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GRAFTING, HARMONIC MAPS AND PROJECTIVE

STRUCTURES ON SURFACES

HARUMI TANIGAWA

Abstract

Grafting is a surgery on Riemann surfaces introduced by Thurston; it con-
nects hyperbolic geometry and the theory of projective structures on sur-
faces. ([4], [7]) We will discuss the space of projective structures in terms
of the Thurston's geometric parametrization given by grafting. From this
approach we will prove that on any compact Riemann surface with genus
greater than 1 there exist in�nitely many projective structures with Fuch-
sian holonomy representations. In course of the proof it will turn out that
grafting is closely related to harmonic maps between surfaces.

1. Introduction

A projective structure (or a CP 1-structure) on a surface is a coordi-
nate system modelled on the projective space CP 1 such that the tran-
sition maps are projective homeomorphisms (and hence the restriction
of elements of PSL(2;C)). For an oriented closed surface �g of genus
g � 2, it is well known that the space of projective structures Pg on
�g is parametrized by the bundle of holomorphic quadratic di�erentials
on Riemann surfaces � : Qg ! Tg over the Teichm�uller space: for each
projective structure on �g, taking the Schwarzian derivative of the de-
veloping map we have a quadratic di�erential which is holomorphic with
respect to the underlying complex structure of the projective structure.
As this parametrization is dealing with projective or complex analytic
mappings and manifolds, a lot of researches have been developed from
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the viewpoint of complex analysis. (As for this parametrization, see
Hejhal [6] for example.)

The connection between projective structures on surfaces and hyper-
bolic geometry was revealed by W. Thurston (unpublished). He showed
that the space Pg of projective structures is parametrized by the prod-
uct of the Teichm�uller space and the space of measured laminations. His
idea is to see a projective structure as a structure obtained by bend-
ing a hyperbolic 2-space in the hyperbolic 3-space along a measured
geodesic lamination. (Here, note that @H3 = CP 1 where H3 is a hy-
perbolic 3-space.) Bending along a measured geodesic lamination is in
some sense conjugate to the earthquake deformation along the lamina-
tion (see Epstein-Marden [2] for details). W. Thurston also de�ned a
surgery called grafting, which is an equivalent concept with bending.

In this paper, we will study projective structures and their under-
lying complex structures from this geometric viewpoint. Especially, we
will investigate the underlying complex structures of projective struc-
tures with discrete holonomy representations whose developing maps
are not covering maps. The existence of such projective structures was
shown by Maskit [10], Hejhal [6] and Goldman [4], while it was un-
known on which complex structure such projective structures exist. We
will show that on any complex structure on �g there are in�nitely many
projective structures with Fuchsian holonomy representations. To prove
this fact, we will de�ne a mapping on the Teichm�uller space to itself by
grafting.

We will prove our results in Section 3 after describing bending, graft-
ing and the Thurston's parametrization theorem in Section 2.

In course of arguments, we will see that harmonic maps are involved
in the proofs: when we consider a projective structure as a bent hyper-
bolic structure, the bent surface is a generalization of a pleated surface
for the holonomy representation, which is not necessarily discrete (see
Section 2). In fact, when the holonomy representation is discrete, the
bent surface is a pleated surface of the quotient 3-manifold. On the
other hand, pleated surfaces in hyperbolic 3-manifolds are the limits
of the images of harmonic maps (See Minsky [12] and Thurston [14].)
We will see that the inverse of bending can be seen as mappings from
Riemann surfaces to the generalized pleated surfaces, so that grafting is
naturally related to harmonic maps, in view of [12] (see Remark 1 after
Theorem 3.4).

The author would like to thank Curt McMullen for his considerable
help and encouragement through this project. Most of this work was
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done at Mathematical Sciences Research Institute, where the author
enjoyed various help by many people. Especially, she is very grateful
to Michael Kapovich to whom she owes a lot on the proof of the local
injectivity of grafting, to William Thurston for his inspiring explana-
tion on the geometric parametrization of projective structures, and to
Michael Wolf for useful and enjoyable discussions on harmonic maps
and the theory of measured laminations.

2. Bending, grafting and geometric parametrization of

projective structures

In this section we sketch Thurston's geometric parametrization theo-
rem. This geometric description of projective structures is given by two
equivalent concepts, bending or grafting, which we will describe in this
section. A bent surface plays a role similar to that of pleated surfaces
for hyperbolic 3-manifolds. Roughly speaking, bending is the way to
see a projective structure as a hyperbolic structure bent in the hyper-
bolic 3-space, and grafting is the observation of bending on the sphere
at in�nity.

2.1. Thurston metric

We begin with a metric introduced by Thurston which is a powerful tool
to understand projective structures.

Recall that every complex structure on a compact oriented surface
�g of genus g admits a unique hyperbolic structure. This fact provides
two di�erent approaches for Teichm�uller theory: the Teichm�uller space
Tg is the space of complex structures and, at the same time, the space of
hyperbolic structures on a compact surface �g. Now, for any complex
structure X 2 Tg the set of projective structures on X are parametrized
by the space of holomorphic quadratic di�erentials on X , which is a
(3g � 3)-dimensional complex vector space. As the complex structures
under these projective structures are all the same, the hyperbolic metric
does not distinguish them. The metric structure which characterizes a
projective structure is de�ned by a very natural analogue of the de�ni-
tion of hyperbolic metrics.

