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REGENERATING SINGULAR HYPERBOLIC
STRUCTURES FROM Sol

MICHAEL HEUSENER, JOAN PORTI & EVA SUÁREZ

Abstract
Let M be a torus bundle over S1 with an orientation preserving Anosov
monodromy. The manifoldM admits a geometric structure modeled on Sol.
We prove that the Sol structure can be deformed into singular hyperbolic
cone structures whose singular locus Σ ⊂ M is the mapping torus of the
fixed point of the monodromy.
The hyperbolic cone metrics are parametred by the cone angle α in the

interval (0, 2π). When α → 2π, the cone manifolds collapse to the basis of
the fibration S1, and they can be rescaled in the direction of the fibers to
converge to the Sol manifold.

1. Introduction

Let M be the mapping torus of an orientation preserving Anosov
homeomorphism of the 2-torus φ : T 2 → T 2. The compact oriented
3-manifold M fibers over S1 with fiber a torus T 2,

T 2 →M → S1.

The Anosov map φ : T 2 → T 2 lifts to a linear map of the universal
covering R2 ∼= T̃ 2. This linear map has two real eigenvalues different
from ±1. In particular, φ fixes ∗ ∈ T 2 the projection of the origin in
R2. Therefore there is a natural zero-section Σ ⊂ M to M → S1 (i.e.,
Σ ∩ T 2 = {∗} for each fibre T 2). Notice that the manifold M admits
a geometric structure modeled on Sol. The main result of this paper is
the following theorem:

Received January 23, 2001.
The second author was partially supported by MCYT though grant BFM2000-

0007.

439



440 m. heusener, j. porti & e. suárez

Theorem A. Let M be a torus bundle with Anosov monodromy
and let Σ ⊂ M be as above. There exists a family of hyperbolic cone
structures on M with singular set Σ parametrized by the cone angle
α ∈ (0, 2π). When α→ 2π this family collapses to a circle, which is the
basis of the fibration M → S1. In addition, the metrics can be rescaled
in the direction of the fibers so that they converge to the Sol structure
on M .

It is well known that this family of cone manifolds converges to the
complete hyperbolic structure on M � Σ as α→ 0.

When M is the manifold obtained by 0-surgery on the figure eight
knot, this result is well illustrated in the literature. In [12] Jørgensen
constructed the holonomy representations of these cone structures. This
example was also developed in Thurston’s notes [18], where, in the col-
lapse, the developing maps are shown to converge to the developing map
of a transversely hyperbolic foliation onM . In addition, Hilden, Lozano
and Montesinos [9] construct an explicit family of Dirichlet polyhedra
collapsing to a segment (whose ends are identified to give S1). The third
named author of the present paper shows in her thesis that this family
of polyhedra can be rescaled to converge to a Sol structure [16], which
motivated Theorem A.

The hyperbolic cone structure on M with singularity Σ induces a
non-singular but non-complete hyperbolic metric on M � Σ. Hence
M �Σ has a developing map, that is usually called the developing map
of the cone manifold. Notice that there is no unique choice of developing
map, as is illustrated by the following proposition.

Proposition 1.1. Let M be as in Theorem A. When α → 2π, the
developing maps of the hyperbolic cone manifolds may be chosen to con-
verge to the developing map of any of the three natural foliations, which
are the foliation by tori and the two transversely hyperbolic foliations of
codimension two.

The developing map of the foliation by tori is the lift to R of the
projection of the bundle M → S1. The two transversely hyperbolic
foliations of M come from the one dimensional foliations of the fiber T 2

invariant by the Anosov monodromy φ : T 2 → T 2 (i.e., the eigenspaces
of the linear map in R2 = T̃ 2).

The existence of the family of hyperbolic cone manifolds in Theo-
rem A follows from Theorem B below and from a generalization of a
result of Kojima [13].
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The open manifold N =M � Σ is a fiber bundle

T 2 � {∗} → N → S1

whose monodromy is the restriction of φ to the punctured torus T 2�{∗}.
In order to describe the structures on N with generalized Dehn-filling
coefficients, we consider the compact manifold M �N (Σ), where N (Σ)
is an open tubular neighborhood of Σ. The manifold M � N (Σ) is a
compact core of N and its boundary is a torus. We choose {µ, λ} to be
a basis for H1(∂N (Σ),Z) such that µ is the meridian of Σ. By using
the basis {µ, λ} we can define the generalized Dehn-filling coefficients
(p, q) ∈ R2 ∪ {∞} for a given (incomplete) hyperbolic structure on N
as follows. Let C∗ ⊂ PSL2(C) be the group of isometries preserving an
oriented line in H3. The holonomy map of the (incomplete) hyperbolic
structure on N (Σ) � Σ induces a homomorphism h : H1(∂N (Σ),Z) →
C̃∗ ∼= C. Thurston defines the generalized Dehn-filling coefficients as
the pair (p, q) ∈ R2 such that p · h(µ) + q · h(λ) = 2πi.

The homomorphism h is not unique, but there is a natural choice
such that Dehn-filling coefficients are related to the completion of the
hyperbolic structure on N . If (p, q) = k(p′, q′), where k ∈ R and p′,
q′ are relatively prime integers, the hyperbolic structure on N can be
completed to a cone hyperbolic structure on the manifold obtained by
(p′, q′)-Dehn surgery on M along Σ with singular locus the core of the
surgery and cone angle 2π/k.

Generalized Dehn-filling coefficients can also be defined in an anal-
ogous way for other geometric structures on N and for foliations with a
transverse geometric structure (see [10]). For instance, for the restric-
tion to N of the Sol structure on M , the Dehn-filling coefficients are
(p, q) = (1, 0).

Theorem B. Let N be a punctured torus bundle with hyperbolic
monodromy. There exists m ∈ 12Z and a neighborhood V of (1, 0) in the
half-plane {(x, y) ∈ R2 | x +my ≥ 1} such that each (p, q) ∈ V is the
generalized Dehn-filling coefficient of a geometric structure on N of the
following kind:

• an incomplete hyperbolic structure when p+mq > 1;

• an transverse hyperbolic foliation when p+mq = 1.

In addition m ∈ Z if and only if the monodromy has positive trace.
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Notice that the meridian µ is uniquely determined, but λ is not.
Thus, by replacing λ by λ + rµ for some r ∈ Z, we could choose m to
be either 0 or 12 , according to whether the trace of the monodromy is
positive or negative.

A particular case of these hyperbolic structures on N are structures
with coefficients of the form (p, 0) (with p > 1), whose completion is a
singular hyperbolic metric onM . The singular locus is the curve Σ ⊂M
and the singularity is of cone type with cone angle 2π/p.

Remark 1.2. The coefficients (p, q) = (1, 0) correspond to the Sol
structure and also to two transversely hyperbolic foliations induced by
the foliations on T 2 invariant by φ (see Proposition 1.1).

