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DIFFERENTIAL TOPOLOGICAL RESTRICTIONS

CURVATURE AND SYMMETRY

KARSTEN GROVE & CATHERINE SEARLE

A basic question one asks in Riemannian geometry is: how are geo-
metric properties of a manifold re
ected in its topology? An analogous
question in transformation groups is: what topological restrictions are
forced on a manifold by the existence of an e�ective action of a large
group? In this work, we consider a combination of these two problems,
namely:

Classify positively curved manifolds with large isometry groups.

One measurement for the size of a transformation group, G�M !
M , is the dimension of its orbit space, M=G, also called the cohomo-
geneity of the action. This dimension is clearly constrained by the di-
mension of the �xed point set, MG, of G in M . In fact, dim(M=G) �
dim(MG) + 1 for any non-trivial action. In light of this we de�ne the
�xed point cohomogeneity of an action by

(0:1) cohomfix(M;G) = dim(M=G)� dim(MG) � 1;

that is, as the codimension of MG in M=G. Note that if MG = ;, then,
by convention, cohomfix(M;G) = cohom(M;G)+1. Thus, (M;G) has
minimal �xed point cohomogeneity one, if either M is homogeneous, or
G acts transitively on a normal sphere to some component of MG. In
the latter case we say that M is �xed point homogeneous.

Recall that simply-connected homogeneous manifolds of positive sec-
tional curvature have been classi�ed in Berger [?]1, Alo�, Wallach [?],
[?], and Berard-Bergery [?]. As one of our main results, we provide a
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complete classi�cation of �xed point homogeneous manifolds of postive
sectional curvature (cf. Theorem 2.8). As a special case, we obtain:

Theorem A. Any simply-connected, �xed point homogeneous man-
ifold of positive sectional curvature is di�eomorphic to either Sn, CPm,
HP k or CaP 2.

Another measurement for the size of G�M !M is the dimension,
dim(G) of G relative to dim(M). From a dual point of view, G is large
if dim(M) is small relative to G. This viewpoint is related to repre-
sentation theory. In a sense, the most basic linear representations of a
compact Lie group, G, are those of lowest dimension. Thus motivated,
we may also interpret the above problem in the following manner:

For a given compact Lie group, G, classify the low-dimensional
positively curved manifolds, M , on which G can act (almost)
e�ectively by isometries.

Recall that any connected, compact Lie group, G is �nitely covered
by a group ~G = T k �G1� :::�Gl, where each Gi; i = 1; :::; l, is simple.
Our classi�cation of positively curved manifolds with maximal symme-
try rank in [?] can be viewed as an answer to the above problem when
G = T k is abelian. In this paper, we consider the remaining building
blocks, i.e., the simple Lie groups and, in particular, the classical ones.

If for each compact Lie group, G, we set

rep+0 (G) = minfnjGacts (almost) e�ectively by isometries

on some Mn with sec(Mn) > 0g;
(0.2)

then another main result of this paper can be stated as (cf. Theorems
3.7, 3.9, 3.11, 3.12, 3.13):

Theorem B. Let G be a connected, compact, simple Lie group other
than E6, E7, or E8. Then

(i) rep+0 (G) = minfdim(G=H)jH � G closed subgroup g;

(ii) any positively curved (almost) G-manifold, M , with dim(M)
� 2rep+0 (G) � �(G) is di�eomorphic to a positively curved ho-
mogeneous manifold, where �(G) is a small number depending on
G.
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The key reduction used in the proof of this result is that any
G � M ! M satisfying the assumptions of Theorem B is either ho-
mogeneous, of cohomogeneity one or of �xed point cohomogeneity one.
In an analagous curvature free setting we refer to the work initiated by
W.-Y. Hsiang in [?] (see also [?]).

Recall that, except for the examples due to Eschenburg [?], [?] and
Bazaikin [?], all known positively curved manifolds are homogeneous
(up to di�eomorphism). Thus, Theorem B provides another motivation
for the systematic work initiated here. Indeed, for most, if not for all
groups G, the conclusion in (ii) will almost certainly fail when dim(M)
is su�ciently large. It is quite likely that methods as developed in this
paper, when applied to the lowest dimensional manifolds, M , where the
theorem fails, will yield enough structure on M so as to propose po-
tentially new examples of manifolds with positive curvature. However,
we will refrain from pursuing this issue here. The following are simple
consequences of Theorem B.

Corollary C. Let G=H be a homogeneous space of positive curva-
ture. If M is a positively curved manifold with dim(M) = dim(G=H)
on which G acts (almost) e�ectively by isometries. Then M is dif-
feomorphic to a positively curved homogeneous manifold (which is not
necessarily G/H).

In this generality, the conclusion of Corollary C fails if the symmetry
group G of M is replaced by the smaller group H . However, for the
rank-one symmetric spaces, we have the following result.

Corollary D. Let G=H be a compact rank-one symmetric space
(CROSS). IfM is a positively curved manifold on which H acts (almost)
e�ectively by isometries, and dim(M) = dim(G=H) � 16, then M is
di�eomorphic to a CROSS.

In both of these corollaries, the conclusion holds for manifolds with
dimension larger than dim(G=H). However, Corollary D fails in di-
mension 7 = dim(Sp(2)=Sp(1)), namely each Alo�-Wallach example
W 7 = SU(3)=Tk;l admits an Sp(1) action but is not a CROSS. All in
all, one might thus be tempted to phrase the main results of this paper
as follows: any potentially new example of a manifold of positive curva-
ture must have signi�cantly smaller symmetry group than those of the
known examples.

The point of departure for our investigations is to analyse transfor-
mation groups G �M ! M directly via the geometry of their orbit
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spaces X = M=G. These spaces form a particularly beautiful subclass
of the so-called Alexandrov spaces, and our work is, to a large extent,
propelled by the recent progress in this area. Of particular importance
to us is the fact that if M has positive curvature, then so does X . This
becomes especially restrictive if X has non-empty boundary, since in
that case X is contractible by the Cheeger-Gromoll-Meyer Soul the-
orem adapted to Alexandrov spaces (cf. [?]). Other restrictions are
obtained via Alexandrov-Toponogov type angle comparisions when ap-
plied to triangles in X with vertices at singular points.

We arrive at our results when these geometric methods, together
with critical point theory for distance functions (cf. e.g. [?]), are com-
bined with known results from Lie theory and representation theory.
For general facts about representation theory, we refer the reader to [?].
All claims about dimensions of representations and inclusions among Lie
groups follow easily from the theory in [?]. For facts about subgroups
of exceptional Lie groups, we refer to [?]. Finally, we occasionally need
to compute the normalizer of a subgroup in some speci�c examples.
For general methods as to how to do this, we refer for example to [?],
in particular to paragraph 3. We wish to thank Wu-Yi Hsiang and
W. Ziller for numerous illuminating conversations in which they shared
their views and expertise on the latter subjects.

1. Alexandrov geometry of orbit spaces

Throughout this paper M will denote a complete, connected Rie-
mannian n-manifold, and G a compact Lie group which acts (almost)
e�ectively on M by isometries. The orbit space X = M=G is equipped
with the orbital distance metric from M .