De�nition 2.1 (Thurston (pseudo-)metric). LetM be aCP 1-
manifold. For each point x 2 M and each tangent vector v 2 TxM ,
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de�ne the length of the vector v by

tM(v) = inf
f :�!M

��(f
�v);

where the in�mum is taken over all projective immersions f : � ! M
with f(�) 3 x, and �� is the hyperbolic metric on the unit disc
� = fz 2 C; jzj < 1g. We will call the pseudometric tM the Thurston
pseudometric on M . If tM is non-degenerate it will be called the
Thurston metric.

Recall that the Kobayashi metric on a Riemann surface, which coin-
cides with the hyperbolic metric if non-degenerate, is de�ned by taking
the in�mum over all holomorphic immersions. (See [9].) The following
properties are immediate consequences from the de�nitions of Thurston
metric and Kobayashi hyperbolic metric.

Proposition 2.2. For a CP 1-manifold M , let kM denote the
Kobayashi pseudo-metric on M . Then the following hold:

(1) tM � kM .

(2) If these metrics are non-degenerate on M and coincide at a non-
zero tangent vector v, then these two metrics coincide on the entire
tangent space TM .

(3) For the projective universal covering space ~M of M , t ~M descends

to tM via the projective universal covering map ~M !M .

(4) If tM (v) 6= 0 for a vector v 2 TzM at a point z 2 M , then there
is a projective mapping f : � ! M that attains the minimum
in the de�nition of tM (v), and the mapping f is determined by z
uniquely up to precomposition of automorphisms of �.

In the following, we assume that the underlying complex structure
of the CP 1-manifold M is hyperbolic, hence tM does not degenerate.

For convenience, we consider the Thurston metric on the universal
projective covering space ~M rather than on M , as any extremal map-
ping f : � ! ~M which realizes the Thurston metric at z 2 ~M is an
embedding.

For each point z 2 ~M the image f(�) by an extremal mapping f
is a disc determined uniquely by z. (Note that the terminology \discs"
makes sense in CP 1-manifolds.) This disc is called the maximal disc
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for z. Let Dz denote the maximal disc for z 2 ~M . Take a projective
mapping f on the upper half plane to ~M realizing the Thurston metric
at z, and identify Dz with the upper half plane model of the hyperbolic
2-space H2 via f . Then we can compactify Dz with the circle at in�nity
R [ f1g of H2. Let � 2 @Dz be a boundary point. If the mapping
f : H2 ! ~M can be extended as a projective map beyond �, then � is
identi�ed with a point in the frontier of Dz in ~M , otherwise, we call � an
ideal boundary point. Denote the set of all ideal boundary points of Dz

by @1Dz . Take the convex hull of @1Dz with respect to the hyperbolic
metric of Dz(= H2), and denote it by C(@1Dz). It is easy to see that
@1Dz consists of at least 2 points, z can not be disjoint from C(@1Dz)
the de�nition of the maximal disc, and there are three cases as follows
(see Figure 1) ;

(i) @1Dz contains at least three points, and z is in the interior of
C(@1Dz).

(ii) @1Dz contains at least three points, and z is in the frontier of
C(@1Dz) in Dz .

(iii) @1Dz consists of two points, and z 2 C(@1Dz).

Figure 1. z is in the convex hull of C(@1Dz)

We may assume that 0 and 1 are ideal boundary points, and z is
on the imaginary axis. In the �rst case, the Thurston metric coincides
with the hyperbolic metric jdzj=Im z (on the upper half plane model of
Dz) near z.
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In the third case, Thurston metric at z is equal to the at metric
jdzj=jzj. In the second case, the hyperbolic metric and the at metric
coincide on the imaginary axis.

It is easy to see that ~M is decomposed into the union of hyperbolic
pieces and at lines by the convex hulls of ideal boundary points set
C(@1Dz) of maximal discs Dz.

Example 2.3. Let M = ~M be the union of two discs D and
D0 intersecting with angle � 2 [0; �) (Figure 2). For convenience, we
employ the model such that the two intersecting points are 0 and 1.
Let S be the sector bounded by the ray perpendicular to @D and the
ray perpendicular to @D0. It is easy to see that for z 2 S the maximal
disc for z is the half plane with boundary orthogonal to the ray through
z starting at 0. In this case the Thurston metric is equal to jdzj=jzj on
the ray. If z is outside of S and contained in D (resp. D0), then the
maximal disc for z is D (resp. D0), and the Thurston metric near z
coincides with the hyperbolic metric on D (resp. D0).

Therefore, Thurston metric is hyperbolic in D� S and D0 � S, and
is at in S.