Theorem B is a refinement of Theorem 4.18 of Hodgson’s Thesis
[10]. Hodgson shows that there is a complex curve of deformations
corresponding to hyperbolic structures or to transversely hyperbolic fo-
liations, but he does not compute explicitly the Dehn-filling parameter
space. Instead of using Hodgson’s general regeneration result, we shall
give an explicit construction of the deformations of the Sol structure.
This is possible by using Killing fields and a theorem about algebraic
deformations of reducible representations proved in [8].

To prove Theorem B we first consider the case where the monodromy
matrix of N has positive trace. In this case, the holonomy group of
the complete Sol structure on M is contained in the component of the
identity of Isom(Sol), i.e., in Sol itself. We are working with the space of
representations of π1(N) in SL2(C). Our starting point is the canonical
exact sequence

1 → R2 → Sol Lin−→R → 1(1)

(see Section 2). If hol : π1(M) → Sol denotes the holonomy of the Sol
structure on M , then we think of the composition Lin ◦hol as a repre-
sentation of π1(M) in the group of translations along a geodesic σ in
hyperbolic 3-space H3, Lin ◦hol : π1(M) → Isom+(H3) ∼= PSL2(C). By
composing this representation with the canonical surjection π1(N) �
π1(M) we obtain a representation of π1(N) in PSL2(C). We denote by
ρ0 : π1(N) → SL2(C) a lift of this representation in SL2(C).

One of the elements of the proof of Theorem B is the construction
of a nice deformation space

U ⊂ Hom(π1(N),SL2(C))
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of ρ0 which is homeomorphic to a neighborhood U of the origin in C2.
In the sequel we denote by ρa,b ∈ U the representation corresponding
to (a, b) ∈ U . The initial representation ρ0 corresponds to the origin in
C2.

The group SL2(C) acts by conjugation on the representation space.
The stabilizer of ρ0 is a maximal torus C∗ ⊂ SL2(C). The action of C∗

restricted to U corresponds to the following action of C∗ on C2:

λ · (a, b) = (λa, λ−1b) for λ ∈ C∗ and (a, b) ∈ C2.

The algebra of invariant functions on C2 is generated by ab. When
c �= 0, the level set ab = c is precisely one orbit; moreover the level set
ab = 0 is the union of three orbits, {(0, 0)}, {0}×C∗ and C∗×{0}. Thus
the quotient C2/C∗ is the non-Hausdorff space C with a triple point at
the origin.

The quotient U/C∗ of our deformation space is therefore a neigh-
borhood of the triple point of C2/C∗. This triple point corresponds
precisely to the Sol structure and to the two transversely hyperbolic
foliations induced by the invariant foliations of the torus. Real points
in the quotient U/C∗ correspond to transversely hyperbolic foliations
and the other points correspond to hyperbolic metrics. When we look
at generalized Dehn-filling coefficients, the triple point of C2/C∗ gives
a single point, because generalized Dehn-filling coefficients are continu-
ous functions. Moreover, complex conjugation in U/C∗ corresponds to
change of orientation. The orientation conventions may be fixed so that
Dehn-filling coefficients change sign, or not, under change of orientation.
In any case, the neighborhood V of Theorem B is homeomorphic to the
quotient of a neighborhood of the origin in C by conjugation.

To construct a family of developing maps Da,b : Ñ → H3 whose
holonomy is the representation ρa,b ∈ U , we proceed as follows. The
geodesic σ ⊂ H3 gives the Cartan splitting of the Lie algebra

sl2(C) = h0 ⊕ h+ ⊕ h−,

where h0 is the subspace consisting of those Killing fields that preserve
σ, while h+ (resp. h−) is the subspace of those parabolic Killing fields
that fix one of the ends of σ (resp. the other end of σ). We remark that
h0 acts on h± and that we have an exact sequence of h0-modules:

0 → h+ ⊕ h− → sl2(C) → h0 → 0.(2)
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This sequence is precisely the complexification of the sequence of real
Lie algebras obtained from (1). Thus the Sol structure tells us how to
deform ρ0 at the first order.

We shall construct maps ∆a,b : Sol → H3 by taking the Riemannian
exponential of Killing fields orthogonal to σ (evaluated at points of σ).
The choice of those maps is motivated by the sequence (2). The con-
struction of the developing map Da,b : Ñ → H3 starts with the map
∆a,b ◦ D where D : Ñ → Sol denotes the developing map for the Sol
structure on N induced by M . The construction of Da,b is then com-
pleted by using a well-known technique of Canary, Epstein and Green
(see [6] and Section 6).

Finally, we prove Theorem B in the case where the monodromy
matrix A of N has negative trace. It is clear that the two-fold cyclic
covering N̂ of N has monodromy matrix A2 with positive trace. Hence
in order to prove the general result it is sufficient to show that the
construction of Da,b is invariant under the covering transformation of
N̂ → N .

The paper is organized as follows: In Section 2 we recall some basic
facts about the group Sol, and in Section 3 we study representations of
π1(M) in this group. Next in Section 4 we study the splitting of the Lie
algebra and some applications of parabolic Killing fields. In Section 5
we construct the deformation space U for the representation ρ0, leaving
the proof of some results to the last section. Section 6 contains the
construction the developing maps Da,b. The Dehn-filling parameters
are computed in Section 7 which concludes the proof of Theorem B. In
Section 8 we prove Theorem A and Proposition 1.1. The case of torus
bundles which are regular branched coverings of S3 is an interesting
example, and we discuss it in Section 9. The last section is devoted to
the proofs of some technical results.

2. The group Sol

We recall that Sol can be defined as the component of the identity of
the group of affine transformations in the Minkowski plane R1,1. That
is, it is the group of transformations that preserve the Lorentz metric:
ds2 = dx21 − dy21. By making the change of coordinates: (x1, y1) =
(x2 + y2, x2 − y2), the Lorentz metric is written now as ds2 = 4dx2dy2.
In these coordinates, an orientation preserving affine transformation is
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of the form

(x2, y2) →
(
k x2 + a,

1
k
y2 + b

)
where k �= 0 and a, b ∈ R. The transformation belongs to the component
of the identity if and only if k > 0.

Hence the group Sol is diffeomorphic to R3; we identify (x, y, t) ∈ R3

with the following affine transformation:

(x, y, t) : R1,1 → R1,1

(x2, y2) �→ (etx2 + x, e−ty2 + y).

With this identification the product structure on Sol is given by:

(x, y, t)(x′, y′, t′) = (x+ etx′, y + e−ty′, t+ t′).

It is clear from this that we have a split exact sequence

1 → R2 → Sol Lin−→R → 1(3)

where Lin(x, y, t) = t and the kernel of Lin is the translation group.
The action of R on R2 is

t · (x, y) = (etx, e−ty) for t ∈ R, (x, y) ∈ R2.(4)

Definition 2.1. We define R+ and R− to be the R-modules

R × R+ → R+
(t, x) �→ etx

R × R− → R−
(t, x) �→ e−tx.

