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EXACT LAGRANGE SUBMANIFOLDS,

PERIODIC ORBITS AND THE COHOMOLOGY

OF FREE LOOP SPACES

CLAUDE VITERBO

Abstract

We prove that there are obstructions to the existence of an exact Lagrange
embedding from a closedmanifoldL to T �N . This may be seen as an exten-
sion of Gromov's theorem as formulated by Lalonde and Sikorav, showing
that no such embeddingexists forN open. For examplewe answer positively
a question by Lalonde and Sikorav on the non-existence of exact Lagrange
embeddings from T 2 into T �S2 . Our obstruction is in terms of the cohomol-
ogy of the loop space of L and N and the map induced by the embedding in
the cohomologies of these loop spaces. In particular, we give obstructions to
the existence of an exact Lagrangian embedding inducing a degree-zeromap
from L to N . As another application of our method, we prove the Weinstein
conjecture in cotangent bundles of simply connected manifolds (removing
an assumption in a previous joint paper with H. Hofer). A number of these
results had been announced in [48] and [49]

0. Introduction

Let N be a manifold, T �N its cotangent bundle, endowed with the
standard symplectic form, ! = d� where � =

Pn
i=1 pidq

i in local coor-
dinates (the qi are coordinates on N , and the pi the dual coordinates).

An embedding from a manifold L of dimension n = dim(L) =
dim(N) to T �N is said to be Lagrange if ! vanishes on the tangent
space to L, and exact (Lagrange) if � induces an exact form on L.

It is one of the striking results of [19], that there are no exact La-
grange embeddings from a compact manifold L into M = V � R, and
in fact, as noticed by Lalonde and Sikorav ([28]), Gromov's argument
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extends to the cotangent bundle of any non-compact manifold. From
this they conclude that if L is an exact Lagrange submanifold in T �M ,
the projection p of L on M must be onto. It is then tempting to make
the following:

Conjecture. p has nonzero degree,

as Arnold did in [1]. Unfortunately, right now very little is known on
the question. To be precise the above conjecture has been proved in the
following cases ([28], [34]):

1. L = M and Hn(M) is generated by elements of H1(M) for in-
stance if M = Tn.

2. L and M are surfaces, and (L;M) 6= (T 2; S2).

More generally, we may consider the easier question as to whether p�(�)
is zero for some cohomology class � on M . In fact Gromov's statement
is equivalent to the following:

if M = V � S1 then p�(1
 d�) 6= 0.
This we shall generalize as

Proposition 0.1. Let M = V �W and W be a product of spheres
and complex projective spaces. Then p� : H�(W )! H�(L) is injective.
In particular if V = fptg, p has nonzero degree.

For simplicity, we assume throughout the paper that all manifolds
are orientable. We leave to the reader the task of �guring out how these
methods could be adapted to the nonorientable case.

For the pair (L;M), we shall investigate whether exact Lagrange
embeddings of L into T �M satisfy one of the following properties:

(A) p has nonzero degree.
(B) p is cohomologically nontrivial.
(C) p is homotopically nontrivial.
We just remind the reader that the injection of the constant loops

c : M ! �M and evaluation map e : �M ! M induce maps in
cohomology, and that e� yields an injection H�(M) ! H�(�M). We
shall denote by �M the top dimensional generator of H�(M) that we
identify with its image by e� in H�(�M). Finally if f : L ! M is a
map, we denote by �f : �L ! �M the induced map on loop spaces.
We shall need the following:

De�nition 0.2. Let z 2 H�(�M) and � 2 H�(M). We shall say
that z is tied to �, if for any map f : L ! M , (�f)�(z) 6= 0 implies
f�(�) 6= 0.
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Remark 0.3. We also used the term "tied" in the paper [46]. The
term "tied" is used here in a sense slightly weaker than that of "weakly
tied" in [46] according to which for z to be weakly tied to �M we would
need the implication to hold for all maps from X to �M and not only
maps of the type �f . We refer to [46] for methods to construct tied
classes, in particular through the use of Massey products, as well as for
applications of this notion to the calculus of variations.

We may now state:

Theorem 0.4. Assume that H�(�M) contains an element z such
that �M � z is nonzero. Then for all product manifolds V � M , p is
homotopically nontrivial. Moreover, let z be such that �M � z 6= 0, and
z is tied to � 2 H�(M). Then p�(�) 6= 0.

We will also get obstructions to the existence of exact Lagrange
embeddings with nonzero degree. In fact we have:

Proposition 0.5. Let j be such that p has non-zero degree. Then
(�j)� is an injection.

Remark 0.6. Note that it is not true in general that if f� is
injective then so is (�f)�. As a counter example, consider f , a degree-
one map from T 2n�1 to S2n�1. The map f� is then obviously injective,
while (�f)� cannot be injective since Hk(�T 2n�1) = 0 for k > 2n � 1
while H2nr�1(�S2n�1) 6= 0.

Thus according to Proposition 0.5, we get:

Corollary 0.7.

There is no exact embedding of Tn into T �Sn.

There is no exact Lagrange embedding from S2k+1 � S2l into
T �S2(k+l)+1.

The �rst statement for n = 2 answers positively a question by
Lalonde and Sikorav in [28].

The ring H�(�M;Q) may be computed using the minimal model
of Sullivan, as in [38]. Its structure has been studied for a while, and
we shall make use of the results of Burghelea, Goodwillie and Vigu�e-
Poirrier ([5],[6], [7],[18], etc...). Proposition 0.1 then follows from 0.4
and the structure of H�(�S2n�1;Q) (for a sphere (A), (B) and (C) are
equivalent).

The results of this paper are based on the following:
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MAIN THEOREM. To the exact Lagrange embedding
j : L ! T �M we may associate a map (�j)! : H�(�L) ! H�(�M)
such that the following hold:

1. (�j)! is a group homomorphism, and if j and k are respectively
Lagrange embeddings of L into T �M and M into T �N , we have
�(k � j)! = (�k)! � (�j)!.

2. (�j)!(x^ (�j)�y) = (�j)!(x)^ y.

3. If j! is the usual transfer homomorphism, eL the evaluation map
�L ! L, and cL the injection of the constant loops (identi�ed to
L) in �L, then we have a commutative diagram:

H�(�L)
(�j)!
�! H�(�M)??yc�x??e� ??yc�x??e�

H�(L)
j!
�! H�(M)

The same holds if we replace H� by H�S1 the equivariant Borel theory
(see [3]), however the map e� is not de�ned, and must be replaced by the
map B�e� where B� is the map from H�(X) to H��1

S1
(X) in the stan-

dard Gysin exact sequence connecting H�(X) and H�S1(X). Moreover
all maps are now H�(BS1) module homomorphisms. Also we have for
Massey products (�j)! < (�j)�(x); y; (�j)�(z) >�< x; (�j)!(y); z >.

The proof of this is the main goal of this paper, and a proof is
sketched at the end of this introduction. In the next paragraphes, we
shall state and prove some results based on this main theorem.

Note also that, apart from the main theorem, most of our results are
just examples of applications of this theorem. It would be easy to con-
struct many more examples of obstructions to the existence of Lagrange
embedding. However, as we do not have any simple characterisation of
manifolds such that H�(�M) contains a class z tied to a class � in
H�(M), with �M ^ z 6= 0, we prefer to give a number of signi�cant
examples, rather than a necessarily incomplete list of mostly "exotic"
cases.

To begin with, let us give proofs of Theorem 0.4 and Propositions
0.1 and 0.5. Note that for a map j : L!M , we have j!(1) = deg(j) � 1
and j!(�L) = �M .

Proof of 0.4. We have that

(�j)!(�L ^ (�j)�(z)) = (�j)!(�L) ^ z = �M ^ z 6= 0:
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Thus (�j)�(z) 6= 0 which implies that j is not homotopically trivial.

If moreover z is tied to �, we get that (�j)�(�) = j�(�) 6= 0. q.e.d.

Proof of 0.1. This follows from Sullivan's theory of minimal models.

Let F (a�; b�; c; : : :) be the \free graded algebra" with generators
a�; b�; c; : : : of degrees �; �; ; : : : . By "free graded algebra", we mean
the tensor product of the exterior algebra in generators of odd degrees,
with the symmetric algebra in generators of even degrees. Adding a
graded di�erential d to F makes it into a di�erential graded algebra,
with cohomology denoted by H�(F; d).

Now the cohomologies of loop spaces are easy to express in terms of
cohomologies of a free graded algebra called the \minimal model". For
instance as the minimal model of:

�S2k+1 we have F (x2k+1; �x2k), d = 0, and �M = x2k+1,

�S2k we have F (x2k; �x2k�1; y4k�1; �y4k�2), dx2k = d�x2k�1 = 0,
dy4k�1 = x22k ; d�y4k�2 = x2k � �x2k�1, and the cohomology class �M
corresponds to x2k,

�CP 2k we have F (x2; �x1; y2k+1; �y2k), dx2 = d�x1 = 0; dy2k+1 =
xk+12 ; d�y2k = xk2 � �x1, and the cohomology class �M corresponds to xk2.

In all three cases, there is a class z tied to �M .

Indeed for S2k+1, z = �x2k will do. For we have that �x2k � x2k+1 is
nonzero in the cohomology ring of �S2k+1, and since for any map j,
from L to M , (�j)� commutes with the degree �1 map, � that sends
"unbarred" generators to "barred" ones ( the map � corresponds on �M
to interior product with @

@� , see [7]), we have that (�j)
�(�x2k) 6= 0 implies

that (�j)�(x2k+1) = j�(x2k+1) 6= 0, and thus �x2k is tied to x2k+1.

In the case of S2k and CP 2k (the exponent denotes the dimension
of the space) we need to use Massey products.

In �S2k, we have that < �x2k�1; x2k; �x2k�1 >= �y4k�2�x2k�1 and is
thus nonzero. Using again that (�j)� commutes with �, we have that
if (�j)�(�x2k�1) 6= 0 we also have (�j)�(x2k) = j�(x2k) 6= 0.

We may then conclude as follows: assume we have a Lagrange em-
bedding of L into T �S2k, inducing a map j : L ! S2k. Since we have
that

(�j)!(< (�j)�(�x2k�1); �L; (�j)
�(�x2k�1) >)

� (< �x2k�1; (�j)!(�L); �x2k�1 >)

=< �x2k�1; x2k; �x2k�1 >= �y4k�2�x2k�1 6= 0;

we must have (�j)�(�x2k�1) 6= 0, hence j has nonzero degree.
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Finally, in CP 2k , we may use a similar argument. In �CP 2k, we
have that

< �x1; x
k
2; �y

q
2k�x1 >= �y

q+1
2k �x1:

If j�(xk2) = 0, than (�j)�(�y2k�x1) = 0. Now for j induced by a
Lagrange embedding,

(�j)!(< (�j)�(�x1); �L; (�j)
�(�y2k�x1) >) �< �x1; (�j)!(�M); �y2k�x1 >

=< �x1; x
k
2; �y2k�x1 >= �y22k�x1 6= 0;

which implies that (�j)�(�y2k�x1) 6= 0, hence j�(xk2) 6= 0. q.e.d.

