] 2 F b
mM.

Proof. Indeed, tube the m discs that represent m nonintersecting
chords, using an innermost circle argument. For an example, see Figure
25. The result is a boundary m component sublink Lb of L that bounds
surfaces in the complement of L� Lb, from which it follows easily that
[S3; L; f ] 2 Fb

mM. Note that the result is independent of the fact that
K may be knotted; it only depends on the associated chord diagram of
K. q.e.d.

Now, if CDK is not an m-boundary chord diagram, we have the
following steps.

� Step 2 We can always assume that the framing in each of the
components of Ltr(cm

4) is +1 or �1 as we please.

Proof. Use the equation in Figure 8. q.e.d.

Before we state the next step, let us introduce some useful terminol-
ogy. We say that a chord diagram is represented by an m-tower if it can
be written using the 4-term relation (see Figure 15) as a (�nite) linear
combination of m-boundary chord diagrams. With this terminology we
have the next step:

� Step 3 If a chord diagram contains at least cm3 chords (where
c > 1 �xed positive integer), and is represented by an m�1 tower,
then it is represented by an m-tower.

Proof. Without loss of generality, we may assume that the chord
diagram contains an m � 1 tower, Tm�1. The end points of the m � 1
chords of Tm�1 partition the external circle of the chord diagram in
2(m� 1) arcs, see Figure 26. Each of the rest of the chords of the chord
diagram will begin and end in one of these arcs. If one of these chords
begins and ends in the same arc, then it, together with Tm�1, is a set of
m nonintersecting chords. If not, there are

�2(m�1)
2

�
many possibilities

for the beginnings and ends of the extra arcs. Using the pigeonhole
principle, if

cm3 � (m� 1) >

�
2(m� 1)

2

�
(m� 1) + 1;(22)
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we can always assume that there are m many of the rest of the chords
that all begin in one arc, and end in another. Let �; � be two arcs
in which (at least) m of the rest of the chords begin and end. Let us
declare one of these chords to be \special" if it has one end in � and the
other in �; otherwise declare it \nonspecial".

Let us look at the chords that begin in the arc �. According to step
4 below, we can always move a \special" over a \nonspecial" one, and
according to step 5 below, we can always move a \special" over another
\special". After doing so, we may assume that the \special" m chords
do not intersect, and therefore, form an m-tower. q.e.d.

�

�

Figure 26. Shown on the left is a 3 tower, and two arcs �; �
of the external circle of the chord diagram. Shown on the right
are some of the extra chords.

� Step 4 With the notation of step 3, we can always move a
\special" chord over a \nonspecial" one.

Proof. The proof uses the 4-term relation. Fix a \special" chord and
move a \nonspecial" in four ways around the end of the \special" one.
Of the resulting four terms, two of them no longer have the \nonspecial"
chord, and the two others move the \special" one over the nonspecial
one. See Figure 27. q.e.d.

� Step 5 With the notation of step 3, we can always move a
\special" chord over a \special" one.

Proof. The same as in step 4, see Figure 28. q.e.d.

� Step 6 Induction.
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$\alpha$

$\beta$

$-$ $=$ $-$

Figure 27. The 4-term relation with a �xed \special" chord
and a moving \nonspecial" chord. For the convenience, the arcs
�; � are shown, too. The �rst two terms show a \nonspecial"
chord after and before passing a special chord (in the � arc).
The two last terms have no \nonspecial" chord.

�

�

Figure 28. The 4-term relation with a �xed \special" chord
and a moving \special" chord. For the convenience, the arcs
�; � are shown, too. The �rst two terms show a \special" chord
after and before passing a �xed \special" chord (in the � arc).
The two last terms have chords that begin and end in the � arc,
and therefore, by the discussion of step 3, we can �nd a 4-tower.
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We can now �nish the proof of Proposition 3.13 as follows: obviously,
a chord diagram contains (and therefore, is represented by) a 1-tower.
Using step 3 and induction, Proposition 3.13 follows. q.e.d.

We also have the following proposition, similar to, but di�erent from
Proposition 3.14:

Proposition 3.16. There is an increasing function h : N ! N
with the following property: for every AS-admissible link L in S3 (with
framing f) which contains a sublink Ltr(h(m)) [ L0 with the following
properties:

� Ltr(h(m)) is a trivial link of h(m) components which bounds a
disjoint union of discs [iDi.

� Each disc Di intersects the link L0 in either two or four points.
Moreover, the intersections of the disc Di with L0 come in pairs
with opposite orientation for each component of L0. Furthermore,
in case a disc Di intersects L

0 in four points, we assume that these
four points do not lie in the same component of L0. See Figure 29.

Then we have that [S3; L; f ] 2 Fbl
mM.

� � � � � �

Figure 29. Shown here are the two allowable types of in-
tersections of a disc Di with the components of L0. Here �; �
denote components of L0 and we assume that � 6= �.

Remark 3.17. Before we give the proof of the above proposition let
us point out that the assumptions are weaker than those of Proposition
3.14. As a result, the conclusion is weaker than that of Proposition 3.14,
in the sense that [S3; L; f ] lies in Fbl

mM and not necessarily in F b
mM.

Note also that the proof of Proposition 3.16 shows that the function h
is constructible, e.g. we can take h(m) = cm13 for some constant c.