Although we are primarily interested in positively curved manifolds,
the natural setting for our methods applies to manifolds, M , whose
sectional curvature is bounded from below, i.e., sec(M) � k. It is well
known that there are many geometrically equivalent formulations of the
condition sec(M) � k, some of which involve distances only (cf. e.g. [?],
[?] and [?]). It is therefore easy to see, that, in this distance comparision
sense, X is curved from below as well, in fact, curv(X) � k. Thus, X
is an example of a so-called Alexandrov space, and

(1:1) dim(X) = cohom(M;G)

by de�nition of the cohomogeneity of the action G�M !M .
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The local and in�nitesimal structure of general Alexandrov spaces
is tied to spaces of directions (cf. [?], [?]). In the case of orbit spaces
X = M=G, these are described as follows. For p 2 M , we denote its
orbit in M by G(p), and when viewed as a point in X by �p. The space
of directions, S�pX at �p 2 X , consists exclusively of geodesic directions.
Moreover,

(1:2) S�pX = S?p =Gp;

where S?p is the unit normal sphere toG(p) at p, and Gp = fg 2 G : gp =
pg is the isotropy group of p. Note that �p is a euclidean point of X , i.e.,
S�pX = Sm�11 , where Sm�11 is the unit (m � 1)-sphere, m = dim(X),
if and only if G(p) is a principal orbit in M . We denote the set of
such points by Me, and call it the regular part of M . Correspondingly,
Ms =M �Me is called the singular part of M .

As a �rst application of comparision theory, we show how curv(X) �
k imposes restrictions on the singular set Ms, via Xs = Ms=G. For
simplicity, we con�ne ourselves to the case where k � 0, since otherwise
the diameter of X must be invoked.

Extent Lemma 1.3. For any choice of (q + 1) distinct points
�p0; ::::; �pq 2 X =M=G one has

1

q + 1
�q
i=0xtqS �piX

>
(=)

�

3

whenever curv(X) >
(=) 0.

Proof. Join each pair of points from f �p0; :::; �pqg by a segment
in X , and add up all angles between pairs of segments with common
endpoints. This is carried out in two di�erent ways: (i) takes the sum
for each triangle and then add up over all triangles; (ii) takes the sum
at each point and then add up over all points. Thus

( q2 )�
q
i=0xtqS �piX � �angles � �

�
q+1
3

�
;

where (i) and curv(X)� 0 have been used for the right-hand inequality,
and (ii) together with the de�nition of the q-extent (the maximal average
distance between q points, cf. [?]) have been used in the left-hand
inequality. q.e.d.

In this form, (1.3) is a powerful simple generalization of one of the
key ideas applied in [?]. Note that S�p and hence xtqS�p is smaller the
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more singular �p is. Thus (1.3) yields quantitative restrictions on the
number of singular orbits of various types when sec(M) � 0. For ex-
ample, there can be at most two points �p0, �p1 2 X with diamS �pi �

�
3 if

curv(X) > 0. In the slightly more restrictive case in which
diam(S �pi) �

�
4 , M can be described as follows:

Equivariant Sphere Theorem 1.4. Let M be a closed manifold
with sec(M) > 0 on which G acts (almost) e�ectively by isometries.
Suppose p0; p1 2 M are points such that diamS �pi �

�
4 , i = 0; 1. Then

M can be exhibited as

M = D(G(po))
[
E

D(G(p1));

where D(G(pi)), i = 0; 1 are tubular neighborhoods of the pi-orbits and
E = @D(G(p0)) = @D(G(p1)). In particular, M is homeomorphic to a
sphere if G(pi) = pi, i.e., if pi, i = 0; 1 are isolated �xed points for G
and diamS �pi �

�
4 .

Proof. Let p 2 M � (G(p0)
S
G(p1)) be chosen arbitrarily. Since

curv(X) > 0, it follows from the assumption that \(c0; c1) >
�
2 for any

segment ci from �p to �pi, i = 0; 1. In M this means that p is a regular
point for the distance functions, dist(G(pi); �), i = 0; 1, and the claim
follows from the isotopy lemma (cf. e.g. [?]). q.e.d.

Note that only curv(X) > 0, not sec(M) > 0, is used in the proof.
In particular, the structure of any closed manifold of cohomogeneity one
with �nite fundamental group is recovered in (1.4).

Even when the singularities of X = M=G are too mild for (1.3) to
apply (e.g. when diamS �pi >

�
2 and thus �), they often yield interesting

restrictions in a di�erent way. The most remarkable one of these arises
when X has non-empty boundary. Here �p 2 @X � Xs by de�nition,
if @S�pX 6= ;. This inductive de�nition is anchored by the simple fact
that the only compact 1-dimensional orbit spaces (Alexandrov Spaces)
are closed intervals and circles.

Now suppose that @X 6= ; and curv(X)> 0. Then the Soul theorem
adapted to Alexandrov spaces by Perelman [?] asserts that:

(1:5) dist(@X; �) : X ! R is strictly concave:

In particular, this tells us the following:

(1.6) there is a unique point �p1 2 X at maximal distance from @X;
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(1.7) for any �p 2 X � (@X
S
f �p1g) and segments c0, c1 from �p to @X ,

and �p1, respectively, one has \(c0; c1) >
�
2 ,

(1.8) X is contractible.

If � :M ! M=G = X is the quotient map, we let M@ �Ms denote
the subset de�ned by M@ = ��1@(X). Moreover, for any subset A
of M (or of X), and any r > 0 we use D(A; r) to denote the closed
r-neighborhood of A. Correspondingly, S(A; r) is the set of points at
distance r to A and B(A; r) = D(A; r)� S(A; r).

As a fairly straightforward consequence of (1.2), (1.6) and (1.7) com-
bined with critical point arguments for dist(M@; �) and dist(G(p1); �) (via
dist(@X; �) and dist( �p1; � )) (cf. e.g. [?] or [?]) one derives the following
basic:

Soul Lemma 1.9. Suppose M is a closed manifold with sec(M) >
0, on which a compact Lie group G acts (almost) e�ectively by isome-
tries, such that @(M=G) 6= ;. Then,

(i) there is a unique orbit, G(p1) � M at maximal distance from
M@ �M ,

(ii) for any p 2 M � (M@
S
G(p1)), the intersections M@

T
MGp and

G(p1)
T
MGp are nonempty,

(iii) M ' D(M@ ; �)
S
E D(G(p1)), where E = @D(G(p1)) ' S(M@; �),

(iv) M@=G is homeomorphic to S?p1=Gp1.

Remark 1.10. The key point in (1.9) is that curv(X) > 0,
not sec(M) > 0. If we have only curv(X) � 0, we can apply similar
arguments with somewhat weaker conclusions, since dist(@X; �) is now
only concave, rather than strictly concave. Hereafter, we will refer to
the orbit, G(p1), in (1.9) as the \soul"-orbit of G.

Another context in which orbit spaces with non-empty boundary
play a signi�cant role is in the following result from [?] (for related
result cf. [?]).

Fixed point Lemma 1.11. Let M be a positively curved almost-
e�ective G-manifold with G connected and with principal isotropy sub-
group H. If the connected component, H0, of H is a maximal connected
subgroup of G, and @((G=H0)=H0) 6= ;, then either MG 6= ;, or else G
acts transitively on M.



differential topological restrictions 537

Remark 1.12. The condition @((G=H0)=H0) 6= ; occurs quite
frequently: for example (G;H0) a symmetric pair will satisfy this con-
dition, as will often (G;H0), where H0 is maximal. Note however that
this is not true for example with (Sp(2); Sp(1)), where Sp(1) is maximal.

In Section 3 we will also need some basic facts about closed man-
ifolds of cohomogeneity one which we recall here for convenience. If
dim(M=G) = 1, then M=G is either a circle or an interval. In the
�rst case, all orbits are principal and � : M ! X = M=G is a �bra-
tion. Since we are interested in positively curved manifolds here, only
the second case can arise by the Bonnet-Myers theorem. All interior
points of the interval correspond to the principal orbits, E = G=H ,
and the endpoints of the interval correspond to two exceptional orbits
Bi = G=Ki, i = 0; 1. In terms of this data, M is exhibited as the union
of tubular neighborhoods DBi ! Bi; i = 0; 1, with common boundary
@DB0 ' @DB1 ' E. In particular, �i : E = G=H ! G=Ki = Bi,
i = 0; 1, are bundles with sphere �bers Ki=H = Sli.