Proof of 0.5. Indeed, if j has nonzero degree, then j!(1) = d 6= 0,
and therefore (�j)!(1 [ (�j)�(u)) = (�j)!(1) [ u = j!(1) [ u = d � u.
Hence (�j)�(u) = 0 implies d � u = 0, that is u is 0. Thus (�j)� is
injective as claimed. q.e.d.

Proof of 0.7. This follows again from the structure of the cohomol-
ogy of H�(�Sr), and Propositions 0.1 and 0.5. Let us start with the
�rst statement.

It is easy to show that H�(�Tn) =
L

x2ZnH
�(Tn) because for each

connected component in the free loop space of the n-torus, parametrized
in an obvious way by Zn, the set of free loops in this homotopy class
has the homotopy type of the n-torus. Then according to 0.1, j cannot
have zero degree. Thus according to 0.5, (�j)� must be an injection of
H�(�Sn) into H�(�Tn), but this is clearly impossible, since Hq(�Sn)
is nonzero for arbitrary large values of q, while Hq(�Tn) vanishes for
q � n+ 1.

Similarly, for the second statement j cannot have zero degree ac-
cording to 0.1; thus using 0.5, it must induce an injective map

(�j)� : H�(�S2(k+l)+1)! H�(�(S2k+1 � S2l))

= H�(�S2k+1)
H�(�S2l):

But this is impossible by the following argument. Let z2(k+l)+1; �z2(k+l)
be the generators of H�(�S2k+1), x2k+1; �x2k those of H�(�S2k+1), and
H�(�S2l) be generated by y2l; �y2l�1; u4l�1; �u4l�2 with the relations
du4l�1 = y22l; d�u4l�2 = y2l�y2l�1. Since the map (�j)� commutes with
the map �, we have that �z2(k+l) goes to an element of the type �xp�uq �y
(p; q � 0), because it follows easily from the computations in [5, p. 65]
that this is the only element in ker(�). Hence equality of degrees implies
that 2k � p+ (4l� 2) � q + 2l� 1 = 2(k + l) or else

2k � p+ (2l� 1) � (2q + 1) = 2(k + l):
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This is clearly impossible. q.e.d.

Remark 0.8. Let L (respectively M) have an exact embedding
into T �M , (respectively T �N) but we do not assume here that M or N
is compact. Then, using Weinstein's theorem we see that L has an exact
embedding into T �N such that the associated projection is homotopic
to the composition of the projections L!M and M ! N .

We thus get alternatives of the following type: given a manifold M ,
either there is no exact embedding of Sn into T �M with zero degree, or
of M into T �Sn with zero degree.

The same holds for maps of nonzero degree, unless H�(�M) is iso-
morphic to H�(�Sn). We may also recover the fact that for M open
there is no exact embedding of L in T �M . Indeed it is su�cient to
prove this for L0 = L � T k and M 0 = M � T k. Now let X be a com-
pact manifold such that there exists a map f : M ! X such that
f�(TX) = TM � "k�1

R
, where "R means some trivial real line bundle.

It is easy to �nd X by taking a Grassmannian manifold of su�ciently
large dimension and f to be the classifying map of the normal bundle to
TM . Since f�(TX)
 C = TM 
 C � �k�1

C
, using Gromov's h-principle

it is known that there exists a Lagrange immersion of M 0 = M � T k

into T �(X � R). Because M 0 is open, we may even assume that the
immersion is in fact an exact embedding. By composition, we �nd an
exact embedding of L0 into T �(X �R), a contradiction.

Remark 0.9. All our arguments are based on the study of the
rational minimal model of the manifolds. Thus our proofs apply to any
manifold with the same rational homotopy type as those we consid-
ered. On the other hand we have not used torsion information at all.
Unfortunately, to our knowledge very little is known on this for loop
spaces.

We now turn to a di�erent problem, that of �nding conditions on
the Maslov class of an exact Lagrange embedding. This problem is in
particular relevant in studying invariant Lagrange manifolds for Hamil-
tonian ows (see [21], [2], [54]). It is also of a more "positive nature"
since it gives information on the Maslov class of existing embeddings,
and not restrictions on embeddings that are conjectured to be trivial.

As a consequence of the above methods, we get:

Proposition 0.10. Let L be a manifold having the homotopy type
of an Eilenberg-MacLane space, and M be a simply connected manifold.
Then there is no exact Lagrange embedding from L into T �M . Moreover
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given a (non-exact) embedding from L to T �M , the Maslov class � of
the embedding satis�es that for some  in H1(L), 1 �< �;  >� n + 1
and 0 << �;  >

Proof. According to the equivariant version of the Main theorem,
we have a commutative diagram:

H�S1(�L)
(�j)!
�! H�S1(�M)??yc� ??yc�

H�(L)
H�(BS1)
j!
Id
�! H�(M)
H�(BS1)

According to Goodwillie's theorem (see Section 3 for a precise state-
ment), the right-hand side vertical arrow is zero into Hn(M) after lo-
calization, while the left-hand one is onto in all dimensions (in fact the
inclusion map from the constants to null homotopic loops induces a ho-
motopy equivalence, in this case). Thus let � in Hn

S1(�L) be an element
going to �L
1 in Hn(L)
H�(BS1). Then its image by j!
1 is nonzero
in Hn(M)
H�(BS1) (note that if f : L!M is a map, f !(�L) = �M ,
independently of the degree of f). So on one hand c� � (�j)! is zero,
since the right-hand side c� is zero in degree n, while j! � c� sends � to
�M . This contradicts the commutativity of the diagram.

The second part of the proposition is similar to the proof of 0.12 in
Section 7, and is left to the reader.

Similar theorems are as follows (see Section 7 for the proofs)

Proposition 0.11. Assume M is a manifold such that �1(M) has
a center Z of �nite index. Let j be an exact Lagrange embedding of Tn

into T �M . Then rankZ = n and the image of �1(Tn) in Z is injective.
Moreover if we do not assume j exact anymore and rankZ 6= n, there
is a loop  on Tn such that

1.
R
 pdq > 0,

2. (�(j); )2 [2; n+ 1].

This generalizes an earlier result from [42], dealing with the case
L =M = Tn.

More generally we have:

Proposition 0.12. Let M satisfy the �rst assumption of Theorem
0.4 and let j : L! T �M be a Lagrange embedding such that deg(p) = 0.
Then there exists c in H1(L) such that:
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(i) c 2 ker(p),

(ii) < �; c >> 0, so in particular c =2 Ker�,

(iii) < �(j); c >� dM , where dM does depend not on L but only on M .

This had been proved for L =M = Tn ( cf. [42], and [33] for the case
n = 2), and manifolds of negative curvature. More precise estimates for
the Maslov class are due to Y.G. Oh in particular for monotone tori
in R2n (cf. [32]). In a certain number of cases, this implies that when
deg(p) 6= 0, the Maslov class of L vanishes.

Remark 0.13. It is not hard to verify that our proof of the
MAIN THEOREM still holds if we replace ordinary cohomology by any
cohomological theory (e.g. K-theory, stable homotopy, etc.) provided
it has a Thom isomorphism. The same also holds for an equivariant
cohomology theory, but besides the existence of Thom isomorphism, we
need that the S1 equivariant theory be in some sense determined by
the knowledge of the Zk equivariant one. However the existence of the
map B� is not granted, thus the commutative diagram in (3) does not
necessarily exist.

Finally we give a proof of the Weinstein conjecture in a cotangent
bundle, providedM is simply connected. We refer to Section 3 for an in-
troduction to the subject, and detailed statement of the theorems. This
is obtained as a byproduct of our method that we shall now describe.

Sketch of the proof for the MAIN THEOREM:
Even though our proof is based on a �nite dimensional approach,

inspired by the work of Chaperon, Laudenbach-Sikorav, Givental (see
[8],[29], [16], [17]), we can easily give a heuristic description of it in terms
of Floer cohomology, making it, we hope, much easier to understand.

Note that a Floer cohomology proof is indeed possible as in [48],
where we construct the analogue of the map (�j)! at the level of Floer
cohomology, satisfying the same properties as in our main theorem.
Note that this does not really simplify the proofs of the present pa-
per, since we need the isomorphism between the Floer cohomology of a
cotangent bundle, and the cohomology of the corresponding loop space,
and this requires more or less the same methods as those used in the
�rst sections.

The discretization is carried out in Section 1.
Given a symplectic manifoldW with contact type boundary, we may

consider the Floer cohomology associated to a Hamiltonian, H , which
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goes to in�nity near the boundary. In other words, FH�(H) is the co-
homology of a complex having one generator for each periodic orbit of
period 1 of XH , the Hamiltonian vector �eld of H , and coboundary op-
erator obtained by counting the number of solutions of an elliptic partial
di�erential equation on an in�nite cylinder, asymptotically converging
to the periodic orbits.

This corresponds also to the relative cohomology of the level sets for
a �nite dimensional reduction of the action functional

AH(q; p) =

Z
S1
[p _q �H(q; p)]dt:

That is, for a �nite dimensional reduction, AH;N of AH , we have an
isomorphism (up to a shift in grading though) betweenH�(AcH;N ; A

�c
H;N),

for c large enough, and FH�(H), where AcH;N is the sublevel set of AH;N .

If W is the unit disk bundle of T �N , and the Hamiltonian is zero in
the interior ofW (see Section 1 for details), then FH�(H) is isomorphic
to H�(�N), where �N is the free loop space of N . Now let L be an
exact Lagrange submanifold of T �N . According to Weinstein's theorem,
we may consider a tubular neighborhood U of L, and identify it with
the unit disk bundle in T �L.

Now choose a Hamiltonian K on T �N such that the following hold:

-it is zero inside U ,

-grows very fast as we reach the boundary of U (in other words K
is almost equal to H on U),

-is constant outside U , up to the boundary of a unit disc bundle W
of T �N ,

-grows very fast as we reach the boundary of W .

In Sections 2 and 4 we prove that the contribution of the charac-
teristics contained in U , the neighbourhood of L, to FH�(K) is again
given by H�(�L).

In Section 5 we show that, in computing FH�(K), and choosing ap-
propriately some parameters, the critical points corresponding to closed
characteristics near L are at a higher level than the other characteristics.
This yields a map from FH�(H) to FH�(K), that is, up to a limiting
process, the map (�j)! we are looking for.

