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QUATERNIONIC MAPS BETWEEN HYPERKÄHLER
MANIFOLDS

JINGYI CHEN & JIAYU LI

Abstract
Quaternionic maps (Q-maps) between hyperkähler manifolds are quater-
nionic analogue of Cauchy-Riemann equations between Kähler manifolds.
We provide a necessary and sufficient condition on when a quaternionic
map becomes holomorphic with respect to some complex structures in the
hyperkähler 2-spheres, and give examples of Q-maps which cannot be holo-
morphic. When the domain is real 4-dimensional, we analyze the structure
of the blow-up set of a sequence of Q-maps, and show that the singular set
of a stationary Q-map is H1-rectifiable.

1. Introduction

Quaternionic maps between hyperkähler manifolds arise naturally
in higher dimensional gauge theory (cf. [3], [6], [9]). Unlike holomor-
phic maps, to define quaternionic maps, one needs to use all of the
three complex structures, which determine the hyperkähler structures
on both the domain and target manifolds. Let M and N be two hy-
perkähler manifolds and let I,J,K and i, j,k be complex structures on
them respectively satisfying the quaternionic identities:

I2 = J2 = K2 = IJK = −Id,
i2 = j2 = k2 = i j k = −Id.

A quaternionic map f : M → N is characterized by

i df I + j df J + k df K = df.
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In 1935, R. Fueter considered the same equation for f : H → H (cf. [10],
[25]) in his effort to generalize complex analysis to the quaternionic
setting. Recently, D. Joyce studied H-valued functions defined on hy-
percomplex manifolds and provided applications to hypercomplex alge-
braic geometry (cf. [15] and the reference therein). Quaternionic maps
automatically minimize the energy functional in their homotopy classes
(cf. Proposition 2.2 and [3], [9]), and hence they are harmonic. Since
this is a well known property of holomorphic maps between Kähler man-
ifolds, it would be very interesting to know whether quaternionic maps
can always be made holomorphic by rotating complex structures or if
they constitute a new class of harmonic maps.

In Section 2, we prove Theorem 2.3 which provides a necessary and
sufficient condition for a quaternionic map to be holomorphic with re-
spect to some complex structures in the hyperkähler S

2 (here we recall
that the complex structures compatible with the hyperkähler metric
are parameterized by S

2). We also give examples of quaternionic maps
which can not be holomorphic with respect to any complex structures.

In Section 3, we analyze the structure of the blow-up set of a se-
quence of quaternionic maps. It is shown in [17] that the limit map u of
a sequence of quaternionic maps uk : M → N with bounded total energy
E(uk) ≤ C is a stationary harmonic map, and the blow-up set Σ is sta-
tionary. In particular, when M is real 4-dimensional, Σ is 2-rectifiable,
so the 2-dimensional Hausdorff measure H2(Σ) is finite and H2 almost
all points of Σ are contained in a countable union of 2-dimensional C1-
submanifolds of M . When M is a compact hyperkähler surface, we
show in Proposition 3.3 that the two dimensional components of Σ are
a union of minimal surfaces Si away from a closed set whose H2-measure
is zero, and moreover if Si ∩ Sj contains a curve C, then C ⊂ sing(u).
This is achieved by using the quaternionic map equation. The theory
describing the interplay between calibrated submanifolds and higher di-
mensional instantons has been developed in [6] and [26]. We conjecture
that the minimal surfaces Si are calibrated by a certain closed 2-form.
For an energy minimizing map v, the regularity theory of Schoen and
Uhlenbeck [20] asserts that the singular set of v always has Hausdorff
dimension ≤ m−3, where m is the real dimension of the domain. For a
stationary harmonic map, the (m − 2)-dimensional Hausdorff measure
of its singular set is zero (cf. [2], [7], [12]).

In Section 4, we study the regularity of a stationary quaternionic
map u (cf. Definition 4.1) from a hyperkähler surface M . In this sec-
tion, we assume that the Riemannian metric on N which defines the
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hyperkähler structure is real analytic. Using a result of Simon [22] on
the singular sets of stationary harmonic maps, we prove in Theorem 4.3
that the singular set of u is H1-rectifiable. For energy minimizing maps,
this regularity result was obtained in [22]. If the target N does not ad-
mit a holomorphic S

2 with respect to any complex structure in the
hyperkähler S

2, a stationary quaternionic map is smooth outside a fi-
nite set of points; if N admits a holomorphic S

2 with respect to some
complex structure in the hyperkähler S

2, then there exists a stationary
quaternionic map whose singular set is a line. Lin’s technique in [18]
plays an important role in our analysis about stationary quaternionic
maps.

In the last section, we take a different approach. Rather than consid-
ering the tangent maps, we show that if there are no holomorphic maps
from S

2 to N with respect to certain pairs of complex structures on the
domain and target spaces, then there is a subsequence, in any sequence
of quaternionic maps from a compact hyperkähler surface to N with
bounded energy, which converges strongly in W 1,2 norm to a quater-
nionic map which is smooth except possibly at finitely many points.

The authors would like to thank Professors W.Y. Ding, R. Schoen,
L. Simon, G. Tian and T. Toro for valuable discussions regarding cali-
brated geometry and stationary harmonic maps and their interests. The
authors are grateful to the University of British Columbia, the Academy
of Mathematics and System Sciences in Chinese Academy of Sciences,
and Massachusetts Institute of Technology, where this work was carried
out. Finally, the authors would like to thank the referees for their useful
comments.

2. Quaternionic maps

Recall that a hyperkähler manifold is a Riemannian manifold with
three covariant constant orthogonal automorphisms I, J and K of the
tangent bundle which satisfy the quaternionic identities

I2 = J2 = K2 = IJK = −Id.

For any real numbers a, b, c with a2+ b2+ c2 = 1, we obtain a covariant
constant complex structure aI + bJ + cK. We shall refer this S

2-family
of complex structures as the hyperkähler S

2. Therefore, SO(3) acts
naturally on the covariant constant complex structures. Furthermore,
every SO(3) matrix preserves the quaternionic identities. A hyperkähler
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manifold is of dimension 4k. R
4k and the standard 4k dimensional tori

naturally carry hyperkähler structures. It is well known that all K3
surfaces are hyperkähler. The moduli space of the irreducible anti-self-
dual connections on a K3 surface is hyperkähler as well (cf. [14], [19]
and other people’s work). There is also construction via moment maps
by Hitchin and others (cf. [13] and the reference therein).

Definition 2.1. Let M and N be two hyperkähler manifolds with
complex structures Jα and J β respectively for α, β = 1, 2, 3 which sat-
isfy the quaternionic identities. A smooth map u : M → N is called a
quaternionic map if

AαβJ β ◦ du ◦ Jα = du,(1)

where Aαβ denote the entries of a matrix A in SO(3).