The action of R on R2 in formula (4) decomposes into two actions:

R2 = R+ ⊕ R− as R-modules.

Definition 2.2. Given p ∈ R1,1, we take transp : Sol → R2 to be
the (set-theoretic) retraction for (3) defined by transp(γ) = γ(p)− p.

Remark 2.3. This construction provides a natural family of re-
tractions parametrized by R1,1. Such a retraction transp : Sol → R2

satisfies the following cocycle condition:

transp(γ1γ2) = transp(γ1) + Lin(γ1) · transp(γ2)

for every γ1, γ2 ∈ Sol, where R acts on R2 as in Equation (4) (i.e.,
R2 ∼= R+ ⊕ R−).
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We fix a group Γ and a homomorphism ρ : Γ → R. We consider
the action of Γ on R2 ∼= R+ ⊕ R− induced by ρ and formula (4). Let
Z1(Γ, (R+⊕R−)ρ) and B1(Γ, (R+⊕R−)ρ) denote respectively the space
of cocycles and coboundaries twisted by ρ. That is:

Z1(Γ, (R+ ⊕ R−)ρ) =
{
θ : Γ → R2

∣∣∣∣ θ(γ1γ2) = θ(γ1) + ρ(γ1) · θ(γ2),
∀γ1, γ2 ∈ Γ

}

B1(Γ, (R+ ⊕ R−)ρ) =
{
θ : Γ → R2

∣∣∣∣ there exists a ∈ R2 such that
θ(γ) = ρ(γ) · a− a, ∀γ ∈ Γ

}
.

Let H1(Γ, (R+⊕R−)ρ) = Z1(Γ, (R+⊕R−)ρ)/B1(Γ, (R+⊕R−)ρ) denote
the first cohomology group.

Lemma 2.4. Given a representation ϕ : Γ → Sol, transp ◦ϕ is a
cocycle twisted by Lin ◦ ϕ.

Given a fixed representation ρ : Γ → R, the map transp induces the
following bijections, via the identification R+ ⊕ R− ∼= R1,1:

(i) Z1(Γ, (R+ ⊕ R−)ρ) ↔ {ϕ ∈ Hom(Γ,Sol) | Lin ◦ϕ = ρ}.

(ii) B1(Γ, (R+ ⊕ R−)ρ) ↔
{
ϕ ∈ Hom(Γ,Sol)

∣∣∣∣Lin ◦ϕ = ρ, ϕ(Γ) has
a fixed point in R1,1

}
.

(iii) H1(Γ, (R+⊕R−)ρ) ↔ {ϕ ∈ Hom(Γ,Sol) | Lin ◦ϕ = ρ}/R2, where
R2 denotes the translation group acting by conjugation.

Proof. Given a representation ϕ : Γ → Sol such that Lin ◦ϕ = ρ, by
Remark 2.3 transp ◦ϕ ∈ Z1(Γ, (R+ ⊕ R−)ρ). The bijectivity of (i) is a
consequence of the isomorphism between Sol and the semidirect product
R2 � R that maps γ ∈ Sol to (transp(γ),Lin(γ)) ∈ R2 � R.

To prove (ii), we recall that transp ◦ϕ ∈ B1(Γ, (R+ ⊕ R−)ρ) if there
exist a ∈ R2 such that transp ◦ϕ(γ) = ρ(γ)(a) − a for every γ ∈ Γ.
This equality can be rewritten as ϕ(γ)(p) − p = Lin ◦ϕ(γ)(a) − a, or
equivalently ϕ(γ)(p− a) = p− a.

Finally we prove (iii). Given a ∈ R2, let ϕa denote the conjugation
of ϕ by the translation of vector a. An elementary computation shows
that transp ◦ϕa(γ) = transp ◦ϕ(γ)+ρ(γ)(a)−a, and the bijection follows
easily. q.e.d.

3. Representations of π1(N) in Sol

From now on we consider the case where the monodromy matrix of
N has positive trace.
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In this section we describe the representations of π1(N) in Sol by
using the notation of Section 2. This approach is going to be useful
for the study of deformations of representations. In particular we shall
describe the holonomy representation of the Sol structure.

The fundamental group. As in the introduction, let M denote the
mapping torus of an orientation preserving Anosov homeomorphism
φ : T 2 → T 2. We denote by N the mapping torus of the restriction
of φ to the punctured torus T 2 � {∗} where ∗ is the fixed point of φ.

For the remaining of the paper, we fix Γ = π1(N), which has the
following presentation:

Γ ∼= 〈λ, α, β | λαλ−1 = f(α), λβλ−1 = f(β) 〉,
where α and β generate the free group π1(T 2 � {∗}) and f : π1(T 2 �

{∗}) → π1(T 2�{∗}) is the isomorphism induced by the restriction of φ.
We assume that α and β satisfy µ = αβα−1β−1 where µ is represented
by the boundary of a regular neighborhood of the fixed point ∗ ∈ T 2.
Hence f preserves the commutator µ = αβα−1β−1. The generators α
and β of the free group provide a basis {[α], [β]} for H1(T 2;Z) ∼= Z2 and
the map f induces also an isomorphism f∗ : Z2 → Z2. Let A ∈ SL2(Z)
denote the matrix of f∗ with respect to the basis {[α], [β]}, i.e.,

A =
(
a11 a12
a21 a22

)
where

f∗([α]) = a11[α] + a21[β]
f∗([β]) = a12[α] + a22[β] .

The holonomy representation. By Lemma 2.4 above, to describe a
representation of Γ in Sol it is sufficient to give a representation in R and
a twisted cocycle. Since φ is Anosov and we assume that trace(A) > 0,
the eigenvalues of A are of the form e±l, with l ∈ R, l > 0. We fix the
representation ρ0 : Γ → R defined by

ρ0(α) = ρ0(β) = 0 and ρ0(λ) = l.

Let
(

b11
b21

)
and

(
b12
b22

)
be eigenvectors of the transpose matrix At with

respective eigenvalues el and e−l. We set B =
(

b11 b12
b21 b22

)
and we assume

that

det(B) = b11b22 − b12b21 = 1.(5)

Remark 3.1. Observe that all bij �= 0 because A ∈ SL2(Z).
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A direct computation shows that there are exactly two cocycles
d+ : Γ → R+ and d− : Γ → R− such that d±(λ) = 0 and

d+(α) = b11 d−(α) = b12
d+(β) = b21 d−(β) = b22.

We recall that each cocycle d : Γ → R± satisfies:

d(γ1γ2) = d(γ1) + γ1 · d(γ2)

where γ · α = e±ρ0(γ)α for every γ ∈ Γ and α ∈ R±.
The proof of the following lemma is a straightforward computation.

