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CONTINUOUS FAMILIES OF ISOSPECTRAL

RIEMANNIAN METRICS WHICH ARE NOT

LOCALLY ISOMETRIC

CAROLYN S. GORDON & EDWARD N. WILSON

Introduction

Two compact Riemannian manifolds are said to be isospectral if
the associated Laplace-Beltrami operators, acting on smooth functions,
have the same eigenvalue spectrum. If the manifolds have boundary, we
specify Dirichlet or Neumann isospectrality depending on the boundary
conditions imposed on the eigenfunctions.

Numerous examples of isospectral compact manifolds have been con-
structed; see, for example, [4], [5], [7], [12], [13], [14], [15], [16], [17], [19],
[24] and [26] or the survey articles [1], [2], [6], and [9]. Until recently how-
ever, all known examples of isospectral manifolds were locally isomet-
ric, though not globally isometric. In particular, the closed isospectral
manifolds had a common cover. Then Z. Szab�o [25] gave a construc-
tion of pairs of isospectral compact manifolds with boundary which are
not locally isometric, and the �rst author [10], [11] constructed pairs of
isospectral closed Riemannian manifolds which are not locally isomet-
ric. Szabo pointed out that the curvature operators of these isospectral
manifolds have di�erent eigenvalues, thus identifying a speci�c local in-
variant which is not spectrally determined.
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The �rst goal of this paper is to exhibit continuous families of
isospectral Riemannian manifolds which are not locally isometric, i.e.,
we continuously deform the Riemannian metrics in such a way that the
local geometry changes but the Laplace spectrum remains invariant. In
fact we prove:

Theorem 0.1. Let B be a ball in Rm; m � 5, and let T r be a torus
of dimension r � 2. Then there exist continuous d-parameter families
of Riemannian metrics on the compact manifold B � T r which are both
Dirichlet and Neumann isospectral but not locally isometric. Here d is
of order at least O(m2).

A precise lower bound on d is given in Theorem 2.2.
We also consider closed manifolds. Here we have not been able

to construct examples of continuous isospectral deformations in which
the metrics are not locally isometric. However, we do construct new
examples of pairs of isospectral closed manifolds which are not locally
isometric.

Next we examine the local geometry of the isospectral manifolds.
Since all the manifolds considered in this paper are locally homogeneous,
the curvature does not vary from point to point. In particular the
eigenvalues of the Ricci tensor are constant functions on each manifold.
We exhibit speci�c examples of isospectral deformations of manifolds
with boundary for which the eigenvalues of the Ricci tensor deform
non-trivially. Similarly, we exhibit pairs of isospectral closed manifolds
whose Ricci tensors have di�erent eigenvalues. These examples illustrate
for the �rst time that the Ricci curvature is not spectrally determined.

The paper is organized as follows:
In x1, we give a method for constructing isospectral metrics onB�T r

which are not locally isometric. The construction reduces to a problem
in linear algebra:

(P) Find pairs of r-dimensional subspaces of so(m) and an isomor-
phism between these subspaces such that corresponding elements
have the same spectrum but the two subspaces are not conjugate
by any orthogonal transformation.

As will be explained in x1, each subspace of so(m) gives rise to a two-
step nilpotent Lie algebra with an inner product and thus to a simply-
connected nilpotent Lie group with a left-invariant Riemannian metric.
The non-conjugacy condition in (P) guarantees that the resulting pair
of nilpotent Lie groups with metrics are not locally isometric. The
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manifolds in Theorem 0.1 are domains with boundary in these nilpotent
Lie groups (more precisely, in nilpotent Lie groups covered by these
simply-connected ones). We show that the spectral condition in (P)
guarantees the isospectrality of these compact manifolds with boundary.
We end x1 with a 7-dimensional example.

In x2, we give an explicit construction of continuous families of 2-
dimensional subspaces of so(6) satisfying pairwise the condition (P) de-
scribed above. Moreover, we show that form = 5 and form � 7, generic
two-dimensional subspaces of so(m) belong to d-parameter families of
subspaces which satisfy pairwise the condition (P), where d is of order
O(m2). This completes the proof of Theorem 0.1.

In x3 we consider nilmanifolds, i.e., closed manifolds arising as quo-
tients �nG of nilpotent Lie groups by discrete subgroups, endowed with
Riemannian metrics induced from left-invariant metrics on G. We gen-
eralize the construction given in [10], [11] of isospectral nilmanifolds.
We construct seven and eight-dimensional examples of isospectral nil-
manifolds by taking quotients of suitable pairs of the simply-connected
nilpotent Lie groups occurring in the examples in x1 and x2.

x4 examines the curvature of the various examples, in particular
showing that many of the isospectral manifolds have di�erent Ricci cur-
vature.

An appendix supplies a proof of a result needed in x3.
We wish to acknowledge Zoltan Szab�o's beautiful work [25] which

inspired Theorem 0.1.

1. Lie algebra criteria for local isometry and isospectrality

A left-invariant Riemannian metric g on a connected Lie group G
corresponds to an inner product < � ; � > on the Lie algebra g of G. We
will call the pair (g; < � ; � >) a metric Lie algebra. Recall that G is said
to be two-step nilpotent if [g; g] is a non-zero subspace of the center of
g. Letting z = [g; g] and v = z? relative to < � ; � >, we can then de�ne
an injective linear map j : z ! so(v; < � ; � >) by

(1:1) hj(z)x; yi= h[x; y]; zi for x; y 2 v; z 2 z:

Conversely, given any two �nite dimensional real inner product spaces
v and z along with a linear map j : z! so(v), we can de�ne a metric Lie
alegbra g as the orthogonal direct sum of v and z with the alternating
bilinear bracket map [�; �] : g� g ! z de�ned by insisting that z be cen-
tral in g and using (1.1) to de�ne [x; y] for x; y 2 v. Then g is two-step
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nilpotent if j is non-zero, and z = [g; g] if j is injective. We will always
assume j is injective.

In the sequel, we will �x �nite dimensional inner product spaces v

and z, use < � ; � > as a generic symbol for the �xed inner products on
v; z and g = v�z, and we will contrast properties of objects arising from
pairs j; j0 of linear maps from z to so(v).

Notation 1.2. (i) The metric Lie algebra de�ned as above from
the data (v; z; j) will be denoted g(j) and the corresponding simply-
connected Lie group will be denoted G(j). The Lie group G(j) is en-
dowed with the left-invariant Riemannian metric g determined by the
inner product < � ; � > on g(j).

(ii) Explicitly, G(j) may be identi�ed di�eomorphically (though not
isometrically) with the Euclidean space v�z consisting of all pairs (x; z)
with x 2 v; z 2 z. The group product on G(j) is given by

(x; z)(x0; z0) = (x+ x0; z + z0 +
1

2
[x; x0]):

The Lie algebra element in g(j) determined by x 2 v; z 2 z will be
denoted by x + z with the di�eomorphism exp : g(j) ! G(j) thereby
expressed by exp(x + z) = (x; z). The exponential map restricts to a
linear isomorphism between z � g(j) and the derived group [G;G] of G.

(iii) Suppose L is a lattice of full rank in z, i.e., z = z=L is a torus.
Denote byG(j) the quotient of the Lie groupG(j) by the discrete central
subgroup exp(L). Then G(j) is again a connected Lie group with Lie
algebra g(j). Di�eomorphically, G(j) may be identi�ed with v� z, and
the exponential map exp : g(j)! G(j) is expressed by

exp(x+ z) = (x; z) for x 2 v; z 2 z; and z = z + L 2 z:

We assign to G(j) the unique left-invariant Riemannian metric deter-
mined by < � ; � >. Thus the canonical projection from G(j) to G(j)
given by (x; z)! (x; z) is a Riemannian covering map as well as a Lie
group homomorphism.