It can be verified (cf. [3]) that holomorphic and anti-holomorphic
maps with respect to some complex structures in the hyperkähler S

2 on
M and N are quaternionic maps. In particular, the identity map from
M to itself satisfies

I du I − J duJ − K duK = du.

Note that the coefficients in this equation form a SO(3)-matrix, i.e., the
diagonal matrix with diagonal elements 1,−1,−1, hence the identity
map is quaternionic.

In local coordinates, the equation (1) reads as

Aαβ(Jα)ij(J β)mn∂ju
m = ∂iu

n.

Here and in sequel, we sum up all repeated upper and lower indices.
This equation is a quaternionic analog of the Cauchy-Riemann equation
defining holomorphic maps. Since SO(3) preserves the quaternionic
identities, we can always choose complex structures Jα for M and J β

for N such that Aαβ = δαβ in (1). In the sequel, we shall assume that
Aαβ = δαβ .

Let g and h be the Riemannian metrics on M and N respectively.
Consider the energy functional

E(u) =
1
2
‖du‖2 =

1
2

∫
M
gijhmn∂iu

m∂ju
ndV,
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where dV is the volume element, and the functional

ET (u) =
∫
M

∑
α

〈Jα, u∗J α〉dV

=
1
2

∫
M

∑
α

(Jα)pqJ α
mk∂pu

m∂qu
kdV,

and set

I(u) =
1
2

∫
M

|du−
∑
α

J α ◦ du ◦ Jα|2dV.

It is clear that I(u) = 0 if and only if u is a quaternionic map. Let J be
a complex structure on M and let J be a complex structure on N . That
holomorphic maps between Kähler manifolds are energy minimizers in
their homotopy classes follows easily from

E(u) +
∫
M
〈J, u∗J 〉dV =

1
4

∫
M

|du− J ◦ du ◦ J |2dV.(2)

Note that
∫
M 〈J, u∗J 〉dV is just

∫
M 〈ωJ , u

∗ωJ 〉dV where ωJ is the Kähler
form on M defined by ωJ(X,Y ) = g(JX, Y ) and ωJ is the Kähler form
on N with respect to J . In order to investigate similar properties for
quaternionic maps, we have (cf. [3], [17], [9]):

Proposition 2.2. For any smooth map u : M → N , we have

E(u) + ET (u) =
1
4
I(u).(3)

If u is a quaternionic map, then it minimizes energy in its homotopy
class.

Proof. It is clear that

I(u) =
1
2

∫
M
gijhmn(∂ium −

∑
α

(Jα)ip(J α)km∂puk)

(∂jun −
∑
α

(Jα)jq(J α)kn∂quk)dV

= E(u) −
∫
M

∑
α

(Jα)pqJ α
km∂pu

m∂qu
kdV

+
1
2

∫
M

∑
α,γ

gijhmn(Jα)ip(J α)km(Jγ)jq(J γ)ln∂puk∂qu
ldV.
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We claim that∑
α,γ

gijhmn(Jα)ip(J α)km(Jγ)jq(J γ)ln = 3δpqδkl + 2
∑
α

(Jα)pq(J α)kl.

It suffices to prove the above identity in the normal coordinates. Take
a system of normal coordinates around any point p ∈ M and a system
of normal coordinates around u(p) ∈ N . Then we have∑

α,γ

gijhmn(Jα)ip(J α)km(Jγ)jq(J γ)ln

=
∑
α,γ

Jα
ipJ α

kmJ
γ
iqJ γ

lm

=
∑
α,γ

Jα
piJ

γ
iqJ α

kmJ γ
ml

= 3δpqδkl + 2
(
J1pqJ 1kl + J2pqJ 2kl + J3pqJ 3kl

)
,

and the claim follows. Then it is clear that

I(u) = E(u) + 2ET (u) + 3E(u) + 2ET (u)
= 4(E(u) + ET (u)).

This proves (3). For fixed complex structures Jα and J β, ET only
depends on the homotopy class of u (cf. [16]). Therefore, if u is a
quaternionic map, the right side of (3) vanishes and in turn u is an
energy minimizer in its homotopy class. q.e.d.

We now establish a criterion which detects when a quaternionic map
becomes holomorphic with respect to some complex structures in the
hyperkähler S

2.

Theorem 2.3. Suppose that u is a quaternionic map. Let A be
a 3 × 3-matrix whose (α, β)-entries are − ∫M 〈Jα, u∗J β〉dV for α, β =
1, 2, 3. Then

(trA)2 ≥ max{eigenvalues of AAt}
and the equality holds if and only if u is a holomorphic map with respect
to some complex structures in the hyperkähler S

2 on M and on N .

Proof. Setting J = XαJ
α with |X| = 1 and J = YβJ β with |Y | = 1,

then from (2) we have

E(u) = XAY t +
1
4

∫
M

|du− J ◦ du ◦ J |2dV.
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Since u is a quaternionic map, by (3) we have

E(u) = trA.

It follows that

trA ≥ XAY t(4)

for any unit vectors X and Y , and in fact the equality holds if and only
if u is holomorphic with respect to J and J . The eigenvalues of AAt

are all nonnegative. If 4λ2 is an eigenvalue of the real symmetric 3 × 3
matrix AAt where λ ≥ 0, there is a unit vector Yλ in R

3 such that

AAtY t
λ = 4λ2Y t

λ ,

and hence
Yλ(AtAY t

λ) = Yλ(AAtY t
λ) = 4λ2YλY

t
λ .

In turn, we have |AY t
λ | = 2λ. If λ �= 0, we choose Xt

λ = 1
2λAY

t
λ and get

XλAY
t
λ = 2λ.

We therefore have trA ≥ 2λ and consequently

(trA)2 ≥ max{eigenvalues of AAt}.

This is trivially true if all of the eigenvalues of AAt are 0 since A is the
zero matrix in this case. This proves the first part of the theorem.

As for the second part, we introduce the Lagrange multiplier:

F (X,Y ) = XAY t − λ(|X|2 − 1) − µ(|Y |2 − 1).

If XAY t attains its maximum at two unit vectors V,W ∈ R
3, we have

FX = FY = 0 at X = V, Y = W . This leads to

AW t = 2λV t and V A = 2µW.

It follows that

2λ = 2λ|V |2 = V AW t = 2µ|W |2 = 2µ.