Figure 2. A projective surface consists of hyperbolic
pieces and at pieces

Note that in fact � can be any positive number; if � � �, we distin-
guish each sheet over the overwrapping region by regarding the surface
as f(rei�; �) 2 C�R : r 6= 0; 0 < � < �g.
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2.2. Bending a hyperbolic surface in H3

Next, we shall see that projective structures are obtained by bending
the hyperbolic 2-space H2 in a locally convex way in the hyperbolic
3-space H3. In what follows, we will denote by CH(E) the convex hull
of a subset E in H3 [ CP 1, where CP 1 is considered as a sphere at
in�nity of H3, to avoid mixing up the convex hull in H3 with that in
H2.

We begin with a simple example. We will consider the Riemann
sphere as the sphere at in�nity of the hyperbolic space H3. Let D
be a disc in the Riemann sphere. The convex hull CH(D) of D in
H3 is the half space bounded by the hyperbolic plane CH(@D). The
nearest point projection D ! CH(@D) sends the hyperbolic structure
of D to the hyperbolic structure of CH(@D). (Namely, for each point
z 2 D, there is a unique horosphere at z which is tangent to CH(@D).
Map each z to the tangent point.) On the other hand, the hyperbolic
structure of D coincides with the projective structure as a domain of
CP1. Hence in this case the projective structure on D is given by the
hyperbolic surface CH(@D) in H3 with nearest point projection.

Now, take a geodesic line l 2 CH(@D), �x an orientation of l and
denote the left (resp. right) part of CH(@D)� l by �0 (resp. �1). Take
a positive number � (for simplicity, we temporarily assume that � < �)
and rotate �1 along l by angle �. Then we have a pleated surface R as
in Figure 3.

Figure 3. Bending a hyperbolic surface in the hyperbolic 3-
space H3 by angle � produces a sector S with angle
� on the sphere at in�nity, which is a Euclidean piece
of the projective surface 
 = D +D0.



406 harumi tanigawa

We will call this procedure bending the hyperbolic surface CH(@D)
along l.

Now let us see what happens in the sphere at in�nity when we bend
CH(@D) along l. (Roughly speaking, we get a new projective surface by
pushing the bent surface down to the sphere at in�nity via the nearest
point projection.)

As we bend CH(@D) in H3 along l, CH(@D) splits into two totally
geodesic pieces, which are the images of �0 and �1. We denote the
images by the same symbols �0 and �1. For each of them, there is a
unique circle on the sphere at in�nity whose convex hull in H3 contains
the piece. For �0, the circle is the boundary of D. For �1, the circle
bounds the disc D0 intersecting with D at the endpoints of l with angle
�. Therefore, when we bend CH(@D) in H3 along l with angle �, the
original projective surface D turns into the domain 
 = D [D0. This
domain 
 has a projective structure as a domain of the projective surface
CP 1, which we observed in Example 2.3.

We can reconstruct the pleated surface R from 
 in the following
way ([7]). Remember that we saw in Section 2.1 that for each z 2 

there is a unique maximal disc Dz . For each z 2 
, take the convex
hull of the circle @Dz in H3. Then send each point in the convex hull
C(@1Dz) (de�ned in Section 2.1) of @1Dz in the hyperbolic surface
Dz by the nearest point projection to the convex hull of @1Dz in H3.
Recall that we saw in Example 2.3 that 
 is decomposed into hyperbolic
pieces D � S and D0 � S and a at piece S with respect to Thurston
metric t
. Then by the nearest point projection, D � S (resp. D0 � S)
is mapped to �0 (resp. �1) isometrically. As for the sector S, each
at line connecting 0 and 1 is mapped to l isometrically. Thus the
image of 
 is the pleated surface R, and the above mapping 
 ! R is
the inverse of the procedure getting the projective structure 
 from the
pleated surface R.

Thus the procedure bending CH(@D) in H3 along a geodesic is
equivalent to `grafting' a at part S into the hyperbolic structure on D.

As before, note that we do not have to restrict � to be smaller than
�: if � � �, distinguish overwrapping sheets.

Now we proceed to the case with a group action. Let � be a co-
compact Fuchsian group acting on H2. Embed H2 in H3 as a totally
geodesic surface. Let X denote the hyperbolic surface H2=�. Take a
simple closed geodesic curve  on X . The lift of  onH2 is a �-invariant
set of geodesic lines. We can bend H2 along each of these geodesics
with angle � step by step (see Epstein-Marden [2]). In each step, on the
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sphere at in�nity, we have a new projective surface with a grafted part
to the preceding step, as we did in the preceding example. (In each step
distinguish the overwrapping sheets, if any, as we did in Example 2.3.)
Then we end up with a simply connected projective manifold ~M spread
over the sphere at in�nity, which is partly hyperbolic and partly at.

In view of the construction of ~M , it is easy to see that there is a
projective automorphism group ~� acting on ~M isomorphic to �. Hence
in particular, ~M=~� is homeomorphic toX . To consider ~M as spread over
the Riemann sphere as above is to map ~M to CP 1 via the developing
map and we have the holonomy representation � : � ! PSL(2;C). In
fact, it is easy to see ~� = �(P ): Then the above bending procedure
is given by an equivariant map from H2 to H3 with respect to � and
the holonomy representation which is bent along the bending locus and
isometric elsewhere.