(iv) For B = fx 2 v : kxk � 1g the unit ball around 0 in v and for
L as in (iii), denote by M(j) the subset B � z = exp(B + z) of G(j)
equipped with the inherited Riemannian structure. M(j) is thus a com-
pact Riemannian submanifold of G(j) of full dimension with boundary
di�eomorphic to S � z for S the unit sphere around 0 in v. (Here we
are using the identi�cations described in (iii). M(j) of course depends
on the choice of L, but we view this choice as �xed.)
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De�nition 1.3. Let v and z be as above.

(i) A pair j; j0 of linear maps from z to so(v) will be called equivalent,
denoted j ' j0, if there exist orthogonal linear operators A on v and C

on z such that

Aj(z)A�1 = j0(C(z))

for all z 2 z.

(ii) We will say j is isospectral to j0, denoted j � j0, if for each z 2 z,
the eigenvalue spectra (with multiplicities) of j(z) and j0(z) coincide,
i.e., there exists an orthogonal linear operator Az for which

Azj(z)A
�1
z = j0(z):

Proposition 1.4. Let v and z be �nite dimensional real inner prod-
uct spaces, j and j 0 linear injections from z to so(v), and L a lattice
of full rank in z. Let g(j), G(j), G(j), and M(j) be the objects de�ned
in 1.2 from the data (v; z; j;L) and let g(j0), G(j0), G(j0), and M(j0)
be the corresponding objects de�ned by the data (v; z; j0;L). Then the
following are equivalent:

(a) G(j) is locally isometric to G(j0);

(b) M(j) is locally isometric to M(j0);

(c) G(j) is isometric to G(j0);

(d) j ' j0 in the sense of De�nition 1.3.

Proof. The local geometries of G(j); G(j), and M(j) are identical.
Thus each of (a) and (b) is equivalent to saying that G(j) is locally
isometric to G(j0) which, by simple-connectivity, is equivalent to (c).
The second author showed in [27] that if (G; g) and (G0; g0) are two
simply-connected nilpotent Lie groups with left-invariant metrics g; g0

and associated metric Lie algebras (g < � ; � >), (g0; < � ; � >0), then
(G; g) is isometric to (G0; g0), if and only if there exist a map � : g! g0

which is both a Lie algebra isomorphism and an inner product space
isometry. In our case, equivalence of (c) and (d) follows by routine use
of (1.1) serving to reduce these conditions on � to j ' j0.

Theorem 1.5. Let v and z be inner product spaces, j; j0 : z ! so(v)
linear injections, L a lattice of full rank in z, and M(j) and M(j 0) the
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manifolds de�ned in 1.2 from the data (v; z; j;L) and (v; z; j0;L), respec-
tively. Suppose j � j0 in the sense of De�nition 1.3(ii). Then M(j) is
both Dirichlet and Neumann isospectral to M(j0).

The proof is similar to the argument given in [11] for the construction
of isospectral metrics on nilmanifolds (compact quotients of nilpotent
Lie groups by discrete subgroups). Before giving the proof, we give
a geometric interpretation of the condition j � j0 and establish some
notation.

1.6. Remarks and Notation. Suppose j � j0.

(i.) If z is one-dimensional, then j ' j0 in the notation of De�nition
1.3, with C being the identity operator on z. Thus the isometry con-
ditions of Proposition 1.4 hold with the isometry � from G(j) to G(j0)
given by �(x; z) = (A(x); z) with A as in 1.3(i). If L is any lattice in
z, the translations of G(j) and G(j 0) by elements of L commute with
� , and thus � induces global isometries between G(j) and G(j0) and
between M(j) and M(j0).

(ii.) If z is higher-dimensional, then G(j) need not be isometric to
G(j0), but the two manifolds admit many isometric quotients. More
precisely, consider any co-dimension-one subgroup W of the derived
group of G(j). Such a subgroup corresponds under the exponential map
to a co-dimension-one subspace of z, equivalently to the kernel of a non-
trivial linear functional � on z. Let z� be the orthogonal complement of
W in z. Then the two-step nilpotent Lie group G�(j) := G(j)=W with
the induced Riemannian metric is associated as in 1.2 with the data
(v; z�; jjz�). Observe that jjz� � j0jz� since j � j0. Thus by (i) and the

fact that z� is one-dimensional, we see that G�(j) is isometric to G�(j
0).

(iii.) If L is a lattice in z and if � 2 L�, i.e., � is integer-valued on
L, then the projection from z to z� maps L to a lattice L� in z�. The
associated quotients G�(j) and G�(j0), de�ned as in 1.2, are isometric.
Under the identi�cations in 1.2, the isometry 	� is given by 	�(x;�z) =
(A�(x);�z), whereA� 2 so(v) satis�es j0(z) = A�j(z)A

�1
� for z 2 z�. This

isometry restricts to an isometry between the compact submanifolds
M�(j) and M�(j0) of G�(j) and G�(j0) de�ned as in 1.2(iv).

(iv.) We will say two vectors � and � in L� are equivalent, denoted
� � �, if they have the same kernel. Denote the equivalence class of �
by [�] and denote the set of equivalence classes by [L�]. Observe that
G�(j), G�(j) and M�(j) depend only on the equivalence class of �.

Lemma 1.7. Let �� : G(j) ! G�(j) be the homomorphic projec-
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tion. Then the Laplacians � of G(j) and �� of G�(j) satisfy

��� ��� = � � ���:

Proof. It is well-known that the conclusion holds provided that the
projection is a Riemannian submersion with totally geodesic �bers. The
elementary proof that these conditions hold in our case is identical to
the proof of Proposition 1.5 in [11].

Note that �� gives G(j) the structure of a principal torus bundle.
Moreover, �� restricts to a Riemannian submersion fromM(j) toM�(j)
whose �bers are 
at tori.

1.8 Remark. �0 corresponds to the canonical projection v��z ! v

in the notation of 1.2. Moreover, G0(j) is a Euclidean space isometric to
(v; < �; � >). The �ber torus is isometric to (�z; < �; � >). In particular the
fact that �0 is a Riemannian submersion implies that the Riemannian
measure on G(j) coincides with the Lebesgue measure on v� �z.

Proof of Theorem 1.5. In the notation of 1.2, the derived group
of the Lie group G(j) is identi�ed with the torus �z. This torus acts
isometrically on G(j) and on the submanifold M(j) by left translations.
The resulting action of �z on L2(M(j)), given by

(1) (�( �w)f)(x; �z) = f(x; �z + �w);

clearly carries the space of smooth functions with Dirichlet boundary
conditions to itself. To see that it also leaves invariant the space of
smooth functions with Neumann boundary conditions, observe that the
normal derivative of a function f across the boundary of M(j) at the
point (x; �z), where x is a unit vector in v, is given by xf(x; �z) where xf
denotes the left-invariant vector �eld x on G(j) applied to f . Indeed

xf(x; �z) =
d

dt
f((x; �z)exp(tx)) =

d

dt
f((x; �z)(tx; 0)) =

d

dt
f((1 + t)x; �z)

by 1.2(ii),(iii). Since the torus �z lies in the center of G(j), the torus
action � commutes with all left-invariant vector �elds. In view of the
de�nition (1) of �, it follows that � leaves invariant the space of smooth
functions with Neumann boundary conditions.