Proof of Proposition 3.16. Let L;L0 be as in the statement of
Proposition 3.16. We begin by introducing the associated chord diagram
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CDL0 of L
0 relative to the union of discs Di. The chord diagram CDL0

consists of external circles (one per component of L0) and chords (as
many as the number of discs Di). There are two types of chords: ones
that intersect the external circles in two points, (called of type I) and the
ones (called of type II) that intersect the external circles in four points
(however two points are in one circle and two are in another). For an
example see Figure 30. Note that these chord diagrams are similar but
di�erent from the chord diagrams on links. At any rate, they include
as a special case the chord diagrams considered in Proposition 3.14.

Figure 30. An example of a chord diagram considered in
Proposition 3.16.

Two chords intersect if there is an external circle that they both
touch, such that the four intersection points of that circle with the two
chords is in the order 1212. See Figure 31. In analogy to De�nition 3.15
we call a chord diagram m- boundary if it contains m nonintersecting
chords. The motivation for considering nonintersecting chords, is the
fact that they can be tubed, and therefore produce boundary links in
the complement of L0.

Figure 31. Examples of intersecting chords of various types:
(I; I), (II; II) and (I; II).

This shows the �rst step in the proof of Proposition 3.16:

� Step 1 If CDL0 is m-boundary, then [S3; L; f ] 2 F b
mM, and

therefore (using Remark 1.13) [S3; L; f ] 2 Fbl
mM.

The rest of the proof will be devoted to the proof that we can assume
the hypothesis as in step 1. It uses, like Proposition 3.14, the 4-term
relation in a crucial way. We sketch the proof here:
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� Step 2 We can always assume that the framing in each of the
components of Ltr is +1 or �1 as we please.

Indeed, see step 2 of Proposition 3.14. We can now de�ne (in direct
analogy with Proposition 3.14) the notion of a chord diagram containing
an m-tower. Let us concentrate on the chord diagram CDL0 . With the
above terminology we have the following:

� Step 3 If the chord diagram CDL0 has an external circle which
touches g0(m) >> m (for some function g0), then it contains an
m-tower, and therefore (by tubing) we conclude that [S3; L; f ] 2
Fbl
mM.

Before we give the proof, let us point out that the function g0 above,
(and the functions g1; g2; h to be introduced later), can be constructed
explicitly.

Proof. The proof uses the �rst, second and third version of the 4-
term relation onM. (See Figures 19 and 23). Consider such an external
circle, say C1. Ignoring the subleading terms, apply the �rst, second and
third versions of the 4-term relation (just as in step 3 of Proposition 3.14)
in order to get g1(m) many chords, where g0(m) > cg1(m)3, as in Step
3 of Proposition 3.14, which are nonintersecting as far as their ends in
the external circle C1 are concerned. Concentrate on the g1(m) many
chords that touch the external circle C1. Call these chords preferred.
Consider all other external circles that these chords touch. Now we
consider two cases:

Case 1 There are at least m such other external circles.

Then we can create, using at least m (of the g1(m) many preferred
chords) an m-tower. See Figure 32.

Case 2 Assume there are at most m such external circles.

Then, if g1(m) > mg2(m), there is at least one circle C2 containing
g2(m) many preferred chords (that lie on the circle C1 and C2). Ignoring
the subleading terms once again, by applying the 4-term relation, we can
reach a linear combination of chord diagrams with a 3m-tower provided
g2(m) > c(3m)3.

This is all good, except that we used the 4-term relation twice, and
we ignored the subleading terms in the 4-term relation twice. We need
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C1

Figure 32. An example of an external circle C1 and 3 chords
that touch it and form a 3-tower as far as this circle is concerned.

to deal with the subleading terms, too. Let's consider the subleading
terms in the second case. The subleading terms of the 4-term relation
contain an extra 1-pair blink in the complement of the rest of the link.
However, the Seifert surface of this 1-pair blink may intersect the discs
(i.e., whose boundaries are the chords of the chord diagram) of at most
two chords. We call such chords marked. See Figure 21. Therefore each
time we apply the 4-term relation, the subleading terms have an extra
1-pair blink and we mark at most two chords. Note that without loss
of generality, the 4-term relation is applied to disjoint balls (embedded
in S3), and thus the 1-pair blinks bound surfaces disjoint from each
other, and from the rest of the components of the link. Therefore, if in
case 2 we apply the 4-term relation more than m times, the resulting
subleading terms lie already in Fbl

mM. If on the other hand, we apply
the 4-term relation at most m times in order to create a 3m tower, this
means that we mark at most 2m chords (of the preferred ones) and
therefore have a subtower of 3m � 2m = m chords. Similarly, we can
deal with the subleading terms of the 4-term relation in the beginning
of the proof. This concludes the proof of Step 3. q.e.d.

The above argument shows that ignoring the subleading terms in
the 4-term relation does not a�ect the validity of our arguments. In
the rest of the proof of Proposition 3.16 we will ignore such subleading
terms. Due to step 3, let us assume that every external circle of the
chord diagram CDL0 touches at most g0(m) many chords. If CDL0 has
h(m) >> g0(m) chords, since every chord touches at most two circles,
it implies that the number n of external circles satis�es n >> m.

� Step 4 In this case, we have [S3; L; f ] 2 Fbl
mM.

Proof. Fix a circle, and choose a chord c1 that lies on the chosen
circle. The chord touches at most two circles, and these circles have at
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most 2g0(m) many other chords that touch them. Mark all the circles
that these chords touch and tube the chord c1; see Figure 33. Now
consider the rest of the circles (remembering that the number of circles
is much greater than m), and proceed as above. q.e.d.