The other arrows in the diagram are obtained in Sections 5 and 6
by restricting this map to the set of constant loops. Here we use the
fact that with our choice of the Hamiltonians, constants correspond to
the lowest critical levels
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Let us now explain where the assumption that the Lagrange sub-
manifold be exact is used in our proof. If �L has several connected
components, each of these contribute to the cohomology of FH�(H),
but each of the components is on a di�erent level for AH . The level is in
fact approximately given by < �;  > (for  any loop in the connected
component). Now if there is no trajectory of the gradient ow of AH (or
rather AH;N) from one component to the other, each connected compo-
nent of �L will contribute to the total cohomology by just adding each
contribution. This is of course the case, when � is exact on L, since
then all components of �L will be on the same level, and there can be
no gradient trajectory connecting two components.

Finally in Section 7, we show more precisely that, unless the Liou-
ville and Maslov class satisfy some restriction, the trajectories of the
gradient map above will not modify the above picture in the relevant
cohomological degrees, and the above obstructions to Lagrange embed-
ding will still hold. This gives Maslov type obstructions to Lagrange
embeddings.

One more comment on our main theorem. We will show in this paper
how algebraic topology of the free loop space yields obstructions to the
existence of Lagrange embeddings. But one may wonder in general,
given a map f : L! M whether there exists a map (�f)! : H�(�L)!
H�(�M) satisfying the conditions of the main theorem. We essentially
proved that there are certain obstructions to the existence of such a
map. However the following question seems natural to us:

Question. Is there a functorial subring F �(�X) of H�(�X) such
that (�f)! is well de�ned from F �(�L) to F �(�M)?

Also we are ashamed to confess that in spite of all the above results
about Lagrange embeddings the simple question
"Is there a (non-exact!) Lagrange embedding of the Klein bottle in R4"
is still unanswered.

Since this paper was written, Eliashberg and Polterovich proved that
any Lagrange torus homologous to the zero section in T �T 2 is isotopic
to the zero section (but their proof does not say whether it is Lagrange
isotopic), and the analogous result for S2 in T �S2.

Also Hofer proved that all exact Lagrange tori in T �T 2 are isotopic.
The methods seems to be purely 4-dimensional though.

Finally I would like to thank Dan Burghelea and Micheline Vigu�e-
Poirrier for their patience in explaining to me some aspects of the coho-
mology of loop spaces. I am grateful to Dietmar Salamon for useful and
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pleasant conversations. Thanks to Martine Justin for her skilful typing.
I am very grateful to the referees, for going through an original

manuscript riddled with misprints, typos, etc... and for pointing out
much needed improvements.

1. Discretization of Hamiltonian ows

Let L be a (not necessarily compact) manifold, and eg a complete
metric on L. The metric eg de�nes a �berwise quadratic map on TL,
and by duality, a �berwise quadratic map on T �L, that we shall denote
by g. In local coordinates, if eg = �egijdqidqj , we have

g = �gijdpidpj ;where (gij) = (egij)�1 :
In this section we denote by ! the canonical symplectic form on T �L,
and by H0 a Hamiltonian on T �L of the form H0(q; p) = h(jpj), where

jpj = (g(p)p; p)
1
2 , and h : R! R+ satis�es:

(a) h is smooth, convex,

(b) h(0) = h0(0) = 0,

(c) h(u) = h1 � u for u large enough.

Let X0 be the Hamiltonian vector �eld associated to H0, i.e.,

!(X0; �) = dH0 � �;

and '0t its ow. It is clear that '
0
t is a reparametrization of the geodesic

ow of g. Note that if we consider 1-periodic orbits of '0t , they will be
in one to one correspondence with closed geodesics of length less than
h1.

The Hamiltonians which we shall consider in this paper will always
coincide with H0 outside some compact set. Let H be such a Hamilto-
nian, XH , 't its associated vector �eld and ow.

We now explain how to discretize 't.
Let T �L denote the symplectic manifold (T �L;�!), and

Er = (T �L)r � (T �L)r

for some integer r. Let � : (T �L)r ! (T �L)r be the shift map
�(z1; : : : ; zr) = (z2; : : : ; zr; z1), and � = � � ('1=r � : : : � '1=r), that
is

�(z1; : : : ; zr) = ('1=r(z2); : : : ; '1=r(zr); '1=r(z1)) :
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Since � and '1=r�: : :�'1=r preserve the symplectic structure of (T
�L)r,

the same is true for �. The graph �(�) of � is then a Lagrange sub-
manifold of Er (endowed with the obvious symplectic structure).

For convenience we shall often use the following notation or conven-
tions :
| for z 2 (T �L)r

z = (zj)j2Z=r so that �(zj) = (zj+1) and zj = (qj ; pj);

| for (z; Z) 2 Er

z = (zj)j2Z=r; (z; Z) = ((zj ; Zj))j2Z=r so that �(�) = (zj ; '1=r(zj+1));

| the diagonal � = �r = (�T �L)
r � Er is the product of the diagonals

in T �L� T �L.
Our �rst task will be to de�ne a region of Er such that the portion

of �(�) contained in this region will be a graph over �r. We �rst
make precise our identi�cation of a neighbourhood of �r in Er with a
neighbourhood of the zero section in T ��r.

Lemma 1.1. Assume the injectivity radius of eg is bounded from
below by "0. Let " < "0 small enough and U" � T �L � T �L be the
set U" = f(q; p; Q;P )jd(q; Q) � "g. Then there is a proper symplectic
embedding i : U" ! T �(T �L) such that on U0 we have

(1) i(q; p; q; P ) = (q; P; P � p; 0),

(2) Di(q; p; q; P )(�q; �p; �Q; �P ) = (�q; �P; �P � �p; �q � �Q).

The proof follows immediately from the Darboux-Weinstein theo-
rem. This tells us that if K is a submanifold of a symplectic manifold
(M;!), and (M 0; !0) is some other symplectic manifold, then, given a
map ' : K ! M 0 such that '�!0jK = !jK , and an extension f of d'

to a symplectic �bre map from TKM to TM 0, there exists a symplectic
extension e' of ' to a neighbourhood of K such that de'jK = f .

Using this, the proof is easy and left to the reader. q.e.d.

Remark. We shall denote by \P � p" the coordinate dual to q in
T �(T �L). Let us point out that it is not the di�erence of \P" and \p" !

Similarly we may de�ne \q � Q". Using the symplectic map i, we
may pull back these coordinates on U". Then, both coincide with some
\naive" de�nition up to a term of order " for \P �p" and "2 for \Q�q".
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By a \naive" de�nition of \P�p" we mean for example the sum of�p (in
T �q L) and the image of P by the parallel transport from Q to q along
the unique minimizing geodesic. Similarly, one may de�ne a \naive"
Q� q by using X 2 TqL such that expqX = Q.

Let (U")
r � Er, and consider the symplectic embedding ir : U r" !

T �(T �Lr),

�� = ir(�(�)\ U r" ) :

We �rst examine �Id. Since

�(Id) =
�
(qj ; pj; qj+1; pj+1)j(qj; pj) 2 T

�L
	
;

we have

�(Id) \ (U")
r = f(qj ; pj; qj+1; pj+1)jd(qj; qj+1) � "g :

We thus see that �Id has a projection on the base of T �(T �Lr) \ essen-
tially" given by (qj ; pj; qj+1; pj+1) ! (qj ; pj+1) (again, we use parallel
transport to de�ne this).

We may in fact assert that �Id is a graph over

Ur;" =
�
(qj ; Pj) 2 T

�Lrjd(qj ; qj+1) � "=2
	
:

Since �(�) is close to �Id (for the distance sup
j
d(zj ; z

0
j)) provided r is

large enough, the same will hold for ��. Because 't is Hamiltonian, it
is easy to see that �(�) and thus �� are exact Lagrange submanifolds.

We may now conclude that over Ur;", �� is the graph of dS� for
some function S� : Ur;" ! R.

The rest of this section is devoted to computing the Conley index
(read further for the de�nition) of Ur;" for some pseudo-gradient vector
�eld �� of S�, whenH = H0 (the next section is devoted to more general
cases).

We remind the reader of some results from Conley's book [9].

Let U be a manifold with boundary (and possibly corners) @U , and
� a vector �eld on U . The Conley index of � of U , denoted by I�(U; �) is
the homotopy type of the quotient U=@�U , where @�U is the exit set of
� (i.e.,

�
xj(�(x); �(x))> 0

	
, where �(x) is the outward normal on @U).

Let C be the maximal invariant set in U . Then, provided C � U�@U
(in Conley's terminology, U is an isolating block for C) we have that
I�(U; �) only depends on C (and of course on �), not on U .
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In case � is a pseudo gradient vector �eld for some function f (i.e.,
df(x) � �(x) � 0 with equality if and only if df(x) = 0 and then, also
� vanishes), C will be the union of the critical points of f , and the
heteroclinic trajectories of � connecting them.

If we set Ua = fx 2 U jf(x) � ag, and if U is an isolating block,
than U b � Ua is also an isolating block for the set Cba of critical points
with critical value in [a; b] and heteroclinic trajectories connecting them
(provided a and b are regular values of f).

Note that this has a straightforward generalization to the case where
U is endowed with some group action, and everything is equivariant.
The equivariant Conley index, denoted by I�G(U; �) is then the equivari-
ant homotopy type of U=@�U .

We now return to our original problem, and point out that it has an
obvious Z=r symmetry, and that everything will indeed be equivariant,
even if it is not speci�ed.

To be able to compute I�
Z=r(Ur;"; ��), we �rst have to de�ne �� !

Let E�(q) = sup
P
S�(q; P ) in R[ f+1g, and

�ar;" =
�
(qj) 2 �r;"jE�(q) � a

	
:

We shall need:

Lemma 1.2. For jP j � R("; r), the map P ! S�(q; P ) is strictly
concave. For a < a("; r), and q 2 �ar;" the map P ! S�(q; P ) has a
unique critical point, which is a maximum.

Moreover R("; r) and a("; r) go to +1, as r"2 goes to zero.

Proof. Let us write coordinates in Ur;" as (qj ; Pj; Xj; Yj) so that ��
is given by

Xj =
@S�
@qj

; Yj =
@S�
@Pj

;

and we have that

Yj = qj+1 � qj �
1

r

@H

@p
(qj ; Pj) + �(qj+1 � qj ; Pj);

where �(0; P ) = D�(0; P ) = 0.

Note that Yj only depends on qj ; Pj ; qj+1; Pj+1. Now

@Yj
@Pj

= �
1

r

@2H

@p2
(qj ; Pj) +

@�

@Pj
(qj+1 � qj ; Pj);
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and @�
@P goes to zero with qj+1 � qj , while 1

r
@2H
@p2 > C0

r for

sup jpj j � R("; r). Thus
@Yj
@Pj

< �C0
r + C"2.