Conversely, given

(1:13)

K0

� �
H G; Ki=H = Sli; i = 0; 1;

� �
K1

we can reconstruct a cohomogeneity one G-manifold as

(1:14) M = (G�K0
D(l0+1))

[
G=H

(G�K1
D(l1+1)):

Note that given the isomorphism classes of bundles DBi ! Bi, di�erent
possibilities for M can arise via di�erent glueing maps @DB0 ' @DB1.
Such glueing maps are G-equivariant, and are determined by an element
n 2 N(H) (cf. (2.6)). In the description (1.13) above, this simply
corresponds to replacing only one of the Ki's by its conjugate nKin

�1.
We further note that under the assumption that the manifold in question
is simply-connected, H is connected, when Ki=H 6= S1, i = 0; 1. The
case of �nite extensions H of H0 and (possibly of) Ki, i = 0; 1 in G
is possible only if one of the Ki=H is a circle. Before we con�ne our
investigation to speci�c groups, we state one more useful general fact.
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Synge (type) Lemma 1.15. Let M be a positively curved manifold
and V and W two non-intersecting, totally geodesic submanifolds of M.
Then dim(V ) + dim(W ) < dim(M).

In our context, the submanifolds V and W in (1.15) will arise as
�xed point sets for transformation groups K � G. Although we will
not use it here, we remark that (1.15) holds for orbits spaces as well,
and even general Alexandrov spaces (cf. [?]).

We point out that the utility of the methods developed in this section
is ampli�ed by the obvious fact that they also apply to all subgroups of
a given transformation group. Since we are primarily interested in large
groups, this will play a signi�cant role as we proceed.

2. Fixed point homogeneous manifolds

In this section we will classify (up to equivariant di�eomorphism)
positively curved, �xed point homogeneous manifolds, that is, mani-
folds, M , for which the �xed point cohomogeneity

(2:1) cohomfix(M;G) = dim(M=G)� dim(MG)

is minimal, i.e., equal to 1.
We need only consider the case in which MG 6= ;. If B0 is a compo-

nent of MG with maximal dimension, i.e., dim(B0) = dim(MG), then
clearly the codimension of B0 in X = M=G is one more than the co-
homogeneity of any normal sphere to B0 under the induced G-action.
Thus, if cohomfix(M;G) = 1, we see that G acts transitively on the
normal spheres to B0. In particular, B0 is a component of @X . More-
over, for � > 0 su�ciently small, the �-neighborhood of B0 in X is a
smooth manifold with boundary B0, and all orbits in B(B0; �)�B0 are
principal. As a special case of the Structure Lemma (1.9), we derive the
following (cf. also (1.4)):

Structure Theorem 2.2. Let M be a positively manifold with an
(almost) e�ective, isometric G-action of �xed point cohomogeneity one
and MG 6= ;. If B0 is a component of MG with maximal dimension,
then the following hold:

(i) There is a unique orbit, B1 = G(p1) ' G=Gp1, at maximal dis-
tance to B0 (the \soul" orbit).

(ii) All orbits in M � (B0
S
B1) are principal and di�eomorphic to

Sk ' G=H, the normal sphere to B0.
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(iii) There is a G-equivariant decomposition of M , as

M = DB0

[
E

DB1;

where DB0; DB1 are the normal disc bundles of B0, B1, respec-
tively, in M , with common boundary E when viewed as tubular
neighborhoods.

(iv) All Gp1-orbits in the normal sphere Sl to B1 at p1 are principal
and di�eomorphic to Gp1=H. Moreover, B0 is di�eomorphic to
Sl=Gp1.

We leave the details of the proof to the reader and point out only
that if dimB0 > 0 then B0 = @X . However, if MG is �nite, and hence
B0 is a point, then X is an interval and B0 is one of the boundary
points. The other boundary point is either another �xed point for G (in
fact, the only other one), or else the orbit at maximal distance from B0

(cf. (1.4)). In either case, (2.2) holds as stated.
Note that implicitly in (2.2), we have exhibited two spherical �ber

bundles:

K=H ! Sl ! Sl=K ' B0;(2.3)

K=H ! Sk ' G=H ! G=K ' B1;(2.4)

where K = Gp1 is the isotropy group of the soul orbit. This already
imposes severe topological restrictions due to Browder [?], from which
it is possible to deduce that, at least cohomologically, anyM as in (2.2)
looks like a �nite quotient of a rank-one symmetric space. Utilizing the
restrictions on the pair (G;H) expressed in (2.4), we will in fact obtain
such a description (Theorem (2.8)) up to (equivariant) di�eomorphism.
To acheive this, we need the following:

Uniqueness Lemma 2.5. Let M and M̂ be two (Riemannian) G-
manifolds with structure as in (2.2), i.e., there exist components B0 �
MG; B̂0 � M̂G and orbits B1 � M; B̂1 � M̂ , such that (ii)-(iv) of
(2.2) hold. If, in addition, the bundles DB1 ! B1 and DB̂1 ! B̂1 are
G-equivalent, then M and M̂ are G-di�eomorphic.

Proof. We will show that under the assumptions above, any
G-equivariant bundle isomorphism f : DB1 ! DB̂1 extends to a G-
equivariant di�eomorphism from M to M̂ . To do this, we will extend



540 karsten grove & catherine searle

the restriction h = f j : E ! Ê to a G-equivariant bundle map g :
DB0 ! DB̂0. Namely, let g be the unique radial extension of h. Then
it clearly follows that, F = g

S
h f : DB0

S
E DB1 ! DB̂0

S
Ê

^DB1 is a

G-equivariant homeomorphism, F j :M �B0 ! M̂ � B̂0 is a di�eomor-
phism, and so is F j : B0 ! B̂0 (in fact gjB0 ' h=G). To check that
g : DB0 ! DB̂0 is a di�eomorphism, it therefore su�ces to see that it is
linear on each �ber. Since isometries of the standard sphere Sk = G=H
are restrictions of linear maps of Rk+1 � Dk+1, the desired linearity is
an immediate consequence of the following useful fact:

Sublemma 2.6. Let G be a connected, compact Lie group, and H
a closed subgroup. Then for any G-equivariant map F : G=H ! G=H,
there is an n 2 N(H) � G such that

F (gH) = gnH:

Moreover, F is an isometry for any homogeneous metric on G=H which
is induced from an Ad(N(H))-invariant metric on G.

Proof. Set F (H) = nH . Then F (gH) = gnH for all g 2 G, by
equivariance. However, this is only well-de�ned if nHn�1 = H . The
following simple calculation:

dist(F (g1H); F (g2H) = dist(g1nH; g2nH)

= dist(n�1g�11 g2nH;H)

= dist(g�11 g2H; nHn�1)

= dist(g2H; g1H)

proves the isometry claim. q.e.d.

In order to fully exploit the Structure Theorem (2.2) and the Unique-
ness Lemma (2.5), we shall now use the restrictions imposed on G by
the requirement that G=H = Sk (cf. also (2.4)). In fact, using the
classi�cation of groups that can act transitively on spheres (cf. [?], [?],
[?] and [?]), we can assume, (by possibly replacing G by a subgroup)
that the pair (G;H) is one of the following:
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(2:7)

8>>>>>>>>><
>>>>>>>>>:

(ak+1)(G;H) = (SO(k+ 1); SO(k)) (k � 1);

(bm+1)(G;H) = (SU(m+ 1); SU(m)) (k = 2m+ 1 � 3);

(cm+1)(G;H) = (Sp(m+ 1); Sp(m)) (k = 4m+ 3 � 7);

(d)(G;H) = (G2; SU(3)) (k = 6);

(e)(G;H) = (Spin(7); G2) (k = 7);

(f)(G;H) = (Spin(9); Spin(7)) (k = 15):

The strategy is now to assume thatM is a �xed point homogeneous,
positively curved G-manifold, where G is one of the groups in (2.7), and
H is the corresponding principal isotropy subgroup. In each case, we
determine all potential \soul"-isotropy groupsK, such thatH � K � G
satis�es (2.4). For those K which cannot be excluded on the basis of the
Structure Theorem (2.2), we �nd an explicit model M̂ with the same
slice representation at the soul orbit and then apply the Uniqueness
Lemma (2.5).