By Fourier decomposition on the torus, we can write

L2(M(j)) = L2(B � �z) =
X
�2L�

H�;
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where

H� = ff 2 L2(B � �z) : �(�z)f = e2�i�(z)f for all �z 2 �zg:

By the comments above, the space of smooth functions on M(j) with
Dirichlet, respectively Neumann, boundary conditions decomposes into
its intersections with the H�. To avoid cumbersome notation, we will
refer to spec(�jH�

) with Dirichlet (or Neumann) boundary conditions
to mean the spectrum of the Laplacian of M(j) restricted to the space
of smooth functions in H� with the appropriate boundary conditions.

Set
H[�] =

X
���

H�:

(See Notation 1.6(iv).) De�ne H0
� and H0

[�] similarly using the data

(v; z; j0;L).
By Lemma 1.7 and Remark 1.8, ��0 intertwines the Laplacian � of

M(j), restricted to H0, with the Euclidean Laplacian on the ball B and
similarly for the Laplacian �0 of M(j0), restricted to H0

0. Thus with
either Dirichlet or Neumann boundary conditions, we have

(2) spec(�jH0
) = spec(�0

jH0

0
):

Next for 0 6= � 2 L�, the map ��� is a unitary map from L2(M�(j))
to H0 � H[�] (i.e., to ff 2 L2(B � �z) : �(�z)f = f for all z 2 ker(�)g).
Thus by 1.6(iii) and Lemma 1.7, we have with either Dirichlet or Neu-
mann boundary conditions that spec(�jH0�H[�]

) = spec(�0
jH0

0�H
0

[�]
): In

view of equation (2), we thus have with either boundary condition that
spec(�jH[�]

) = spec(�0
H0

[�]
) for every � 2 L�. The theorem now follows.

1.9 Remarks. (i) The intertwining operator T between the Lapla-
cians of M(j) and M(j0) can be written explicitly as T = ��2L�T�
where T� : H� ! H0

� is given by (T�f)(x; �z) = f(A�1� (x); �z) with A� as
in 1.6(iii).

(ii) By replacing the ball B with the vector space v everywhere in
the argument above, one obtains a unitary isomorphism T : L2(G(j))!
L2(G(j0)) satisfying �0 = T � � � T�1, where T is given by the same
formula as in (i), but with H� now being a subspace of L2(v� �z).

(iii) By working with the Fourier transform on L2(v � z) with re-
spect to the second variable, one can similarly obtain a unitary isomor-
phism between L2(G(j)) and L2(G(j0)) which intertwines the Lapla-
cians. (There are some technical complications in the proof; for exam-
ple, to de�ne T , one needs A�1� (x) to be measurable as a function of
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(x; �) 2 v � z�. Note that the Az 's in De�nition 1.3(ii), and thus the
A�'s in Remark 1.6, are not uniquely determined. We have shown that
one can choose the Az 's so that the map z ! Az from z to the orthog-
onal group O(v) is in fact real analytic on a Zariski open subset of z.)
Since G(j) is di�eomorphic to Rn for some n, we thus obtain metrics
on Rn whose Laplacians are intertwined. We omit the details here as
we are currently investigating the behavior of the scattering operators
for these metrics. We expect to address this issue in a later paper.

Example 1.10. In [10], [11], examples were given of pairs of
isospectral (in the sense of De�nition 1.3), inequivalent linear maps
j; j0 : z ! so(v), where z was 3-dimensional and v was 4n-dimensional
with n � 2. The resulting isospectral manifolds, given by Theorem 1.5,
thus have minimum dimension eleven. (The fact that j and j0 give rise
to isospectral compact manifolds with boundary was not observed in
[10], [11]. Instead j and j0 were used to construct isospectral closed
manifolds using the method described in x3 below.) We now construct
7-dimensional examples. As we'll see in x4, these have quite di�erent
geometric properties from the earlier examples.

Let H be the quaternions and P the pure quaternions, i.e., P =
fq 2 H : �q = �qg. For q 2 H , let L(q) and R(q) denote left and right
multiplication by q on H . For q; p 2 P , set J(q; p) = L(q)+R(p). Then
J(q; p) is skew-symmetric relative to the standard inner product on H .
Indeed the decomposition so(4) = so(3) + so(3) asserts that all skew-
symmetric operators are of this form. An easy computation shows that
the eigenvalues of J(q; p) are �i

p
jqj2 + jpj2 and �i

p
j(jqj2� jpj2)j; in

particular, the spectrum of J(q; p) depends only on the lengths of q and
p.

Now let v = H , viewed as R4 with the standard inner product, and
let z = P , viewed as R3 with the standard inner product. Let T and T 0

be �xed invertible linear operators on P such that T 0 = A � T where A
is an orthogonal operator of determinant �1. De�ne j; j0 : z ! so(v) by
j(q) = J(q; Tq) and j0(q) = J(q; T 0q) for all q 2 P . Then j � j 0 in the
sense of De�nition 1.3.

We next check whether j is equivalent to j0. The group SO(v)
consists of all operators L(a)R(b) where a and b are unit quaternions.
Conjugation of J(q; p) by LaRb gives J(a

�1qa; bpb�1). All orthogonal
transformations of v are compositions of elements of SO(v) with the
quaternionic conjugation map B of v. Conjugation of J(q; p) by B

yields J(�p;�q). Since detT 0 = �det (T ), it follows easily that the
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construction above always yields inequivalent maps j and j0.

With any choice of lattice L in z, Theorem 1.5 yields pairs of isospec-
tral 7-dimensional compact manifolds with boundary which are not lo-
cally isometric.

2. Examples of isospectral Lie algebra deformations

De�nition 2.1. Let v and z be �nite dimensional inner product
spaces and j0 any linear map from z to so(v). By a d-parameter non-
trivial isospectral deformation of j0 we mean a continuous function u 7!
ju from a pathwise connected subset D of Rd having non-empty interior
into the space of linear maps from z to so(v) such that

(i) j0 = ju0 for some u0 2 D;

(ii) ju � j0 for all u 2 D (see De�nition 1.3(ii));

(iii) ju 6' ju0 whenever u and u0 are distinct points in D (see De�nition
1.3(i)).

Equivalently, G = fg(ju) : u 2 Dg is a family containing g(j0)
of nilpotent metric Lie algebras all having v � z as their underlying
vector space, and the structure constants of g(ju) relative to any �xed
bases of v and z depend continuously on the parameter d-tuple u. Any
choice of lattice L of maximal rank in z gives rise to a d-parameter
family fM(ju)gu2D of isospectral compact manifolds with boundary as
in Theorem 1.5.

Throughout this section, we will consider the special case where
dim z = 2 with m = dim v variable. Our goal is to show that when
either m = 5 or m � 7, every \generic" j0 admits a d-parameter non-
trivial isospectral deformation with d > 1. For m = 6, we will exhibit
explicitly one-parameter deformations for certain j0 of a restrictive type.
For m � 4, straightforward calculations show that any two isospectral
j's are in fact equivalent, so non-trivial isospectral deformations of this
type are impossible.

Theorem 2.2. Let dim z = 2, let m = dim v be any positive integer
other than 1; 2; 3; 4, or 6, and let L be the real vector space consisting
of all linear maps from z to so(v). Then there is a Zariski open subset
O of L (i.e., O is the complement of the set of roots of some non-zero
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polynomial function on L) such that each j0 2 O admits a d-parameter
non-trivial isospectral deformation where

d � m(m� 1)=2� [m=2]([m=2]+ 2) > 1:

Proof. For j 2 L, let

(1) Ij = fj0 2 L : j0 � jg; Ej = fj0 2 Ij : j
0 ' jg:

The idea of the proof is to de�ne O in such a way that for j0 2 O,
Pj0 := Ij0 \ O is an embedded submanifold of L, which can be foliated
by its intersection with the sets Ej ; j 2 Pj0 , and for which there is a
submanifold Nj0 of Pj0 transverse to the foliation. Any parametrization
of Nj0 then de�nes a non-trivial isospectral deformation of j0.