Indeed, it is known that we can write down the holonomy represen-
tation � : �! PSL(2;C) in terms of bending. (We omit the formulae.
See [2, Chapter 3] for details. There, the homomorphism is called the
quakebend homomorphism.)

It is also known that when the weighted simple closed curves con-
verge to a measured lamination in the space of measured laminations,
the equivariant maps converge to the equivariant map, bent along the
measured lamination, which de�nes the corresponding projective struc-
ture.

See Epstein-Marden [2] for details.

2.3. Grafting along a simple closed curve

Grafting is the way to see the above procedure directly on the quotient
surfaces X = H2 =� and M = ~M=~� as in the following way.

We provide two types of CP 1-manifolds which we will paste to-
gether. Let X and  be as in Section 2.2. First, take the lower half
plane model of H2 such that the geodesic line fiy; y < 0g is one of the
component of the lift of . Let g(z) = el()z be the generator of the
stabilizer of fiy; y < 0g in �, where l() denotes the hyperbolic length
of  on X . Next, take the sector fz = rei�; 0 < r < 1; 0 � � � �g
equipped with the projective structure as a domain of CP 1 (with no
restrictions on �). The group < g > generated by g acts on this sector
as a projective automorphism. Taking the quotient we get a at annulus
A� with height � and circumference l().

Now we cut X along , and paste each side of  to one of the
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boundary component of A� as Figure 4, in such a way that the length
parameters of pasting sides match, and that the pair of points which
is identi�ed in X are connected by segments in A� orthogonal to the
boundary.

Figure 4. grafting a at annulus of height � to X along 

Note that the hyperbolic structure ofX and the projective structure
of A� match on the pasting locus. Therefore, the above pasting process
yields a new CP1-structure on �g preserving the original projective
structures of X and A�. We call this surgery grafting a at annulus
of height � to X along , or grafting � to X , and denote the resulted
CP 1-structure by Gr�(X).

Note that the metrics on the hyperbolic surface X and the at annu-
lus A� also match on the pasting locus and the resulted surface Gr�(X)
is equipped with a metric which is partly hyperbolic and partly at. It is
easy to see that this metric is equal to the Thurston metric on Gr�(X).
It follows that the underlying complex structure of Gr�(X) di�ers from
X by Proposition 2.2 (4), unless � = 0.

It is also easy to see that this projective structure Gr�(X) has a
projective universal covering space ~M , which we obtained by bending
in Section 2.2.

2.4. grafting a general measured lamination and the parametrization

theorem

Let Pg denote the set of all projective structures on the oriented closed
surface �g of genus g. Then as we have seen above, the grafting opera-
tion gives a mapping

Gr : Tg �R+ � S ! Pg;



grafting, harmonic maps and projective structures 409

which sends each (X; �; ) 2 Tg � R+�S to the projective structure
obtained by grafting a at annulus of height � along the hyperbolic
geodesic in the homotopy class of  to the hyperbolic surface X , where
S denotes the set of homotopy classes of simple closed curves. Now we
can state Thurston's parametrization theorem.

Theorem 2.4 (Thurston). The map Gr extends to a homeomor-
phism of Tg �ML onto Pg, where ML denotes the space of measured
laminations on �g.

Sketch of the proof. We have already seen that for any measured
lamination � = � supported on a simple closed curve  and for any
hyperbolic structure X 2 Tg, grafting an annulus with height � yields a
projective structure. Recall that R+ �S is a dense subset ofML. The
mapping Gr : Tg�R+ �S ! Pg is continuously extended to Tg�ML,
as bending is de�ned for any measured lamination and depends on the
lamination continuously. (See [2] for details.)

We shall describe the inverse correspondence: Pg ! Tg �ML. By
the arguments in the preceding sections, it su�ces to show that any pro-
jective structure on �g is obtained from the bending procedure de�ned
with an equivariant map H2 ! H3, bent along a measured lamination
and isometric elsewhere.

Given a projective structure on �g, take its projective universal cov-
ering ~M and �x its developing map. Begin with an open set U in ~M
small enough so that the developing map restricted to U is homeomor-
phic. For each point z in U , take the maximal disc Dz for z and embed
it into the Riemann sphere via the developing map. We identify Dz with
its image. Then take the convex hull of the circle @Dz in H

3 and denote
it by Rz. Rz is a totally geodesic disc isometric to Dz with respect to
the hyperbolic metrics on them via the nearest point projection. Now,
as in Section 2.1, take the convex hull C(@1Dz) of the ideal boundary
points of Dz. Then as we did in Section 2.2 for the simple case without
group action, send C(@1Dz) into Rz via the nearest point projection
between Rz and Dz . Denote the image of C(@1Dz) by Pz . If C(@1Dz)
is of the type (i) in Section 2.1, then Pz is a convex domain of Rz which
is the convex hull of @1Dz in H3. If @1Dz is of the type (iii), then Pz
is the hyperbolic line in Rz connecting the two points in C(@1Dz). In
any case, Pz = Pz0 for every z0 2 C(@1Dz). Now, [z2UPz is a piece
of a pleated surface in H3: there are a subset V of H2 and a mapping
from V to [z2UPz � H3, such that for each point w 2 V there is a
straight line in V which is mapped isometrically to a hyperbolic line
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in H3. This piece of pleated surface de�nes locally the bending which
gives the projective structure of [z2UDz. (Here, [z2UDz is equipped
with the projective structure as a domain of ~M .)

