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RELATIVE HYPERBOLIZATION AND
ASPHERICAL BORDISMS:

AN ADDENDUM TO
“HYPERBOLIZATION OF POLYHEDRA”

MICHAEL W. DAVIS, TADEUSZ JANUSZKIEWICZ
& SHMUEL WEINBERGER

Abstract
We give two versions of relative hyperbolization. We use the first version to
prove that if (each component of) a closed manifold M is aspherical and if
M is a boundary, then it is the boundary of an aspherical manifold.

1. Introduction

In [2, p. 116], Gromov introduced the notion of hyperbolization: It
is a procedure for associating to a finite dimensional simplicial complex
X a certain nonpositively curved polyhedron H(X). A few pages later
[2, pp. 117–118], he discusses the idea of relative hyperbolization: given
a subcomplex Y of X, it should produce a new space H(X, Y ) which
contains Y as a subspace. One of the key properties of such a procedure
should be the following:

(∗) If (each component of) Y is aspherical, then so is the relative
hyperbolization H(X, Y ).
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Gromov points out that it follows from the existence of such a relative
hyperbolization procedure that:

• Any (triangulable) closed manifold M is bordant to an aspherical
manifold.

• If a closed aspherical manifold M bounds a (triangulable) mani-
fold, then it bounds an aspherical manifold.

The proof of the second claim uses property (∗), but the proof of the
first does not. Unfortunately, the details of Gromov’s definition of a
relative version of hyperbolization did not quite make sense. In [1,
Section 1g], the first two authors described a different version of relative
hyperbolization (here denoted by K(X, Y )) and used it to demonstrate
Gromov’s first claim, cf. [1, Example 1g.1]. However, they did not
know how to prove that their version satisfied property (∗). In fact, it
does (as does the simpler version of relative hyperbolization, J(X, Y ),
defined in Section 2). Our purpose here is to prove that both these
relative hyperbolization procedures satisfy (∗) (Theorems 2.5 and 3.2)
and to prove Gromov’s second claim, which is stated as the following
theorem (and is proved in Section 2).

Theorem 1.1. Suppose that each component of a closed manifold
M is aspherical and that M is the boundary of a (triangulable) manifold.
Then M bounds an aspherical manifold.

Gromov defined several hyperbolization procedures in [2]. The spe-
cific one which we want to relativize is discussed in [1, Section 4c]. It
works as follows. Given a finite dimensional simplicial complex X, there
is a new polyhedron H(X), called a hyperbolization of X, together with
a map c : H(X) → X. Some important properties of the construction
are listed below. (Proofs of these properties can be found in [1].)

(1) H(X) is a nonpositively curved cubical cell complex (and hence,
is aspherical).

(2) The construction is functorial in the sense that if i : Y → X is a
simplicial embedding, then there is an induced isometric embed-
ding H(i) : H(Y ) → H(X).

(3) The link of a vertex in H(X) is isomorphic to a subdivision of the
link of the corresponding vertex in X.
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(4) The map c : H(X) → X induces surjections on integral homology
groups and on fundamental groups.

(5) If X is an n-manifold, then so is H(X). If X is a smooth trian-
gulation of a smooth manifold, then H(X) is a smooth manifold.
Moreover, c : H(X) → X pulls back the stable tangent bundle of
X to that of H(X).

2. Relative hyperbolization

Suppose Y is a subcomplex of X and that {Yi} is the set of path
components of Y . Let X ∪ CY denote the simplicial complex formed
by attaching to X the cone on each Yi. Let yi denote the cone point
corresponding to Yi in the hyperbolization H(X ∪CY ) of X ∪CY and
let Li denote the link of yi in H(X ∪ CY ). Then Li is identified with
a subdivision of Yi. The relative hyperbolization of X with respect to
Y is defined to be the space J(X, Y ) formed by removing a small open
conical neighborhood of each yi from H(X ∪ CY ). Since the boundary
of such a neighborhood is Li (= Yi), Y is identified with a subspace of
J(X, Y ).

Remark 2.1. If X is a manifold with boundary and Y is a union of
boundary components, then J(X, Y ) is also a manifold with boundary
and Y is identified with a union of its boundary components. This
gives the proof of Gromov’s first claim: for any closed manifold M ,
J(M × [0, 1], M × 1) is a bordism between M and H(M).

Let H(X ∪ CY ) denote the universal cover of H(X ∪ CY ) and let
J(X, Y ) denote the inverse image of J(X, Y ) in H(X ∪ CY ).

Lemma 2.2. Let Li be the link of any cone point yi in H(X∪CY ).
Then J(X, Y ) retracts onto Li. Hence, π1(Li) → π1(J(X, Y )) is an
injection.