Lemma 3.2. The cohomology classes of the cocycles d+ and d−
form a basis for H1(Γ, (R+ ⊕ R−)ρ0) ∼= R2. Equivalently,

Z1(Γ, (R+ ⊕ R−)ρ0) = B1(Γ, (R+ ⊕ R−)ρ0)⊕ 〈d+〉R ⊕ 〈d−〉R.

In addition B1(Γ, (R+ ⊕ R−)ρ0) = {θ : Γ → R+ ⊕ R− | θ(α) = θ(β) =
(0, 0)} ∼= R2.

Definition 3.3. The holonomy representation hol : Γ → Sol is the
representation such that Lin ◦hol = ρ0 and trans ◦hol = d+ ⊕ d−.

With the coordinates Sol ∼= R3 from Section 2, this representation
is given by hol(γ) = (d+(γ), d−(γ), ρ0(γ)) ∈ Sol, for every γ ∈ Γ.

Remark 3.4. This representation is discrete and it induces a faith-
ful representation of π1(M) the group of the compact manifold. Thus it
is the holonomy of the complete Sol structure on M . It can be checked
that this is the unique representation with these properties, up to con-
jugation by automorphisms of Sol [17], [19].

Since N =M �Σ has the rational homology of a circle, it has a well
defined Alexander polynomial. The Alexander polynomial is precisely
the characteristic polynomial of the monodromy A, hence of degree two.
The following lemma allows us to apply the results of [8].

Lemma 3.5. The eigenvalues e±l of A are simple roots of the
Alexander polynomial of N =M � Σ.
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4. Parabolic Killing fields

From now on we fix an oriented geodesic σ ⊂ H3. Parabolic Killing
fields associated to the ends of σ give the connection between Sol and
hyperbolic space H3. In this section we use them to construct a family
of maps ∆a,b : Sol → H3, for (a, b) ∈ C2.

Definition 4.1. An orientation preserving isometry that fixes a
geodesic σ is said to be a hyperbolic translation of complex length z ∈ C

along σ when it is a pure translation of length Re(z) composed with a
rotation of angle Im(z) along σ. This isometry is denoted by Tz.

Notice that this definition includes rotations, which are elliptic el-
ements. A rotation of angle α ∈ R along σ is a hyperbolic translation
Tiα of complex length iα.

The group of hyperbolic translations along σ is isomorphic to C∗,
the isomorphism being induced by taking the exponential of the com-
plex length. The identity is also viewed as a hyperbolic translation of
complex length valued in 2πiZ. Let σ(+∞) and σ(−∞) be the ends of
σ. We also consider parabolic elements that fix one of the ends (i.e.,
isometries whose unique fixed point is one of the ends of σ). Thus, we
consider the following subgroups of orientation preserving isometries:

H0 = {γ ∈ Isom+(H3) | γ is a hyperbolic translation along σ};
H+ = {γ ∈ Isom+(H3) | γ is parabolic and fixes σ(+∞)};
H− = {γ ∈ Isom+(H3) | γ is parabolic and fixes σ(−∞)}.

We remark that H0 is also the subgroup of orientation preserving isome-
tries that fix both ends of σ.

For instance, if we work in the upper half-space model of H3 and as-
sume that σ is the geodesic with end-points 0 and ∞, then as subgroups
of PSL2(C),

H0 =
{
±

(
ez/2 0
0 e−z/2

)
| z ∈ C

}
,

H+ = {± ( 1 z0 1 ) | z ∈ C}
H− = {± ( 1 0z 1 ) | z ∈ C} .

The Lie algebra. The algebra of Killing fields of H3 is also the Lie
algebra of the isometry group, which is sl2(C).
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Remark 4.2. If h0, h+ and h− are the respective tangent spaces to
H0, H+ and H−, then

sl2(C) = h0 ⊕ h+ ⊕ h−,

is a Cartan splitting.

The group Isom(H3) acts on sl2(C) by the adjoint action, and we
consider the induced action of H0 ⊂ Isom(H3). The Cartan splitting
of Remark 4.2 is preserved by H0, the group of hyperbolic translations
along σ. A hyperbolic translation Tz of complex length z ∈ C acts by
multiplication by e±z on h± and as the identity on h0.

In this way, if we restrict the action of H0 to the subgroup of trans-
lations Ts with real length s ∈ R, h± is the complexification of the
R-module R±:

h± ∼= R± ⊗R C .

The maps from Sol to H3. We fix now a parametrization σ(t) of
the geodesic by arc-length and two non-zero Killing fields V + ∈ h+ and
V − ∈ h− such that

V +σ(0) = V
−
σ(0) �= 0.

Notation 4.3. Given p ∈ H3 and a vector field X on H3, expp(X)
denotes the Riemannian exponential of the vector Xp ∈ Tp(H3) at the
point p.

Definition 4.4. Let σ and V ± be as above. For (a, b) ∈ C2 we
define

∆a,b : Sol → H3

(x, y, t) �→ expσ(t)(a xV + + b y V −).

Lemma 4.5. Denote by Tz the hyperbolic translation along σ of
complex length z ∈ C. For any (a, b) ∈ C2 and g ∈ Sol:

Tz(∆a,b(g)) = ∆eza,e−zb(g · (0, 0,Re(z))).

Proof. Writing g = (x, y, t) ∈ Sol,

Tz(∆a,b(g)) = Tz(expσ(t)(a xV
t + b y V −))

= expσ(t+Re(z)){AdTz(a xV
+ + b y V −)}

= expσ(t+Re(z))(a x e
z V + + b y e−z V −)

= ∆eza,e−zb(x, y, t+ Re(z)).

q.e.d.
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Coordinates in C × R. Let W be the parallel vector field on σ such
that Wσ(0) = V

+
σ(0) = V

−
σ(0). Using the notation eiθW = (Tiθ)∗W for any

eiθ ∈ S1 ⊂ C, we define the diffeomorphism

Ψ: C × R → H3(6)
(z, t) �→ expσ(t)(zW ).

For each t ∈ R, Ψ(C × {t}) is the image by the exponential map of the
tangent plane orthogonal to σ at σ(t). In addition,

Tω(Ψ(z, t)) = Ψ(z ei Im(ω), t+ Re(ω)) ∀z, ω ∈ C, t ∈ R.

Lemma 4.6. For every (x, y, t) ∈ Sol and a, b ∈ C:

∆a,b(x, y, t) = Ψ(a x e−t + b y et, t)

Proof. By Lemma 4.5 we have:

T−t∆a,b(x, y, t) = ∆e−ta,etb(x, y, 0) = expσ(0)(a x e
−tV + + b y etV −).

In addition (eiθV ±)σ(0) = (AdT±iθ
V ±)σ(0) = (T±iθ)∗V ±

σ(0) = e±iθWσ(0).