This implies

AtAW t = 2λAtV t = 4λµW t = 4λ2W t.
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Therefore 4λ2 is an eigenvalue of AtA.
If u is holomorphic with respect to some complex structures XαJ

α on
M and YαJ α on N in the hyperkähler S

2, then XAY t attains the max-
imum trA by (4). The discussion above asserts that trA = XAY t = 2λ
and 4λ2 is an eigenvalue of AtA, so (trA)2 = max{eigenvalues of AAt}
according to the first part of the theorem.

Conversely, if (trA)2 = max{eigenvalues of AAt} > 0, we set 2λ =
trA, then 4λ2 is an eigenvalue of AtA. Suppose that |Y | = 1 and

AtAY t = 4λ2Y t.

Then we have Y AtAY t = 4λ2, and hence |AY t|2 = 4λ2. We choose
Xt = 1

2λAY
t and we get XAY t = 2λ = trA. So by (4) u is a holomor-

phic map with respect to J = XαJ
α and J = YαJ α. If A is the zero

matrix, the quaternionic map u is constant. q.e.d.

Corollary 2.4. Let Ω be an open domain in M with smooth bound-
ary ∂Ω. Suppose that u is a quaternionic map from Ω to N which ex-
tends smoothly to Ω → N . Let A be a 3× 3-matrix whose (α, β)-entries
are − ∫Ω〈Jα, u∗J β〉dV for α, β = 1, 2, 3. Then

(trA)2 ≥ max{eigenvalues of AAt}

and the equality holds if and only if u is a holomorphic map with respect
to some complex structures in the hyperkähler S

2 on M and on N .

Proof. If Ω is a domain in M with smooth boundary and u : Ω → N
is a smooth map, we still have

E(u) + ET (u) =
1
4
I(u).

Now ET (u) is a homotopy invariant among maps v : Ω → N which
are homotopic to u relative to ∂Ω with v|∂Ω = u|∂Ω (i.e., there exists a
continuous family of maps ut, 0 ≤ t ≤ 1, with u0 = u, u1 = v and ut ≡ u
on ∂Ω). To see this, we observe that the pull-back 2-forms of the Kähler
form ωJ β by u and v stay in the same cohomology class H2(Ω, rel ∂Ω):

v∗ωJ β − v∗ωJ β = dη

for some 1-form η on Ω and η(X) = 0 for any vector X tangent to ∂Ω.
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It follows that∫
Ω
〈ωJα , v∗ωJ β 〉 dV −

∫
Ω
〈ωJα , u∗ωJ β 〉 dV =

∫
Ω
〈ωJα , dη〉 dV

=
∫
Ω
dη ∧ ωm−1

Jα

(m− 1)!

=
∫
Ω
d

(
η ∧ ωm−1

Jα

(m− 1)!

)

=
∫
∂Ω

η ∧ ωm−1
Jα

(m− 1)!
= 0

by Stokes’ theorem and η vanishes along ∂Ω. The rest of the argument
is the same as that in the proof of Theorem 2.3. q.e.d.

Assume the real dimensions of M and N are four. To write (1) in
local coordinates, we choose a coordinate system at a point x in M and
a coordinate system at f(x) in N , so that the matrix expressions of
the complex structures take the following form (cf. [14]): let id be the
2 × 2 identity matrix and let I be the matrix for the standard complex
structure on C, then we take

J1 = J 1 =
(

0 I
I 0

)
, J2 = J 2 =

(
I 0
0 −I

)
,

J3 = J 3 =
(

0 id
−id 0

)
.

(5)

Denote the differential du of u by the matrix
(
∂uα

∂xi

)
for α, i = 1, 2, 3, 4.

Set

ui =
(
∂u1

∂xi
,
∂u2

∂xi
,
∂u3

∂xi
,
∂u4

∂xi

)t

.

Simple computation then shows that the quaternionic equation (1) in
dimension four is equivalent to

u1 − J 2u2 + J 3u3 − J 1u4 = 0,(6)

which leads to 
u11 + u22 + u33 + u44 = 0
u21 − u12 + u43 − u34 = 0
u31 − u13 − u42 + u24 = 0
u41 − u14 − u23 + u32 = 0.

(7)
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If dimR M = 4 and dimR N = 4n, to write (1) in local coordinates, we
choose a coordinate system {x1, x2, x3, x4} around x and a coordinate
system around u(x) in N , so that the matrix expressions of the complex
structures take the following form: for each α = 1, 2, 3, Jα is as before
and J α has n copies of Jα along the diagonal and 0 elsewhere in block
form. Then the quaternionic equation is given by

u4i−31 + u4i−22 + u4i−13 + u4i4 = 0
u4i−21 − u4i−32 + u4i3 − u4i−14 = 0
u4i−11 − u4i−33 − u4i2 + u4i−24 = 0
u4i1 − u4i−34 − u4i−23 + u4i−12 = 0

(8)

for 1 ≤ i ≤ n.
Now we provide examples of quaternionic maps.

Example 2.5. Let M and N be R
4 with complex structures

Jα = J α which are defined by (5). Let u : R
4 → R

4 defined by

u(x1, x2, x3, x4) = (0, x1x2,−x1x3,−x2x3).
Using (7), one can check that u is a quaternionic map. Direct com-

putation leads to

Du =


0 0 0 0
x2 x1 0 0
−x3 0 −x1 0

0 −x3 −x2 0

 .

Since

det

 x2 x1 0
−x3 0 −x1

0 −x3 −x2

 = −x1x2x3,

we conclude that the rank of Du is three at (x1, x2, x3, x4) as long as
x1x2x3 �= 0. However, the rank of a holomorphic map should be even.
It follows that u can not be a holomorphic map with respect to any
complex structures on R

4.

Example 2.6. Consider a map u : (0, 1)×(0, 1)×(0, 1)×(0, 1) → R
4

given by
u(x1, x2, x3, x4) = (a1x1, a2x2, a3x3, a4x4),

where ai ∈ R for i = 1, 2, 3, 4. By (7), if

a1 + a2 + a3 + a4 = 0,
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then u is a quaternionic map. Suppose that the elements of the matrix
A is Aαβ (α, β = 1, 2, 3). We have

Aαβ = −1
2

4∑
p,q=1

apaq(Jα)pq(J β)pq.

A simple computation shows that

A = −
 a1a4 + a2a3 0 0

0 a1a2 + a3a4 0
0 0 a1a3 + a2a4

 .

Choosing a2 = a3 = a4 = µ > 0 and a1 = −3µ. Then u is a quaternionic
map. But

A = 2

 µ2 0 0
0 µ2 0
0 0 µ2

 .

So trA = 6µ2 and

AAt = 4

 µ4 0 0
0 µ4 0
0 0 µ4

 .