Since

@Yj
@Pk

= 0 for k 6=; j + 1;

=
@

@pj+1
�(qj+1 � qj ; Pj) for k = j + 1 ;

we have

@2S�
@P 2

j

=
@Yj
@Pj

< �
C0

r
+ C"2;

���� @2S�
@Pj@Pj+1

���� =
���� @Yj@Pj+1

���� < C"2;

@2S�
@Pj@Pk

= 0 for k 6= j; j + 1:

As a result, provided r � 1
2
C0
C "
�2, we have that P ! S�(q; P ) is con-

cave.

Note that C0 goes to zero as R("; r) increases, that is, as r"2 goes to
zero we may let C0 decrease to zero (and still have r"2 < 1

2
C0
C ), hence

R("; r) goes to in�nity.

Let us set �r;" = f(qj) 2 L
rjd(qj; qj+1) � "=2g and �r : Ur;" ! �r;"

be the obvious projection. Using Lemma 1.2, we see that the restriction
of S� to ��1r ((qj)) is either unbounded from above (and there are no
critical points) or has a unique maximum P = P (q).

From the properties of S� it follows that

e�ar;" = f(q; P ) 2 (T �L)rj
@

@P
S�(q; P ) = 0; (q) 2 �ar;"g

is contained in Ur;", and is a graph over �
a
r;". We set �P to be minus the

gradient of the restriction of S� to ��1r (q), that is, �rpS�(q; P ). Then,

in Var;" = ��1r (�ar;"), �P is a pseudo-gradient for S�, except on e�ar;".
We must now modify �P near e�ar;" to get a pseudo-gradient every-

where. This is easily achieved, using �0, an extension of minus the
gradient of S� restricted to e�ar;". We may set

�� = (1� �(jP � P (q)j)�P + �(jP � P (q)j)�0;
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where � is a real nonincreasing function with values in [0; 1], such that
� = 1 near 0, and � = 0 outside a neighbourhood of 0.

It is clear that �� is a pseudo-gradient for S� in Var;".

We now denote by Na
r;" a tubular neighbourhood of e�ar;", and by

Var;"(R), U
a
r;"(R) the intersection of V

a
r;", U

a
r;" with

�
(q; P )j sup jPij � R

	
.

We �rst prove

Lemma 1.3.

I�
Z=r(V

a
r;"(R); ��) = I�

Z=r(N
a
r;"; ��) :

Proof. We shall take for Na
r;" the disk bundle over e�ar;" given by

�(jP � P (q)j) > 0.

To prove the lemma, we only have to prove that the maximal in-
variant set for �� in Var;"(R) is already contained in Na

r;". We must thus
show that:

(a) Na
r;" contains all the critical points in V

a
r;"(R),

(b) Na
r;" contains all the heteroclinic orbits in V

a
r;"(R).

The �rst statement is trivial, since at a critical point of S�,
@
@P S�

vanishes, i.e., all critical points are in e�ar;".
As for (b), it follows from the concavity of S� as a function of P .

Indeed, outside Na
r;", �� = �P is �rPS�. Hence if some orbit exits from

Na
r;", it does so through a point where �(jP � P (q)j) = 0 (at the other

points of @Na
r;", �� enters Na

r;", see Figure 1.1).

Figure 1.1
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But this orbit is then in a region where S� < a, hence it cannot
reenter Na

r;", since it would have to reach a region where S� = a (��
enters Na

r;" only where S� = a). This concludes our proof. q.e.d.
It is also easy to prove

Lemma 1.4.

I�
Z=r(U

a
r;"(R); ��) = I�

Z=r(V
a
r;"(R); ��) :

Proof. The proof is the same as for 1.3.

Finally, we have to compute I�
Z=r(N

a
r;"; ��). We �rst need a de�nition.

Let E ! X be a vector bundle. We denote by �EX the Thom space
D(E)=S(E) where D(E) and S(E) are respectively the disk and sphere
bundles associated to E. More generally, for A in X ,

�E(X=A) = D(E)=(S(E)[D(EjA)):

The Thom isomorphism tells us that, provided E is orientable,
H�(�E(X=A)) = H��k(X=A), and the same is true in equivariant co-
homology (see [10]).

Remark. From our proof of 1.3 it follows that if U is any bounded
open manifold with boundary, containing Na

r;" and not other critical
points than those contained in Na

r;", then

I�
Z=r(U;

e��) = I�
Z=r(N

a
r;"; ��)

for any pseudo-gradient e�� of S� coinciding with �� on Na
r;". In fact

this is even true for any pseudo-gradient of S�, since our argument only
used the properties of the restriction of S� on the boundary of Na

r;".

Lemma 1.5.

I�
Z=r(N

a
r;"; ��) = �N(�

a
r;");

where N is the normal bundle of �r in �r.

Proof. Since e�ar;" is a graph over �ar;", we may as well replace the

right-hand side of 1.5 by �N(e�ar;"). Now Na
r;" may be identi�ed with the

disk bundle associated to N . Since we saw that the exit set of �� on
Na
r;" is S(N)\Na

r;", the lemma follows immediately.

To summarize our �nding we proved
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Proposition 1.6.

I�
Z=r(U

a
r;"(R); ��) = I�

Z=r(V
a
r;"(R); ��) = �N (�

a
r;") :

The same proof yields

Proposition 1.7. For a(r; ")< a < b < b(r; ")

I�
Z=r(U

b
r;" � U

a
r;"; ��) = I�

Z=r(V
b
r;" � V

a
r;"; ��) = �N (�

b
r;"=�

a
r;") :

Here a(r; ") goes to �1 and b(r; ") goes to +1 as r"2 goes to 0.

Remark. In the relative case we may replace Ur;"(R) by Ur;", since

U br;" � U
b
r;"(R) = Uar;" � U

a
r;"(R) :

Note that for b and r going to +1, and " going to 0, we have that
�br;" converges to �N = floops in N with length less than g, where
 = h1 is the slope of h at in�nity.

2. Generalization and localization of the results of the

previous section

In this section, we shall be again interested in computations of Con-
ley indices I�(U; �) with � a pseudo-gradient for S�.

Here � is associated to a Hamiltonian H as in Section 1, but we do
not assume H to be convex in p. We shall consider the following two
cases

(1) H(q; p) = H0(q; p) for jpj � R.

(2) H(q; p) = H0(q; p) for jpj � R.

We start with the �rst case, which is based on the following idea.
We consider a family H� of Hamiltonians such that

(a) H� = H0 for jpj � R,

(b) the �xed points for the time-one ow '� of H� have their action in
some interval J of R, that is, if '�1(x�) = x� , then x� (s) = '�s(x�)

is such that
R 1
0 [p _q �H� (x�(s))]ds is in J .
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We �rst want to prove :

Proposition 2.1. Let H� satisfy (a) and (b) above, and assume J
is contained in ]a; b[. Then there is a pseudo-gradient �� of S�� on Ur;"
such that �0 = ��0 , and

I�(U br;"(�)� U
a
r;"(�); ��)

does not depend on � .

Proof. The idea is that since we may add a constant to S�, so that
the critical value of S� associated to a critical point (which corresponds
to a �xed point of ') coincides with the action of the periodic orbit (cf.
[40], [41]), if J �]a; b[, then no critical point of S�� will \interfere" with
U br;"(�) or U

a
r;"(�), hence I

�(U br;"(�)� U
a
r;"(�); ��) will not depend on � .

We �rst consider the following abstract situation. Let f� be a family
of functions on U , such that

(i) f� j@U has no critical value in [�; �],

(ii) f� has � and � as regular values.

Let �� be a pseudo-gradient for f� such that on @U \ f�1� ([�; �]), ��
is tangent to @U . Then I�(U�(�)� U�(�); ��) does not depend on � .

The proof of this statement follows from the standard properties of
the Conley index, provided we remark that I�(U�(�) � U�(�); ��) =
U�(�)=U�(�) because �� does not exit on @U \f�1� ([�; �]), and that (ii)
implies that the homotopy type of U�(�)=U�(�) does not depend on � .

To prove our proposition, we will show that we are in the above
situation, with Ur;" and S�� replacing U and f� .

Because as we said before, the critical values of S�� are the actions of
the periodic orbits, (b) implies that S�� has a and b as regular values.
Property (ii) is then satis�ed, and we only have to check that S��

restricted to @Ur;" has no critical value in [a; b], for " small enough.
Arguing by contradiction, we see that otherwise, we would have a

solution of @
@P S�� (q; P ) = 0, S�� (q; P ) 2 [a; b] for (q; P ) 2 @Ur;". Now

if (q; P ) 2 @Ur;", we must have d(qj ; qj+1) = " for at least one j in Z=r.
Now, up to higher order terms, @

@P S� = qj � qj+1 �
1
r
@H
@P (qj ; Pj). If this

vanishes, we have " = d(qj ; qj+1) <
1
r

���@H@p
��� � C

r where C is a bound for��� @H@p
��� on T �L. This implies r � C

" , so it cannot hold for r large enough

(remember that we assumed r � 1
2
C0
C "
�2, which is however compatible

with the above condition). Thus assumption (i) is satis�ed. q.e.d.
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Corollary 2.2. Assume that H = H0 outside some compact set,
and that the quantity p@H@p � H(q; p), which is compact supported, is

bounded by the real numbers a < 0 < b. Then I�
Z=r(U

b
r;" � Uar;"; �) =

�N (�
b
r;"), where � is a pseudo-gradient for S� tangent to the boundary

of Ur;".

Proof. Set H� = (1� �)H0 + �H . Then provided

a < p
@H0

@p
�H0(q; p) < b;

and the same holds for H , it will hold for H� . Since the action of a
periodic orbit of H� is given by

R 1
0 p

@H�

@p �H� (note that for a solution

_q = @H�

@p ), � is thus in [a; b]. q.e.d.

We now consider case (2).
Since H = H0 in jP j � R, we see that S� = S�0 on Ur;"(R). Hence

we may assume that �� = ��0 in this set, and as a result

I�(Ur;"(R); ��) = I�(Ur;"(R); ��0) ;

and the same holds for Ur;"(R) replaced by U br;"(R)� U
a
r;"(R).

Here we shall be interested in a case where we may drop the \R"
in Ur;"(R). This indeed happens if S� has no critical point with critical
value in [a; b] outside Ur;"(R), or else XH has no 1-periodic orbit with
action in [a; b] outside f(q; p)j jpj � Rg. We may summarize this in

Proposition 2.3. Assume H(q; p) = H0(q; p) for jpj � R. Then

I�
Z=r(U

b
r;"(R)� U

a
r;"(R); ��) =I

�
Z=r(U

b
r;"(R)� U

a
r;"(R); ��0)

=�N (�
b
r;"=�

a
r;") :

Moreover if the 1-periodic orbits of XH outside f(q; p)j jpj � Rg have
their action outside [a; b], then

I�
Z=r(U

b
r;" � U

a
r;"; ��) = �N (�

b
r;"=�

a
r;") :

3. Periodic orbits on hypersurfaces of T �N

The aim of this section in to use the results of the �rst two sections,
in order to �nd a closed characteristic for a hypersurface �0 in T

�N .
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We shall assume that �0 is the boundary of a compact submanifold
U0 of T

�N . Moreover, we assume that a neighbourhood of �0 is foliated
by hypersurfaces �t, t in [�"; "], and we set �t = @Ut.