We know that if cohomfix(M;G) = 1, MG 6= ; and G is one of
the groups listed in (2.7), then codim(MG) = n; 2n; 4n; 7; 8; or 16 corre-
sponding to the cases (an), (bn), (cn), (d), (e); or (f), respectively. We
have used this fact in the formulation of our �rst main result.

Classi�cation Theorem 2.8. Let M be a closed, connected, �xed
point homogeneous Riemannnian manifold. Then M supports an e�ec-
tive and isometric G-action, where G is one of the groups SO(n); SU(n),
Sp(n); G2; Spin(7), or Spin(9) and codimMG = n; 2n; 4n; 7; 8, or 16,
respectively. If moreover, sec(M) > 0, then M is G-equivariantly dif-
feomorphic to one of the following:

(an) Sm, RPm (m � n), or in addition, when n = 2, Sm=Zq (q � 3)
or CPm;

(bn) S
m, Sm=Zq (m � 2n) or CPm (m � n), or in addition, when

n = 2, Sm=� (� � SU(2),(m� 5)), CPm=Z2 (m odd) or HPm;

(cn) Sm, Sm=� (� � Sp(1), m � 4n), CPm (m � 2n), CPm=Z2

(m > 2n odd) or HPm (m � n);

(d) Sm, or RPm (m � 7);

(e) Sm or RPm (m � 8); or
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(f) Sm, RPm (m � 16) or CaP 2,

where G in case (an) is SO(n), etc. as in (2.7).

Proof. First note that the least restrictive cases are (a2); (b2) =
(c1) and (f). By abuse of formalism, this is because (ak) ) (ak+1),
(bl) ) (bl+1), (cm) ) (cm+1), and (b3) ) (d) ) (e) by standard
representation theory. Since (a2) was proven in [?], we will discuss only
the cases (b2) and (f) here, and leave the remaining more restrictive
cases to the reader.

Case (b2). Let B0 be a component of MSU(2) with codimB0 = 4,
and B1 the corresponding soul orbit. SU(2) acts freely on
M�(B0

S
B1), and the structure ofM is determined by the slice repre-

sentation of the isotropy group K = Gp1 at p1 2 B1, according to (2.2)
and (2.5). For K, there are the following possibilities:

(i) K = SU(2),

(ii) K = T 1 = S1, (ii)0 K = N(T 1) (N(T 1)=T 1 ' Z2),

(iii) K = f1g, (iii)0 K = � (� �nite).

Subcase (i). B1 = fp1g � MSU(2), and SU(2) acts freely on the
tangent sphere Sl to M at p1. Consequently, l = 4m � 1, the action
of SU(2) = Sp(1) on Tp1M ' R4m ' Hm is the Hopf action (cf. [?,
Sec. 5]), and B0 ' Sl=SU(2) = HPm�1. Now take M̂ = HPm with
the obvious SU(2) = Sp(1)-action �xing B̂1 = HPm�1 and the point
p̂1 = B̂1 at maximal distance from HPm�1. By the Uniqueness Lemma
(2.5),M is SU(2)-di�eomorphic to HPm.

Subcase (ii). B1 = SU(2)=S1 ' CP 1 and K = S1 acts freely
on the normal sphere Sl to B1 in M at p1. In particular, l = 2m � 3
and S2m�3 ! S2m�3=S1 = CPm�2 ' B0 is the Hopf map. By the slice
theorem, the normal bundle DB1 � V1 ! B1 to B1 in M is isomorphic
to

SU(2)�S1 R
2m�2 ! SU(2)=S1:

Now take M̂ = CPm with the natural action of U(m+ 1). The SU(2)-
action on M̂ given via the standard inclusion SU(2) � U(m+ 1) obvi-
ously �xes B̂0 = CPm�2 and acts canonically on B̂1 = CP 1 at maximal
distance from CPm�2. By the slice theorem, the normal bundle to B̂1

in M̂ is SU(2)-equivalent to the normal bundle of B1 in M . Hence by
(2.5),M and CPm are SU(2)-di�eomorphic.
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Subcase (iii). B1 ' SU(2), and SU(2) acts freely on M � B0.
Since K = f1g, B0 ' Sl, the normal sphere to B1 in M at p1. Again
by the slice theorem, the normal bundle DB1 � V1 ! B1 of B1 in M is
trivial. Now take M̂ = Sl�SU(2) = Sl+4 with the obvious SU(2)-action
�xing B̂0 = Sl and acting by left multiplication on B̂1 = SU(2) ' S3 at
maximal distance from Sl in Sl+4. By (2.5),M is SU(2)-di�eomorphic
to Sl+4.

Subcase (ii)0. If B1 = SU(2)=N(T 1) ' CP 1=Z2, we argue as
in (ii) that l = 2m � 3 and B0 ' S2m�3=N(T 1) = CPm�2=Z2. This,
however, is only possible if m�2 is odd. In that case, there is indeed an
action of SU(2) on M̂ ' CPm=Z2 which modelsM in the sense of (2.5).
In fact, if � : CPm ! CPm is the involution de�ning CPm=Z2, then
the SU(2)- action on CPm described above takes � -orbits to � -orbits
(in homogeneous coordinates,

�([z1; :::; z2n; z2n+1; z2n+2]) = [zn+1; :::; z2n;�z1; :::;�zn; z2n+2;�z2n+1]

if m = 2n+ 1).

Subcase (iii)0. If B1 = SU(2)=�, the �nite subgroup

K = � � SU(2)

acts freely on the normal sphere Sl to B1 in M at p1, and B0 ' Sl=�.
The normal bundle to B1 in M is isomorphic to

SU(2)�� R
l+1 ! SU(2)=�:

by the slice theorem. Now consider M̂ = Sl �SU(2)=� ' Sl+4=� where
� acts on Sl as above and on SU(2) by right translations. The SU(2)-
action on Sl � SU(2) described in (iii) induces an action on M̂ with
B̂0 = Sl=�. Since the normal bundles of B1 in M and of B̂1 in M̂ are
isomorphic, we are done by (2.5).

Case (f). Let B0 be a component of MSpin(9) with codim(B0) =
16, and B1 = Spin(9)(p1) be the corresponding soul orbit. Since the
principal isotropy subgroup is H = Spin(7), and H is necessarily em-
bedded in Spin(8) � Spin(9) via the spin representation (ref?), there
are only the following possibilities for potential soul isotropy subgroups
K:

(i) K = Spin(9)
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(ii) K = Spin(8);

(ii)0 K = N(Spin(8)) (N(Spin(8)=Spin(8) = Z2)

(iii) K = Spin(7);

(iii)0 K = N(Spin(7))� Spin(8) (N(Spin(7))=Spin(7) = Z2)

Subcase (i). B1 = fp1g �MSpin(9), and all orbits of the Spin(9)-
action on the tangent sphere Sl � Tp1M are principal and di�eomorphic
to S15. Since there is no proper �bration of a sphere with S15 as �ber
(cf. e.g. [?]), we conclude that l = 15 and B0 ' Spin(9)=Spin(7) = S15.
Taking M̂ = S16, the suspension of Spin(9)=Spin(7) = S15, we see via
(2.5) that M is Spin(9)-equivalent to S16.