Let l = [m=2] and, for 1 � k � l, de�ne Tk : so(v)! R by Tk(C) =
trace(C2k). If C and C0 are similar, i.e., have the same eigenvalues, then
trivially Tk(C) = Tk(C

0) for all k. But the converse is also true as can be
seen by a standard combinatoric argument showing that the coe�cients
of powers of � in the characteristic polynomial X (�; C) = det(�Id�C)
are polynomials in fT1(C); : : : ; Tl(C)g. If we de�ne Tk : z � L ! R

by Tk(z; j) = Tk(j(z)), this means that j � j0 , Tk(z; j) = Tk(z; j
0)

for all z 2 z and all k; 1 � k � l. Moreover, each of the functions Tk
is a polynomial on z � L, which is separately homogeneous of degree
2k in each variable. If we �x any orthornormal basis f�1; �2g of z and
denote a typical element z 2 z by z = s�1 + t�2, then expansion of
Tk(z; j) = trace(sj(�1) + tj(�2))

2k into (s; t) monomials gives us 2k + 1
coe�cient functions which are polynomials in j(�1) and j(�2) and thus
polynomials on L. Since

Pl
k=1(2k+1) = l(l+2), we conclude that there

is a map F : L! Rl(l+2) each of whose entries is a polynomial on L and
for which j � j0 , F (j) = F (j0). Let R be the maximum rank of F .
Then R is the largest integer for which there is some j 2 L such that the
tangent map F�j : L! Rl(l+2) has rank R. Since each of the entries in
any matrix representation of F�j is a polynomial in j and since a matrix
has rank � R precisely when the sum of the squares of the determinants
of its R � R minors is non-zero, it follows that the subset O1 of L on
which F has rank R is a Zariski open set. Moreover, for j0 2 O1, the
Implicit Function Theorem implies that there is a neighborhood U of j0
in L for which Ij0 \ U = F�1(F (j0)) \ U is an embedded submanifold
of co-dimension R.
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We now turn toward examination of the sets Ej in (1). The group
G = O(v)� O(z) acts on L by

(2) ((A;C) � j)(z) = Aj(C�1z)A�1;

and, by De�nition 1.3, j0 ' j , j0 = (A;C) � j for some (A;C) 2 G. Let
1v and 1z denote the identity operators on v and z. We now claim that
there is a Zariski open subset O2 of L such that for each j 2 O2; Ej is
the orbit of j under the subgroup K := O(v)�f�1zg and such that the
stability subgroup of K at j is f(�1v; 1z)g. To see this, �rst consider
any j 2 L and (A;C) 2 G such that (A;C) � j 2 Ej . Since Ej � Ij
and since j � C�1 = (A�1; 1) � (A;C) � j, we see that j � C�1 2 Ij .
Thus Tk(z; j � C�1) = Tk(z; j) for all z and k. In particular, C is
orthogonal both with respect to the given inner product on z and the
quadratic form z 7! T1(z; j) = trace(j(z))2 = � < j(z); j(z) >, where
< c; d >= trace(c dt) = �trace(cd) is the standard inner product on
so(v). Relative to any orthonormal basis f�1; �2g of z; T1(�; j) has matrix

�

�
jj(�1)j

2 < j(�1); j(�2) >
< j(�1); j(�2) > jj(�2)j

2

�
:

Unless this matrix is a scalar multiple of the 2� 2 identity matrix, i.e.,
unless

�1(j) := (jj(�1)j
2 � jj(�2)j

2)2+ < j(�1); j(�2) >
2

vanishes, there are precisely four transformations orthogonal with re-
spect to both forms, namely �1z and �C0 where C0 is the re
ection
leaving one eigenvector of the above matrix �xed while changing the
sign of the other. For j not a root of the polynomial �1, we con-
clude that C is one of these four transformations. But m � 5 means
l = [m=2] � 2 so C must also satisfy T2(z; j � C

�1) = T2(z; j), i.e.,
trace(j(z))4 = trace(j(C�1z))4 for all z 2 z. By straightforward but
tedious calculations, one can check that there is a fourth order poly-
nomial �2 on L for which T2(�; j � C

�1
0 ) 6= T2(�; j) when �2(j) 6= 0.

Thus when both �1(j) and �2(j) are non-zero, (A;C) � j 2 Ej ,
(A;C) = (A;�1z) 2 K. In this case, (A;C) � j = j if and only if either
C = 1z and A 2 O(v) commutes with j(z) for all z, or else C = �1z
and A anti-commutes with j(z) for all z. With f�1; �2g as above and
j1 = j(�1); j2 = j(�2), it's easy to select choices of j1 and j2 for which
no non-zero linear operator A on v anti-commutes with both j1 and j2,
while �1v are the only orthogonal operators commuting with both j1
and j2. Moreover, these properties are equivalent to saying that the
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linear map �j(B) := (j1B �Bj1; j2B �Bj2) from gl(v) to gl(v)� gl(v)

has one-dimensional kernel while e�j(B) := (j1B + Bj1; j2B + Bj2) is
injective, conditions which can be expressed by the statement that cer-
tain non-vanishing polynomials � and e� on L do not have j as a root.
Combining all of these arguments, when j belongs to the complement
O2 of the set of roots of �21 + �22 + �2 + e�2, the properties announced
above in our claim are satis�ed.

Let O = O1 \ O2; j0 2 O, and Pj0 = Ij0 ^ O. From above, Pj0
is a smooth manifold whose dimension is dimL � R � m(m � 1) �
[m=2]([m=2] + 2). For K = O(m) � f�1zg, it's trivial to check that
when any one of the polynomials de�ning O does not vanish at j, the
same is true for each member of the m(m�1)=2-dimensional orbit K �j;
i.e., O is closed under the action of K. Moreover, for j 2 O, we have
shown that the orbit K � j coincides with Ej and the stability subgroup
at j is Z := f(�1v; 1z)g. This means that the compact group K=Z
acts freely on the manifold Pj0 with orbits expressing equivalence of
elements. By the properties of compact transformation groups (e.g. [3,
p. 82{86]), there is a submanifold Nj0 of Pj0 such that (j; ~K) 7! ~K(j)
is a homeomorphism from Nj0 � (K=Z) onto an open neighborhood of
j0 in Pj0 . The dimension of Nj0 is then

d = dim Ij0 �m(m� 1)=2 �
m(m� 1)

2
� [m=2]([m=2]+ 2):

For m = 5 or m � 7, clearly d > 1 and any local parameterization of
Nj0 de�nes a d-parameter non-trivial isospectral deformation of j0.

2.3 Eight dimensional examples. For m = 6, the argument in
the proof of Theorem 2.2 breaks down since m(m�1)=2� [m=2]([m=2]+
2) = 15 � 15 = 0. In the language of the proof of Theorem 2.2, the
examples below correspond to choosing certain j0's where the rank of
the polynomial map F is less than R with the result being that the
isospectral family Ij0 in equation (1) is four-dimensional, while the sets
Ej contained in Ij0 are three-dimensional and admit a one-parameter
transversal. Lengthy and non-illuminating calculations are avoided by
�xing orthonormal bases for v and z and simply de�ning in concrete
matrix terms the members of the transversal.