If for any positive �, there exists t with jtj < � such that �t has
a closed characteristic, we shall say that the foliation �t has property
(QE) (= quasi existence of periodic orbits). If this holds for any foliation
of a neighbourhood of �0, we shall say �0 has property (QE).

Note that if �0 is a hypersurface of contact type (see [53] or [41]),
then (QE) for �0 actually implies that �0 itself carries a closed char-
acteristic, since in this case we may choose the �t to be conformally
equivalent to �0.

This means that if (QE) holds for all hypersurfaces in a certain class,
then the Weinstein conjecture will hold for the contact hypersurfaces in
the same class. For instance, in [23] we proved that if U0 contains the
zero section and N is compact, then (QE) and thus the Weinstein con-
jecture holds. This assumption is rather strange, since it was proved in
[41] and [25] that (QE) holds in R2n and as pointed out by M. Chaperon
that this implies that if N is compact and has a Lagrange embedding
in R2n, then (QE) holds with no need of such a condition in T �N .

We shall prove in this section that (QE) holds provided the image
of �1(U0) in �1(N) is �nite.

Theorem 3.1. Assume the image of �1(U0) in �1(N) to be �nite.
Then property (QE) holds in T �N for �0 = @U0. In particular if �1(N)
is �nite, the Weinstein conjecture and (QE) hold in T �N .

Remark. In [36], Michael Struwe proved that in R2n, (QE) may be
replaced by the stronger property (AE) (almost existence) : for almost
all t in [�"; "], �t has a closed characteristic. In the sequel one may
replace (QE) by (AE).

The rest of this section is devoted to the proof of 3.1.
We �rst assume that �1(N) = 0 (hence N is orientable).
We may in fact assume N to be compact since U is, and (QE) only

depends on U . So if we assume that U � T �V for V bounded in N , and
we carefully choose V so that its double W is simply connected, then
we may replace N by W .

As is now classical, the problem may be reduced to �nding a 1-
periodic solution for a Hamiltonian ow, de�ned as follows:

(i) H = 0 on U�".

(ii) H = a in B(R)� U".
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(iii) H(�t) = k(t) with k as in Figure 3.1.

(iv) H(q; p) = g(jpj) with g such that g is increasing, convex, satis�es
g0(u)�u�g(u) < 0, g(u) = a for u near R, and limu!1 g

0(u) = g1.

Figure 3.1

We easily see from the above assumptions on H , that there are no
periodic orbits with positive action outside B(R).

We now assume that �t has no closed characteristic, implying that
H has no nonconstant periodic orbit inside B(R).

Thus the 1-periodic orbits of XH fall in three classes:

(I) The constants inside U0, with action zero.

(II) The constants outside U0, with negative action (H > 0 impliesR
p _q �H < 0).

(III) The nonconstant periodic orbits outside B(R), corresponding to
closed geodesics of length bounded by some function  of g1.
Because g0(u) � u� g(u) < 0, the action of such orbits is negative.

Let us point out that provided we su�ciently increase a, the constant
g1 may be taken arbitrarily large.

Now, let S� be associated as in Section 1 to the ow of H . Then we
know that for b large enough H�

Z=r(U
b
r;";U

�b
r;" ) ' H��d

Z=r (
e�br;"), since e��br;"

is empty, S� being bounded from below.
On the other hand, in U �r;"�U

��
r;" , for � small enough, the only critical

points of S� are given by the constants in U0. A small perturbation
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easily yields that

H�
Z=r(U

�
r;";U

��
r;" ) ' H��d

0

(U0; @U0)
H
�(BZ=r);

because the critical points considered are all �xed points for the Z=r
action.

Now since S� has no critical value in [�; b], we may identify
H�
Z=r(U

b
r;";U

�b
r;" ) with H�

Z=r(U
�
r;";U

�b
r;" ), and write down the cohomology

exact sequence of the triple (U �r;";U
��
r;" ;U

�b
r;" ), that is,

Remember that  = h1. Let �2n be the generator of H
2n(U0; @U0).

We want to consider the image of �2n 
 1 in H�
Z=r(U

�
r;";U

�b
r;" ). This will

lead to a contradiction.

First of all we set H�(BZ=r;Z=r) ' �(�) 
Z=r[u] where �(�) is
Z[�]=(r; �2), deg � = 1, and deg u = 2.

We �rst have

Lemma 3.2. Provided g1 is large enough, the image of �2n 
 uj

in H�
Z=r(U

�
r;";U

�b
r;" ) ' H�

Z=r(
e�r;") is zero for j large enough, independent

of g1.

We shall prove that for a class � in H2n
Z=r(

e�r;"), provided � has zero

projection on H�
Z=r(pt) (the projection H�

Z=r(
e�r;") ' H�

Z=r(�
N) !

H�
Z=r(pt) being induced by the inclusion pt! �N) we have that �uj = 0

for j large enough (j � n+1 is su�cient). This is based on the following
theorem

Theorem (Goodwillie [18]). Let �N be the free loop space of N .
If � in Hk

S1(�N;Q) has zero projection on Hk
S1(pt;Q), then we have

uk+1� = 0.

The Lemma may now be proved as follows.

Proof of Lemma. According to Appendix at the end of this paper,
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we have that for r large enough,

H�
Z=r(�


r;";Z=r)' H�S1(�

N;Z)
H�(S1;Z=r);

H�S1(�
N;Q)' H�S1(�

N;Z)
Q :

If we choose r prime, large enough so that H�S1(�
N;Z) has no Z=r

torsion, then any � 2 H�
Z=r(�


r;";Z=r) may be written as e� 
 � withe� 2 H�S1(�

N;Z), � 2 H�(S1;Z=r) and �uj corresponds to e�uj 
 �.
According to Goodwillie's result, e�uj is torsion, since it vanishes after
tensoring with the rationals. Because there is no r-torsion, �uj � e�uj

� vanishes.

The proof of our lemma will be complete if we show that the im-
age of �2n in H�

Z=r(�

r;";Z=r) has zero projection on the submodule

H�
Z=r(pt;Z=r) ' H�(BZ=r); embedded in H�

Z=r(�

r;") through the con-

stant map e�r;" ! pt.

We �rst need to remind the reader of the de�nition of the localiza-
tion. Let S be a multiplicative subset of a ring R (i.e., a; b 2 S ) a �b 2
S). Let M be an R module. We denote by S�1M the quotient module
S �M= � where (s1; m1) � (s2; m2) if and only if there exists t in S,
such that ts1m1 = ts2m2. Then S�1M is an S�1R module, called the
localization of M (at S). Note that localization commutes with exact
sequences (i.e., it is an exact functor).

If S = H�(BG) � H0(BG), and X; Y are G spaces, with �xed
point sets FX , FY , then given an equivariant map f : X ! Y we
may consider f�G : H�G(Y ) ! H�G(X). Thus a classical result states
that S�1H�G(Y ), S

�1H�G(X) coincide with H�(FX)
 S�1H�(BG) and
H�(FY )
 S�1H�(BG), and S�1f�G is induced by f�jF where fjF is the

restriction of f to the �xed point sets (see [10]).

In our case the map

H�(U0; @U0)
H�(BZ=r)! H�
Z=r(

e�r;")
localizes to a map induced by the obvious map

H�(U0; @U0)! H�(B(R); @B(R)) ' H��n(N) :

This map sends �2n to �n the generator of Hn(N). Because N is com-
pact, �n is nonzero.
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Consider the diagram

this is the localization of the diagram:

In the above diagrams

D = f(p; P )jq = q0 ; jP j � Rg;

@D = f(q; P )jq = q0 ; jP j = Rg;

and Dn; @Dn are the �xed point sets of D; @D for the Z=r action.
q.e.d.

Now H�(U0; @U0) ! H�(Dn; @Dn) ' H��n(pt) maps �2n to zero.
Hence the image of �n in H�(BZ=r) is zero. We may thus apply Lemma
3.3 to get a contradiction : the image of �2nu

k is zero but it is nonzero
after localizing. This concludes the proof of Theorem 3.1. q.e.d.

Remark. We assumed here that

Hp(�L) = lim
 

Hp(�cL):

According to [20, p. 410], it is enough to check that the inverse limit of
cochain complexes which we are considering satis�es the Mittag-Le�er
condition, that is:

1) 
p(�cL) whose inverse limit is 
p(�L) is such that the image of

p(�L) in 
p(�cL) does not depend on c, for c large enough.

2) For each �xed a, the image of Hp(�cL) in Hp(�aL) does not
depend on c, for c large enough (depending of course on a).

The �rst property is obvious, since any form on �cL extending to
�c

0

L actually extends to �L. Since the Hp(�aL) are �nite dimensional
for each a, the second property is trivially satis�ed.



446 claude viterbo

We also have used that �

r;" has the Z=r equivariant homotopy type

of � for which we refer to [31].

Remark. The above proof has in fact a wider range than the
theorem. Indeed Goodwillie's theorem states that the localization of
H�S1(�N) only depends on �1(N). Now we only needed that the inclu-
sion N ! �N induces a map H�S1(�N) ! H�(N) 
 H�(BS1) which
does not contain Hn(N)
H�(BS1) in its image.

In particular this will be satis�ed if �1(N) is abelian of rank < n =
dimN , because we may compute H�S1(�N) for N = T k � Rn�k. We
thus get

Proposition 3.3. Assume that the image of �1(U0) in �1(N) has a
�nite index subgroup which is abelian of rank strictly less than n. Then
(QE) holds for �0 = @U0.

4. The case of a Lagrange submanifold in T �N

Let L be a Lagrange submanifold in T �N . Using Weinstein's theo-
rem by a symplectic map we may identify a neighbourhood of L with
B� = f(q; p) 2 T �Lj jpj � �g.

Let H be a Hamiltonian on T �N such that:

- in B�; H(z) = h(jpj), h is convex and will be made precise later,

- in DR � B�, H is constant equal to a,

- outside DR, H(z) = (H0) with  convex and lim
t!1

0(t) = 1.

The reader will be careful to distinguish between (q; p) coordinates
in B� and (q; p) coordinates in T �N .

We consider the map �1 associated to the ow 'u of H , as in the
previous sections, and �(�1) its graph in (T �N � T �N)r.

In the subset (B� � B�)
r, �(�1) coincides with �(�2), where �2 is

associated to the Hamiltonian K de�ned on T �L by K(q; p) = h(jpj).