Beginning with U and continuing this procedure, it is easy to get
an equivariant mapping H2 to H3, de�ning the bending which produce
the projective surface ~M . See [7] for details.

3. Grafted structures on surfaces

Now, we are ready to discuss projective structures in terms of the
geometric parametrization. Given a measured lamination �, let gr�(X)
stand for the underlying complex structure of the projective structure
Gr�(X) for X 2 Tg. For any �xed �, this assignment gives a mapping
gr� : Tg ! Tg. We shall call this mapping the grafting map de�ned by
�.

First, we recall some facts about projective structures with Fuchsian
holonomy representations. On any complex structure X 2 Tg there is
a unique projective structure whose projective universal covering space
is projectively equivalent to the hyperbolic 2-space H2, namely, the
hyperbolic structure. The holonomy representation of this projective
structure is a Fuchsian group � acting on H2 with quotient manifold
X = H2=�. An `exotic' projective structure with Fuchsian holonomy
representation whose developing map is not a covering map was �rst
constructed by Maskit [10]. Hejhal [6] and Goldman [4] made more
topological and geometric approach to such projective structures. The
following characterization of projective structures with Fuchsian holon-
omy representations was given by Goldman.

Theorem 3.1 (Goldman [4]). A projective structure given by
(X; �) 2 Tg �ML has a Fuchsian holonomy representation if and only
if � is an integral point of ML. Here, a measured lamination � is called
an integral point if it is of the form � =

P
2�mii with a disjoint union

of nontrivial simple closed geodesics fig and a set of positive integers
fmig.

Note that given a projective structure determined by a pair (X; �) 2
Tg �ML, the underlying complex structure of Gr�(X) is hardly ex-
pressed by X and �, unless � = 0. So far, in particular, it is unclear on
which complex structures there exist projective structures with Fuchsian
holonomy representations other than the hyperbolic structures. Our
main result shows that on any complex structure and any integral point
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� 2 ML there is a unique projective structure with Fuchsian holon-
omy representation which is obtained by grafting � to some hyperbolic
structure X 2 Tg:

Theorem 3.2. For any integral point � 2 ML, the grafting map
gr� : Tg ! Tg is a real analytic homeomorphism.

Before proving this theorem, let us interpret it in terms of the
parametrization of Pg (the space of projective structures) by the bundle
of holomorphic quadratic di�erentials on Riemann surfaces � : Qg ! Tg.
This parametrization is given in the following way: for each projective
structure, take the Schwarzian derivative of the developing map, where
the Schwarzian derivative of a locally univalent meromorphic function f
is de�ned by (f 00=f 0)0�(1=2)(f 00=f 0)2. Then the Schwarzian derivative is
a quadratic di�erential on the surface which is holomorphic with respect
to the complex structure under the projective structure. (See Hejhal
[6], for example, for details.) The canonical projection � : Qg ! Tg
sends each projective structure to its underlying complex structure. Let
K � Qg be the set of projective structures with discrete holonomy rep-
resentations. For X 2 Tg, let Q(X) and K(X) denote the �bers over
X of � : Qg ! Tg and �jK : K ! Tg respectively. For every X 2 Tg,
the interior point set intK(X) has a component containing 0, which
coincides with the Bers slice. Theorem 3.2 implies the existence of com-
ponents of intK(X) other than the Bers slice:

Corollary 3.3. On any complex structure X 2 Tg, there are in-
�nitely many components of intK(X).

Proof of Corollary 3.3. Fix an integral point � 2 ML and a
hyperbolic structure X 0. The projective structure Gr�(X 0) has a Fuch-
sian holonomy group �0 such that X 0 is holomorphically equivalent to
H2=�0 (see [10]). For any Beltrami di�erential � for �0 on the Riemann
sphere Ĉ, we can take a quasiconformal deformation of the projective
structure Gr�(X 0) by � (cf. [13]): let f � denote the quasiconformal

homeomorphism of Ĉ with Beltrami di�erential � �xing 0; 1 and 1.
Then � = f � �  � (f � )�1 is a M�obius transformation for every  2 �0

and �� = f ��0(f �)�1 is a quasifuchsian group. As � � f � = f � � , we
have another projective structure by replacing the local coordinate sys-
tem f(U; �)g of Gr�(X

0) to f(U; f � � �)g with holonomy representation
�� . It is easy to see that this new projective structure depends only
on the equivalence class of � (cf. [13]). Therefore, we have an open set
QF (�) of K consisting of all quasiconformal deformations of Gr�(X