Proof. Since H(X ∪ CY ) is CAT(0), geodesic contraction provides
a deformation retraction of H(X ∪CY ) \ yi onto Li. The restriction of
this to J(X, Y ) gives the desired retraction. q.e.d.

Corollary 2.3. For each Yi, π1(Yi) → π1(J(X, Y )) is injective.

Remark 2.4. Lemma 2.2 provides a proof of the following theorem
of Hausmann [3]. Suppose that a (not necessarily connected) closed
manifold M is a boundary. Then M bounds a manifold N such that for
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each path component Mi of M , the homomorphism π1(Mi) → π1(N) is
injective. Moreover, Mi → N is a “pseudo covering projection” in the
sense that each Mi is a retract of some covering space of N .

Theorem 2.5. J(X, Y ) is aspherical if and only if each component
of Y is aspherical.

In order to prove this, we need to introduce a space H̃(X ∪ CY ),
the “universal branched cover of H(X ∪ CY ) along the cone points.”
Let S denote the union of the set of cone points in H(X ∪ CY ). Then
H(X ∪ CY ) \ S is connected. Let Z be its universal cover. Define
H̃(X ∪ CY ) to be the metric completion of Z. It is clear that H̃(X ∪
CY ) is formed by adjoining to Z a new cone point for each end of Z
which corresponds to a copy of the inverse image of a Li in Z. Thus,
H̃(X ∪ CY ) is homeomorphic to the universal cover of J(X, Y ) with
each copy of the universal cover of Li coned off. In other words, the
universal cover J̃(X, Y ) of J(X, Y ) can be idenitified with inverse image
of J(X, Y ) in H̃(X ∪ CY ).

Lemma 2.6. H̃(X ∪ CY ) is CAT(0).

Proof. Since H(X ∪ CY ) is a piecewise Euclidean cubical cell com-
plex, this same type of structure is induced on H̃(X ∪ CY ). Moreover,
H̃(X∪CY ) is simply connected. So, it suffices to show that H̃(X∪CY )
is locally CAT(0). This is clear except possibly in neighborhoods of the
cone points. Here we need to show that the link of each cone point in
H̃(X ∪ CY ) is CAT(1) (cf. [2, p. 120]). The link of such a cone point
is the universal cover of the link of its image in H(X ∪ CY ). Since
H(X ∪ CY ) is CAT(0), the link of each of its cone points is CAT(1).
Since any covering space of a CAT(1) piecewise spherical complex is
also CAT(1), the cone points in H̃(X ∪ CY ) have CAT(1) links. The
lemma follows. q.e.d.

Proof of Theorem 2.5. The “only if” part of this theorem follows
immediately from Lemma 2.2. So, suppose each Yi is aspherical. The
link L̃i of a cone point in H̃(X ∪CY ) is the universal cover of Yi; hence,
it is contractible. By Lemma 2.6, H̃(X ∪ CY ) is contractible. Since
H̃(X ∪ CY ) is formed from J̃(X, Y ) by attaching cones on the L̃i, it
follows that J̃(X, Y ) is also contractible. Hence, J(X, Y ) is aspherical
(since J̃(X, Y ) is a covering space of it). q.e.d.

We are now in position to prove Theorem 1.1 from the Introduction.

Proof of Theorem 1.1. Suppose M = ∂N . As in Remark 2.1, M is
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also the boundary of the manifold J(N, M). By Theorem 2.5, J(N, M)
is aspherical. q.e.d.

Remark 2.7. Theorem 1.1 is valid for any bordism theory.

3. Another version

When (X, Y ) is a manifold with boundary, the construction of the
relative hyperbolization J(X, Y ) is perfectly adequate. However, in
more general situations it has a serious defect: it changes the local
topology near Y . A regular neighborhood of Y in J(X, Y ) is homeo-
morhic to Y × [0, 1]. It would be preferable for this to be homeomorphic
to the original regular neighborhood of Y in X. This can be acheived
by the procedure of [1]. The details are explained below.

Replace X by its barycentric subdivision. Let Ri denote the first
derived neighborhood of Yi in X, let R◦

i be its relative interior and let
∂Ri = Ri \ R◦

i . Also, let R, R◦ and ∂R denote the union of the Ri, the
R◦

i and the ∂Ri, respectively. Set X̂ = X \ R◦. Apply the construction
of the previous section to the pair (X̂, ∂R) to obtain J(X̂, ∂R). Our
second version of relative hyperbolization, is the space K(X, Y ) formed
by gluing each Ri back onto J(X̂, ∂R) along ∂Ri. Next, we want to
establish that Lemma 2.2 and Theorem 2.5 hold for K(X, Y ).