Applying Corollary 2.4, we see that u is not a holomorphic map with
respect to any complex structures on (0, 1) × (0, 1) × (0, 1) × (0, 1) and
R
4.

Example 2.7. Let T
4 = S

1 × S
1 × S

1 × S
1 be the standard

4-dimensional torus. Consider a map u : T
4 → T

4 determined by

u(e2πix1 , e2πix2 , e2πix3 , e2πix4) = (e2πix1 , e2πix2 , e2πix3 , e−6πix4).

In local coordinates,

u(x1, x2, x3, x4) = (x1, x2, x3,−3x4).

It is clear from (7) that u is a quaternionic map. By an argument
similar to the one used in the second example, we conclude that u
is not holomorphic with respect to any complex structures on T

4 by
Theorem 2.3.
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3. The blow-up set

Let M and N be two compact hyperkähler manifolds. Let m =
dimR M . Suppose that uk is a sequence of smooth quaternionic maps
with E(uk) ≤ C. We recall that as a sequence of harmonic maps with
bounded energy the blow-up set of uk can be defined as

Σ =
⋂
r>0

{x ∈ M | lim inf
k→∞

r2−m

∫
Br(x)

| � uk|2dy ≥ ε0}.

We can always assume that uk ⇀ u weakly in W 1,2(M,N) and that

| � uk|2dx ⇀ | � u|2dx + ν,

in the sense of measure as k → ∞. Here ν is a nonnegative Radon
measure on M with support in Σ. It is known that Σ is a closed
Hm−2-rectifiable set, so we can define the gradient operator �Σ (cf. Sec-
tion 12.1 in [23]) and the divergence along Σ

divΣX =
m−2∑
j=1

(�Σ
ej
X) · ej

for any smooth vector field X on M , where e1, · · · , em−2 is any or-
thonormal basis for TxΣ, x ∈ Σ (cf. Section 16 in [23]). We say that Σ
is stationary if for any smooth vector field X on M , we have∫

Σ
divΣXν = 0.

A map f from M to N is said to be a stationary harmonic map, if it
is a weakly harmonic map and for any smooth vector field X on M , we
have ∫

M

(
| � f |2div(X) − 2〈df(�αX), df(

∂

∂xα
)〉
)
dV = 0.

The following result is proved in [17] (Theorem 4.4 and Theorem 4.5 in
[17]).

Theorem 3.1 ([17]). Let M and N be two compact hyperkähler
manifolds. Suppose that uk is a sequence of quaternionic maps with
bounded energy E(uk) ≤ C. Then by taking a subsequence if necessary,
uk ⇀ u weakly in W 1,2(M,N) and the limit map u is a stationary
harmonic map which is also a stationary quaternionic map. Moreover,
the blow-up set Σ is stationary and has no boundary.
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From now on, we assume that M is a hyperkähler surface, that is
m = 4.

Since Σ is stationary, it is a union of smooth real 2-dimensional
surfaces outside a closed set Σ0 with H2(Σ0) = 0.

Definition 3.2. Let Br(x) be a geodesic ball and let

Σ1 = { x ∈ Σ | H2(Σ ∩Br(x)) > 0 for any r > 0}.

We call Σ1 the two dimensional component of Σ.

It is clear that if x ∈ Σ \ Σ1, there is r0 > 0 such that
H2(Σ∩Br0(x)) = 0. Consequently, uk → u strongly in W 1,2(Br0(x), N).

Proposition 3.3. Let M be a compact hyperkähler surface and let
N be a compact hyperkähler manifold. Suppose that uk is a sequence of
smooth quaternionic maps with bounded energy E(uk) ≤ C. Let Σ1 be
the two dimensional component of the blow-up set Σ for the sequence.
Then Σ1 \Σ0 = ∪iSi where Si are minimal surfaces. Let u be the weakly
limiting map of the sequence uk. If Si and Sj meets transversely along
a curve C, then C ⊂ sing(u).

Proof. By the constancy theorem for stationary varifolds (cf. [1],
[23]), the density function of Σ is constant on each connected compo-
nent. Then the first part of the proposition is just a re-statement of
Theorem 3.1. It suffices to show that, if Si and Sj meets transversely
along a curve C, then C ⊂ sing(u). Since each Si is smooth, we can
choose three tangent vectors e′1, e′2, e′3 ∈ TxSi ∪ TxSj for any x ∈ C.
If C �⊂ sing(u), we may choose x to be the point where u is smooth.
So u is smooth in a neighborhood of x. By Lemma 2.2 in [17], the
nonnegative Radon measure νe′i = 0 and in the measure convergence
|∇e′iuk|2dV ⇀ |∇e′iu|2dV + νe′i for all tangential direction e′i, i = 1, 2, 3,
therefore we have

lim
r→0

lim
k→∞

r−2
∫
Br(x)

| �e′i uk|2dV = lim
r→0

r−2
∫
Br(x)

| �e′i u|2dV
= 0,

for i = 1, 2, 3, here the last equality follows from the smoothness of u at
x. We choose an orthonormal frame {e1, e2, e3, e4} on the tangent bun-
dle TUM over a neighborhood U of x in M such that ei =

∑3
j=1Aije

′
j

at x, for i = 1, 2, 3, where A = (Aij) is an invertible 3 × 3-matrix. So



368 jingyi chen & jiayu li

we have

lim
r→0

lim
k→∞

r−2
∫
Br(x)

3∑
i=1

| �ei uk|2dV = 0.

By the quaternionic map equation, we get

lim
r→0

lim
k→∞

r−2
∫
Br(x)

| �e4 uk|2dV = 0.

This implies

lim
r→0

lim
k→∞

r−2
∫
Br(x)

| � uk|2dV = 0,

which contradicts that x ∈ Σ is a blow-up point. q.e.d.

4. Removable singularity

In this section, we prove that the singular set of a stationary quater-
nionic map defined in [17] is a one dimensional rectifiable set.

Definition 4.1. Let M and N be two hyperkähler manifolds.
A map u from M to N is a stationary quaternionic map if (1) u ∈
W 1,2(M,N) and (2) u is a smooth quaternionic map outside a singular
set Σ which is of Hausdorff codimension at least two.