0).
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Note that if �� is a Fuchsian group, the projective structure de�ned by
the quasiconformal deformation of Gr�(X

0) with � is equal to the pro-
jective structure Gr�(X

�), where X� is the hyperbolic surface obtained
by the quasiconformal deformation of X 0 with the Beltrami di�erential
� . Hence by Theorem 3.2 the restriction �jQF (�) : QF (�) ! Tg is
surjective for each integral point � 2 ML. Therefore, the corollary
follows if we show QF (�) \ QF (�) = ; for any two di�erent integral
points � and �. To see this, take the inverse image of the limit set
R[1 of �0 via the developing map on the universal cover of the CP 1-
manifold Gr�(X

0). Then the inverse image descends to a disjoint union
of curves on Gr�(X 0). If the integral point � is of the form � =

P
2ni�i

for integers fnig and simple closed curves fig, then the inverse im-
age of the limit set of �0 descends to the union of 2ni curves each of
which is homotopic to i. On the other hand, it is easy to see that any
quasiconformal deformation of the projective structure Gr�(X

0) maps
this system of curves quasiconformally (the image depends only on the
equivalence class of the Beltrami di�erential). Therefore, the homo-
topy class of these system of curves characterizes the open set QF (�).
Hence QF (�) \ QF (�) = ; for any two di�erent integral points � and
�. q.e.d.

Remark. It was shown by Maskit [10] that there exists some
X such that intK(X) (the interior of K(X) in Q(X)) has some com-
ponents other than the Bers slice. In [13] we discussed on intK(X)
for such X (i.e., assuming the existence of such components on X),
where we showed that any component of intK(X) is a component of
QF (�) \Q(X) for an integral point � 2 ML. What we have shown in
the above corollary is that QF (�) \ Q(X) is a non-empty open set for
every complex structure X and every integral point �.

Proof of Theorem 3.2. To prove Theorem 3.2, it su�ces to show the
following for an integral point �:

(1) gr� : Tg ! Tg is a proper mapping,

(2) gr� : Tg ! Tg is a local di�eomorphism, and

(3) gr� : Tg ! Tg is real analytic.

Proof of (1). The following theorem enables us to show that for any
measured lamination � (not necessarily an integral point), the grafting
map gr� : Tg ! Tg is a proper map.
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Theorem 3.4. Let X be a hyperbolic surface and � be a measured
lamination. Let h : gr�(X)! X denote the harmonic map with respect
to the hyperbolic metric on X and E(h) be its energy. (Remember that
the harmonic map between surfaces depends on the metric on the target
surface but only on the conformal structure on the source surface.) Then

1

2
lX(�) �

1

2

lX(�)
2

Egr�(X)(�)
� E(h) �

1

2
lX(�) + 4�(g� 1);

where lX(�) is the hyperbolic length of � on X, and Egr�(X)(�) is the
extremal length of � on the grafted surface gr�(X).

Proof of Theorem 3.4. For simplicity, we abbreviate Y = gr�(X).
First, assume that � is supported on a simple closed curve, so that
� = �. Then the projective structure Gr�(X) consists of hyperbolic
piece(s) whose union is identi�ed with X and a at annulus A� . We will
use this geometric structure on Y . We de�ne a mapping f : Y ! X
by collapsing the annulus A� to the geodesic curve  on the hyperbolic
surface X along the at structure (i.e., translating each point of A� to
 along the segment perpendicular to ) and sending the hyperbolic
pieces of Y isometrically on the corresponding domains on X . Then f

is among the competitive mappings for the harmonic map h : Y ! X .
As f is isometric on the hyperbolic pieces, the contribution of this part
for the total energy is the hyperbolic area of X . On the at annulus
A� , the direction parallel to the geodesic  and the direction of the
segment orthogonal to  form an orthogonal frame in A� . The length
of the former direction is preserved by f , while the image of the latter
direction degenerates. Therefore, the contribution to the total energy
of the at part is (1=2)�lX() = (1=2)lX(�). Hence we have

E(h) � E(f) �
1

2
lX(�) + �(4g � 4):

On the other hand, by the left part of Minsky's inequality [11, Theorem
7.2],

1

2

lX(�)
2

EY (�)
� E(h):

Note that the extremal length of  in Y is not greater than that in A� ,
that is, lX()=�. It follows that

1

2
lX(�) =

1

2
�lX() =

1

2

lX()2

lX()=�
�

1

2

lX()2

EY ()
=

1

2

lX(�)2

EY (�)
:
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We have shown the inequality in the statement of Theorem 3.4 for the
case � is supported on a simple closed curve. For a general measured
lamination, we approximate � by a sequence of measured laminations
each of which is supported on a simple closed curve. The inequality
follows from the continuity of the hyperbolic length of measured lami-
nations on X and the continuity of grafting with respect to measured
laminations. q.e.d.