Subcase (ii). B1 ' Spin(9)=Spin(8) = S8, and Spin(8) acts on
the normal sphere Sl to B1 at p1, such that all orbits are principal and
di�eomorphic to Spin(8)=Spin(7) = S7. Moreover, B0 ' Sl=Spin(8).
Thus either l = 7 and B0 = fp0g, or l = 15 (cf. e.g. [?]). However,
as shown in [?, p.236], there is no �bration of S15 with S7 �bers, all
of which are also orbits of a group action on S15. Hence l = 7 and
the normal sphere bundle E ! B1 is Spin(9)-equivalent to the Hopf
�bration

S7 =Spin(8)=Spin(7)! Spin(9)=Spin(7)

=S15 ! S8 = Spin(9)=Spin(8):

The same picture is apparent for the sub-action of Spin(9) � F4 on
M̂ = CaP 2. Therefore M is Spin(9)-equivalent to CaP 2 by (2.5).

Subcase (iii). B1 = Spin(9)=Spin(7) = S15, and all orbits in
M �B0 are di�eomorphic to S15 and principal. In particular, B0 ' Sl,
where Sl is the normal sphere to B1 in M at p1. Furthermore, the
normal bundle to B1 in M is Spin(9)-isomorphic to the trivial bundle,

Spin(9)=Spin(7)� Rl+1 ! Spin(9)=Spin(7);

where the action on Rl+1 is trivial. Pick M̂ = Sl � Spin(9)=Spin(7) =
Sl+16 with the obvious Spin(9)-action �xing B̂0 = Sl and acting canon-
ically on Spin(9)=Spin(7) = S15. Via (2.5), we see that M is Spin(9)-
di�eomorphic to Sl+16.

Subcase (ii)0. If B1 = Spin(9)=N(Spin(8)) ' S8=Z2, we see, as
in subcase (ii) above, that all N(Spin(8))-orbits in the normal sphere Sl
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to B1 at p0 must be di�eomorphic to N(Spin(8))=Spin(7) = S7
`
S7.

This excludes l = 7, and we exclude l = 15 as in subcase (ii). Thus
K = N(Spin(8)) cannot occur as a soul isotropy subgroup.

Subcase (iii)0. If B1 = Spin(9)=N(Spin(7)) = S15=Z2 = RP 15,
an argument, as in subcases (iii) and (ii)0, above shows that M is
Spin(9)-di�eomorphic to Sl+16=Z2 = RP l+16. q.e.d.

Theorem A in the introduction is now an immediate corollary of
Theorem 2.8.

3. Low-dimensional non-linear representations

The classi�cation of positively curved manifolds with maximal sym-
metry rank [?], can also be viewed as a classi�cation of the lowest-
dimensional manifolds of positive curvature on which a given torus, T k,
can act (almost) e�ectively by isometries.

The principal issue in this section is to analyse the same question for
the compact, connected simple Lie groups. Since we allow actions to be
almost-e�ective, it su�ces to consider simply-connected groups. Explic-
itly, the groups we are considering are: Sp(n)(n � 2)), SU(n)(n � 2),
Spin(n)(n � 7), together with the exceptional groups G2; F4; E6; E7 and
E8.

Based on (0.2) in the introduction, we de�ne inductively

(3:1)
rep+i+1(G) = minfn > rep+i (G)jGacts (almost) e�ectively

by isometries on some Mn with sec(M) > 0g

If we restrict our attention to irreducible linear representations, i.e.,
Mn = Sn1 , we use the notation repS0 (G) < repS1 (G) < � � � , and it is
obvious that rep+0 (G) � repS0 (G) for any compact Lie group G.

Since Sp(n + 1)=Sp(n)Sp(1) = HPn, SU(n + 1)=S(U(n)U(1)) =
CPn, Spin(n+1)=Spin(n) = Sn, G2=SU(3) = S6, F4=Spin(9) = CaP 2

all have positive curvature and each one is of the form G=H where
dim(H) < dim(G) is maximal, we read o� the following simple fact:

Proposition 3.2. If G is one of the simply connected simple groups
other than E6, E7 or E8, then

rep+0 (G) = dimG=H;

where H � G is a proper subgroup of maximal dimension.
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In contrast, it is well known that E6, E7 and E8 cannot act transi-
tively on a positively curved manifold. Hence from (1.11) we conclude
that if G is one of these groups and M is positively curved manifold
with dim(M) = rep+0 (G), on which G acts (almost) e�ectively, then the
connected component H0 of the principal isotropy subgroup H cannot
be a maximal connected subgroup. In particular, we conclude

Proposition 3.3. If G is one of E6; E7 or E8, then

rep+0 (G) � dim(G=H) + 1;

where H is a proper subgroup of G with second lowest codimension.

In particular, this tells us that rep+0 (E6) � 33, rep+0 (E7) � 56 and
rep+0 (E8) � 115. Further, we know that the lowest dimensional linear
representations of these exceptional groups occur in complex dimensions
27, 56 and real dimension 248 respectively [?]. Thus rep+0 (E6) � 52,
rep+0 (E7) � 110 and rep+0 (E8) � 247.

In the remaining part of this section we will classify low-dimensional
positively curved manifolds on which the simple groups other than
E6; E7 or E8 can act (almost) e�ectively by isometries. We �rst observe
that for these groups the lowest-dimensional irreducible linear represen-
tations yield transitive actions on the corresponding spheres. Using this
fact together with the Fixed Point Lemma (1.11) we obtain:

Fixed Point Corollary 3.4. Let G be a simply-connected, simple
Lie group other than E6; E7 or E8, and M a positively curved mani-
fold on which G acts (almost) e�ectively by isometries. If the principal
isotropy group H has maximal connected component H0 and

dim(M) � minf2repS0 (G) + 1; repS1 (G)g;

then cohom�x(M,G)=1.
Another general situation in which �xed point homogeneous mani-

folds arise naturally occurs because of the simple fact that the principal
isotropy group H = Gp acts trivially on the normal space to the princi-
pal orbit G(p) ' G=H at p.

Principal Isotropy Lemma 3.5. Let M be a G-manifold with
principal isotropy subgroup H, and isotropy representation

H � THG=H ! THG=H:

If SH � THG/H denotes the unit sphere and cohomfix(SH; K) = 1 for
some subgroup K � H, then cohomfix(M;K) = 1.
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The point of this simple fact is that it typically applies to large
subgroups H of a simple group G (other than E6; E7 or E8).

When applying either (3.4) or (3.5), the cohomogeneity of G�M !
M is irrelevant. If, however, the principal isotropy subgroup H � G
is such that neither (3.4), nor (3.5), can be utilized, then we resort to
other restrictions imposed by the assumption that

(3:6) dim(M) = dim(M=G) + dim(G=H)

is relatively small. In particular, we consider only actions where the
principal isotropy subgroup H has fairly small codimension in G. This
in turn restricts all the possible isotropy subgroups and enhances the
chances for using (1.3). So far, however, we have only been able to
make systematic use of this approach when, in addition, cohom(M;G) =
dim(M=G) � 1.

Theorem 3.7 (Symplectic Groups). Let M be a simply-connected,
closed manifold with sec(M) > 0. If Sp(n + 1); n � 1, acts (almost)
e�ectively by isometries on M and

dim(M) � C(n) =

(
8n� 3 = 2rep+0 (Sp(n+ 1)); n � 2

8 n = 1;

then dim(M) � 4n = rep+0 (Sp(n+ 1), and M is di�eomorphic to one
of either a sphere, a complex or quaternionic projective space, the 
ag-
manifold Sp(3)=(Sp(1))3 or the real homology sphere Sp(2)=SU(2).