It is proved in [17] that a stationary quaternionic map is a stationary
harmonic map. Let us recall some basic terminologies and facts about
stationary harmonic maps. Let u(x) be a stationary harmonic map
from M to N . The regular set reg (u) of u is defined as the set of points
x ∈ M such that u is smooth in some neighborhood of x. It is clear that
reg(u) is open in M . The singular set sing(u) of u is the complement of
reg(u). The density function Θu of u is defined by

Θu(x) = lim
r→0

r2−m

∫
Br(x)

| � u|2dV,

where m is the real dimension of M . The monotonicity inequality for
u guarantees that the limit exists, and the density function Θu of u is
upper semi-continuous. It is proved (cf. Theorem I.4 in [2], and [7])
that x ∈ reg(u) if and only if Θu(x) = 0. To study the local behavior of
the map u around a point x ∈ M , we take a small convex geodesic ball
B(x) centered at x in M . For any y ∈ B(x), there is a unique geodesic
γ(x, y) which connects x and y with unit speed. We shall denote the
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point on γ(x, y) with distance r from x by x + ry for any r ∈ [0, 1). At
each singular point, the tangent maps exist:

Theorem 4.2 ([17]). Let u be a stationary harmonic map from M
to N . Assume that x ∈ sing(u) and set ux,r(y) = u(x + ry). Then for
any sequence ri′ → 0 there is a subsequence ri → 0 such that ux,ri ⇀ φ
weakly in W 1,2(Rm, N) and

| � ux,ri |2dy ⇀ | � φ|2dy + θ(y)Hm−2�Σx

in the sense of measure. Moreover,

(1) φ(λy) = φ(y) for all λ > 0 and y ∈ R
m, i.e., φ(y) is of homoge-

neous degree zero.

(2) θ(λy) = θ(y) for all λ > 0 and y ∈ Σx, i.e., θ(y) is of homogeneous
degree zero.

(3) Σx is a tangent cone, which means λΣx = Σx for all λ > 0.

The map φ obtained in this theorem is called a tangent map of u at x.
Let x ∈ M and take a sequence of points xi → x with Θu(xi) ≥ Θu(x).
We define

uxi,r(y) = u(xi + ry).

By a similar argument as in the proof of Theorem 4.2, we can show
that there is a subsequence ri → 0 such that uxi,ri ⇀ φ weakly in
W 1,2(Rm, N) and

| � uxi,ri |2dy ⇀ | � φ|2dy + θ(y)Hm−2�Σx

in the sense of measure. φ(y) and θ(y) are of homogeneous degree zero
and Σx is a tangent cone. We call such a map φ the pseudo-tangent map
of u at x as in [22]. If u is a quaternionic map, by Theorem 3.1 and
Theorem 4.2 we know that φ(y) is a stationary harmonic map and θ(y)
is constant in each connected domain in Σx by the constancy theorem
(cf. [23] Theorem 41.1).

Theorem 4.3. Let u be a stationary quaternionic map from a
hyperkähler surface M to a hyperkähler manifold N with a real analytic
metric which defines the hyperkähler structure. Then the Hausdorff di-
mension of the singular set of u is at most one, and if it is one, the
singular set is rectifiable.
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Proof. Since u is a stationary harmonic map by Theorem 4.4 in [17],
it is smooth outside a closed subset in M with H2 measure zero.

There is a very useful result in Section 9 of [22] about the singular
set of stationary harmonic maps. Simon shows the following: Let u
be a stationary harmonic map from a m-dimensional domain Ω with a
smooth metric to a Riemannian manifold with a real analytic metric. If
all tangent map and all pseudo-tangent maps φ of u are stationary for
the energy functional, and if the set of all such φ with density Θφ(0) ≤ β
(for any given β) lies in a compact set (relative to the local L2 metric)
of stationary maps all with singular set of dimension ≤ m1, then sing(u)
is locally a finite union of locally m1-rectifiable locally compact subsets.
In general, unlike the minimizing maps, neither the stationary assump-
tion on tangent maps and pseudo-tangent maps nor the compactness is
known to hold automatically if u is stationary.

We only prove the case that N is also a hyperkähler surface, the
proof for the general case is the same.

Step 1. We first show the compactness of the pseudo-tangent maps
of u.

Suppose that uk is a sequence of pseudo-tangent maps of u. We can
always assume that uk ⇀ u weakly in W 1,2

loc (R4, N) and that |�uk|2dx ⇀
|�u|2dx+ν in the sense of measure as k → ∞. Here ν is a nonnegative
Radon measure on R

4 with support in Σ, and Σ is the blow-up set
of the sequence uk. It is clear that Σ is a stationary tangent cone.
In particular, we know that the origin 0 of R

4 belongs to Σ and θ
is constant. We will prove H2(Σ) = 0 by deriving a contradiction if
H2(Σ) > 0.

Because Σ is H2-rectifiable, it decomposes into

Σ =
∞⋃
i=1

Σi, Σi ∩ Σj = ∅

if i �= j, where H2(Σ0) = 0, Σi is H2-rectifiable and Σi ⊂ Mi with
Mi an embedded 2-dimensional C1 submanifold of R

4 for all i ≥ 1;
and TxΣ = TxMi for H2-a.e. x ∈ Σi (cf. p.61 in [23]). Suppose that
(x1, x2, x3, x4) is a coordinate system around 0 such that

∂

∂x1
,
∂

∂x2
∈ T (Σ)

for H2-a.e. x ∈ Σ. We recall the following result in [17]: if T =
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∑2
α=1 ξ

α ∂
∂xα then

lim
ε→0

lim
k→∞

∫
Bε(Σ)

| �T uk|2dV = 0.(9)

Here and in the sequel we denote by Bε(Σ) = {x ∈ M | dist (x,Σ) < ε}.
Set

Fkε(x) =
∫
B2

ε (0)
| �T uk|2(x, x′)dx′

for x ∈ Σ. Here and in the sequel we denote by B2r (x) the metric ball
centered at x with radius r in R

2. We consider the Hardy-Littlewood
maximal function MFkε

(x) of Fkε(x) (cf. [24]), which is defined by

MFkε
(x) = sup

0<r<1
r−2

∫
B2

r (x)
Fkε(x)dx.

By the weak type (1, 1) inequality (cf. [24]) for MFkε
(x), we have

H2{x ∈ Σ|MFkε
(x) ≥ λ} ≤ C

λ

∫
Bε(Σ)

2∑
α=1

| �α uk|2dV

for any λ > 0. By (9), we have

lim
ε→0

lim
k→∞

H2{x ∈ Σ|MFkε
(x) ≥ λ} = 0.

Thus, for any integer l > 0,

H2
( ∞⋃

n0=1

∞⋂
n=n0

∞⋃
k0=1

∞⋂
k=k0

{
x ∈ Σ

∣∣∣∣MF
k( 1

n )
(x) ≥ 1

l

})
= 0.