This concludes the proof of Proposition 3.16. Note that all the
functions mentioned taking values in N are constructible. In fact, we
leave it as an exercise to the reader to show that we can take g2(m) =
c2m

3; g1(m) = c1m
4; g0(m) = c0m

12 and h(m) = cm13, for some con-
stants c0; c1; c2; c. q.e.d.

C 1

Figure 33. An example of a chord c1 to be tubed and of the
external circles that it marks.

Combining Propositions 3.13, 3.14 and 3.16 enables us to give a
proof of theorem 3 as follows:

Proof of Theorem 3. Let h be the function as in Proposition 3.16.
We want to show that for every non-negative integer m, we have that
Fas
4h(m)M� Fbl

mM. We know that Fas
4h(m)M is spanned by all elements

of the form [M;L; f ] where (L; f) is an AS-admissible 4h(m)- compo-
nent link in an integral homology 3-sphere M . For the convenience of
the reader, we give the proof in three steps:

� Step 1 We may assume that M = S3.

Indeed, it follows from the facts that: (i) every integral homology
3-sphere can be obtained by surgery on an AS-admissible link L00 in S3,
(ii) the fundamental equation (13) and (iii) upward induction on the
number of components of L00. See also [5, step 1, Theorem 1].

From now on, we assume that (L; f) is an AS-admissible in S3.

� Step 2 We may assume that L contains a trivial sublink
Ltr(h(m)) of h(m) components.
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Indeed, this is nothing but Proposition 3.13.

� Step 3 We may assume that the trivial sublink Ltr(h(m))
bounds a disjoint union of discs satisfying the properties of Propo-
sition 3.16.

Indeed, since Ltr(h(m)) is a trivial link, it bounds a disjoint union
of discs UiDi. Let L0 be the sublink of L that the union of the discs
Di intersect. Since L is an AS-admissible link, the intersections of the
components of L0 with each disc Di come in pairs with opposite orienta-
tions. Furthermore, using the equation shown in graphical notation in
Figure 7 (for each of the discs Di), we may assume that each disc inter-
sects L0 in two or four points. Furthermore, in case a disc Di intersects
the same component of L0 in four points, then Figure 34 shows that
we can replace such intersections by a linear combination of discs that
intersect that component in two points only. This �nishes the proof of
step 3, and together with Proposition 3.16 implies the proof of Theorem
3. q.e.d.

$=$ $-$ $-1$

$+1$

Figure 34. An equality in M. The �1 in the box indicates
a full twist. Notice that all arcs lie in the same link component,
and that the two links shown on the right-hand side of the �gure
are homotopic, and therefore, by doing a number of crossing
changes we can rewrite the right-hand side as a �nite sum of
terms each of which contains at least one disc that intersects
the link component in two points.

3.5. Proof of Theorem 4

In this section we prove Theorem 4.
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Proof of Theorem 4. We will �rst show that for every m we have

Fas
3mM� Fbl

2mM+ Fas
3m+1M:(23)

This is equivalent to showing that Fbl
2mM spans the graded space Gas3mM.

However, we know a set of generators for this graded space, namely
[L(�)], where � is a trivalent vertex-oriented graph with 3m edges, and
L(�) is the associated 3m-component algebraically split link; see [22],
and [5]. We will use a slightly di�erent set of generators of this graded
space namely [L(�w)], where

[L(�w)] =
X
v

[L(�(v))];(24)

where the sum is over all subsets of vertices of �, and �(v) is the result
of breaking the vertices of � in v according to Figure 35. Note that such
vertices were called white in [9].

Figure 35. The de�nition of a white vertex. Note that each
of the graphs represents a unit-framed algebraically split link in
S3.

Figure 36. This �gure represents a special case of equation
(13) in graphical notation. The present identity holds in Gas� M.
On the left shown is a 1-pair blink, which (after surgery) corre-
sponds in M to the di�erence of two terms. The �rst term is
shown on the �rst part on right, and the second term is (surgi-
cally equivalent to) the result of blowing down the 1-pair blink.
Notice that each of the two components of the blink is an unknot
and can be blown down in any order.

Using the identity in Figure 36 we see that summing over each white
vertex (in the sum of [L(�w)]) is equivalent to summing over a 1-pair
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blink. Since the graphs � are trivalent with 3m edges, (and therefore of
2m vertices), we have that [L(�w)] 2 F

bl
2mM. This �nishes the proof of

equation 23. Now interpolating equation (23) implies that: Fas
3mM �

\Fbl
2mM, which �nishes the �rst part of the theorem.

The second part follows immediately from the �rst, using Theorems
2 and 3. q.e.d.

3.6. Proof of Theorem 2

This section is devoted to the proof of Theorem 2.