Proof. Let H denote the principal isotropy subgroup of

G = Sp(n+ 1)

acting on M . From (3.6) and dim(M) � C(n) we have

(3:8) dim(H) � dim(Sp(n+ 1))� C(n):

An analysis of the possible connected subgroups H0 � Sp(n+ 1) satis-
fying (3.8) yields the following list:
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(a) H0 = Sp(n)Sp(1) n � 1;

(b) H0 = Sp(n)U(1) n � 1;

(c) H0 = Sp(n) n � 1;

(d) H0 = Sp(n� 1)Sp(2) n � 2;

(e) H0 = Sp(n� 1)(Sp(1))2 n � 2;

(f) H0 = U(n+ 1) n � 3;

(g) H0 = SU(n+ 1) n � 3:

In the case (g), we note that for n � 2 the action must be transitive, and
since neither space obtained is of positive curvature, these cases do not
occur. Note that for n = 1, case (g) coincides with case (c) (as Sp(1) =
SU(2)) and we will treat it later. In the cases (d) and (f), we can use
Corollary (3.4), and hence (2.8) since (G;H0) is a symmetric pair and
repS0 (Sp(n+1)) = 4n+3, repS1 (Sp(n+1) = (n+1)(2(n+1)�1)�1,n � 2
by standard representation theory. For case (f) (n = 1), we note that the
two lowest-dimensional irreducible linear representations of Sp(2) occur
in dimensions 5 and 8, but both are transitive on the corresponding
spheres. Thus, cohomfix(M;Sp(2)) = 1 with H0 = U(2) � Sp(2).

Moreover, except for Sp(1) in case (c) (n = 1), all of these groups
admit only one embedding in Sp(n+ 1), up to conjugation. Aside from
the standard embedding Sp(1) = Sp(1)�f1g � Sp(1)�Sp(1)� Sp(2),
we can embed Sp(1) via the diagonal Sp(1) = �(Sp(1)�Sp(1))� Sp(2)
and as a maximal subgroup Sp(1) � Sp(2). The diagonal embedding
can also be viewed as Sp(1) = SU(2) � U(2) � Sp(2).

In the �rst three cases, in which the embedding is standard, i.e., (a)
and (b) for all n, and (c) for n � 2, we apply the Principal Isotropy
Lemma (3.5) to the subgroup K = Sp(n) � H0 � H , and then appeal
to the Classi�cation Theorem (2.8).

In order to complete case (c), it remains to consider the case where
the embedding of H0 is not standard. The only possible dimensions for
M are then 7 or 8. If dim(M) = 7, the Sp(2)-action is transitive and
M = Sp(2)=Sp(1) is the Berger homology sphere [?]. If dim(M) = 8,
the Sp(2)-action is of cohomogeneity one. In particular, the only case
consistent with (1.13) is that in which the embedding of H0 is diagonal,
and we will rule out this case. Note that the only possible subgroups
K0, K1 between Sp(1) ' SU(2) and Sp(2) satisfying the conditions of
(1.13) are Sp(1)2 and U(2).
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Assume �rst that K0 = K1 = U(2). We remark further that we may
exclude (by means of a general argument) the case in which K0 = K1 6=
G [?] for a cohomogeneity one manifold of positive curvature. However,
for the sake of comleteness we will prove each individual case as it arises
(cf. (3.7) case (e), (3.9) cases (d) and (h), (3.11) case (c) and (3.13)).
Then the principal orbit E = Sp(2)=Sp(1) �bers over the exceptional
orbits B0 ' B1 ' Sp(2)=U(2) with common �bers S1 ' U(2)=Sp(1),
and M �bers over B0 ' Sp(2)=U(2) with �ber S2. Moreover, ESU(2) �
E consists of two disjoint circles (namely the orbit of N(SU(2))), each
of which is a �ber over B0 and B1. The corresponding S

2-�bers over Bi

in M are also �xed by H = SU(2), and in fact they are components of
MSU(2). The latter fact is seen via the isotropy representation of U(2)(�
SU(2)) at the corresponding �xed points in Bi; i = 0; 1. Now �x S1 �
SU(2) � U(2), and considerMS1 . At each of the �xed points pi; qi 2 Bi,
i = 0; 1, for U(2) acting on Bi, the isotropy representation of U(2)
reveals that the corresponding components of MS1 are 4-dimensional.
By the Synge Lemma (1.15), they must all be contained in the same
component, which, however, clearly contains the above (disjoint) S2-
components of MSU(2), impossible again by (1.15).

From the above, we conclude that one of the Ki's is Sp(1)� Sp(1),
and it is not di�cult to see that the action of Sp(2) ' Spin(5) is not
e�ective on M as exhibited in (1.14). The corresponding e�ective ac-
tion is by G = SO(5) with principal isotropy subgroup H = SO(3)
embedded in the standard way. Moreover, K0; K1 are either SO(4) or
SO(3)�SO(2). If K0 ' K1 = SO(4) we proceed as follows. H = SO(3)
�xes two disjoint circles in E = G=H , each of which is mapped to one
circle in B0 and in B1. Indeed, MSO(3) is a torus. This is a contradic-
tion, since it is also totally geodesic and hence positively curved.

To complete case (c), it remains to consider the cohomogeneity one
action on M8 by G = SO(5), with H = SO(3), K0 = SO(3)SO(2)
and K1 = SO(4). First observe that the SO(3)-factor of K0 �xes a
totally geodesic S2 in M (that is, two points in B0, two circles in E

and one circle in B1). Fix L = SO(2) � SO(3) and consider ML.
From the isotropy representations, we see that ML is a 4-manifold. Its
intersection with B1 is a 2-sphere. Now the SO(2)-factor of K0 acts on
ML preserving MSO(3). It has exactly four �xed points (2 in B0 and 2
in B1), which is impossible if M and hence ML have positive curvature,
by the Extent Lemma (1.3) (cf. [?]).

Note that we must also worry about �nite extensions of H0 and Ki,
i = 0; 1, in this case, since Ki=H can be a circle for at least one i. In
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the case where K0 = K1 = U(2), we may extend H0 to H0 � Zk =
H . However, the argument used to exclude the case with H connected
works as well in this case. In the case where K0 = SO(3)SO(2) and
K1 = SO(4), any �nite extension of H0 = SO(3) in G must include the
corresponding �nite extension of SO(4), since otherwise K1=H will not
be a sphere. This leaves us with only one possibility: H = SO(3)�Z2 =
O(3) and K1 = O(4). In this case, M = CP 4 (cf. [?].

We now turn to the remaining case (e). We will show that only
n = 2 can occur, and in that case M is either homogeneous, i.e.,
M = Sp(3)=Sp(1)3, or it has cohomogeneity one and M = S13. In
fact, for all n � 2 in the given range of dimensions for M, M must
either be homogeneous or of cohomogeneity one. The classi�cation of
homogeneous manifolds with positive curvature leaves only the 
agman-
ifold in dimension 12 above as a possibility. On the other hand, if M
has cohomogeneity one, its data is given according to (1.13) as:

K0 = Sp(n � 1)Sp(2)
� �

H = Sp(n � 1)Sp(1)Sp(1) G = Sp(n + 1)
� �

K1 = Sp(n � 1)Sp(2)

where Ki=H ' Sp(n�1)Sp(2)=Sp(n�1)(Sp(1))2 are 4-spheres for both
i. Moreover, for n � 3 there is only one possible embedding ofK0 = K1.
For n = 2, however, we can also embed K0 ' K1 by permuting the
factors. This is exactly the description of S13 under the representation
^2� � � of Sp(3) (notation from [?]). It remains to show that K0 = K1

cannot occur when sec(M) > 0.
The general case n � 3 reduces to the case n = 2, since it is easy

to see from the isotropy representations that M8n�3 contains a totally
geodesic submanifold N13 of dimension 13, which is �xed by Sp(n�2) �
Sp(n�2)(Sp(1))3, and on which Sp(3) acts by cohomogeneity one, with
H = (Sp(1))3 and K0 = K1 = Sp(1)Sp(2). Thus, it su�ces to show
that the case n = 2 in which K0 = K1 cannot occur.