Thus, take z = R2 and v = R6 with their standard ordered bases
and standard inner product. For a; b 2 so(6) and s; t 2 R, de�ne
ja;b(s; t) = sa + tb. Each linear map j : R2 ! so(6) is of the form
j = ja;b for some a; b 2 so(6). Fix for the remainder of the discussion an
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element a 2 so(6) which is in block diagonal form with 2 � 2 diagonal

blocks ai

�
0 �1
1 0

�
; 1 � i � 3, where 0 < a1 < a2 < a3. Consider all

matrices b 2 so(6) of the form

b =

2
6666664

0 0 b12 0 b13 0
0 0 0 0 0 0

�b12 0 0 0 b23 0
0 0 0 0 0 0

�b13 0 �b23 0 0 0
0 0 0 0 0 0

3
7777775

with (b12; b13; b23) 2 R3 � f0g.

We �rst note that if b and b0 are of this form, then ja;b ' ja;b0 ,
b0 = �b. Indeed, in the notation of equation (2), if ja;b0 = (A;C) � ja;b
for some A 2 O(6); C 2 O(2), then for �2 = (0; 1); ja;b0(�2) = b0 is a
rank-2 matrix similar to ja;b(C�1�2). But a simple calculation shows
that ja;b(s; t) has rank 2 only when s = 0. It follows that C�2 = ��2, so

C is one of �

�
1 0
0 1

�
, �

�
1 0
0 �1

�
, and then AaA�1 = �a, AbA�1 = �b0.

Since a1; a2; a3 are distinct, this forces A to be in block diagonal form
with 2� 2 diagonal blocks which either all commute or all anticommute

with

�
0 1
�1 0

�
. Using the speci�c form of b and b0, it follows in either

case that AbA�1 = b so b0 = �b.

Next an easy direct calculation yields

detf�Id� ja;b(s; t)g =
3Y

i=1

(�2 + s2a2i ) + �4t2
X
i<j

b2ij

+ �2s2t2(a21b
2
23 + a22b

2
13 + a23b

2
12):

Comparing coe�cients, it follows that ja;b � ja;b0 , (b12; b13; b23) and
(b012; b

0
13; b

0
23) satisfy the equations

(i)
X
i<j

b2ij � (b0ij)
2 = 0

and

(ii) a21(b
2
23 � (b023)

2) + a22(b
2
13 � (b013)

2) + a23(b
2
12 � (b012)

2) = 0:
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In view of equation (i), equation (ii) can be rewritten as

(ii0)
X
i<j

(a2i + a2j )(b
2
ij � (b0ij)

2) = 0:

The general solution of equations (i) and (ii') is

(b012)
2 = b212 + u(a22 � a21);

(b013)
2 = b213 + u(a21 � a23);

(b023)
2 = b223 + u(a23 � a22);

(*)

where u is any real number in the closed interval

I =

�
max

�
�b212
a22 � a21

;
�b223
a23 � a22

�
;

b213
a23 � a21

�
:

If we take any b for which I has non-empty interior and, for each u 2 I ,
de�ne b(u) as the unique solution of the above equations for which bij(u)
has the same sign as bij for all i; j, it follows that u ! ja;b(u) is a 1-
parameter non-trivial isospectral deformation of ja;b.

3. Compact nilmanifolds

A compact Riemannian nilmanifold is a quotient N = �nG of a
simply-connected nilpotent Lie group G by a (possibly trivial) discrete
subgroup �, together with a Riemannian metric g whose lift to G is
left-invariant.

We now recall a method, developed in [11], for constructing isospec-
tral compact Riemannian nilmanifolds. For convenience, we'll restrict
our attention to two-step nilmanifolds, although Theorem 3.2 below can
be formulated in the context of nilmanifolds of arbitrary step. Even in
the two-step case, the formulation of Theorem 3.2 in [11, Theorem 1.8]
is slightly more general than that given here.

Notation and Remarks 3.1. (i) A nilpotent Lie group G admits
a co-compact discrete subgroup � if and only if the Lie algebra g of G
has a basis B relative to which the constants of structure are integers
(see [22]). If B is such a basis and A is the integer span of B, then
exp(A) generates a co-compact discrete subgroup of G. Conversely, if
� is a co-compact discrete subgroup of G, then log(�) spans a lattice
of full rank in g, where log : G ! g is the inverse of the Lie group
exponential map.
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(ii) We use the notation of 1.1 and 1.2. Thus a simply-connected
nilpotent Lie group G = G(j) with a left-invariant metric is de�ned
by data (v; z; j). If � is a co-compact discrete subgroup of G, then �
intersects [G;G] in a lattice of full rank L, which we may also view as
a lattice in z under the identi�cation in 1.2. In summary, a compact
nilmanifold N = �nG is de�ned by the data (v; z; j;�) and � determines
a lattice L in z. In the sequel, we will consider �xed (v; z;L) but vary
the choice of j with the requirement that the resulting simply-connected
nilpotent Lie group G(j) admit a co-compact discrete subgroup � whose
intersection with the derived group of G(j) is given by L. We will denote
the nilmanifold �nG(j) by N(j;�).

(iii) We continue to use the notation of 1.6 as well. For � 2 L�, the
projection G(j) ! G�(j) = G(j)=ker(�) sends � to a co-compact dis-
crete subgroup ��. We denote by N�(j;�) the quotient ��nG�(j) with
the Riemannian metric induced by that of G�(j). Note that N0(j;�) is
a 
at torus. Letting Av be the image of log(�) under the orthogonal
projection from g(j) to v, then N0(j;�) is isometric to the torus v=Av

with the 
at metric de�ned by the inner product on v.

Theorem 3.2. [11] Let N(j;�) and N(j0;�0) be compact Rieman-
nian nilmanifolds associated with the data (v; z;L) as in 3.1. Sup-
pose that spec(N�(j;�)) = spec(N�(j0;�0)) for every � 2 L�. Then
spec(N(j;�)) = spec(N(j0;�0)).

We wish to correct an error in the version of this theorem given in
[11], Theorem 1.8: One must assume that the correspondence � ! �0

given there is norm-preserving if dim(z)�1. This assumption is actually
satis�ed in all the applications of Theorem 1.8 given in [11].

De�nition 3.3. We will say a two-step nilpotent Lie group G =
G(j) is non-singular if j(z) is non-singular for all z 2 z. We will also
say any associated compact nilmanifold N(j;�) is non-singular in this
case.

In [11], we studied non-singular nilmanifolds and proved the follow-
ing as a consequence of Theorem 3.2:

Theorem 3.4. In the notation of 3.1, let N(j;�) and N(j 0;�0) be
compact non-singular two-step Riemannian nilmanifolds associated with
the same data (v; z;L). Assume the following:

(i) spec(N0(j;�)) = spec(N0(j0;�0)) and

(ii) j � j 0. (See De�nition 1.3(ii).)
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Then spec(N(j;�)) = spec(N(j0;�0)).

Example 3.5. Examples of minimum dimension 11 were given
in [10], [11]. We now construct compact quotients of the pairs of 7-
dimensional isospectral simply-connected manifolds G(j) and G(j0) con-
structed in Example 1.10.

In the notation of Example 1.10, observe that the constants of struc-
ture of g(j) relative to the \standard" basis are integers provided that
the matrix entries of T relative to the standard basis of z are integers.
Thus we assume that the matrix entries of both T and T 0 are inte-
gers. We can then, for example, let A and A0 be the integer span of
the standard basis elements of v and z, and let � and �0 be the dis-
crete subgroups of G(j) and G(j0) generated by exp(A) and exp0(A0),
respectively. (See 3.1(i).) The nilmanifolds N(j;�) and N(j0;�0) triv-
ially satisfy condition (i) of Theorem 3.4; in fact, the tori N0(j;�) and
N0(j

0;�0) are isometric. Moreover, condition (ii) of Theorem 3.4 is au-
tomatic from the construction in 1.10. Thus the nilmanifolds N(j;�)
and N(j0;�0) are isospectral.