By the partial regularity result for stationary harmonic maps in [2] and
[7], we can find xl ∈ Σ ⊂ B21(0)×{0}, such that for any n0 > 0 and any
k0 > 0 there are nl > n0 and kl > k0 such that

xl → 0 and MF
kl(

1
nl

)
(xl) <

1
l

(10)

and uk is smooth near (xl, x
′) for all x′ ∈ B21(0). We claim that for all

k sufficiently large there exist δk → 0 such that

max
x′∈B2

1(0)
δ−2k

∫
B2

δk
(xk)×B2

δk
(x′)

| � uk|2(x, x′)dxdx′ =
ε0

8 · 28
,(11)
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and

|xk|
δk

≤ C,(12)

where ε0 is the small constant in the small energy regularity theorem
(cf. [2], [7]). In fact, since uk(x) is smooth at (xk, x

′), for any given k
and for δ < δ(k), we have

δ−2
∫
B2

δ (xk)×B2
δ (x

′)
| � uk|2(x, x′)dxdx′ ≤ ε0

16 · 28
.

On the other hand, since x ∈ Σ, for fixed δ > 0 and sufficiently large k,

δ−2
∫
B2

δ (xk)×B2
δ (0)

| � uk|2(x, x′)dxdx′ ≥ ε0
4 · 28

.

Therefore we can choose δk > 0 so that (11) and (12) hold.
By (10), (11) and (12), we can find εk → 0, rk → 0, (xk, x

′
k) ∈ Σ

with

lim
k→∞

(xk, x
′
k)

rk
= p = (p1, p2, p3, p4),(13)

where |p1| < ∞, |p2| < ∞, |p3| ≤ ∞, |p4| ≤ ∞, and a subsequence of
uk, which we also denote by uk for simplicity, such that

r−2k

∫
B2

rk
(xk)×B2

rk
(x′

k)
| � uk|2(x, x′)dxdx′ =

ε0
8 · 28

,

MFkεk
(xk, x

′
k) <

1
k

and
lim
k→∞

εk
rk

= ∞.

We define
vk(y) = uk((xk, x

′
k) + rky).

It is obvious that∫
B2

1(0)×B2
1(0)

| � vk|2(x, x′)dxdx′ =
ε0

8 · 28
(14)
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and

sup
0<r<1

(
r

rk
)−2

∫
B2

r
rk

(0)×B2
εk
rk

(0)

2∑
i=1

| �i vk|2dV <
1
k
.(15)

By the monotonicity inequality for stationary harmonic maps, for any
R > 0, we have

R−2
∫
B2

R(0)×B2
R(0)

| � vk|2dV ≤ C.

By the diagonal subsequence argument, we obtain a subsequence of vk,
still denoted by vk, such that vk ⇀ v weakly in W 1,2(R4, N), and v is a
weak harmonic map. It follows that

R−2
∫
B2

R(0)×B2
R(0)

| � v|2dV ≤ C.(16)

Since rk → 0 and εk/rk → ∞ as k → ∞, we get by (15) that

2∑
i=1

∫
B2

R(0)×B2
R(0)

| �i v|2dV = 0

for any R > 0, hence �iv ≡ 0 for i = 1, 2. By (16), we have

4∑
i=3

∫
B2

R(0)
| �i v|2dV ≤ C,

where C does not depend on R. Therefore, we have

4∑
i=3

∫
R2

| �i v|2dV ≤ C.

By the removable singularity theorem in [21], we can extend v to a
smooth harmonic map from S

2 to N .
Let φ(y) ∈ C∞

0 (B21(0)) be a cut-off function with φ(y) = 1 in B21/2(0).
Let ψ(y′) ∈ C∞

0 (B21(0)) be a cut-off function with ψ(y′) = 1 in B21/2(0).
We consider

fk(a) =
∫
B2

1(0)×B2
1(0)

| � vk|2((x, x′) + a)φ(x)ψ(x′)dxdx′,
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for a ∈ B22(0)×B24(0). Since vk are harmonic maps, integration by parts
leads to

∂fk(a)
∂ai

= 2
4∑

l=1

∫
B2

1(0)×B2
1(0)

∂vk
∂xl

∂vk
∂xi

((x, x′) + a)
∂(φψ)
∂xl

dxdx′

for i = 1, 2. By (15), we obtain

∂fk(a)
∂ai

→ 0 as k → ∞,

uniformly for a ∈ B22(0) ×B24(0). It follows∫
B2

2(0)×B2
1(0)

| � vk|2(x, x′ + b)dxdx′ ≤ ε0
8 · 24

for each b ∈ B24(0), and consequently we get∫
B2

2(0)×B2
2(0)

| � vk|2(x, x′)dxdx′ ≤ ε0.

Noting that vk are harmonic maps, we see that vk → v in

C2(B21(0) ×B21(0))

as k → ∞. By (14), v is a nonconstant quaternionic map. We choose
x0 = (x10, x

2
0, x

3
0, x

4
0) so that x30 + p3 �= 0, x40 + p4 �= 0, where p =

(p1, p2, p3, p4) is the point in (13). We may assume that at x0 in R
4

and at v(x0) in N the matrix expressions of the complex structures are
given by (5). By (6), v satisfies

J 3v3 − J 1v4 = 0.(17)

Since uk is a pseudo-tangent map of u, we have
4∑

i=1

xi∂uk

∂xi
= 0.

It follows that
4∑

i=1

(
(xk, x

′
k) + rkx0
rk

)i ∂vk
∂xi

(x0)

=
4∑

i=1

(
(xk, x

′
k) + rkx0)

)i ∂uk

∂xi
((xk, x

′
k) + rkx0)

= 0.
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Since x30 + p3 �= 0, we have x30 + r−1k x
′3
k �= 0 for large k by (13) and then

∂vk
∂x3

(x0) = −
(
x40 + r−1k x

′4
k

x30 + r−1k x
′3
k

)
∂vk
∂x4

(x0)

−
2∑

i=1

(
xi
0 + r−1k xi

k

x30 + r−1k x
′3
k

)
∂vk
∂xi

(x0).

(18)

Since 0 ∈ Σ\sing(v) and |∇iv| ≡ 0 for i = 1, 2,

lim
k→∞

2∑
i=1

(
xi
0 + r−1k xi

k

x30 + r−1k x
′3
k

)
∂vk
∂xi

(x0) = 0.