Here, we see that the principal orbit E = Sp(3)=(Sp(1))3 �bers over
the two exceptional orbits B0 ' B1 ' Sp(3)=Sp(1)Sp(2) = HP 2 with
common �bers S4. In particular, M13 �bers over HP 2 with �ber S5.
Let pi 2 Bi, i = 0; 1, be the �xed points of K = K0 = K1 = Sp(1)Sp(2)
on Bi, and S4 ' HP 1 ' Ni � Bi the K-orbits in Bi at maximal
distance from pi in Bi. Note that the Sp(1)-factor of K acts trivially
on Ni, and that the Sp(2)-factor acts transitively on Ni with principal
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isotropy Sp(1)Sp(1). For the Sp(1)-factor of K, consider MSp(1). At
pi 2 Bi, Sp(1) acts freely on the tangent sphere of Bi and trivially
on the normal sphere. In particular, the 5-sphere �ber of M ! Bi

suspended between p0 and p1 is totally geodesic, and a component of
MSp(1). Now consider the action of Sp(1) at points in Ni � Bi. On the
normal sphere toNi inside Bi, the action is free. Thus the component of
MSp(1) containing Ni is determined by the action of Sp(1) normal to Bi

at Ni. From representation theory, this Sp(1)�S4 ! S4 action is either
almost-e�ective and factors through SO(3), or it is the suspension of
the standard free action on S3. In the �rst scenario, we �nd disjoint
totally geodesic submanifolds ofM of dimensions 9 and 5, contradicting
(1.15). In the second scenario, we �nd a 5-dimensional component, V 5,
of MSp(1) containing the Bi's. Moreover, the Sp(2)-factor of K acts
on V 5 with cohomogeneity one, and all orbits are of principal type
S4 ' Bi. In particular, V 5 �bers over S1, which is impossible, since V 5

has positive curvature. q.e.d.

Theorem 3.9 (Unitary Groups). Let M be a simply-connected,
closed manifold with sec(M) > 0. If SU(n + 1), n � 1 acts (almost)
e�ectively by isometries on M and

dim(M) � C(n) =

8><
>:
4n� 2 = 2rep+0 (SU(n+ 1)); n � 3;

7 n = 2;

4 n = 1;

then dim(M) � 2n = rep+0 (SU(n+ 1)), and M is di�eomorphic to one
of the following: a sphere, a complex projective space, the 
agmanifold
SU(3)=T 2, an Alo�-Wallach space SU(3)=S1

k;l or the Berger manifold

SU(5)=Sp(2)S1.

Proof. As in the proof of (3.7), we list all the possibilities for the
connected component, H0, of the principal isotropy subgroup, H , under
the restriction dim(M) � C(n). The list is:
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(a) U(n) = S(U(n)U(1)) (n � 1);

(b) SU(n) (n � 2);

(c) S(U(n� 1)U(2)) (n � 3);

(d) SU(n� 1)SU(2) (n � 3);

(e) SO(n+ 1) (2 � n � 4);

(f) Sp

�
n + 1

2

�
(n = 3; 5);

(g) Sp(2)S1 (n = 4);

(h) T 2 (n = 2);

(i) S1 (n = 1; 2);

(j) f1g (n = 1):

In all cases, with the exception of case (i) (n = 2), there is only one
embedding of H0 in SU(n+1), up to conjugation. In the �rst two cases
we apply the Classi�cation Theorem (2.8) via (3.5). In fact, in case (a)
(n = 1), (M;U(1)) is �xed point homogeneous and so is (M;K), with
K = SU(n) in the remaining cases.

The cases (c), (e) and (f) are all done via (3.4). We remark �rst
that in all these cases (G;H0) is a symmetric pair, and secondly that

repS0 (SU(n+ 1) = 2(n+ 1)� 1

and

repS1 (SU(n+ 1)) = n(n+ 1)� 1

for n � 4, and for n = 3,

repS0 (SU(4)) = repS0 (Spin(6)) = 5

and repS1 (SU(4)) = 7 (and both of these representations are transitive),
and in case (e) (n = 2), we have repS0 (SU(3)) = 5 and repS1 (SU(3)) = 7.

We now proceed to show that case (d) cannot occur. We remark
�rst, that for dimension reasons, the action of SU(n + 1) must either
be transitive or of cohomogeneity one. The �rst option is ruled out by
the classi�cation of positively curved homogeneous manifolds, and thus
we assume that cohom(M;SU(n+ 1)) = 1.
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Note �rst that for n � 4, H0 = H and the only possible groups
satisfying (1.13) are:

H =SU(n� 1)SU(2) � S(U(n� 1)U(2))

=K0 = K1 � SU(n+ 1) = G;
(3.10)

and N(H) = K = Ki, i = 0; 1, K=H = S1. Remark also that, as in the
discussion of case (e) in (3.7), the subcases (n � 5) reduce to the subcase
(n = 3). We will �rst rule out the subcase (n = 4). Here, M �bers over
B0 ' B1 ' G=K ' G3;2 with �ber S2, and K �xes isolated points pi 2
Bi; i = 0; 1. Let Ai � Bi be theK-orbit at maximal distance from pi; i =
0; 1. Then Ai ' G2;1 ' CP 2 is �xed by the SU(2)-factor of H . This
implies that SU(2) also �xes the normal bundles of Bi in M restricted
to Ai, i = 0; 1. The resulting G-manifold is a component ofMSU(2) and
hence totally geodesic. It �bers over Ai ' CP 2 with S2-�ber, and the
SU(3)-factor of H acts on it by cohomogeneity 1 or 2, either of which
gives us a contradiction; the �rst via the Principal Isotropy Lemma
(3.5), and the second via the Fixed Point Lemma (1.11).

To complete case (d), we now proceed with the subcase (n = 3). Ac-
cording to (1.13), the only possibilities forKi, i = 0; 1 are S(U(2)U(2))'
Spin(4)Spin(2) and Spin(5). And the argument in this case mirrors the
argument made for case (e) (n = 3) in (3.7). The only possible in this
case is M = CP 5 where G = SO(6)=Z2 (cf. [?]). The details are left to
the reader.

In case (g), the SU(5)-action is either transitive or of cohomogeneity
one. However, there are no subgroups Ki, between H0 = Sp(2)S1 and
SU(5), satisfying (1.13). Thus, M13 = SU(5)=Sp(2)S1, the Berger
example, is the only possibility here.

In case (h) as well, the SU(3)-action is either transitive or of coho-
mogeneity one. In the homogeneous case, we obtain the 
agmanifold,
M6 = SU(3)=T 2. When the action is of cohomogeneity one, we note
�rst that only Ki ' U(2) satis�es (1.13). Moreover, there are only two
choices for the pair (K0; K1): either K0 = K1 or K0 6= g�1K0g = K1 is
embedded via a permutation of the coordinates. The latter case char-
acterizes S7, where SU(3) acts on R8 via the adjoint representation.
We will show that the former does not occur. First note thatM7 �bers
over B0 ' B1 ' SU(3)=K = SU(3)=S(U(2)U(1)) = CP 2 with S3-
�bers, and K �xes isolated points pi 2 Bi, i = 0; 1. Let Ai � Bi be the
K-orbits at maximal distance to pi. Then Ai ' U(2)=T 2 ' CP 2, and
there is an S1 � T 2 which �xes all of Ai. This S1 also acts on the nor-
mal bundle of Bi restricted to Ai, and therefore either �xes the whole
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normal bundle or a 1-dimensional sub-bundle. The latter is impossible,
since it would yield a totally geodesic component of MS1 of the form
S2 � S1. If, on the other hand, the whole normal bundle is �xed, we
get a 5-dimensional component of MS1 , namely the restriction of the
S3-�bration M ! B0 to A0. It is, however, also easy to see that all
S3-�bers are totally geodesic, so a contradiction in this case is reached
via the Synge Lemma (1.15).

In case (i) (n = 2), the action of SU(3) must necessarily be transi-
tive, and hence M is an Alo�-Walach example SU(3)=S1

k;l.