The non-singular compact nilmanifolds N are particularly easy to
work with as the quotient manifolds N�(j;�) de�ned in 3.1(iii) are
Heisenberg manifolds when � 6= 0; that is, the center of G� is one-
dimensional. In [14], the authors gave su�cient conditions for two
Heisenberg manifolds to be isospectral. (Pesce [21] later proved these
conditions are also necessary.) These conditions are used in [11] to prove
Theorem 3.4.

We want to �nd isospectral compact quotients of some pairs of
simply-connected nilpotent Lie groups associated with the Lie algebras
constructed in x2. Thus we need to generalize Theorem 3.4 to the pos-
sibly singular case. As always, we will assume that j(z) is non-zero for
all z 2 z (i.e., that z = [g(j); g(j)]). When � 6= 0, the quotient g�(j)
has one-dimensional derived algebra but may have a higher-dimensional
center. The corresponding Lie group is of the form G�(j) = H � A,
where H is a Heisenberg group and A an abelian group. Thus in view
of Theorem 3.2, we �rst need to examine isospectrality conditions for
compact quotients of groups of this form.

Notation 3.6. In the notation of 3.1, consider a nilmanifold
N(j;�) with z one-dimensional. We can write v as an orthogonal direct
sum v = u � a where a = ker(j(z)) for 0 6= z 2 z. (Note that a is
independent of the choice of z since z is one-dimensional.) The Lie
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algebra g(j) then splits into an orthogonal sum of ideals h � a, where
h = u+ z is a Heisenberg algebra.

Since a+ z is the center of g(j), log(�) intersects a+ z in a lattice K
of maximal rank. (See [22].) Let K� denote the dual lattice in (a+ z)�.
The inner product < ; > on a+z de�nes a dual inner product on (a+z)�

and thus de�nes a norm k k on K�.

Proposition 3.7. Using the notation of 3.1 and 3.6, let N(j;�)
be a compact nilmanifold and assume z is one-dimensional. Then
spec(N(j;�)) is completely determined by the following data:

(i) spec(N0(j;�)).

(ii) The eigenvalues of the linear operator j(z), where z is a unit vector
in z. (Since z is one-dimensional and j(z) is skew, the eigenvalues
of j(z) are independent of the choice of unit vector z.)

(iii) f(�(z); k�k) 2 R2 : � 2 K�g where z is given as in (ii).

The case in which M is a Heisenberg manifold is proven in [14] and
is the key lemma used in Theorem 3.4 above. Proposition 3.7 will be
proved in the Appendix.

3.8 Remark. In the special case that K = (K \ z) � (K \ a),
the data (iii) can be expressed more simply. The inner product < ; >
de�nes 
at Riemannian metrics on the circle z=(K \ z) and the torus
a=(a\K). Specifying the data (iii) is equivalent to specifying the length
of this circle and the spectrum of this torus.

Notation and Remarks 3.9. In 2.3, we considered a class of
eight-dimensional metric Lie algebras g(ja;b). We now show that for
certain choices of pairs j = ja;b and j0 = ja;b0 , the associated nilpo-
tent Lie groups G(j) and G(j0) admit isospectral compact quotients.
First observe that if the matrix entries a1; a2; a3 of a and b12; b13; b23
of b are integers, then the constants of structure of g(ja;b) with respect
to the standard bases fe1; : : : ; e6g of v = R6 and f�1; �2g of z = R2

are integers. Thus, if we let A be the lattice in v + z spanned by
fe1; : : : ; e6; �1; �2g, then exp(A) generates a co-compact discrete sub-
group �a;b of G(ja;b). (See 3.1.)

Theorem 3.10. In the notation of 2.3 and 3.9, assume that the
matrix entries of a; b, and b0 are integers, that g.c.d.(b12; b13; b23) =
g.c.d.(b012; b

0
13; b

0
23), and that the condition (*) of 2.3 is satis�ed. Then
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the compact Riemannian nilmanifoldsN(ja;b;�a;b) andN(ja;b0;�a;b0) are
isospectral.

Proof. Write N = N(ja;b;�a;b) and N 0 = N(ja;b0;�a;b0). We apply
Theorem 3.2. In the notation of 3.1(ii), the lattice in z = R2 associated
with both �a;b and �a;b0 is given by L = spanZf�1; �2g = Z2.

Let � 2 L�. In case � = 0, both N0 and N 0
0 are isometric to the

6-dimensional cubical torus, so spec(N0) = spec(N 0
0) holds trivially.

Next, observe that j(s�1 + t�2) = sa + tb is non-singular except when
s = 0. Thus, if �(�1) 6= 0, then ja;b(z) and ja;b0(z) are non-singular
similar operators for all z 2 z�, and therefore N� and N 0

� are Heisenberg
manifolds. Proposition 3.7 (see the simpli�ed version 3.8 with a = 0)
implies spec (N�) = spec (N 0

�).
It remains to consider the case ker(�) = R�1. In this case, G�(ja;b)

and G�(ja;b0) are isomorphic as Lie groups to H � A, where H is the
3-dimensional Heisenberg group and A = R4. Letting �� : G(ja;b) !
G�(ja;b) be the projection and writing X = ���(X) for X in the Lie
algebra g(ja;b), we have in the notation of 1.6, 3.6, and 3.9 that

a = ���
(ker(b)) = spanfe2; e4; e6; b23e1 � b13e3 + b12e5g;

u = ���
(v	 ker(b));

and z� = R�2. Moreover, letting K = ���(A) \ (a+ z�), we have

K = (K \ z�)� (K \ a)

with K \ z� = Z�2 and K \ a = spanZfe2; e4; e6; wg where

w = g.c.d.(b12; b13; b23)(b23e1 � b13e3 + b12e5):

Thus K is an orthogonal lattice isomorphic to Z4 � jwjZ.
The analogous statements hold of course when b is replaced by b0.

The data (ii) in Proposition 3.7 agree for N� and N
0
�; both are given by

the eigenvalues of b. (Recall that b and b0 are similar.) To see that the
data (iii), as simpli�ed in Remark 3.8, agree for N� and N 0

�, we need
only show that jwj = jw0j. This equality follows from the hypothesis of
the theorem and the fact that b212+ b213+ b223 = (b012)

2 + (b013)
2 + (b023)

2,
as can be seen from the isospectrality condition (�) of 2.3.

Example 3.11. Fix a choice of a with integer entries a1; a2; a3.
It is easy to �nd pairs b and b0 with integer entries bij and b0ij ; 1 �
i < j � 3, so that the isospectrality condition (�) in 2.3 holds, i.e., so
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that ja;b � ja;b0. We need only choose the parameter u in (�) so that
each of u(a2i � a2j ) is a di�erence of two squares; i.e, each u(a2i � a2j ) is
an integer congruent to 0; 1, or 3 mod 4. For a speci�c example, take
a1 = 1; a2 = 2; a3 = 3 and u = 3. We can then take b12 = 4; b13 =
7; b23 = 7; b012 = 5; b013 = 5; b023 = 8. In this example, the hypothesis
of Theorem 3.10 concerning the g.c.d. of the bi;j's is also satis�ed, so
Theorem 3.10 gives us a pair of isospectral Riemannian nilmanifolds.