The proof presented here is similar to the proof of Theorem 1 of [6].
It uses primary and secondary inductions as well as the identities (for
not-necessarily algebraically split links) of Section 3.1. For the conve-
nience of the reader, we separate the proof into 5 steps. We begin with
some de�nitions that will be useful. A triple of links T = (L;Lb; Lbl)
in an integral homology 3-sphere M consists of an algebraically split
link L, a boundary link Lb and a blink Lbl such that each component
of Lb and pair of Lbl bounds a connected oriented Seifert surface in M ,
and these surfaces are disjoint from each other and from L. Such a
(disconnected) surface is called an admissible Seifert surface for T . If
k = jLj; n = jLbj;m = jLblj, then we call T a (k; n;m) � clink. The
genus g(T ) is the minimal total genus of an admissible Seifert surface of
T . An admissible framing for T is one which is unit on L[Lb and unit
Seifert-framing on Lbl. We can then de�ne [M;T; f ] 2 M in the usual
way. We will prove that

[M;T; f ] 2 Fas
3n+3m=2M:(25)

Note that in [6, Theorem 1] we proved this fact in the special case
m = 0, and also that the present Theorem 2 is the case n = 0 of
equation (25). The argument for equation (25) is a generalization of
that in [6], proceeding by primary downward induction on k(T ) = k
and secondary upward induction on g(T ).

� Step 1 We may assume that M = S3.

The proof follows from the following 3 facts:

� Every integral homology 3-sphereM can be converted, by surgery
on an AS-admissible link L0, into S3.
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� We may assume that L0 above can be chosen so that the Seifert
surfaces bounded by Lb [ Lbl are disjoint from L0. This follows
by general position, since the Seifert surfaces are contained in a
regular neighborhood of some embedded graph in M , and we can
perturb L0 away from this graph.

� Equation (13)

and upward induction on the number of components of L0, see also step
1 in Theorem 1 of [6].

Suppose now that (L;Lb; Lbl) is a (k; n;m)-clink in S3. If k � 3n+
3m=2 we are done by de�nition. If g(T ) = 0 (i.e., Lbl is an unblink, see
Figure 1) we are also done, since in this case we have that [S3; T; f ] = 0.
Indeed, if Lbl is a unit-Seifert framed unblink in an integral homology 3-
sphere M , then [M;Lbl; f ] =M �MLbl;f , and by applying Kirby moves
to a band of a genus 0 surface that Lbl bounds, we deduce that MLbl;f is
di�eomorphic toM , and thus [M;Lbl; f ] = 0. This begins the induction.

� Step 2 We may assume that every component of L is unknot-
ted.

Equation (13) implies that the change of [S3; T; f ] before and af-
ter a crossing change in the same component of L can be written as
[S3; T 0; f [ �1] where T 0 = (L [ C;Lb; Lbl), and C is a circle that en-
closes the crossing to be changed. Since k(T 0) > k(T ), by using the
primary inductive hypothesis we can change crossings of components of
L, and thus assume that each component of L is unknotted.

� Step 3 Suppose that Lb [ Lbl = @�, where � is an admissible
Seifert surface for T . We may assume that � is embedded in a
standard, almost planar (except for the necessary band crossings)
way. See Figure 38.

This follows using the same argument as in [6] by introducing extra
components into L in order to change band crossings.

Let fKig (for 1 � i � k(T )) denote the components of L. Since
by step 2 they are unknotted, we may choose embedded disks Di so
that Ki = @Di. Furthermore, since � is just a thickening of a wedge of
circles, we may choose the Di so that their intersections with � consist
of a number of transverse penetrations of the interiors of the Di by the
bands of �. See Figure 37. We will be interested in counting the number
of "band penetrations".
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Figure 37. A band of a surface penetrating two pieces of
discs.

� Step 4 We may assume that every band of � penetrates at
least one Di.

Proof. This follows by an argument similar to that in [6]. If some
band penetrates no Di, then we may arrange, as in [6], that the circle
in � going through that band bounds a disk in S3 disjoint from L [�.
Therefore, depending on the band, we can either reduce the genus, as
in [6], or remove one component of that pair. Thus we have turned one
of the blink components into a bounding component and eliminated the
band with no penetrations. If T 0 is the new clink, then it is easy to see
that [S3; T 0; f jT 0] = [S3; T; f ]. q.e.d.

� Step 5 We may assume that each disc Di has at most two
band penetrations.

This follows precisely as in [6].

� Step 6 If any component �j of the Seifert surface of Lb has
genus one and a band of �j penetrates only one disk Di, then we
may assume that Di is penetrated by no other bands of �.

Again this will follow by the same argument as in [6].
We can now complete the proof of Theorem 2 by counting the band

penetrations. Suppose that T is a (k; n;m)- clink satisfying all the
assertions of the previous steps. Since [S3; T; f ] 2 Fas

k+nM, it su�ces
to show that k � 2n + 3m=2. Let b be the number of penetrations of
[Di by bands of �. Set n = n0 + n1, where n0 is the number of Seifert
surface components for Lb of genus one. Set 2n0 = n00 + n000 where n00 is
the number of bands of these genus-one Seifert surfaces with only one
disk penetration.

Now it follows from Steps 4 and 6 that

b � 3m+ 4n1 + n00 + 2n000 :
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If we write k = n00 + k0, then it follows from Step 5 that b � n00 + 2k0.
Combining these two inequalities gives

n00 + 2k0 � 3m+ 4n1 + n00 + 2n000:

But then we have

2k = 2n00 + 2k0 � 3m+ 4n1 + 2n00 + 2n000 = 3m+ 4n;

which was to be proved. The proof of Theorem 2 is complete. q.e.d.

Figure 38. An example of a 1-pair blink that bounds a genus
1 surface. Note that the surface has 3 bands.