For the analog of Lemma 2.2 we need to define a covering space
K(X, Y ) of K(X, Y ) which retracts onto each Ri. If ∂Ri is connected,
then K(X, Y ) is defined to be H(X̂ ∪ C(∂R)) with a neighborhood of
each cone point removed and replaced by a copy of the appropriate Ri.
If the ∂Ri are not connected, then the definition of H(X̂∪C(∂R)) needs
to be modified. For each path component Yi, define a graph Ωi: it is
the suspension of π0(∂Ri). Denote the suspension points by vi and xi.
Let Ω be the wedge of the Ωi (i.e., identify the xi to a common point
x). There is a continuous map K(X, Y ) → Ω which collapses J(X̂, ∂R)
to x, collapses Yi to vi and which takes each component of ∂Ri to the
midpoint of the corresponding edge of Ωi. A map H(X̂ ∪ C(∂R)) → Ω
is defined in a similar fashion. Define a graph of groups on Ω by putting
the group π1(H(X̂ ∪ C(∂R)) on the vertex x, the trivial group on each
of the other vertices and the trivial group on each edge. Let T be
the universal cover of this graph of groups. (T is a tree.) The space
H(X̂∪C(∂R)) is defined by gluing together copies of the universal cover
of H(X̂ ∪ C(∂R)) in a pattern given by T . There is one such copy for
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each vertex lying above x. Two copies are glued together at a common
cone point whenever the corresponding vertices of T are each connected
by an edge to a vertex lying over some vi. So, the link of a cone point in
H(X̂∪C(∂R)) is isomorphic to some ∂Ri (which need not be connected).
This version of H(X̂ ∪C(∂R)) is clearly simply connected and CAT(0).
Using the tree T , a covering space K(X, Y ) of K(X, Y ) is defined in a
similar fashion. Alternatively, K(X, Y ) is formed from H(X̂ ∪ C(∂R))
by removing a neighborhood of each cone point and replacing it with a
copy of the appropriate Ri.

Lemma 3.1. K(X, Y ) retracts onto Ri.

Proof. Fix a cone point yi in H(X̂ ∪ C(∂R)) and identify ∂Ri with
the link of yi. Let J(X̂, ∂R) denote the inverse image of J(X̂, ∂R)
in H(X̂ ∪ C(∂R)). As in the proof of Lemma 2.2, geodesic contraction
from H(X̂∪C(∂R)) onto yi, induces a retraction of J(X̂, ∂R) onto ∂Ri.
Under this retraction each of the other boundary components is taken
to ∂Ri by a map which is null-homotopic. Hence, we can extend it to a
retraction K(X, Y ) → Ri by mapping the copy of Ri corresponding to
yi via the identity map and all other Rj inessentially. q.e.d.

For the analog of Theorem 2.5, we want to relate the universal cov-
ering space K̃(X, Y ) of K(X, Y ) to a branched covering space H̃(X̂ ∪
C(∂R)) of H(X̂ ∪C(∂R)). To this end, we define a new graph of group
structure on Ω. The vertex group corresponding to x is π1(J(X̂, ∂R)),
the vertex group corresponding to vi is π1(Ri) and the edge group cor-
responding to an edge e of Ωi is the image of π1(∂Ri,e) in π1(Ri), where
∂Ri,e denotes the component of ∂Ri corresponding to e. The inclusions
of edge groups in vertex groups are the obvious ones. (By the previous
lemma, the map from an edge group to the vertex group for x is an
inclusion.) Let T̃ be the tree corresponding to this graph of groups.
Let H̃(X̂ ∪ C(∂R)) be the branched covering space of H(X̂ ∪ C(∂R))
corresponding to T̃ and let K̃(X, Y ) be the covering space K(X, Y ) cor-
responding to T̃ . Then H̃(X ∪CY ) and K̃(X, Y ) are simply connected.
Moreover, K̃(X, Y ) can be constructed from H̃(X̂ ∪C(∂R)) by remov-
ing a neighborhood of each cone point and replacing it with a copy of
the universal cover R̃i of the appropriate Ri.

Theorem 3.2. K(X, Y ) is aspherical if and only if each compo-
nent of Y is aspherical.

Proof. As before, the “only if” part follows from Lemma 3.1. As
in the proof of Theorem 2.5, H̃(X̂ ∪ C(∂R)) is simply connected and
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locally CAT(0). Hence, it is contractible. Supposing each Yi to be as-
pherical, we have that each R̃i is contractible. Since K̃(X, Y ) is formed
from H̃(X̂ ∪ C(∂R)) by replacing (contractible) neighborhoods of cone
points by (contractible) copies of R̃i, K̃(X, Y ) and H̃(X̂ ∪ C(∂R)) are
homotopy equivalent. So, K̃(X, Y ) is contractible and hence, K(X, Y )
is aspherical. q.e.d.
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