Note that �(�2) � (T �L � T �L)r. We may then identify its inter-
section with (B��B�)

r to a subset of (T �N �T �N)r, using Weinstein's
theorem.

One may then think that this implies S�1 = S�2 on some subset.
But this is wrong for the following reason : the maps i1 and i2 obtained
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by applying Lemma 1.1 to T �N and T �L de�ne vertical foliations in U"
which do not coincide (see Figure 4.1).

Figure 4.1

Figure 4.2

The goal of this section is to analyze the contribution of the neigh-
bourhood of L to the variational picture of S�. In the sequel we shall
assume r and " to be �xed. Before stating the main proposition of this
section, we remind the reader that any loop in L has a Liouville number
`() and a Maslov number m(), and these numbers only depend on
the free homotopy class of . Set e�b2 = e�br;"L, then e�2 may be identi-
�ed with a subset of the free loop space of L. In particular, to every
connected component of e�b2, we may associate its Liouville and Maslov
numbers ` and m.

We may now state

Proposition 4.1. Let a < b be such that 'u has no periodic orbit
with action in [a; b] outside B�. Then there exist Z=r bundles M1;M2
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such that

�M2
I�
Z=r(U

1;b � U1;a) = �M1
I�
Z=r(U

2;b+`
� � U2;a+`

� )

= �M1�N (
e�b+`2 =e�a+`2 );

where ` is the Liouville number of the connected component of e�2 which
we are in, M1, M2 are Z=r vector bundles such that rk(M1)�rk(M2) =
m() is the Maslov class of the connected component, and N is the
bundle from Lemma 1.5.

This proposition tells us that up to a suspension and shift in levels,
the change in the topology of the sets fS�1 � �g, for � in [a; b], is the
same as the change in topology of the sets fS�2 � �g. Nothing changes
outside B�, and what happens there has been described in Section 2.

The proof of the above theorem will take up most of this section.
We �rst consider the following abstract situation.

Let W be a manifold with boundary @W , �t a Hamiltonian isotopy
of T �W , such that �t = Id on the union of 0W and a neighbourhood of
T �@WW , and L0 the graph of df0 for f0 :W ! R a smooth function.

We denote by Lt the Lagrange submanifold �t(L0).

Lemma 4.2. There are g.f.q.i. S0 and S1 of L0 and L1 which are
di�eomorphic, i.e.; S0 � G = S1, with G a di�eomorphism of W �Rk.
The di�eomorphism G may be assumed to be the identity over @W , but
it is not, in general, �ber preserving.

Proof. Let St be a g.f.q.i. of Lt, we may assume that St � S0
over a neighbourhood of @W �Rk, using the fact that W [ @W � [0; 1]
is a deformation retract of W � [0; 1]. We then look for the ow Gt of
a vector �eld Xt such that St � Gt = S0. By Moser's lemma, this is
equivalent to solving dSt �Xt = � @

@tSt.
Whenever dSt(x; �) 6= 0, the above equation is trivial to solve, so we

only have to consider the neighbourhood of critical points of St. Such
points correspond to the intersection points of Lt with the zero section,
and the order of the critical point corresponds to the order of the contact
of Lt with 0W . Now since �t is the identity on 0W , the points of Lt\0W
and their order of contact do not depend on t.

Assume now that (x0; �0) is a critical point of St, and that St(x0; �0)
does not depend on t. Then @

@tSt(x0; �0) must vanish to the same order

as dSt(x0; �0), so we may solve dSt(x; �)Xt(x; �) = � @
@tSt(x; �) near

(x0; �0).
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To conclude our proof, we just have to show that t 7! St(x0; �0)
does not depend on t. This is a priori not correct, but we have that
for (x0; �0), (x1; �1) two critical points of St, St(x1; �1)� St(x0; �0) does

not depend on t. Indeed, this quantity is given by

Z
t

pdx, where t is

a path in Lt connecting (x0; 0) to (x1; 0) (cf [40]).

If we take t = �t(0), the fact that �t is symplectic and preserves

0W , and that

Z
t

pdx may be identi�ed with the symplectic area of a

disk with boundary t �
�1
t , where t is a path in 0W connecting (x0; 0)

and (x1; 0), readily imply that

Z
t

pdx does not depend on t.

As a result we may replace St by St(x; �)+c(t) such that the critical
values of this function do not depend on t, and thus conclude our proof.

q.e.d.

Remark. The assumption that L0 in the graph of df0 may be
removed. We only need that L0 has a g.f.q.i.

By uniqueness theorem for generating functions quadratic at in�nity,
abbreviated as g.f.q.i. ([45], Section 1) we have that S0 = (f0+Q0)�F0+
c0 where F0 is a �ber preserving di�eomorphism, Q0 a nondegenerate
quadratic form on Rk and c0 some constant (actually this is only true
provided we also add a nondegenerate quadratic form in new variables
to S0, that we may always do).

Now assume that L1 is the graph of df1. Then S1 = (f1+Q1)�F1+c1.

Set E = W �Rk,

Ea
i = f(x; �) 2 EjSi(x; �) � ag ;

W a
i = fx 2 W jfi(x) � ag :

By the above argument, Eb
i =E

a
i = �ki(W b�ci

i =W a�ci
i ) and from Lemma

4.2, we infer that Ea
1=E

b
1 ' Ea

0=E
b
0. We may thus state

Corollary 4.3. Under the assumptions of Lemma 4.2, we have

�k1(W b�c1
1 =W a�c1

1 ) = �k0(W b�c0
0 =W a�c0

0 ) :

Similarly if �i is a pseudogradient vector �eld for fi such that �1 = �0
near @W , then we have
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Corollary 4.4.

�k1I�(W b�c1
1 �W a�c1

1 ; �1) = �k0I�(W b�c0
0 �W a�c0

0 ; �0):

The proof is the same.

The reader may wonder how this is related with the proof of 4.1. To
see this, one should think of Lt as a �xed Lagrange submanifold, while
the vertical foliation of T �W is moved by ��1t . The above corollary
thus holds if f0 and f1 are generating functions of L0 with respect to
two distinct but isotopic vertical foliations, that coincide over @W (see
Figure 4.2).

Except for this last condition (and for the fact that we did not deal
with the Z=r action) this is exactly our situation : L0 = �(�1) =
�(�2), and the vertical foliations are determined by i1 and i2. These
foliation are Hamiltonianly isotopic, at least in some neighbourhood of
the diagonal. Indeed it is a general fact, that any two vertical foliations
are Hamiltonianly isotopic near the zero section. This just means that
any two tubular neighbourhoods of the zero section are isotopic. But
�(�1) and �(�2) are contained in a neighbourhood of the diagonal.

We now go back to our abstract situation, and shall consider the
case where �t does not coincide with the identity near T �@WW .

Let U � W be some open subset, and assume that �t(L0 \ T �U) \
T �@WW = �. Then we may modify our isotopy �t into e�t such thate�t = �t. The image by e�1 of L0 coincides over U with �1(L0), hence
if eS1 is the g.f.q.i. of e�1(L0) on W , we may assume that eS1(x; �) =
f1(x) + Q1(�) over U .

If U is such that for some pseudogradient vector �eld �1 of f1, U
is an isolating block for the maximal invariant set of �1 in W , then
Eb
1=E

a
1 ' �k1W b

1=W
a
1 ' �k1U b1=U

a
1 .

Since Eb
1=E

a
1 ' Eb

0=E
a
0 , we conclude �

k1I�(U b1�U
a
1 ; �1) = �k0I�(U b0�

Ua0 ; �0). This may be summarized as

Proposition 4.5. Let us assume that the following hold:

(1) �t(L0 \ T
�U) \ T �@WW = �.

(2) U is an isolating block for the maximal invariant set of a pseudo-
gradient �1 of f1 in W .

Then �k0I�(W b
0 �W a

0 ; e�) = �k1I�(U b�c � Ua�c1 ; �1) where e�1 = �1
on @W .
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Now we apply this to W = U1(R), U = U2
� , L0 = i�11 (��1) =

i�12 (��2), and �t has been described previously.
Then (1) is satis�ed since L0 is arbitrarily close to the zero section

(for the sup norm) and (2) is satis�ed according to Proposition 2.3.
Now Proposition 4.1 follows from 4.5.

5. The variational picture

We start again with the situation of Section 4, but we make our
choice of H more precise.

We assume the following:

(1) Outside DR, p
@H
@p �H < 0. This is possible provided R=a is small

enough (see Section 3).

(2) h is as on Figure 5.1, depending on the parameters �; �; c; a (c is
the slope of the dotted line) and we have

(i) jh0(u)j � c,

(ii) uh0(u)� h(u) � �,

(iii) h(u) = a for u > � .

The critical points of S�1 corresponding to the periodic orbits of the
ow may be gathered in families as follows:

Figure 5.1
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(I) Periodic orbits in B� , corresponding to closed geodesics of L with
length less than c.

(II) Periodic orbits in B� � B� .

(III) Constants in DR � B�.

(IV) Periodic orbits outside DR.

To describe the associated critical values, we associate to a loop
(q; p) in B� the value h�; qi of the Liouville class on the projection of
the loop on L.

Now the critical values are given

jpjh0(jpj)� h(jpj) + h�; qi in [0; �] + h�; qi ;(I)

jpjh0(jpj)� h(jpj) + h�; qi in ]�1; 0[+ h�; qi ;(II)

in ]�1;�a[;(III)

in ]�1; 0[:(IV)

We see that if [�] = 0, the \ type (I)" orbits are above the other critical
points.

Thus, there is a map

I�(U1;� � U1;�; ��1)! I�(U1;� � U1;�; ��1);

where � is less than any critical value, and � < 0 is greater than the
negative critical values.

Now, according to Proposition 4.1, the left-hand side may be iden-
ti�ed with

H�(I�(U2;� � U2;�; ��2)) '
M
c

H��k�m(c)(I�(��cL));

where c 2 �0(�L), and �cL is the connected component of c. �0L will
be the connected component of constant paths, and k is equal to rk(M1)
as in 4.1.

On the other hand, since S�1 has no critical value outside the interval
[�; �], we have

H�(I�(U1;� � U1;�; ��1)) '
M
c1

H��k(�c1N):
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Thus we get a map, denoted by (�j)!,M
H��m(c)(�cL)!

M
H�(�cN) :

For c = 0, this restricts to a map

H�(�0L)! H�(�0N) :

The goal of this section is to prove the following.

Theorem 5.1. If L has an exact Lagrange embedding into T �N ,
there is a map

(�j)! : H�(�0L)! H�(�0N)

satisfying the following property:
if (�j)� is the natural map H�(�0N) ! H�(�0L), induced by the

inclusion �j : �0L! �0N , then

(�j)!(� [ (�j)�(�)) = (�j)!(�)[ �:

The above statements still holds if we replace cohomology by S1-equiva-
riant cohomology.