Remark 3.18. The bound obtained in Theorem 2 is sharp. Indeed,
if T is as in Figure 39, then [S3; T; f ] 2 Fas

3 M, by Theorem 2, but we
claim that [S3; T; f ] 62 Fas

4 M. Indeed, using Figures 35 and 36 we see
that Figure 39 represents the element [�] 2 Fas

3 M, where [�] 2 M is
the element represented by the trivalent graph �, with white vertices.
But this element of Fas

3 M is nontrivial in Gas3 M, see [9, Proposition
2.13], or Proposition [5, Theorem 6]. This implies in particular that the
analogue of the key Lemma 2:1 of [6] for blinks is false, and that the
last step 6 of Theorem 1 of [6] would be false for blinks.

Figure 39. A special case of a 2-pair blink Lbl union a 3-
component algebraically split link L. The result [S3; T; f ] lies in
Fas
3 M and is non-trivial in Gas3 M.

4. Surgery equivalence and the Seifert matrix
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In this section we prove Theorem 5. This theorem suggests that
�nite type invariants in the sense of blinks, i.e., corresponding to the
I-adic �ltration of the Torelli group, according to Theorem 2, should be
expressible in terms of Seifert matrix invariants of the associated blinks.
Thus Alexander polynomial type invariants rather than Jones polyno-
mial type invariants should su�ce. This is an intriguing consequence
which we hope to exploit in future work.

It is clear that surgery equivalent n-pair blinks (with framings which
correspond) represent the same element of GblnM.

Recall the notion of Seifert matrix of an oriented boundary link. If
L = (K1; � � � ;Kn) and Ki = @Vi where fVig are disjoint oriented sur-
faces in an integral homology 3-sphere M , then the Seifert pairing is
the collection of bilinear pairings �ij : H1(Vi)�H1(Vj)! Z de�ned by
�ij(�; �) = lk(�+; �), the linking number, where �+ 2 H1(M � [iVi)
represents the translate of � o� Vi in the positive normal direction. We
can represent the Seifert pairing by a square integral matrix A (the
Seifert matrix) divided into blocks, each of which represents one of the
�ij . There is an explicit algebraic description of the relation between
two Seifert matrices of the same link corresponding to di�erent choices
of fVig and di�erent bases of the homology. This description uses the
notion of S-equivalence and the action of a certain group of automor-
phisms of the free group (see [16] for the details).

The de�nition of a Seifert pairing of a blink is exactly the same
using Seifert surfaces of the blink as de�ned in De�nition 1.8. The
Seifert pairing is again represented by a square matrix A separated into
blocks representing the �ij . The relation between two Seifert matrices
of the same blink will be generally similar to that for boundary links,
but more complicated, since it is permissible to change the orientation
any of the Seifert surfaces. We do not want to explore this question now
and our formulation of Theorem 5 allows us to avoid it.

4.1. Proof of Theorem 5

We �rst show that surgery equivalent blinks admit equal Seifert ma-
trices. Suppose (M;L) and (M 0; L0) are surgery equivalent. We may
assume that they are related by a single blink surgery, i.e., if � is a
Seifert surface for L in M , then there is a 1- pair blink (l; l0) in M so
that l� l0 = @� where � �M �� is a Seifert surface for (l; l0), and that
(M 0; L0) = (M(l;l0); L) using some unit Seifert-framing of (l; l0). Now we
may also regard � as a Seifert surface for L0 in M 0, and so we need to
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show that if �; � 2 H1(�), then lkM (�+; �) = lkM 0(�+; �) where lkM
denotes the linking number in M . In general, given two disjoint simple
closed curves �; � in M � �, we show that their linking number in M
is the same as in M 0. Suppose � bounds an orientable surface � in M .
By general position � \ � is a collection of proper curves in � and so,
homologically, � = lk(�; �)m + r(ml +ml0) in M � � � l � l0, where m
is a meridian of �, ml and ml0 are meridians of l and l0, and r is some
integer. Thus it su�ces to observe that ml+ml0 is homologically trivial
in M 0 � �. But, by the de�nition of a unit Seifert framing m0

l = ml + �l
and m0

l0 = ml0 � �l0, for some � = �1, and so

ml +ml0 = m0
l +m0

l0 + �(l0 � l) = m0
l +m0

l0 + �@� = 0 2 H1(M
0 � �):

4.2. Conclusion of proof

Now suppose that two blinks (M;L) and (M 0; L0) admit the same Seifert
matrix. We may �rst of all assume that M = M 0 = S3 since, by
Proposition 1.16, we can convert any 3-manifold into S3 by surgery on
a boundary link, which we can assume is far away from any other given
link. By the observation in Remark 1.13 this is the same as surgery on
some blink. Let �;�0 be Seifert surfaces for L;L0 which give identical
Seifert matrix A. Since A� AT is the intersection matrix of � and �0,
we conclude that � and �0 are di�eomorphic.

Now it is an easy consequence of Smale theory that the regular ho-
motopy type of an embedding of a bounded surface in S3 is determined
by the twisting numbers of the bands mod 2. Since these twisting num-
bers are determined by the Seifert matrix, it follows that � and �0 are
regularly homotopic. A regular homotopy of � consists of a sequence
of isotopies and crossings of bands (see Figure 40), so we only have to
show that the band crossings can be achieved by blink surgeries.

Figure 40. An illustration of a crossing of bands.