Hence T−t∆a,b(x, y, t) = Ψ(a x e−t+ b y et, 0) and since Tt preserves par-
allel vectors along σ the lemma follows. q.e.d.

Corollary 4.7. The map ∆a,b is a diffeomorphism if ab �∈ R. It
preserves the orientation iff Im(ab) < 0 and it reverses it iff Im(ab) > 0.
The map ∆a,b is a submersion onto some hyperbolic plane H2 containing
σ if ab ∈ R but (a, b) �= (0, 0).

5. Deforming representations

We view ρ0 : Γ → R as a representation of Γ in the translation group
along a geodesic σ ⊂ H3. It is possible to lift it to a representation in

˜Isom+(H3) ∼= SL2(C),

which is the double covering of the orientation preserving isometry group
Isom+(H3) ∼= PSL2(C). This representation is still denoted by ρ0 : Γ →
SL2(C).
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To get the holonomy of hyperbolic structures we shall deform ρ0 : Γ
→ SL2(C). The nice space of deformations U of ρ0 is going to be a two
dimensional set in an irreducible component of Hom(Γ,SL2(C)):

ρ0 ∈ U ⊂ Hom(Γ,SL2(C)).

The group SL2(C) acts by conjugation on Hom(Γ,SL2(C)) and the set
U is going to be invariant under the restricted action of H0.

We present at the beginning of this section some notation and facts
which are needed in the sequel. The proofs of some technical results are
postponed (see Section 10).

The variety of representations. The variety of representations

R(Γ,SL2(C)) = Hom(Γ,SL2(C))

is an affine algebraic subset of C12, because SL2(C) ⊂ C4 and Γ has three
generators. The group SL2(C) acts on R(Γ,SL2(C)) by conjugation and
we may consider two quotients, the topological and the algebraic one.

The topological quotient is denoted by

R(Γ,SL2(C))/SL2(C)

and it is not always Hausdorff. The quotient in the algebraic category
denoted by

R(Γ,SL2(C))//SL2(C)

is called the variety of characters and it is a complex affine algebraic set
(see for instance [5]). Since our representation ρ0 is abelian, we have to
be careful when studying the quotient. In fact a neighborhood of ρ0 in
R(Γ,SL2(C))/SL2(C) is not Hausdorff.

The Zariski tangent space Tρ0R(Γ,SL2(C)) is isomorphic to a sub-
space of Z1(Γ, sl2(C)ρ0), and the tangent space to the orbit by con-
jugation is isomorphic to the coboundary space B1(Γ, sl2(C)ρ0). The
splitting

sl2(C) = h0 ⊕ h+ ⊕ h−(7)

is preserved by the action of ρ0. This splitting is useful for the com-
putation of the tangent space at the reducible representation ρ0 (see
Proposition 5.1).

We fix V ± ∈ h± and V 0 ∈ h0 non-zero elements, such that V ± are
the same as in the previous section. Thus {V +, V −, V 0} is a C-basis for
sl2(C).
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Irreducible and abelian representations. Recall that a represen-
tation ρ : Γ → SL2(C) is called irreducible if it has no proper invariant
subspaces of C2. The set of irreducible representations is not closed but
we consider its closure:

Rir(Γ,SL2(C)) = {ρ ∈ R(Γ,SL2(C)) | ρ is irreducible}
Notice that ρ0 ∈ Rir(Γ,SL2(C)), by the main theorem in [8]. The results
of [8] are relevant because el is a simple root of its Alexander polynomial
(see Lemma 3.5).

A representation is called abelian if its image is an abelian group.
The set of abelian representations is closed and we consider:

Rab(Γ,SL2(C)) = {ρ ∈ R(Γ,SL2(C)) | ρ is abelian}.
Notice that ρ0 ∈ Rir(Γ,SL2(C)) ∩Rab(Γ,SL2(C)).

Proposition 5.1.

(a) The analytic germ of R(Γ,SL2(C)) at ρ0 has two irreducible com-
ponents, which are precisely the germ of Rir(Γ,SL2(C)) and of
Rab(Γ,SL2(C)).

(b) In addition

Tρ0R
ir(Γ,SL2(C)) = Z1(Γ, (h+ ⊕ h−)ρ0)

Tρ0R
ab(Γ,SL2(C)) = Z1(Γ, hρ0

0 )⊕B1(Γ, (h+ ⊕ h−)ρ0).

Point (a) is proved in [8] and the proof of point (b) is given in
Section 10.

Remark 5.2. As Γ-modules, h± ∼= R±⊗C (i.e., h± is the complex-
ification of R±). Therefore, the computations of cocycles and cobound-
aries of Section 3 apply here, just by complexifying. As in Lemma 3.2,
we have:

Z1(Γ, (h+ ⊕ h−)ρ0) = B1(Γ, (h+ ⊕ h−)ρ0)⊕ 〈d+V +〉C ⊕ 〈d−V −〉C,
where d±V ± is the cocycle Γ → h± that maps γ ∈ Γ to d±(γ)V ±.

The slice. We are interested in representations up to conjugation.
Therefore we consider a slice with respect to the projection of Rir(Γ,
SL2(C)) onto the variety of characters. Since our representation is
abelian, the slice does not give a parametrization of the space of or-
bits, but it is going to be a useful tool to study it.
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Definition 5.3. Following [1], we define the slice:

S = {ρ ∈ Rir(Γ,SL2(C)) | ρ(λ) is a hyperbolic translation along σ}.

Notice that ρ0(λ) is a hyperbolic translation along σ of length l, and
therefore ρ0 ∈ S.

The local parametrization for S. Now we want to construct a
parametrization for the slice S in a neighborhood of ρ0. Given ρ ∈ S we
consider ρ(α) ∈ SL2(C). Since ρ0(α) = Id, we may choose ρ sufficiently
close to ρ0, so that

ρ(α) ∈ exp(W),

where W ⊂ sl2(C) is a neighborhood of the origin such that exp re-
stricted to W is injective. Now we look at pr(exp−1(ρ(α))) ∈ h+ ⊕ h−,
where

pr : sl2(C) → h+ ⊕ h−

denotes the projection with kernel h0.

Proposition 5.4. There is a neighborhood U ⊂ S of ρ0 so that the
map

U → h+ ⊕ h−
ρ �→ pr(exp−1(ρ(α)))

is a biholomorphism between U and a neighborhood U of the origin in
h+ ⊕ h− which maps ρ0 to the origin.

The proof of Proposition 5.4 is given in Section 10 (see Corollary
10.3).

Since d±(α) �= 0 (see Remark 3.1), we can identify h+ ⊕ h− with C2

by sending (a, b) ∈ C2 to a d+(α)V + + b d−(α)V − ∈ h+ ⊕ h−. With
this identification, denote by U ⊂ C2 the neighborhood of the origin in
C2 ∼= h+ ⊕ h− of Proposition 5.4.