Now we prove the properness of gr� : Tg ! Tg from Theorem 3.4.
When a sequence of points in Tg leaves any compact set eventually,
we will say `the sequence tends to in�nity' for simplicity. We have to
show for any sequence fXng tending to in�nity the image fgr�(Xn)g
also tends to in�nity. Denote Yn = gr�(Xn) for simplicity. By taking a
subsequence if necessary, we may assume that either

(i) supn lXn(�) <1, or

(ii) limn!1 lXn(�) =1:

In the case (i) we show that fYng tends to in�nity by contradiction.
Assume that fYng stays in a compact set of Tg. As Xn tends to in�nity,
the energy of the harmonic map hn : Yn ! Xn tends to in�nity by a
result of M. Wolf [16, Proposition 3.3]. This contradicts the assumption
that lXn(�) is uniformly bounded, considering the rightmost inequality
of Theorem 3.4.

In the case (ii), by Theorem 3.4,

lim
n!1

EYn(�) = lim
n!1

(lXn(�) + O(1)) =1:

Therefore, Yn tends to in�nity. q.e.d.

Remark 1 (Collapsing the grafted part is close to the har-
monic map). In the above proof of Theorem 3.4, we showed that
the di�erence between the total energy of the annulus collapsing map
f : Y ! X and that of the harmonic map h : Y ! X is bounded
by a universal constant depending only on the genus g. Therefore, we
can say that f is close to the harmonic map when lX(�) is large, as
the harmonic map between a pair of hyperbolic surfaces is unique by a
result of Hartman [5]. Here we exhibit an intuitive explanation for this
phenomenon.

First, note that the grafted part occupies a large portion on the en-
tire surface when lX(�) is very large, in view of the Thurston metric on
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Gr�(X). To collapse this large part likely results in `signi�cant stretch
in the direction along the curve'. In general, the direction of `maximal
stretch' of any kinds of extremal mappings (e.g. Teichm�uller mappings,
extremal Lipschitz maps, or harmonic maps) plays the key role in mea-
suring the di�erence between two surfaces: Kerckho� [8] showed that
the Teichm�uller distance between two Riemann surfaces is described by
the ratio of the extremal lengths of the direction of maximal stretch
of the Teichm�uller mapping. Similar results are proved for Lipschitz
maps by Thurston [15], and for harmonic maps, by Minsky [11] and
[12]. Now, as for grafting, it is natural to pay attention to harmonic
maps to compare the grafted surface with the original surface for the
following reason.

Recall (see Section 2.2) that grafting a measured lamination � to a
hyperbolic surface X is equivalent to bending which is realized by the
equivariant map g : H2 ! H3, with respect to the Fuchsian group �
with H2=� = X and the holonomy representation of Gr�(X), which is
bent along the lift of � and isometric elsewhere. This is a generalization
of a pleated surface for PSL(2;C)-representation which is not necessarily
discrete.

Assume for a moment that the holonomy representation of the pro-
jective structure is discrete. Then this equivariant map actually de-
termines the pleated surface realizing the measured lamination � in
the quotient 3-manifold for the holonomy representation. On the other
hand, Thurston gave a remark in [14] that realizing a measured lamina-
tion � in a hyperbolic 3-manifold is a \harmonic map" from [�] 2 PML,
where PML is the Thurston boundary of Tg. (A rough explanation is
given in the following way: [�] 2 PML is the limit of a degenerating
sequence fYng of hyperbolic structures which shrink in the direction �
as n!1. Therefore, the harmonic mapping from Yn to a �xed hyper-
bolic 3-manifold stretchs along this direction � signi�cantly. From the
de�nition of the energy, the harmonic map from Yn sends this direction
� close to the realization of � in the 3-manifold, and the image is con-
tained in its convex core of the 3-manifold. Hence for large n the image
is close to a pleated surface with pleating locus �.) This intuitive claim
was justi�ed by Minsky [12]: a pleated surface is the limit (in a very
strong sense) of the images of the harmonic maps from surfaces whose
`maximal stretch direction' is the pleating locus, when the pleating locus
is complete.

Since collapsing the grafted part can be seen as a mapping from
the grafted surface to the pleated surface in the quotient 3-manifold, it
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is natural to expect that collapsing the grafted part is close to being
harmonic, when the grafted part is very large.

When the holonomy representation is not discrete, we can still think
of harmonic maps in the following way: as in Donaldson [1], form a at
H3- bundle de�ned by

H = H2 �� H
3 ! Y;

where � is the holonomy representation. For a section s : Y ! H
take the vertical part of its derivative: (Ds)x : TxY ! Ts(x)Hx where
x is a point on Y and Hx is the �ber over x. De�ne the energy by
E(s) =

R
Y
jjDsjj2dV where dV is the volume form. A twisted harmonic

map is a critical point for the energy functional. Donaldson [1] showed
the existence of the twisted harmonic map. In the same way, we can
also de�ne \pleated surfaces in the vertical direction of H", which is
equivalent to considering the equivariant map realizing bending. From
the intuitive explanation of the relation between harmonic maps and
pleated surfaces for 3-manifolds, it is reasonable to expect similar things
to be true when the representation is not discrete.