Let b1; b2 be any two bands of �, possibly the same band. Each
time when we encounter a crossing of b1 with b2, there is a correspond-
ing change in the Seifert matrix. Since the net change in the Seifert
matrix must be zero, we conclude that there is an equal number of
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crossings of b1 and b2 in each of the two directions. Now suppose that
our regular homotopy actually breaks up into a sequence of isotopies
and double band crossings, where we de�ne a double band crossing as
two simultaneous crossings of a single pair of bands in opposite direc-
tions (see Figure 41). We illustrate in Figure 42 that a double band
crossing can be achieved by a blink surgery.

Figure 41. A double crossing change of bands in opposite
directions.

Figure 42. A 1-pair blink that achieves the double crossing
change of the bands of Figure 41.

We need to do two oppositely framed surgeries on circles around
the two bands at the crossing points. The surface bounded by these two
circles is obtained by taking the small twice punctured disks bounded by
these circles and connecting the punctures of one with the punctures of
the other by tubes along the two band segments connecting the crossing
points.

So it su�ces to show that we can �nd a regular homotopy from �
to �0 consisting of isotopies and double band crossings. Let us consider
� and �0 as disks D and D0 with bands attached. By a preliminary
isotopy we can assume that D = D0 and even a bit more, that � and �0

coincide in a neighborhood of D = D0. Then we can choose a regular
neighborhood N of D, and assume that we have a regular homotopy
which moves the bands of � onto those of �0 in the complement of N
and is stationary inside N . Let us modify this regular homotopy of
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� by performing some additional band moves inside N . Every time
a band crossing occurs (outside N) let us introduce a crossing of the
same bands, but in the opposite direction, inside N (see Figures 43 and
44). Thus every band crossing in the original homotopy is replaced by
a double band crossing, and so our new regular homotopy will be a
sequence of double band crossings. This new homotopy now consists
of two independent parts: the original homotopy outside N and the
new part inside N . We have complete freedom in how we perform each
of the band crossings inside N and so, since the number of crossings
of each pair of bands in the two directions is equal, we can choose
the corresponding crossings introduced inside N to cancel each other.
Thus the net e�ect will be to leave � \ N unchanged. In other words
our modi�ed regular homotopy will have the same result as the original
regular homotopy, i.e., to move � onto �0. Since the modi�ed regular
homotopy is a sequence of double band crossings, this completes the
proof. q.e.d.

$N$
$N$

Figure 43. An illustration of an original homotopy.

$N$
$N$

Figure 44. An illustration of a modi�ed homotopy.
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5. Appendix

5.1. Remarks on the group Lg;1

If L � H = H1(�g) is the Lagrangian used to de�ne Lg;1, then we can
also de�ne a larger group �Lg;1 = fh : h�jL = identityg, where h� is the
automorphism of H induced by h. Clearly Lg;1 � �Lg;1 and Tg;1 � �Lg;1.
So we have a lattice of subgroups of the mapping class group:

�Lg;1
% -

Lg;1 Tg;1
- %

Lg;1 \ Tg;1
"
Kg;1

Note that the above diagram de�nes a map

Lg;1=Lg;1 \ Tg;1 ! �Lg;1=Tg;1:

We can now show the following:

Proposition 5.1. The above de�ned map

Lg;1=Lg;1 \ Tg;1 ! �Lg;1=Tg;1

is an isomorphism.

Proof. By its de�nition it follows that it is one-to-one. In order to
show that it is onto, recall �rst [10], [12], [20] the following classical
short exact sequence:

1! Tg;1 ! �g;1 ! Sp(2g;Z)! 1;(26)

where the map �g;1 ! Sp(2g;Z) is the map h ! h� that sends a
surface di�eomorphism to its linear action on H1(�g;Z). We therefore
have an isomorphism �g;1=Tg;1 ' Sp(2g;Z). We can therefore identify
�Lg;1=Tg;1 with its image in Sp(2g;Z), and as such, �Lg;1=Tg;1 consists
of all isometries � of H1(�g) which are the identity on L. With these
preliminaries in mind, in order to show that the map of the proposition
is onto, it su�ces to show that every isometry � of H1(�g) which is
the identity on L is induced by some product �1 � � � �k of L-twists. If
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we write H1(�g) = L� L0 where L0 is a Lagrangian dual to L, and we
choose a basis feig of L and dual basis fe0igfor L

0, then � has a matrix

representative:

�
I C
0 I

�
, where C is a symmetric matrix. If � is a Dehn

twist along a simple closed curve representing
P

i �iei, then it has such
a matrix representative, where the entries of C are given by cij = ��i�j .
We can certainly realize the elements ei and ei � ej by simple closed
curves, and it is then an easy exercise to see that any C can be realized
by a composition of Dehn twists along such curves, using the fact that�

I C
0 I

�
�

�
I C 0

0 I

�
=

�
I C + C 0

0 I

�
:

q.e.d.

Notice also that [ �Lg;1; �Lg;1] � Tg;1 because �Lg;1=Tg;1 is abelian.
The next natural problem to consider is the determination of Lg;1 \

Tg;1=Kg;1. In order to do so, we will need an important homomorphism
� : Tg;1 ! �3H de�ned by D. Johnson (see [13]). We review its de�ni-
tion here: If h 2 Tg;1 then, by de�nition, h� is the identity on H. Thus,
for any � 2 � = �1(�g), we can write:

h�(�)�
�1 � t(h) � � 2 �2=�3 ' �2H:(27)

This de�nes a homomorphism t : Tg;1 ! hom(H;�2H). We now have
the identi�cations:

hom(H;�2H) ' H� 
 �2H ' H 
 �2H;(28)

where the latter isomorphism uses the symplectic structure on H. Thus
we obtain a homomorphism t0 : Tg;1 ! H 
�2H. Johnson showed that
im(t0) � �3H, where the embedding �3H � H 
 �2H is de�ned by:

x ^ y ^ z 7! x
 (y ^ z) + y 
 (z ^ x) + z 
 (x ^ y):(29)

This de�nes a homomorphism � : Tg;1 ! �3H. Johnson showed that �
is onto and its kernel is exactly Kg;1.