Convention 5.5. Given (a, b) ∈ U , we shall denote by ρa,b ∈ U ⊂ S
the representation which is mapped to a d+(α)V ++ b d−(α)V − ∈ h+⊕
h− under the biholomorphism of Proposition 5.4.

In this way, we have parametrized a neighborhood U of ρ0 in S by
a neighborhood U of the origin in C2.
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The action by conjugation. The action of PSL2(C) by conjugation
does not preserve the slice S. The subgroup of isometries that preserve
it is H0, which is the group of hyperbolic translations along σ (and also
the subgroup of orientation preserving isometries that fix both ends of
σ).

Lemma 5.6. For every γ ∈ Γ and every (a, b) ∈ U ∈ C2,

ρeza,e−zb(γ) = Tz ρa,b(γ)T−z

for every z ∈ C where it makes sense (i.e., for every z ∈ C such that
(eza, e−zb) ∈ U).

Proof. By construction, conjugation by Tz preserves the slice, and
the lemma follows straightforward from Proposition 5.4 and the action
of Tz on h±. q.e.d.

By Lemma 5.6, the action of H0 ∼= C∗ restricted to U transforms in
the parameter space U ⊂ C2 into the action of C∗ on C2 defined by

λ(a, b) = (λa, λ−1b).

Let U/∼ denote the quotient of U by the action of C∗ of Lemma 5.6.
This quotient is not Hausdorff and has a triple point, which corresponds
to the orbits {0}, {(a, 0) | a �= 0} and {(0, b) | b �= 0}. If we identify
these three points to a single one, then we obtain an open set of C.

Corollary 5.7. The quotient of a neighborhood of ρ0 in the slice
S by conjugation is isomorphic to U/∼, which is a neighborhood of a
triple point in C. In addition, the algebra of invariant functions on U
is generated by

U → C

(a, b) �→ ab.

Representations in SL2(R). By identifying PSL2(C) ∼= Isom+(H3),
we view PSL2(R) as the subgroup of isometries that preserve some ori-
ented hyperbolic plane H2 ⊂ H3. Thus SL2(R) is the group of lifts of
such isometries to SL2(C). We assume also that the geodesic σ is con-
tained in the plane H2. This implies that the image of ρ0 belongs to
SL2(R) and we have:

Remark 5.8. All the results of this section hold true by replacing
C by R.
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For instance the local parametrization of S in Proposition 5.4 in-
duces a local parametrization of S ∩Hom(Γ,SL2(R)) with the neighbor-
hood of the origin U ∩R2. In addition, when a, b ∈ R and z ∈ R + πiZ,
the formula of Lemma 5.6 has a meaning in SL2(R), because conjuga-
tion by Tπi preserves SL2(R). The proofs for the real case are similar to
the proofs for the complex one, by using some results of [8] and the fact
that sl2(C) is the complexification of sl2(R), i.e., sl2(C) = sl2(R)⊗R C.
For instance

Z1(Γ, sl2(C)ρ0) = Z1(Γ, sl2(R)ρ0)⊗R C

and so on for B1 and H1.

6. Deforming developing maps

The aim of this section is to construct a family of developing maps
Da,b : Ñ → H3.

Recall that the manifold M admits a Sol structure and that Σ
denotes the natural zero-section of the bundle M → S1. Moreover,
we denote by π : Ñ → N the universal covering of the complement
N =M � Σ.

Proposition 6.1. There exists a neighborhood U ⊂ C2 of the origin
and a family of maps Da,b : Ñ → H3 parameterized by (a, b) ∈ U which
fulfills the following conditions:

(i) Da,b is ρa,b-equivariant.

(ii) Da,b is a submersion onto a hyperbolic plane H2 ⊂ H3 if ab ∈ R

and (a, b) �= (0, 0).

(iii) Da,b is locally a diffeomorphism if ab �∈ R.

(iv) The structure on the end of N is of Dehn type.

We explain now the meaning of assertion (iv) in the proposition.
The end of N is of the form (0, 1]×T 2, so that {1}×T 2 is the boundary
of a tubular neighborhood of Σ. Given a lift (0, 1]× T̃ 2 to the universal
cover Ñ , there corresponds a subgroup π1(T 2) ⊂ π1(N). We shall show
in next section that, if (a, b) �= 0, then ρa,b(π1(T 2)) is a loxodromic
group and in particular it fixes a geodesic ς. Assertion (iv) means that
given x ∈ T̃ 2, Da,b(s, x) is contained in the segment that minimizes the
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distance between Da,b(1, x) and the geodesic ς, and that Da,b(s, x) → ς
as s→ 0.

Proof. Along the proof we use the coordinate system C × R of H3

provided by the diffeomorphism (6), which is:

Ψ: C × R → H3

(z, t) �→ expσ(t)(zW ),

whereW is the parallel vector field on σ such thatWσ(0) = V
+
σ(0) = V

−
σ(0).

We are not going to use the real vector space structure of C × R.
Instead, we are going to use its R- affine structure.

Construction of Da,b. Let D : Ñ → Sol denote the developing map
for the Sol structure on N induced by M . Observe that D is a covering
map onto its image. The idea is to use the map ∆a,b ◦ D and to make
it ρa,b-equivariant. We follow the construction of Canary, Epstein and
Green, in [6, Lemma 1.7.2]. We choose U0, U1, . . . , Un a covering of N
such that:

• U0 is a punctured tubular neighborhood of Σ (i.e., U0 ∼= (D2 −
{∗})× S1).

• Ui is simply connected, for i ≥ 1.

Let π : Ñ → N denote the projection of the universal covering, we
construct the map D1a,b : π

−1(U1) → H3 as follows. We take

π−1(U1) =
⋃
γ∈Γ
γV1 where V1 is simply connected.

We define D1a,b|V1 = ∆a,b ◦ D|V1 , and we take D1a,b to be the ρa,b-
equivariant extension of D1a,b|V1 .

Next we take a refinement U20 , U
2
1 , . . . , U

2
n (i.e., a covering of N such

that U2i ⊂ Ui), and we shall construct D2a,b : π
−1(U21 ∪ U22 ) → H3. Let

π−1(U2) =
⋃
γ∈Γ
γV2 and π−1(U22 ) =

⋃
γ∈Γ
γV 22 ,

where V 22 ⊂ V2 and V2 is simply connected. We define f : V2 → H3 as:

f = φD1a,b + (1− φ)(∆a,b ◦ D|V2),(8)
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where φ : V2 → [0, 1] is a C∞-function satisfying suppφ ⊂ V2 ∩ π−1U1
and φ|

V 2
2 ∩π−1(U2

1 )
≡ 1. Notice that in equality (8) we use the R-affine

structure of the coordinate system C × R ∼= H3. By construction:

f |V 2
2 ∩π−1(U2

1 )
= D1a,b|V 2

2 ∩π−1(U2
1 )
.