Notice that
∂v

∂xj
(x0) = lim

k→∞
∂vk
∂xj

(x0)

exist for j = 3, 4. Letting k → ∞ in (18), we have

∂v

∂x3
(x0) = −x40 + p4

x30 + p3
∂v

∂x4
(x0).(19)

If the coefficient in (19) is infinite, then ∂v
∂x4 (x0) is zero and in turn

∂v
∂x3 (x0) is zero as well because v is quaternionic; if the coefficient is
finite, then (19) means ∂v

∂x3 (x0) and ∂v
∂x4 (x0) are colinear, but by (17)

∂v

∂x3
(x0) = −J 3J 1 ∂v

∂x4
(x0) = −J 2 ∂v

∂x4
(x0),

which implies ∂v
∂x3 (x0), ∂v

∂x4 (x0) are orthogonal, therefore we still con-
clude that

∂v

∂x3
(x0) =

∂v

∂x4
(x0) = 0.

In sum, v ≡ constant since x0 is arbitrary as long as x30 + p3 �= 0, x40 +
p4 �= 0. This contradicts to v is a nonconstant bubble, and consequently
implies the compactness.

Step 2. We show that every pseudo-tangent map of u is smooth
outside some rays.

Let φ be a pseudo-tangent map of u. It is a stationary quaternionic
map of homogeneous degree zero in R

4. We claim that φ|S3 is also
stationary. Let X be a smooth vector field with compact support in R

4,
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and let e1 = ∂
∂r and e2, e3, e4 be an orthonormal frame on S

3. Assume
that X = Xiei and X̃ = X|S3 = X̃2e2 + X̃3e3 + X̃4e4. We have

div(X) =
∂X1

∂r
+

3X1

r
+

1
r2

divS3X̃

and

Xi
j =

X1

r
δij +

1
r2
X̃i

j for i, j = 2, 3, 4.

Then ∫
R4

(
| � φ|2div(X) − 2〈dφ(�iX), dφ(

∂

∂xi
)〉
)
dV

=
∫

R4

| � φ|2
(
∂X1

∂r
+
X1

r

)
dV

+
∫

R4

1
r4

(
| �S3 φ|2divS3X̃ − 2 �S3

i φ�S3

j φX̃i
j

)
dV

= 0.

For any smooth vector field Ỹ on S
3, we choose X = η(r)Ỹ , where

η ∈ C∞
0 (R4) is a cut-off function with η = 0 in (0, ε). Using the above

identity, we obtain∫
S3

(
| �S3 φ|2divS3 Ỹ − 2 �S3

i φ�S3

j φỸ i
j

)
dV = 0.

It follows that φ|S3 is stationary.
To prove φ is smooth outside some rays, it suffices to show that

ψ = φ|S3 is smooth outside a finite set of points. The pseudo-tangent
map of ψ is stationary, hence the 1-dimensional Hausdorff measure of
its singular set is zero by Bethuel’s theorem in [2]. We then conclude
that the pseudo-tangent maps of ψ are smooth except at 0, because
otherwise the whole ray passing through a singular point different from
the origin would be in the singular set.

We now derive the equation for the pseudo-tangent maps of ψ. For
simplicity, we consider the pseudo-tangent map f of ψ at (1, 0, 0, 0). We
choose a spherical coordinates in R

4 as follows:
x1 = r sinα sinβ cos γ
x2 = r sinα sinβ sin γ
x3 = r sinα cosβ
x4 = r cosα.

(20)
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In this coordinate system, (1, 0, 0, 0) = (1, π/2, π/2, 0). Suppose that
Jα is expressed by Jα

s in the spherical coordinates. We can write Jα
s =

A−1JαA for α = 1, 2, 3, where A is the Jacobi matrix of the change of
coordinates (20). Then at (1, π/2, π/2, 0), we have

A =


1 0 0 0
0 0 0 1
0 0 −1 0
0 −1 0 0

 .

A simple computation shows that

A−1 =


1 0 0 0
0 0 0 −1
0 0 −1 0
0 1 0 0

 , J1s =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 ,

J2s =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 , J3s =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 .

We will use lower indices in f i
j to denote the derivatives in R

4 at the
blow-up point. Set

df =


f11 f12 f13 f14
f21 f22 f23 f24
f31 f32 f33 f34
f41 f42 f43 f44

 .

Then we have

J 1 df J1s =


f42 −f41 f44 −f43
−f32 f31 −f34 f33
f22 −f21 f24 −f23
−f12 f11 −f14 f13



J 2 df J2s =


−f24 −f23 f22 f21
f14 f13 −f12 −f11
f44 f43 −f42 −f41
−f34 −f33 f32 f31
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J 3 df J3s =


f33 −f34 −f31 f32
f43 −f44 −f41 f42
−f13 f14 f11 −f12
−f23 f24 f21 −f22

 .

Noting that f1 = 0 and f is a quaternionic map, we can see that f
satisfies the equation 

f12 = −f23 − f34
f22 = f13 − f44
f32 = f14 + f43
f42 = f24 − f33 .

(21)

When f is viewed as a map on R
3, it is of homogeneous degree zero

in R
3. By an argument similar to the one used in the first step, we

can show that, if a weakly convergence sequence of the pseudo-tangent
maps of ψ did not converge strongly, we would get a nonconstant map
bubble w satisfying the equations

0 = w23 + w34

0 = w13 − w44

0 = w14 + w43

0 = w24 − w33

and
x3wi

3 + x4wi
4 = 0 for i = 1, 2, 3, 4.

However, the above equations imply that w ≡ constant. This contra-
diction yields the compactness of the pseudo-tangent maps of ψ.

Step 3. Now the two requirements in Simon’s theorem are satisfied
by ψ. Therefore ψ is smooth outside a finite set of points, and conse-
quently φ is smooth outside the rays which pass through the singular
points of ψ. Then the two requirements in Simon’s theorem are satisfied
by u, so the singular set of u is a one dimensional rectifiable set. q.e.d.

Proposition 4.4. Let M be a compact hyperkähler surface and let
N be a compact hyperkähler manifold with a real analytic metric which
defines the hyperkähler structure. If N does not admit holomorphic S

2

with respect to any complex structure in the hyperkähler S
2 and u : M →

N is a stationary quaternionic map, then it is smooth outside a finite
set of points. Conversely, if N admits a holomorphic S

2 with respect to
some complex structure in the hyperkähler S

2, then there is a stationary
quaternionic map u : R

4 → N whose singular set is of one dimension.
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Proof. We continue the argument in the proof of Theorem 4.3, and
we will provide in next section an alternative proof for the first part of
the theorem.