It remains to consider cases (i) and (j), (n = 1), where we have
SU(2)-actions on manifolds with dim(M) � 4. If H0 = S1, we are
done by (3.5). If H0 = f1g and dim(M) = 4, the SU(2)-action is
of cohomogeneity one. The only possible groups, Ki, between f1g and
SU(2) satisfying (1.13) are Z2, S1 or SU(2). If Z2 arises, then �1 6= f1g,
and if SU(2) does, then we are done by the Classi�cation Theorem (2.8).
In the case where K0 ' K1 ' S1, �(M) = 4, which is impossible by [?].

Note that we must also worry about �nite extensions here, since
the principal orbit may �ber over the singular orbit with circle �ber.
There are only two such SU(2) actions, both of which are ine�ective.
The corresponding (ine�ective) SO(3) actions have principal isotropy
subgroup Z2 or Z2�Z2. In the �rst caseM = CP 2 and the SO(3) action
is the restriction of the standard SU(3) action on CP 2. In the second
case M = S4 and the action of SO(3) on S4 is via the representation
S2�2 � � (notation from [?]) [?].

Theorem 3.11 (Orthogonal Groups). Let M be a simply-connected,
closed Riemannian manifold with sec(M) > 0. If Spin(n + 1), n � 6
acts isometrically and (almost) e�ectively on M and

dim(M) � C(n) = 2n = 2rep+0 (Spin(n+ 1));

then dim(M) � n = rep+0 (Spin(n + 1)), and M is di�eomorphic to a
sphere, a complex projective space, or the Cayley plane.

Proof. As in the previous two theorems, we proceed to list the con-
nected components of the possible principal isotropy subgroups, under
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the given dimensional restrictions. The possibilities are:

(a) H0 = Spin(n); n � 6;

(b) H0 = Spin(n� 1)S1; n � 6;

(c) H0 = Spin(n� 1); n � 6;

(d) H0 = SU(4) ' Spin(6); n = 7;

(e) H0 = G2; n = 6:

In all cases except (c) and (d), H0 is a maximal connected subgroup of
G = Spin(n + 1), and @((G=H0)=H0) 6= ;, since (a) and (b) are sym-
metric pairs, and in case (e), (G=H0)=H0 is a closed interval. However,
the only positively curved manifolds on which Spin(n+1) can act tran-
sitively are the spheres Sn = SO(n + 1)=SO(n), S7 = Spin(7)=G2

and S15 = Spin(9)=Spin(7). Suppose then that Spin(n + 1) does
not act transitively on M . Then by the Fixed Point Lemma (1.11),
MSpin(n+1) 6= ;. The action of Spin(n + 1) at the normal space to
a point in MSpin(n+1) yields a representation of dimension less than
or equal to 2n by the assumption on dim(M). For n 6= 6; 8; 9; or 11
the two lowest linear representations of Spin(n + 1) are in dimensions

n + 1 and n(n+1)
2 , and Corollary 3.4 together with (2.8) yields the de-

sired result. The three lowest dimensional representations for Spin(7)
are of dimensions 7; 8; 21; for Spin(9): 9; 16; 36; for Spin(10): 10; 16; 45;
and for Spin(12): 12; 64; 66. Since the two lowest-dimensional repre-
sentations for Spin(7), as well as for Spin(9), yield transitive actions
on the corresponding spheres, the Fixed Point Lemma (1.11), together
with (2.8), still su�ces without further considerations. In the case of
Spin(10), the 16-dimensional representation (which is not transitive on
S15) might occur when 16 � dim(M) � 18. However, since the prin-
cipal isotropy subgroup for this action on S15 is neither Spin(9), nor
Spin(8)S1 (known from representation theory, or can be seen via the
Fixed Point Lemma applied to Spin(10)� S15 ! S15), this case does
not arise.

We are left then with case (c) and (d). Note however that there is an
outer automorphism of Spin(8) (triality) which take SU(4) to Spin(6)
and so case (d) is contained in case (c). For n 6= 8, there is only one
embedding of Spin(n� 1) in Spin(n+1), and Spin(n+1)=Spin(n� 1)
does not carry a homogeneous metric of positive curvature, so for these
n, Spin(n+1)�M !M must be of cohomogeneity one and dim(M) =
2n. For the non-standard embedding of Spin(7) in Spin(9), however,
Spin(9)=Spin(7) = S15.
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Now suppose that Spin(n + 1) acts (almost) e�ectively on M2n

with cohomogeneity one and principal isotropy subgroup H = H0 =
Spin(n� 1) embedded in the standard fashion (also when n = 8). The
possible subgroups K0, K1 satisfying (1.13) are then Spin(n�1)S1 and
Spin(n). Note also that there is only one embedding of Spin(n� 1)S1

in Spin(n+1), whereas Spin(n) admits embeddings parametrized by S1

(these, however, all yield the same manifold up to di�eomorphism). As
we have seen in previous theorems, it su�ces to consider only the sub-
cases (n = 4) and (n = 5), and since Spin(5) = Sp(2) and Spin(6) =
SU(4), both have already been ruled out. Thus, case (c) does not occur
when H = H0 = Spin(n�1) � Spin(n+1) is standard. If H=H0 6= f1g,
then M = CPn (cf. [?]).

Finally, we consider case (c) (n = 8), where the embedding of
Spin(7) in Spin(9) is not standard, i.e., suppose Spin(9) acts on M16

by cohomogeneity one, with principal isotropy subgroup H0 = Spin(7)
embedded via the spin-representation in Spin(8) � Spin(9). According
to (1.13) there are only two possibilities for Ki, i = 0; 1, corresponding
to 3 possible scenarios: (i) K0 = K1 = Spin(9), (ii) K0 = Spin(9) and
K1 = Spin(8) and (iii) K0 ' K1 = Spin(8). The �rst two cases corre-
spond to S16 and CaP 2 respectively, and we show how to rule out the
third case here. To do so, we consider the orbit space M=Spin(8). Here
G=Ki = S8, and the action of Spin(8) on the singular orbits �xes 2 iso-
lated points and is transitive on the normal S7 to both of these points,
that is, M=Spin(8), (G=Ki)=Spin(8) =I, i = 0; 1. MSpin(8) consists of
four isolated points. Moreover the induced representation of Spin(8) on
the tangent spaces R16 to the �xed points in M yields a cohomogene-
ity one action on S15 with principal isotropy group G2 and orbit space
[0; �=2]. A contradiction is thus obtained via the Extent Lemma (1.3).

q.e.d.

The exceptional groups G2 and F4 have SU(3) and Spin(9) as sub-
groups of maximal dimension, respectively. Since G2=SU(3) = S6 and
F4=Spin(9) = CaP 2 both have (homogeneous) positive curvature met-
rics, it follows that rep+0 (G2) = 6 and rep+0 (F4) = 16. Further, it is
known that repS1 (G2) = 14 and repS0 (F4) = 25 and repS1 (F4) = 51. By
arguments as in the previous three theorems, we derive:

Theorem 3.12. Let M be a positively curved manifold with �1(M) =
f1g. If G2 acts (almost) e�ectively on M by isometries and

dim(M) � 11 = 2rep+0 (G2)� 1;
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then dim(M) � 6 = rep+0 (G2), and M is di�eomorphic to a sphere.

Theorem 3.13. Let M be a simply-connected manifold with
sec(M) > 0, as above. If F4 acts isometrically and (almost) e�ectively
on M and

dim(M) � 25 = 2rep+0 (F4)� 7;

then dim(M) � 16 = rep+0 (F4), and M is di�eomorphic to a sphere, the
Cayley plane, or the 
agmanifold F4=Spin(8).

The Corollaries C and D in the introduction now follow easily from
Theorems (3.7), (3.9), (3.11), (3.12), and (3.13), and the classi�cation
of positively curved homogeneous manifolds.
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