4. Curvature of the examples

We compare the curvature of the various examples of isospectral
manifolds constructed in Sections 1-3. We continue to use the notation
established in 1.2 and 3.1. Since the manifolds G(j) are homogeneous,
the curvature does not vary from point to point and thus can be viewed
as a tensor on the vector space v+ z (i.e., on the Lie algebra g(j), iden-
ti�ed with the tangent space to G(j) at the identity). The curvatures
of the manifolds M(j) in 1.2 and of the closed nilmanifolds N(j;�) in
3.1 are the same as that of G(j).

The curvature of G(j) is easily computed. See [8] for details.

Proposition 4.1. Given inner product spaces v and z and a linear
map j : z ! so(v), let G(j) be the associated Riemannian manifold
constructed as in 1.2. Let fZ1; : : : ; Zrg be an orthonormal basis of z

and let S = 1
2

Pr
k=1 j

2(Zk). For X; Y 2 v and Z;W in z orthogonal
unit vectors, the sectional curvature K and Ricci curvature are given as
follows:

(i)

K(X; Y ) = �
3

4
k[X; Y ]k2;

K(X;Z) =
1

4
kj(Z)Xk2;

K(Z;W ) = 0:

(ii)
Ric(X; Y ) = hS(X); Y i;

Ric(X;Z) = 0;

Ric(Z;W ) = �
1

4
trace(j(Z)j(W )):

In particular, if j is injective, then the Ricci tensor is positive-
de�nite on z and negative semi-de�nite on v.
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Corollary 4.2. Fix inner product spaces v and z, and let j; j0 :
z ! so(v) be injective linear maps. Let Ric and Ric0 denote the Ricci
tensors of the associated manifolds G(j) and G(j 0). If j � j0, then

Ricjz�z = Ric0jz�z
:

Thus to compare the Ricci curvatures of the examples we need only
look at Ricjv�v. The eigenvalues of Ricjv�v are the eigenvalues of the
operator S in Propositon 4.1.

Example 4.3. We �rst consider the 7-dimensional manifolds con-
structed in Example 1.10 (see also Example 3.5). We assume that T and
T 0 are diagonal with respect to the standard basis of z with diagonal en-
tries (a; b; c) and (�a; b; c), respectively. Then both Ricjv�v and Ric0jv�v

are diagonalized by the standard basis of v. The four eigenvalues of
Ricjv�v are all the expressions of the form�1

2f(1�a)
2+(1�b)2+(1�c)2g

with an even number of choices of minus signs in the terms in paren-
theses. The eigenvalues of Ric0 are obtained by changing the sign of a;
equivalently, they are all the expressions of the form above having an
odd number of choices of minus signs.

Thus Examples 1.10 and 3.5 yield isospectral manifolds with di�er-
ent Ricci curvatures. We note, however, that the Ricci tensors have the
same norm.

Example 4.4. We consider the continuous families of isospectral
manifolds G(ju) constructed in Example 2.3, with ju = ja;b(u). Let
Su be the operator associated with ju as in Proposition 4.1. We have
Su = 1

2(a
2 + b(u)2). As noted above, the manifolds G(ju), u 2 I , have

the same Ricci curvature if and only if the linear operators Su; u 2 I ,
are isospectral. An explicit computation shows that, for example, when
a and b are chosen as in Example 3.11, then det(Su) depends non-
trivially on u. Thus the eigenvalues of the Ricci tensor of G(ju) (and of
M(ju)) depend non-trivially on u. In particular, the closed nilmanifolds
in Example 3.11 have di�erent Ricci curvature.

However, for all choices of a and b, trace(tSuSu) is independent of
u. Consequently, the norm of the Ricci tensor does not change during
any of the deformations.

Appendix

The proof of Proposition 3.7 is by an explicit calculation of the
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spectra. Using the Kirillov theory of representations of a nilpotent Lie
group, Pesce [20] computed the eigenvalues of an arbitrary compact
two-step nilmanifold. We �rst summarize his results.

Let N = (�nG; g) be a compact two-step nilmanifold. Thus G is a
simply-connected two-step nilpotent Lie group, and g is a left-invariant
metric on G. (We are temporarily dispensing with the notation estab-
lished in the earlier sections.) Recall that the Laplacian of N is given
by � = �

P
iX

2
i , where fX1; X2; : : : ; Xng is an orthonormal basis of

the Lie algebra g relative to the inner product < ; > de�ned by g. Let
� = �� denote the right action of G on L2(N); then the Laplacian acts
on L2(N) as � = �

P
i ��X

2
i .

Given any unitary representation (V; �) of G (here V is a Hilbert
space and � is a representation of G on V ), we may de�ne a Laplace
operator �g;� on V by �g;� = �

P
i ��X

2
i . The eigenvalues of this

operator depend only on g and the equivalence class of the representa-
tion �. The space (L2(N); �) is the countable direct sum of irreducible
representations (V�; ��), each occurring with �nite multiplicity. The
spectrum of N is the union, with multiplicities, of the spectra of the
operators �g;�� .

Kirillov [18] showed that the equivalence classes of irreducible uni-
tary representations of the simply-connected nilpotent Lie group G are
in one to one correspondence with the orbits of the co-adjoint action of
G on the dual space g� of the Lie algebra g of G. We will denote the
representation corresponding to the co-adjoint orbit of � 2 g� by ��.

Richardson [23] computed the decomposition of L2(�nG) into irre-
ducible representations �� for an arbitrary compact nilmanifold. In case
G is two-step nilpotent, this decomposition can be given very explicitly.

Notation A.1. Given � 2 g�, de�ne B� : g� g ! R by

B�(X; Y ) = �([X; Y ]):

Let g� = ker(B�) and let B� be the non-degenerate skew-symmetric
bilinear form induced by B� on g=g�. The image of log(�) in g=g� is a
lattice, which we denote by A� .

We will write �g;� for �g;�� .

Proposition A.2. (See [20].) Let N = (�nG; g) be a compact two-
step nilmanifold, let g be the Lie algebra of G, and let � 2 g�. Then
�� appears in the quasi-regular representation �� of G on L2(N) if and
only if �(log(�)\ g�) � Z. In this case the multiplicity of �� is m� = 1
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if �(z) = f0g, and m� = (detB�)
1=2 otherwise, where the determinant

is computed with respect to a lattice basis of A�.

Let < ; > be the inner product on g� de�ned by the Riemannian
inner product on g.

Proposition A.3. [20] Let z = [g; g].

(a) If �(z) = 0, then �� is a character of G and

spec(�g;�) = f4�2k�k2g:

(b) If �(z) 6= f0g, let �(�1)1=2d1; : : : ;�(�1)1=2dr be the eigenvalues
of B�. Then

spec(�g;�) = f�(�; p; g) : p 2 Nrg;

where

�(�; p; g) = 4�2
X

i=1;:::l

�(Zi)
2 + 2�

X
k=1;::: ;r

(2pk + 1)dk

with fZ1; : : : ; Zlg a g-orthonormal basis of g�. The multiplicity of
an eigenvalue � is the number of p 2 Nr such that � = �(�; p; g).

Proof of Proposition 3.7. We use the notation of 3.1, 3.6 and A.1,
and let G = G(j) and N = N(j;�). By an elementary and standard
argument, the part of spec(N) corresponding to all the characters ��
in part (a) of Proposition A.3 coincides with spec(N0(j;�)). Thus we
need only consider those representations �� with �(z) 6= 0.