Remark. It is crucial to have an exact Lagrange embedding
as exactness will prevent interaction between the di�erent factors in
H�(U2;� � U2;�; ��2). Indeed such interaction would mean that there
are trajectories of the gradient ow connecting H�(�0L) and H

�(�cL)
for some c 6= 0. This will then imply that the isolating blocks are one
below the other, hence h�; ci 6= 0.

Remark. If f : M ! N is a map between manifolds, we may
de�ne a cohomological push-forward f ! : H�(M) ! H�+k(N) (k =
dimN � dimM) satisfying f !(x [ f�(y)) = f !(x) [ y. We may write f
(up to homotopy) as the composition of an embedding and a �bration.
Then, f ! corresponds to integration over the �bers in the case of a
�bration. If f is an embedding, the Thom isomorphism sends H�(M)
to H�+kc (U) where U is a tubular neighbourhood ofM in N , while there
is an obvious map H�+kc (U) ! H�+k(N). Composing these two maps
yields f !.

It seems impossible to extend the de�nition of f to maps like �j
while preserving nontriviality and the identity f !(x[f�(y)) = f !(x[y).

On the submodule H�(Li) of H�(�0Li) (i = 1; 2) we would like that
(�j)! and j! coincide. We shall see in Section 6 that this is true if j
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is an exact Lagrange embedding. In fact we shall see shortly that we
derive the non existence of certain exact Lagrange embeddings from the
algebraic impossibility of �nding (�j)! with these property.

If j : L! N is a map, we denote by �j the induced map �L! �N .
Theorem 5.1 is based on the following:

Proposition 5.2. With the assumptions of Theorem 5.1, there is
for each positive c a map (�cj)!H�(�c0L)! H�(��0N) satisfying

(�jc)!(� [ (�jc)��) = (�jc)!(�)[ �:

Moreover the same holds if we replace H� by H�
Z=r.

The map (�jc)! has been constructed above. We still have to prove
that (�j)! satis�es the required identity. In fact, in our framework, the
map (�j)! is obvious, while we have to construct (�j)�.

Let us transpose once more our situation in an abstract setting.
Let E be a vector bundle over a space B, f a function on E, and � a
pseudogradient vector �eld for f .

IfB (hence E) has a boundary, we assume that the ow of � preserves
E.

Now if f is quadratic negative de�nite outside a compact set, we
have H�(Ec; Ea) ' H��i(B) where i is the index of the quadratic form.
The above isomorphism is induced by the Thom isomorphism of E.

We now assume that in Ec � Eb, there is a normally hyperbolic
manifold, P , so that

H�(Ec; Eb) ' H��j(P );

where j is the codimension of P (P is a repeller). Again the isomorphism
is the Thom isomorphism of the normal bundle of P .

We may now consider the inclusion

� : (Ec; Ea)! (Ec; Eb)

inducing a diagram:

H�(Ec; Ea) H�(Ec; Eb)

H��i(B) H��j(P )

��
�

6
�

6
�

pppppppppp�
�!
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We denote the dotted map by �!. We now prove

Lemma 5.3. Let  be the restriction to P of the projection E
�
! B.

Then we have for any w in H�(P ), y in H�(B),

�!(w [ �(y)) = �!(w)[ y :

Remark. We also have the following result. Let z in H�(B). Then

�!(h�(y); w; �(z)i) = hy; �!(w); zi ;

where ha; b; ci denotes Massey's triple product. Similar results hold for
generalized Massey products (see [30, pp.290-297] and [27]).

Proof. The map  de�nes an H�(B)-module structure on H�(P ).
This structure is the same one induced by the natural map H�(E) !
H�(P ); note that H�(E) � H�(B). Now all the maps in the above
diagram are H�(E)-module homomorphisms. It is clear for ��, and also
for both Thom isomorphisms, since they are restrictions of the Thom
isomorphisms associated to the inclusions B ,! E and P ,! E.

From this we conclude that �! must be an H�(B) module homomor-
phism. q.e.d.

Proof of 5.2. We apply Lemma 5.3 to E = V1;�, and get

B = ��N ; P = ��L ; c = � ; b = � ; a = � :

This tells us that the map (��j)! is a (��j)� module homomorphism,
that is what we wanted to prove. q.e.d.

Finally to prove 5.1, we have to show that all the maps (��j)� which
we obtained are somehow compatible as we change H .

Let us consider a Hamiltonian H1 satisfying the assumptions of Sec-
tion 4, as well as (1) and (2) of this section. In particular outside DR,
we have that H1 = 1H0.

Now we set H2 to be equal to H1 in DR0=2 for
R0

2 > R, and H2(z) =e2(H0) where e2 is a function such that e2 is convex, with derivative
increasing from 1 to 2. We shall assume that e2(H0) = 2 �H0 outside
DR0 .

Now as we go from H1 to H2, we introduce new periodic orbits in
DR0 �DR0=2, corresponding to closed geodesics with length in [1; 2].

We may choose e2 (and R0) so that all these critical values lie above
those of the critical points inside BR0=2. Indeed, outside BR, H2(q; p) =
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h2(jpj), and the critical value corresponding to a periodic orbit on jpj = t
of length h0(t) is given by h0(t)t � h(t), that is the ordinate of the
intersection of the tangent to the graph of h at t. Now we assume
that for R � t � R0

2 , h
0(t) = 1 is not the length of any geodesic.

Figure 5.2

We may in fact assume that this still holds for  in ]1 � "; 1 + "[
so that we only have to consider the quantities h0(t) � t�h(t) for h0(t) �
1 + ". If h0 goes from 1 to 2 as t goes from t0 to t0 + � , then for
h0(t) � 1 + ", we have h(t) � a + 1t0 + (1 + ")(t � t0) and hence
h0(t) � t � h(t) � �a + "t0. For t0 large enough, this will be arbitrarily
large.

Now, let b separate the two families of critical values which associ-
ated to geodesics inside and outside DR0=2. We thus have, according to
Proposition 2.3,

I�
�
U1;b(

R0

2
)� U1;a(

R0

2
); ��

�
' �N�

bN;

I�
�
U1;c(R0)� U1;a(R0); ��

�
' �N�

cN :

Now the map
U1;b=U1;a! U1;c=U1;a
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induces a map �N�
bL! �N�

cL.
From the de�nitions it is easy to check that this map is in fact

induced by the inclusion �icb : �
bL! �cL.

On the other hand, we have the maps constructed in 5.2,

H�(�bL)! H�(��N)

and

H�(�cL)! H�(��N) :

We claim that the following diagram is commutative:

H�(�bL) H�(�cL)

H�(��N)

�
(�icb)

�

Q
Q
QQk

(�bj)! �
�
��3

(�cj)!

The map �bL! ��N is obtained using the Hamiltonian H1, while the
map �cL! ��N is obtained using H3, where H3 looks like H2, except
for the fact that all the new critical values are below zero; this is easy
to achieve; see Figure 5.2.

We shall denote by U ci (i = 1; 2; 3) the sets U1;c associated to Hi.
We claim that the following canonical isomorphisms hold:

U b2=U
a
2 ' U b1=U

a
1 ;

and

U c2=U
a
2 ' U c3=U

a
3 for a small enough;

U c3=U
��
3 ' U c1=U

��
1 ' U b1=U

��
1 :

Indeed, the �rst isomorphism follows from 2.3 since H1 = H2 in DR,
and the periodic orbits of H2 (and of any linear interpolation between
H1 and H2) outside DR have action above b.

As for the second one, the same argument applies, except for the fact
that the assumptions of 2.3 will be satis�ed only if a is small enough,
since we deform H2 to H3, the action of the periodic orbits outside
BR0=2 moves down from [b; c] to a compact subset of ] � 1; 0[. The

maps (�bj)!, (�cj)!, (�icb)
� are induced by the maps :

U b1=U
a
1 ! U b1=U

��
1 with � > 0 small, and a small enough;

U c3=U
a
3 ! U c3=U

��
3 ;

U b2=U
a
2 ! U c2=U

a
2 :
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As we identify U b2=U
a
2 with U b1=U

a
1 and U c2=U

a
2 with U c3=U

a
3 , we may

compose the last two maps to a map U b1=U
a
1 ! U c3=U

��
3 . Finally as

we identify U c3=U
��
3 with U b1=U

��
1 , we get the map U b1=U

a
1 ! U b1=U

��
1

inducing �bj, and thus prove (�icb)
�(�cj)! = (�bj)!.

As a result we get a map

H�(�bL)! H�(�N) :

Using a similar argument, we may replace �bL by �L, and hence get a
map (�j)!. That this map is a H�(�N) module homomorphism (using
(�j)�) follows from the fact that this is true for (�cj)!. q.e.d.

We conclude this section with a remark. Let j : L ! N . Then we
have a map j! : H�(L)! H�(N).

On the other hand we have the maps ci : Li ! �Li associating to a
point in Li the constant loop at this point. We claim

Proposition 5.4. The following diagram is commutative

H�(L) H�(N)

H�(�L) H�(�N)

-j!

6
c�
2

-(�j)!

6
c�
1

There is also a commutative diagram for S1 equivariant cohomology,
where H�(�Li) is replaced by H�S1(�Li), and H

�(Li) by

H�(Li)
H�(BS1):

Proof. This follows immediately from the equality

(�icb)
�(�cj)! = (�bj)! :

If H1 has small C
2 norm, there are no periodic orbits but the constant

ones, and then (�bj)! ' j! and (�icb)
� corresponds to c�1. Thus, associ-

ated to H1, we have a commutative triangle:

H�(L) H�(N)

H�(�N)

-
p

p

p

p

p

p

p

p

p

p

p

p

pR

6

c�1
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The other triangle is obtained similarly. q.e.d.

6. Loops spaces, iterations, applications

In the previous section we proved that if L2 ! T �L1 is an exact
Lagrange embedding, there is a map (�j)! : H�(�L2)! H�(�L1) such
that the following hold:

(i) (�j)!(x[ (�j)�(y) = (�j)!(x)[ y.

(ii) If ci is the natural embedding from Li ! �Li induced by the
inclusion of constants, we have j!c�2 = c�1(�j)!.

The main di�culties in �nding obstructions to the existence of such
a map are due to the fact that for a general manifold M , very little is
known about the algebra H�(�M). The theory of minimal models, due
to Sullivan, only deals with rational cohomology of simply connected
spaces (or at least with nilpotent fundamental group). However, even
in this case, very few general properties of the above cohomology ring
are known.

One of the results that we shall be using is due to Burghelea, Fiodor-
owicz and Gajda, it describes how the map e(k) induced by iterating k
times a loop, acts on this cohomology.