With these preliminaries in mind, an important step in understand-
ing Lg;1 is the calculation of �(Lg;1 \ Tg;1). For example, by Proposi-
tion 5.1, �(Lg;1 \ Tg;1) = �3H if and only if Lg;1 = �Lg;1. But we now
show that this is false.

Proposition 5.2. Suppose h 2 Tg;1 \ Lg;1. Then

�(h) 2 kerf�3H ! �3(H=L)g:
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Proof. Let h 2 Tg;1 \ Lg;1. With the discussion of Johnson's homo-
morphism above, and using the the following commutative diagram:

�3H ���! �3(H=L)??y ??y
H 
 �2H ���! H=L
 �2(H=L)

(where the vertical arrows are both injections, and L is the Lagrangian
used to de�ne Lg;1) it follows that the proposition is equivalent to show-
ing that t0(h) 2 kerfH 
 �2H ! H=L 
 �2(H=L)g or, equivalently,
t(h) 2 kerfhom(H;�2H) ! hom(L;�2(H=L)g. In order to show that
we need the following lemma:

Lemma 5.3. Suppose that � is a compact orientable surface with
one boundary component, and C a simple closed curve in the interior
of � representing, up to conjugacy, an element � 2 � = �1(�). Let
h denote the homeomorphism of � de�ned by a Dehn twist along C.
Then, for any � 2 �, we can write

h�(�)�
�1 = �11 � � � 

�k
k ;

where each i is a conjugate of � and, if [�] denotes the homology class
of � for any � 2 �, then

P
i �i = �[�] � [�], the intersection number, and

the sign depends on the direction of the Dehn twist.

Proof. If � is any path in � which intersects C transversely, then
we can write h � � as a product �1 � C�1 � � � �k � C

�k � �k+1, for some
factorization � = �1 � � � �k+1 as a product of paths. The C�i insert
themselves whenever � crosses C, and �i is the sign of the intersection.

q.e.d.

We can rewrite h�(�)�
�1 as given in Lemma 5.3 in the form

[�1; �
�1 ]��1 � � � [�k; �

�k ]��k � (
Y
i

[�i; �
�i ])�e mod �3;(30)

where e = �[�] � [�]. In particular hold in mind the case of e = 0. In this
case if we apply another homeomorphism de�ned by a Dehn twist along
a curve representing  2 � so that [�] � [] = 0, then h�(�)�

�1 is mapped
to a new element which is still in the form of equation (30) with e = 0.
Continuing in this way we obtain the following conclusion: suppose that
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h is a product of Dehn twists on curves representing elements in some
Lagrangian L. If � 2 � also represents an element of L, then

h�(�)�
�1 �

Y
i

[�i; �i] mod �3;(31)

where [�i] 2 L. But this shows that:

t(h) � � =
X
i

[�i] ^ [�i]:

Since [�i] 2 L, the right side clearly maps to 0 in �2(H=L). q.e.d.

Proposition 5.1 immediately implies the following corollary:

Corollary 5.4. As a subgroup of the mapping class group, �Lg;1 is
generated by Tg;1 and Lg;1.

Remark 5.5. tjTg;1 \Lg;1 actually extends to a homomorphism ~t :
�Lg;1 ! hom(L;�2H) by the same de�nition as for t, using the de�ning
property that, if h 2 �Lg;1 then h�jL =identity. The above proof actually
shows that ~t(Lg;1) � hom(L;K), where K = kerf�2H ! �2(H=L)g.

Question 6. Is Lg;1 = ~t�1 hom(L;K)? Is �(Lg;1\Tg;1) = kerf�3H !
�3(H=L)g?

5.2. The lower central series of �Lg;1

In this section we study the image of the lower central series of �Lg;1
under Johnson's map into �3H. In particular we prove:

Proposition 5.6. For all g � 1 we have: ( �Lg;1)5 � Kg;1. In addi-
tion, for g � 1 we have: ( �Lg;1)4 6� Kg;1 if g � 3.

The proof of Proposition 5.6 will be based on the following:

Lemma 5.7. With the notation of Remark 5.5, we have the follow-
ing: t0([ �Lg;1; �Lg;1]) � (L
 �2H) + (H 
K).

Using Corollary 5.4, and the fact that [Tg;1; Tg;1] � Kg;1, the lemma
will follow from the following two assertions:

1. t0([Lg;1;Lg;1]) � H 
K.