Remark 2 (an alternative proof). When � is supported on
a simple closed curve, we can show the properness of the grafting map
without using harmonic maps. In fact, when � is supported on a simple
closed curve, it is easy to see that in the case (i) the Teichm�uller distance
between Yn and Xn is bounded by a constant independent of n. In
the case (ii), we can prove that EYn(�) � lXn(�) + O(1) applying the
Thurston metric on Yn to the de�nition of the extremal length, for any �.
However, the author exhibited the proof using harmonic maps because
it gives a better geometric perspective and also because it seems (to
the author) that for the case (i) arguments by approximation would
not work to give a uniform constant to bound the Teichm�uller distance
between Yn and Xn for general measured laminations.

Remark 3 (properness with respect to ML). Theorem 3.4
implies also that for a �xed hyperbolic surface X , the mapping gr�(X) :
ML! Tg is proper.

We continue the proof of Theorem 3.2. Although the properness of
grafting map was proved for any measured lamination, we will assume
that � is an integral point of ML for the proofs of (2) and (3).

Proof of (2). Here we use the parametrization of projective struc-
tures by Qg, i.e., the space of quadratic di�erentials. We will observe
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how the �ber of Qg over each point Y 2 Tg, i.e., the space of projective
structures on a �xed complex structure, is mapped by the holonomy
map. Let Rep = Hom(�1�g;PSL(2;C))=PSL(2;C) denote the space
of PSL(2;C)-representations of �1�g, and hol : Qg ! Rep denote the
holonomy map, namely the mapping which sends each projective struc-
ture to its holonomy representation.

Let X 2 Tg be a hyperbolic surface. By the assumption that � is
an integral point, the holonomy representation of Gr�(X) is a Fuchsian
group �X with quotient surface X , hence the holonomy representation
is in the space of real representations (namely, the equivalence class in
Rep with a representative in Hom(�1�g;PSL(2;R)) which is denoted
by RepR. Now, let Y denote the complex structure under the pro-
jective structure Gr�(X), and Q(Y ) be the space of projective struc-
tures on Y , i.e., the �ber of Qg over Y 2 Tg. There is an element
' 2 Q(Y ) corresponding to Gr�(X). Then hol(Q(Y )) intersects RepR
at hol(') = �X . By Faltings' theorem, (Faltings [3, Theorem 12]), this
intersection is transversal. Therefore, at hol(Gr�(X)) = �X , we can
take a basis fu1; :::; u6g�6g of the (real) tangent space T�X(hol(Q(Y )))
and a basis fv1; :::; v6g�6g of the (real) tangent space T�X(RepR) such
that fu1; :::; u6g�6; v1; :::; v6g�6g forms the basis of the tangent space
T�X (Rep). Remember that hol is a local C1-di�eomorphism (Hejhal).
Therefore there is a neighborhood U of ' in Qg and a neighborhood V
of �X in Rep such that holjU : U ! V is a C1-di�eomorphism, and the
inverse map g : V ! U of holjU is well-de�ned. By the bundle structure
of Qg, we can take a neighborhood U 0 of Y in Tg such that the restric-
tion �j��1(U 0) : ��1(U 0)! U 0 is identi�ed with the product of U 0 with
R6g�6, where � : Qg ! Tg is the projection. Thus we may assume that
U is the product of U 0 and an open set of R6g�6. Denote by � the point
of R6g�6 such that ' corresponds to (Y; �) 2 Tg�R

6g�6. Then the tan-
gent space T'U is spanned by the `direction of the base space' TY Tg and
the `direction of the �ber' T�R

6g�6, and the derivative dg maps T�Rep
onto T'Tg. Now, fdg(ui)gi=1;:::;6g�6 is contained in the direction of �ber.
Therefore, none of the non-zero vectors in dg(T�XRepR) is contained in
the direction of �ber. It follows that d(� � g) : T�XRepR ! TY Tg is
surjective. As we can identify the component of the space of real repre-
sentations containing �X with the Teichm�uller space, the composition
of the restriction gjRepR with � is equal to gr�. Therefore, gr� is locally
di�eomorphic at X . q.e.d.

Proof of (3). Let QF (�) be the set of projective structures ob-
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tained by quasiconformal deformations of a grafted projective structure
Gr�(X). Then QF (�) is identi�ed with the space of quasiconformal de-
formations of the holonomy representation of Gr�(X), which is a Fuch-
sian group (cf. [13]). Recall that Tg has a natural complex structure
and the space of quasiconformal deformations of the Fuchsian group
is identi�ed with the complex manifold Tg � Tg. With respect to this
identi�cation, the mapping � : QF (�) ! Tg which sends each projec-
tive structure in QF (�) to the underlying complex structure is holo-
morphic (cf. [13]). Now, in the space of quasiconformal deformations
of a Fuchsian group, the set of Fuchsian groups , which is identi�ed
with Tg, forms a real analytic submanifold. Therefore, the restriction
of � : QF (�)! Tg to this set of Fuchsian groups is real analytic. This
restriction is the same mapping as gr� : Tg ! Tg. q.e.d.
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