Theorem. ([6]) All cohomologies being intended with rational co-
e�cients, we have that H�(�M) decomposes, under the action of e(k)
into subspaces H�;i(�M), eigenspaces for the eigenvalue ki. These sub-
spaces do not depend on k. Moreover we have H�;0(�M) = e�(M),
where e is the evaluation map.

The aim of this section is to prove:

Proposition 6.1. All cohomologies being intended with rational
coe�cients, we have

(�j)!e� = e�j!

We shall need the following lemma.

Lemma 6.2. Let S : M � N � Rk ! R be a g.f.q.i. for
L � T �(M�N). Let LM = L\f(x; y; �; 0)g=fyg= L\T �(M�N)jM=N .
Then LM is a Lagrange submanifold of T �M , provided L is trans-
verse to ��N the conormal to N . This implies that for each (x; �) the
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equation @S
@y = 0 has a unique nondegenerate solution y(x; �). Then

SM(x; �) = S(x; y(x; �); �) is a g.f.q.i. for LM .

The proof is obvious.
Let � =  k be close to the identity map, and S� be the generating

function of �� � f(zj; �(zj+1) j j 2 Z=rZg. Let ~er(k) be the map
(zj ; Zj)! (zkj ; Zkj). Then ~er(k)(�	;k) ' ��,

(�j ;  
k(�j+k)! (�kj ;  

k(�kj+k)) ' (�j;  
k(�j+1))

We now claim that S ;k is equivalent to S . Indeed let us write �	 as

f(�l;  (�l+1) j l 2Z=krZg;

we may consider its reduction through

zkj = Zkj ; zkj+1 = Zkj+1; : : : ; zkj+k�1 = Zkj+k�1 ;

that is we make

�kj =  (�kj+1); �kj+1 =  (�kj+2); : : : ; �kj+k�1 =  (�kj+k);

or else

�kj =  k(�kj+k); �kj+i =  k�i(�kj+k) i = 0; : : : ; k:

Using the coordinates (qj ; Pj ; pj � Pj ; Qj � qj) we get

fqkj ; Pkj; pkj � Pkj ; Qkj � qkj) j (Qkj ; Pkj) =  k(qkj+k ; pkj+k)g:

So we have S� as a generating function, and S ;k ' S� according
to the above lemma. The map ~er(k) which we obtain induces on the
base Ur;� a map �j ! �kj , that is er(k). Through this map, S ;k and S�
coincide so that the map ~er(k) induces er(k) on �rN .

Since f�j!2 = j!1f
�, we have:

W1A
f
�! W2x??j1 x??j2

P1
k
�! P2

Using the results from Section 5, it follows that er(k)� and (�j)!
commute, so that (�j)! preserves H�;0(�M). Because c�(�j)! = j!c�,
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we see that e�c� is the projection on the subspace H�;0(�M). This
concludes the proof of our proposition.

Remark. We have used here the fact that e�(H�(M)) = H�;0(�M).
This follows from [6], because e� is injective, its image is obviously con-
tained in H�;0(�M), and we have equality of dimensions.

Remark. We shall also use the following generalization of the
identity (i) of this section. Denoting the Massey's triple product by
< u; v; w >, we have

(�j)!(< (�j)�(x); y; (�j)�(z) >) � (< x; (�j)!(y); z >);

which again follows from a similar property of the Thom isomorphism.

This concludes our proof of the MAIN THEOREM. The equivariant
generalization is left to the reader, since it o�ers no special di�culty,
and we only used it in the proof of Proposition 0.10.

7. The Maslov class of embedded Lagrange submanifolds

Let j : L! T �M be a Lagrange embedding, L andM being compact
manifolds, and p : L ! M the composition of j with the projection
T �M !M . From the results obtained in the previous sections, we may
conclude that if deg(p) = 0, there is some obstruction to the exactness
of j, and moreover this obstruction lives in H�d(�M) for some �nite d
(corresponding to the degree of the tied class z plus n). This means that
even in the case where j is not exact, the cohomology of I�(U1;��U1;�; �)
may not coincide with H�(�M) in degree less than d. Now when j is
not exact, the cohomology of I�(U1;" � U1;�; �) is given as follows (see
Section 5). H�(�0L) becomes

�p(c)=0;<�;c>=0H
��m(c)(�cL);

where c is a free homotopy class of loops on L, and the condition p(c) = 0
means that c is contractible as a loop in T �M . Also, only the homotopy
classes with < �; c >= 0 occur, since for the other ones, either the
critical level obtained will be either above " or below �, provided we
take these two numbers close enough to 0.

The really new fact in the nonexact case is that there may be crit-
ical levels above �, corresponding to connected components of �cL
such that < �; c >> 0. Each of this contributes to the cohomology of
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I�(U1;l+" � U1;l�"; �) (l =< �; c >) by H��m(c)(�cL). But we see that
this vanishes in degrees less thanm(c). If them(c) such that< �; c >> 0
are all larger than d + 1, the contributions of the H�(�cL) to the to-
tal cohomology in degree less than d of I�(U1;� � U1;�; �) will vanish,
so that the total contribution is given only by the contractible loops.
Thus we may repeat the argument of Section 6, and deduce from this
that the main theorem still holds in degree less than d. As a result, our
obstructions to the existence of exact Lagrange embedding still hold in
the nonexact case, provided the proof only involves cohomology classes
of degree less than d, and the Maslov class satis�es

< �; c >> 0 =) m(c) > d+ 1:

In particular, the proof of Theorem 0.4 does not involve cohomology
classes of degree larger than dM = deg(z) + dim(M).

We hence have proved:

Proposition 0.12. Let M satisfy the �rst assumption of Theorem
0.4 and let j : L! T �M be a Lagrange embedding such that deg(p) = 0.
Then there exists c in H1(L) such that:

(i) c 2 Ker(p),
(ii) < �; c >> 0 (so in particular c =2 Ker�),
(iii) < �(j); c >� dM (dM depends not on L, but only on M).

Corollary. With the assumptions of the above proposition, we have
that � is not in the image of p1 : H1(M)! H1(L).

Appendix

S1 and Z=k equivariant cohomologies

Let M be a S1 space. Let S1 be the unit sphere in a Hilbert space
endowed with the S1 action ei�(zj)j2N= (ei�zj).

Then M � S1 is a free S1 space for the diagonal action ei�(m; z) =
(ei�m; e�i�z), and we denote by MS1 the quotient space M � S1=S1.
We then de�ne H�S1(M) to be H�(MS1). We refer the reader to [3] for
more details, but remark that most natural constructions from ordinary
cohomology carry over trivially to the equivariant case.

Let us point out that we have two �brations associated to the above
construction.

First the �bration M ! MS1 ! S1=S1 = CP1 yields a spectral
sequence with Ep;q

2 = Hp(CP1)
Hq(M), converging to H�S1(M).
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For the second �bration S1 ! M � S1 ! MS1 , we notice that
M � S1 has the homotopy type of M since S1 is contractible. This
yields a spectral sequence with E

p;q
2 = H

p
S1
(M)
Hq(S1) converging to

H�(M). Since Hq(S1) is nonzero only if q = 0 or 1, this last sequence
has dk = 0 for k � 3. It is determined by

d2 : H
p(MS1)
H

1(S1)! Hp+2(MS1)
H0(S1):

Because H0(S1) ' H1(S1) ' R, d2 is determined by some map d :
H�(MS1) ! H�+2(MS1). It is a classical fact that d is the multipli-
cation by c 2 H2(MS1), the �rst Chern class of the above S1 bundle.
Because Ep;q

3 ' Hp+q(M) and Ep;
3 is the cohomology of Ep;q

2 ; d2), these
information may be summarized by the Gysin exact sequence

! Hp+1(MS1)
p�
! Hp+1(M)!

p!
Hp(MS1)

[c
! Hp+2(MS1);

where p is the projection M � S1 ! MS1 , and p! the map induced in
cohomology by integration over the �bers of p.

Since Ep;q
1 ' Ep;q

3 , H�(M) decomposes into two subspaces corre-
sponding to H�(MS1) 
H0(S1) and H�(MS1)
 H1(S1). The map p�

has for image the �rst factor (i.e., Ep;0
3 ), while p! corresponds to the pro-

jection on the second one Ep;1
3 identi�ed to the kernel of multiplication

by c in Hp
S1
(M).

We would like to consider the following problem. Let M be a S1

space; we may of course consider M as a Z=k space for any k > 1,
if we look at Z=k as the subgroup of k-roots of 1 in S1. We wish to
understand whether the knowledge of H�

Z=k(M) determines H�
S1
(M).

Now MZ=k, that we shall denote by Mk, is the quotient
(M � S1)=(Z=k). Thus MS1 = Mk=S

1; and we have the following
diagram of �brations

S1 M � S1 MS1

S1 Mk MS1

-

?

-

? ?
- -

the vertical map from S1 to S1 corresponds to z 7! zk .
This diagram induces a map between Gysin exact sequences:
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H
�

S1 (M) H
�(Mk) H

��1

S1
(M) H

�+1

S1
(M)

H
�

S1 (M) H
�(M) H

��1

S1
(M) H

�+1

S1
(M)

-

?
id

-

? ?
�k

-[kc

?
id

-

- - -[c -

Note that if p divides k, then

H�
Z=k(M ;Z=p)' H�(MS1 ;Z=p)
H�(S1;Z=p):

The map between H�
Z=k(M ;Z=p) and H�

Z=kd(M ;Z=p) induced by the
map Mk !Mkd corresponds to the map

id
 �d : H
�(MS1 ;Z=p)
H�(S1;Z=p)! H�(MS1 ;Z=p)
H

�(S1;Z=p)

where �d : H
�(S1;Z=p)! H�(S1;Z=p) is the identity on H0 and mul-

tiplication by d on H1.
Note that if p divides d, the map id
 �d has both kernel and image

isomorphic to H�(MS1 ;Z=p). Moreover for p such that H�(MS1 ;Z) has
no p-torsion, we have

H�(MS1 ;Z=p) = H�(MS1 ;Z)
Z=p;

H�(MS1 ;Q) = H�(MS1 ;Z)
Q:

Thus H�(MS1 ;Q) determines the free part ofH
�(MS1 ;Z), which in turn

determines H�(MS1 ;Z=p) and hence H�
Z=k(M ;Z=p).

Vice versa, H�(MS1 ;Z=p) may be recovered from H�(Mk;Z=p) and
H�(Mkp;Z=p), as the image of H�(Mkp;Z=p

`)! H�(Mk;Z=p), the map
being induced by the Z=p covering Mk ! Mkp.

This may be summarized in

Proposition. Let p divide k, and assume R = H�(MS1 ;Z) has no
p-torsion. Then R
Q = H�(MS1 ;Q) and

H�
Z=k(M;Z=p) = R
H�(S1;Z=p):

Moreover R 
Z=p may be identi�ed with the image of H�
Z=kp(M;Z=p)

in H�
Z=k(M;Z=p).
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