Thus we extend f |V 2
2

equivariantly to π−1(U22 ) and we glue it to D1a,b
restricted to π−1(U21 ). In this way we obtain D2a,b : π

−1(U21 ∪U22 ) → H3.
We proceed inductively to construct

Dj
a,b : π

−1(U j
1 ∪ U j

2 ∪ · · · ∪ U j
j ) → H3,

where U j
0 , U

j
1 , U

j
2 , . . . , U

j
n is a refinement of U0, U1, U2, . . . , Un, until j =

n
It remains to define the map on Ũ0. We write U0 ∼= (0, 1) × T 2,

where 0 points to the end and 1 to the interior of the manifold. We fix a
lift (0, 1)× T̃ 2 to the universal covering Ñ so that λ, µ ∈ π1(T 2), hence
ρa,b(π1(T 2)) preserves the initial geodesic σ.

We take the closure U0 ∼= (0, 1]× T 2 and we define a map

D0a,b : Ũ0 ∼= (0, 1]× T̃ 2 → H3

as follows. For x ∈ T̃ 2, define D0a,b(0, x) to be the point of σ that
minimizes the distance to Dn

a,b(1, x). Hence we take

D0a,b(s, x) = (1− s)D0a,b(0, x) + sDn
a,b(1, x),

for x ∈ T̃ 2 and s ∈ (0, 1]. We extend D0a,b to the other lifts of (0, 1)×T 2
by taking the equivariant extension.

This can be done because of the following lemma:

Lemma 6.2. Let ε > 0 be such that (1− ε, 1]×T 2 ⊂ Un
1 ∪ · · · ∪Un

n .
Then:

Dn
a,b(s, x) = (1− s)D0a,b(0, x) + sDn

a,b(1, x)

for every s ∈ (1− ε, 1] and x ∈ T̃ 2.
Proof. Working with the coordinate system C×R, we writeDn

a,b(1, x)
= (α(a, b, x), β(a, b, x)), for x ∈ T̃ 2. In particular, D0a,b(0, x) = (0, β(a,
b, x)). Thus the lemma will follow if we prove that there exist maps αj
and βj independent of s, such that

Dj
a,b(s, x) = (s αj(a, b, x), βj(a, b, x))(9)
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for every (s, x) ∈ (1− ε, 1]× T̃ 2 in the domain of Dj
a,b. We prove (9) for

each step in the construction of Dj
a,b. We start with D1a,b|V1 . We write

x ∈ T̃ 2 as x = (θ1, θ2) ∈ R2, so that D(s, x) = (s cos θ1, s cos θ1, θ2). By
Lemma 4.6, for (x, s) ∈ V1,

D1a,b(s, x) = ∆a,b ◦ D(x, s) = (a s cos θ1 e−θ2 + b s sin θ1 eθ2 , θ2),

which proves (9) for D1a,b|V1 . Notice that this proof also applies to any
building block ∆a,b ◦ D|

V j
i
.

Next we deal with the action of π1(T 2). Given γ ∈ π1(T 2), ρa,b(γ)
acts as a translation of complex length h(γ) ∈ C along σ. Thus, in
coordinates, for (z, t) ∈ C × R:

ρa,b(γ)(z, t) = Th(γ)(z, t) = (ei Im(h(γ))z, t+ Re(h(γ)))

which is compatible with (9). Finally, the affine construction used for
gluing in (8) is also compatible with (9), and therefore Dj

a,b satisfies (9).
q.e.d.

To check that Da,b satisfies properties (ii) and (iii) we need first the
following two lemmas.

Lemma 6.3. There exists a one-parameter group of diffeomor-
phisms {hs : Ñ → Ñ}s∈R such that

Deza,e−zb = Tz ◦Da,b ◦ h−Re(z) for every z ∈ C,

where Tz is the hyperbolic translation of complex length z along σ.

To be a one-parameter group means that hs+s′ = hs ◦ hs′ for every
s, s′ ∈ R.

Proof. We take hs to be the pullback under the covering map D of
right-multiplication by (0, 0, s) in Sol (which preserves the image of D).
By Lemma 4.5

∆eza,e−zb = Tz ◦∆a,b ◦ h−Re(z) for every z ∈ C.

Thus the lemma follows from Lemma 5.6, and linearity of constructions.
q.e.d.

Lemma 6.4. For γ ∈ Γ and K ⊂ Sol a compact subset,

d
(
∆a,b(hol(γ)g), ρa,b(γ)(∆a,b(g))

)
= O(|(a, b)|2) ∀g ∈ K,

where the estimation only depends on K and γ.
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Here O(|(a, b)|2) stands for a smooth function F : U → R such that
|F (a, b)|/|(a, b)|2 is bounded in a neighborhood of the origin.

We postpone the proof of Lemma 6.4 to Section 10.

Corollary 6.5. For K ⊂ Ñ a compact subset, we have

d
(
Da,b(x),∆a,b(D(x))

)
= O(|(a, b)|2) ∀x ∈ K,

where the estimation only depends on K.

Proof. We recall thatDa,b is constructed by using formula (8). Hence
the corollary follows from Lemma 6.4 and the following two assertions.
Here NR(σ) denotes the tubular neighborhood of σ of radius R.

(i) There exists R(a, b) = O(|(a, b)|2) so that

∆a,b(D(K)) ⊂ NR(a,b)(σ) and

ρa,b(γ)(∆a,b(D(γ−1K))) ⊂ NR(a,b)(σ),

for every γ ∈ π1(N) with K ∩ γK �= ∅.
(ii) The parametrization Ψ−1 restricted to NR(a,b)(σ) is (1+

O(|(a, b)|2))-bi-Lipschitz.

Assertion (i) follows from construction and from Lemma 6.4, because
there is a finite set of γ ∈ π1(N) such that K ∩ γK �= ∅. Assertion (ii)
is a consequence of the fact that the tangent map of the exponential at
zero is the identity. q.e.d.

Lemma 6.6. If ab ∈ R � {0}, then the image of Da,b is contained
in (Tσ)⊥ ∩ TH2 for some hyperbolic plane H2. In addition the tangent
map of Da,b : Ñ → H2 is surjective.

Proof. By Lemma 6.3, we can assume that a, b ∈ R � {0}. In
this case, by Remark 5.8 ρa,b is a representation in SL2(R), and by
Corollary 4.7 the image of Da,b is contained in Ψ(R × R) = H2 ⊂
H3, where Ψ: C × R → H3 is the diffeomorphism (6). To study the
tangent map, it suffices to consider a compact subset K ⊂ Ñ , because
of equivariance and Lemma 6.2. By Lemma 4.6:

Ψ−1(∆a,b)(x, y, t) = (axe−t + byet, t) ∈ R × R ⊂ C × R.