For z as in Proposition 3.7 and x; y 2 g = g(j), observe that

(1) B�(x; y) =< [x; y]; z > �(z) =< j(z)x; y > �(z)

by 1.1. Thus g�, as de�ned in A.1, coincides with a + z. Hence the
occurrence condition for �� in Proposition A.2 just says that �ja+z 2 K

�.
Observe that � 2 g� lies in the same co-adjoint orbit as � if and only if
�ja+z = �ja+z; therefore we may identify co-adjoint orbits with elements
� of K�.

By equation (1), the eigenvalues of B� , and thus of B� , are deter-
mined by the eigenvalues of j(z) and by �(z). Moreover, for fZ1 : : :Zlg
an orthonormal basis of g� = a+z, we have

Pl
i=1 �(Zi)

2 = k�k2. Hence
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by Proposition A.3(b), the eigenvalues of �g;� are completely deter-
mined by the data in (ii) and (iii) of Proposition 3.7.

It remains to show that the data (i){(iii) determine the multiplicity
m� of �� in the representation �� of G on L2(N). First observe that
the center z(G) has Lie algebra g� = a+ z. Let � : G! G=z(G) be the
projection. The group �(G) with the Riemannian structure induced by
that of G is Euclidean and T := �(G)=�(�) is a 
at torus. Let g = g=g�

and letting A� be as in A.1; then the Lie group exponential map from
g to �(G) carries A� to �(�) and induces an isometry from the torus
g=A� to T , where g is given the inner product induced by that on g.
(Note that g may be identi�ed with the subspace u of g de�ned in 3.6.)
N �bers over T as a Riemannian submersion with �ber z(G)=(z(G)\�).
The �ber is isometric to the torus (a+ z)=K.

Now consider the multiplicity m� of ��, given in Proposition A.2.
By equation (1), the determinant of B� with respect to an orthonor-
mal basis of g=g� (relative to the induced inner product de�ned above)
is determined by the eigenvalues of j(z) and by �(z). To �nd the de-
terminant with respect to a lattice basis of A�, the only additional
information needed is the volume of T (i.e., the \volume" of the lat-
tice). Thus it remains to show that the volume of T is determined by
the data (i){(iii).

We have two ways of viewing N as a principal torus bundle over a
torus; both are Riemannian submersions. First we have the submersion
discussed alone:

z(G)=(z(G)\ �) �! N
j
T

Secondly we have a submersion with circle �ber:

S := [G;G]=([G;G]\ �) ,! N
j
N0

The �ber circle is isometric to z=K \ z) with the inner product < ; >.
The second �bration and the data (i){(iii) enable us to determine

vol(N). Indeed (i) gives us vol(N0), and from (iii) we can determine the
length of the circle S as follows: From (iii) we can �nd minfk�k : � 2 K�

and k�k = j�(z)jg = minfk�k : � 2 K� and �ja = 0g; call this c. But
c is precisely the length of a basis element of the lattice in z� dual to
K \ z = log(�) \ z. Hence c determines the length of the circle S. We
conclude that the data (i){(iii) determine vol(N).
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Next the second half of the data in (iii), i.e., fk�k : � 2 K�g de-
termines the spectrum of the �ber torus in the �rst submersion and
thus the volume of the �ber. This together with vol(N) determines
vol(T ). Thus the multiplicity m� is determined by the data (i){(iii).
This completes the proof.

Note added in proof: R.Gornet, D. Schueth, D. Webb and the
authors recently showed that the boundaries of the manifolds in The-
orem 0.1 are isospectral. This construction yields continuous families
of isospectral closed manifolds which have no common covering and
which are not locally homogeneous. Z. Szab�o independently and simul-
taneously constructed pairs of isospectral closed manifolds with these
properties; these are described in a revised version of his article [25].

References

[1] P. B�erard, Vari�et�es Riemanniennes isospectrales nonisom�etriques, Sem. Bourbaki
705 (1988-89).

[2] R. Brooks, Constructing isospectral manifolds, Amer. Math. Monthly 95 (1988)
823{839.

[3] G. Bredon, Introduction to compact transformation groups, Academic Press, New
York ,1972.

[4] R. Brooks & R. Tse, Isospectral surfaces of small genus, Nagoya Math. J. 107
(1987) 13{24.

[5] P. Buser, Isospectral Riemann surfaces, Ann. Inst. Fourier (Grenoble) 36 (1986)
167{192.

[6] D. DeTurck, Audible and inaudible geometric properties, Rend. Sem. Fac. Sci.,
Univ. Cagliari Vol. 58 (supplement 1988), 1{26.

[7] D. DeTurck & C. Gordon, Isospectral deformations II: Trace formulas, metrics, and
potentials, Comm. Pure Appl. Math. 42 (1989) 1067{1095.

[8] P. Eberlein, Geometry of two-step nilpotent groups with a left invariant metric, Ann.
Sci. �Ecole Norm. Sup. 27 (1994) 611-660.

[9] C. Gordon, You can't hear the shape of a manifold, New Developments in Lie Theory
Appl. (eds. J. Tirao and N. Wallace) Birkh�auser, Boston ,1992.

[10] , Isospectral closed Riemannian manifolds which are not locally isometric,
J. Di�erential Geom. 37 (1993) 639{649.



isospectral riemannian metrics 529

[11] , Isospectral closed Riemannian manifolds which are not locally isometric,
Part II Contemporary mathematics: geometry of the spectrum, Amer. Math. Soc.
Vol. 173 (eds R. Brooks, C. Gordon, P. Perry), 1994, 121{131.

[12] C. Gordon, D. Webb & S. Wolpert, Isospectral plane domains and surfaces via

Riemannian orbifolds, Invent. Math. 110 (1992) 1{22.

[13] C. Gordon & E. N. Wilson, Isospectral deformations of compact solvmanifolds, J.
Di�erential Geom. 19 (1984) 241{256.

[14] , The spectrum of the Laplacian on Riemannian Heisenberg manifolds,
Mich. Math. J. 33 (1986) 253{271.

[15] R. Gornet, A new construction of isospectral Riemannian manifolds with examples,
Mich. Math. J. 43 (1996) 159-188 .

[16] , Continuous families of Riemannian manifolds isospectral on functions but

not on 1-forms, Preprint.

[17] A. Ikeda, On lens spaces which are isospectral but not isometric, Ann. Sci. �Ecole
Norm. Sup. 13 (1980) 303{315.

[18] A. A. Kirillov, Unitary representations of nilpotent Lie groups, Russian Math.
Surveys 17 (1962) 53{104.

[19] J. Milnor, Eigenvalues of the Laplace operator on certain manifolds, Proc. Nat.
Acad. Sci. USA 51 (1964) 542.

[20] H. Pesce, Calcul du spectre d'une nilvari�et�e de rang deux et applications, Trans.
Amer. Math. Soc. 339 (1993) 433{461.

[21] , Une formule de Poisson pour les vari�et�es de Heisenberg, Duke Math. J.
73 (1994) 79{95.

[22] M.S. Raghunathan, Discrete subgroups of Lie groups, Springer, Berlin, 1972.

[23] L.F. Richardson, Decomposition of the L2-space of a general compact nilmanifold,
Amer. J. Math. 93 (1970) 173{190.

[24] T. Sunada, Riemannian coverings and isospectral manifolds, Ann. of Math. 121
(1985) 169{186.

[25] Z. Szab�o, Locally nonisometric yet super isospectral spaces, Preprint .

[26] M. F. Vign�eras, Vari�et�es Riemanniennes isospectrales et non isom�etriques, Ann.
of Math. 112 (1980) 21{32.

[27] E. N. Wilson, Isometry groups on homogeneous nilmanifolds, Geom. Dedicata 12

(1982) 337-346.

Dartmouth College

Washington University