We will show now that a nonconstant pseudo-tangent map f of ψ
induces a holomorphic S

2 in N . Note that f is of homogeneous degree
zero in R

3. Set h = f |S2 , we will show that h is a holomorphic S
2 in N .

Using the spherical coordinates
x1 = r sinα cos θ
x2 = r sinα sin θ
x3 = r cosα,

by (21) and

∂

∂x1
= sinα cos θ

∂

∂r
+

cosα cos θ
r

∂

∂α
− sin θ
r sinα

∂

∂θ
∂

∂x2
= sinα sin θ

∂

∂r
+

cosα sin θ
r

∂

∂α
+

cos θ
r sinα

∂

∂θ
∂

∂x2
= cosα

∂

∂r
− sinα

r

∂

∂α
,

we can see that h satisfies the equation

1
sinα



∂h1

∂θ
∂h2

∂θ
∂h3

∂θ
∂h4

∂θ


=


0 x3 −x2 −x1

−x3 0 x1 −x2
x2 −x1 0 −x3
x1 x2 x3 0





∂h1

∂α
∂h2

∂α
∂h3

∂α
∂h4

∂α


.(22)

One can check that h is a conformal harmonic map from S
2 to N . In

fact, h is holomorphic with respect to the the complex structures given
by the 2 × 2-matrix with 0 on its diagonal and sinα and − sin−1 α as
its (1, 2), (2, 1) entries respectively on S

2 and the 4 × 4-matrix in (22)
on N . This proves the first part of the proposition.

Conversely, if we have a holomorphic S
2 in N given by h, then h

satisfies the equation (22). We extend h to f : R
3 → N by letting

f(r, α, θ) = h(α, θ) in spherical coordinates. Then in the standard co-
ordinates, f satisfies the equation (21). We define u : R

4 → N by set-
ting u(x1, x2, x3, x4) = f(x2, x3, x4). One can check that u is a quater-
nionic map from R

4 to N with respect to the complex structures Jα
s at

(1, π/2, π/2, 0) and J α (α = 1, 2, 3). q.e.d.
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By an argument similar to the one used in the proof of Theorem 4.3,
we obtain the following well-known result for holomorphic maps.

Proposition 4.5. Let M be a compact complex surface and let N
be a compact complex manifold with a real analytic Hermitian metric.
Suppose that u ∈ W 1,2(M,N) is holomorphic outside a closed set Σ in
M with H2(Σ) < ∞. Then u can be extended to a holomorphic map
from M possibly away from finitely many points to N .

Proof. It suffice to show that the pseudo-tangent maps of u are
smooth except at 0. Suppose that φ is a pseudo-tangent map of u at a
singular point, say (1, 0, 0, 0), let ψ = φ|S3 , we need only show that the
pseudo-tangent maps of ψ are constant. Suppose that u is holomorphic
with respect to J1 and J 1, then a pseudo-tangent map f of ψ satisfies
the equation

f44 = f13 , − f43 = f14 , − f34 = f23 , f33 = f24 .

Since f also satisfies that x3f3+x4f4 = 0, we can see that f ≡ constant.
q.e.d.

5. Strong convergence

Let M compact hyperkähler surface and N be a compact hyperkähler
manifold. Suppose that uk is a sequence of quaternionic maps in a fixed
homotopy class. We consider in this section when uk will converge
strongly in W 1,2(M,N).

Theorem 5.1. Let M be a compact hyperkähler surface and N
be a compact hyperkähler manifold. Suppose that uk is a sequence of
quaternionic maps in a fixed homotopy class. If N does not admit holo-
morphic S

2 with respect to the complex structure aiJ i on R
4 restricts to

S
2 and the complex structure aiJ i on N for some ai (i = 1, 2, 3) with∑
i a
2
i = 1, then a subsequence of {uk} converges strongly in W 1,2(M,N)

to a quaternionic map u. The singular set of the limit map u is a finite
set of points.

The above theorem follows from the following theorem and the stan-
dard dimension reduction argument (cf. [8], [18], [20]).

Theorem 5.2. Let M compact hyperkähler surface and N be a com-
pact hyperkähler manifold. Suppose that uk is a sequence of quaternionic
maps with bounded energies. If N does not admit holomorphic S

2 with
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respect to the complex structure aiJ
i on R

4 restrict to S
2 and the com-

plex structure aiJ i on N for some ai (i = 1, 2, 3) with
∑

i a
2
i = 1, then

there is a subsequence of {uk} which converges strongly to a stationary
quaternionic map u.

Proof. We can always assume that uk ⇀ u weakly in W 1,2(M,N)
and that | � uk|2dx ⇀ | � u|2dx+ ν in the sense of measure as k → ∞.
Here ν is a nonnegative Radon measure on M with support in Σ, and
Σ is the blow-up set of the sequence uk. We will prove H2(Σ) = 0.
Otherwise, by an argument similar to the one used in the first step of
the proof of Theorem 4.3, we get a nonconstant quaternionic map v
with vi = 0 for i = 1, 2.

Assume that e, aiJ ie is an orthogonal basis of the normal bundle of
TΣ at a point where TΣ exists, for some real valued functions a1, a2, a3
with a21+a22+a23 = 1. ai’s may not be constant. Since v is a nonconstant
harmonic map from S

2 into N , viewed as extension of (TΣ)⊥, v in fact
is conformal. In particular,

〈dv(e), dv(ajJ je)〉 = 0
|dv(ajJ je)| = |dv(e)|.

If we set

dv(e) = ξ,(23)

then we may write

dv(aiJ ie) = −biJ iξ(24)

for some bi, where b21 + b22 + b23 = 1. Note that dv restricts to 0 along Σ.
We can check that

(a2J1 − a1J
2)e ∈ Ker(dv)(25)

(a3J1 − a1J
3)e ∈ Ker(dv).(26)

Solving the linear system (24), (25) and (26), we get
dv(J1e) = −a1(biJ iξ)
dv(J2e) = −a2(biJ iξ)
dv(J3e) = −a3(biJ iξ).

(27)
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Since v is a quaternionic map, we have∑
α

J αdvJαe = dv · e.

It follows from (27) that

ξ =
∑
α

J αdvJαe

= a1b1ξ − a1b2J 3ξ + a1b3J 2ξ + a2b1J 3ξ
+a2b2ξ − a2b3J 1ξ − a3b1J 2ξ + a3b2J 1ξ + a3b3ξ.

Notice that ξ,J 1ξ,J 2ξ,J 3ξ are linearly independent. Comparing co-
efficients in the above identity leads to

a1b1 + a2b2 + a3b3 = 1
a2b3 − a3b2 = 0
a1b3 − a3b1 = 0
a1b2 − a2b1 = 0.

Solving this linear system, we have

a1 = b1 a2 = b2 a3 = b3.

It follows that v is a holomorphic map from S
2 to N with respect to the

complex structure aiJ
i restrict to S

2 and the complex structure aiJ i

on N . But no such holomorphic can exist by assumption. So we must
have H2(Σ) = 0 and in turn uk converge strongly to u in W 1,2 norm.
q.e.d.
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