2. t0([Lg;1;Tg;1]) � (H 
K) + (L
 �2H).
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Proof of (1). [Lg;1;Lg;1] is generated by elements of the form
[h;DC ], where h 2 Lg;1, C is a simple closed curve in M , which rep-
resents an element of L, and DC denotes a Dehn twist along C. Now
[h;DC ] = Dh(C) � (DC)

�1. We can apply Lemma 5.3 to obtain;

(DC)�(�) � �
Y
i

[�i; �
�i ]�d mod �3;(32)

where C represents � 2 �, up to conjugation, and d = �[�] � [�], for any
� 2 �. Similarly we have:

(Dh(C))�(�) � �
Y
i

[�i; h�(�)
�0
i ]h�(�)

e mod �3;(33)

where e = �[h��] � [�], for any � 2 �. Putting these together we get:

(Dh(C))� � (DC)
�1
� (�) � �

Y
i

[�i; h�(�)
�0
i ]
Y
i

[�i; �
�i ]�dh�(�)

e mod �3;

(34)

where d = �[�] � [�] again, but now e = �[h��] � (DC)
�1
� [�].

Since h 2 Lg;1 and [�] 2 L, we have h�(�)�
�1 2 �2 and so � and

h�(�) commute mod �3. Thus equation (34) can be rewritten:

(Dh(C))� � (DC)
�1
� (�)

� �
Y
i

[�i; h�(�)
�0
i ]
Y
i

[�i; �
�i ](h�(�)�

�1)e�d+e mod �3:
(35)

This simpli�es considerably to:

(Dh(C))� � (DC)
�1
� (�) � ��d+e mod �2:

But Dh(C) � (DC)
�1 2 Tg;1, since h(C) is homologous to C, and so

d+ e = 0. (We can assume that [�] 6= 0, otherwise we already have that
DC 2 Kg;1.)

We can apply equation (31) to write:

h�(�)�
�1 �

Y
i

[�i; �i] mod �3;

where [�i] 2 L. Putting this all together into equation (35) we get:

(Dh(C))� � (DC)
�1
� (�) � �

Y
i

[�i; �
0
i];(36)
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where [�0i] 2 L. This translates into:

~t((Dh(C)) � (DC)
�1) � [�] =

X
i

[�i] ^ [�0i];

and this element lies in K. q.e.d.

Proof of (2). Suppose � 2 �Lg;1 and h 2 Tg;1. Then [�; h] =
(�h��1)h�1 which can be written, as an element of the abelianization
Tg;1=(Tg;1)2, in the additive form � � h � h, where we use the canonical
action of the mapping class group �g;1 on Tg;1=(Tg;1)2 by conjugation. It
was pointed out by Johnson (see e.g. [13]) that � , or t0 : Tg;1 ! H
�2H,
is equivariant with respect to the action of �g;1 (acting on the right side
by the canonical action on H). Thus

t0([�; h]) = t0(� � h� h) = (�� 1) � t0(h):

If a
 (a1 ^ a2) 2 H 
 �2H, then

(�� 1) � (a
 (a1 ^ a2)) = (�� 1)a
 �(a1 ^ a2)

+ a
 ((�� 1)a1 ^ �a2)(37)

+ a
 (a1 ^ (�� 1)a2):

Now recall that, for any � 2 �Lg;1, the action on H satis�es:

� �jL = identity,

� (�� 1)(H) � L,

and so (�� 1)2 = 0. Thus, in equation (37), the terms on the right side
are in either L
 �2H or H 
K.

This completes the proof of (2) and of Lemma 5.7. q.e.d.

Proof of Proposition 5.6. We will use an argument similar to that
in the proof of (2) above to prove the following assertions in order:

1. t0(( �Lg;1)3) � (L
K) + (H 
 �2L),

2. t0(( �Lg;1)4) � (L
 �2L),

3. t0(( �Lg;1)5) = 0.

Recalling Corollary 5.4, the above two assertions prove Proposition 5.6.
To prove (1) we apply equation (37), where we can assume, by

Lemma 5.7, either a1 ^ a2 2 K or a 2 L, and we see that the terms on
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the right side of equation (37) lie in (L 
K) + (H 
 �2L). Note that
(�� 1)K � �2L.

To prove (2) (or (3)) we use equation (37) in the same way, taking
into account (1) (or (2)) to tell where a
 (a1 ^ a2) must lie.

This completes the proof that ( ~Lg;1)5 � Kg;1. It remains to show
that, if g � 3 then t0(( �Lg;1)4) 6= 0.

Suppose h 2 Tg;1 so that �(h) = a1^a2^a3 2 �3H. If � 2 Lg;1 then
we have �([�; h]) = (�� 1) � (a1 ^ a2 ^ a3). But we can use the following
analogue of equation (37):

(�� 1) � (a1 ^ a2 ^ a3) = (�� 1)a1 ^ �a2 ^ �a3

+ a1 ^ (�� 1)a2 ^ �a3(38)

+ a1 ^ a2 ^ (�� 1)a3:

Noting that (�� 1)ai 2 L and (�� 1)jL = 0, we can use equation (38)
in this way repeatedly to compute:

�([�; [�; [�; h]]]) = 6(�� 1)a1 ^ (�� 1)a2 ^ (�� 1)a3

Now suppose, following the conventions in the proof of Proposition 5.1,
that feig is a basis of L and fe0ig is a dual basis of L

0. For any symmetric
matrix C there is some � 2 Lg;1 so that:

�(ei) = ei; �(e0i) = e0i +
X
j

cijej :

Let us choose � so that C is the identity matrix and ai = e0i. Then we
have

�([�; [�; [�; h]]]) = 6e01 ^ e02 ^ e03 6= 0

.
This completes the proof of Proposition 5.6. q.e.d.

Remark 5.8. It is not clear whether (Lg;1)4 � Kg;1.
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