If (Ψ−1∆a,b)∗ denotes the tangent map of Ψ−1∆a,b, then

(Ψ−1∆a,b)∗(∂t) = ∂t + (− a x e−t + b y et) ∂x,

(Ψ−1∆a,b)∗(∂x) = a e−t ∂x,

(Ψ−1∆a,b)∗(∂y) = b et ∂x.
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By Corollary 6.5, ∆a,b ◦D and Da,b coincide up to some order two terms
on a and b, thus the tangent map of Da,b is a surjection for (a, b) close
the origin but non-zero. q.e.d.

Lemma 6.7. If ab ∈ C�R, then the tangent map of Da,b : Ñ → H3

is an isomorphism.

Proof. By Lemma 6.3 we may assume that a ∈ R and Im(b) �= 0.
A similar computation as in the proof of previous lemma works in this
case:

(Ψ−1∆a,b)∗(∂t) = ∂t + (−a x e−t + Re(b) y et) ∂x + Im(b) y et ∂y,

(Ψ−1∆a,b)∗(∂x) = a e−t ∂x,

(Ψ−1∆a,b)∗(∂y) = Re(b) et ∂x − Im(b) et ∂y.

Again by Corollary 6.5, the tangent map of Da,b is an isomorphism.
q.e.d.

Lemmas 6.6 and 6.7 imply assertions (ii) and (iii) of the proposition.
The remaining assertions follow from construction. q.e.d.

7. Generalized Dehn Filling coefficients

In this section we compute the generalized Dehn-filling coefficient of
a structure with developing map Da,b and holonomy ρa,b.

The Poincaré model. We work with the upper half-space model

H3 = {z + etj | z ∈ C, t ∈ R},(10)

with the warped product metric ds2 = e−2td|z|2 + dt2. The orientation
preserving isometry group Isom+(H3) is isomorphic to PSL2(C). We
assume in the sequel that the geodesic σ is the real axis, i.e., σ(t) = etj,
with t ∈ R. The hyperbolic translation of complex length z ∈ C along
σ is therefore

Tz = ±
(

ez/2 0
0 e−z/2

)
.

The two non-zero Killing fields V ± are then given by V + = ( 0 c
0 0 ) and

V − = ( 0 0c 0 ), for some non-vanishing constant c �= 0. We assume that
c = 1 (see Section 4).
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The hyperbolic plane H2 = {x + etj | x ∈ R, t ∈ R} contains the
geodesic σ. The subgroup of isometries that preserve H2 is the subgroup
generated by PSL2(R) and the involution Tiπ = ± (

i 0
0 −i

)
, which reverses

the orientation of H2.

Recall that Γ = π1(N) has presentation

Γ ∼= 〈λ, α, β | λαλ−1 = f(α), λβλ−1 = f(β) 〉,
where α and β generate the free group π1(T 2 − {∗}) and f : π1(T 2 �

{∗}) → π1(T 2 � {∗}) is an isomorphism that preserves the commutator
µ = αβα−1β−1. In particular, µ commutes with λ, so λ and µ generate
a peripheral torus group.

Lemma 7.1. For (a, b) ∈ U ,

ρa,b(λ) =
(
el/2 +O(|ab|) 0

0 e−l/2 +O(|ab|)
)

and ρa,b(µ) =
(
1 + ab+O(|ab|2) 0

0 1− ab+O(|ab|2)
)
.

Proof. The fact that ρa,b(λ) and ρa,b(µ) are diagonal matrices comes
from the choice σ(t) = etj, because ρa,b(λ) is a translation along σ
by construction of the slice, and µ commutes with λ. The formula

for ρa,b(λ) is easily deduced from the facts that ρ0(λ) =
(
el/2 0
0 e−l/2

)
and the coefficients are analytic functions on the trace of ρa,b(λ) (hence
analytic on ab by Corollary 5.7). To compute the coefficient of ρa,b(µ),
we start with the following formulas, which follow from the construction
of the parametrization (see Corollary 10.4 in Section 10).

ρa,b(α) =
(

1 a d+(α)
b d−(α) 1

)
+O(|(a, b)|2)

and ρa,b(β) =
(

1 a d+(β)
b d−(β) 1

)
+O(|(a, b)|2).

Since µ = αβα−1β−1, a long but easy computation shows that

ρa,b(µ) =
(
1 + ab+O(|(a, b)|3) 0

0 1− ab+O(|(a, b)|3)
)
.(11)

This computation uses the normalization d+(α) d−(β)− d−(α) d+(β) =
1, as fixed in (5), and analyzes the first and second order terms on (a, b)
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(the first order term is zero and the second order term at the diagonal
entries is ±ab). Since the coefficients of ρa,b(µ) are functions on the
product ab, the estimate O(|(a, b)|3) in (11) becomes O(|ab|2). q.e.d.

Definition 7.2. We define u and v as the complex functions on ab
such that

ρa,b(µ) = ±
(
eu(ab)/2 0

0 e−u(ab)/2

)
and ρa,b(λ) = ±

(
ev(ab)/2 0

0 e−v(ab)/2

)

with u(0) = ±2πi and v(0) = l + 2πi k, k ∈ Z.

For the choice of u(0) and v(0), it is necessary to determine the
branch of the logarithm. The sign in u(0) = ±2πi is determined
by the developing map: we choose the sign ± according to whether
Da,b preserves the orientation (Im(ab) < 0) or reverses the orientation
(Im(ab) > 0). Up to sign, the integer k ∈ Z is the number of com-
plete turns of λ around Σ the core of the solid torus, counted when we
develop the Sol structure of M . The sign of k depends on the sign of
u(0) = ±2πi. To simplify, we assume that k = 0 by replacing λ by
λµ±k. This simplification implies that the boundary of the Dehn-filling
coefficients space is p = 1 but in general it is the line p± k q = 1.

Definition 7.3. Following Thurston, we define the generalized
Dehn-filling coefficients to be the pair (p, q) ∈ R2 such that

pu+ qv = 2πi

or equivalently:

p Re(u) + q Re(v) = 0
p Im(u) + q Im(v) = 2π.

}

Proposition 7.4. The generalized Dehn-filling coefficients define a
homeomorphism between a neighborhood of 0 in {ab ∈ C | Im(ab) ≤ 0}
and a neighborhood of (1, 0) in {(p, q) ∈ R2 | p ≥ 1}.

Proof. Since we assume Im(ab) ≤ 0 we take u(0) = 2πi, so that
when ab = 0, (p, q) = (1, 0). It follows from Lemma 7.1, that

u(ab) = 2πi+ 2ab+O(|ab|2) and v(ab) = l +O(|ab|).(12)

In particular, Re(u) = O(|ab|) and Im(v) = O(|ab|).
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When ab ∈ R, we have that Im(u) = 2π and Im(v) = 0, by Re-
mark 5.8. In particular u and v are analytic on ab with real coefficients
(except for the zero order term of u). Thus

p = 1 and q = −Re(u)/Re(v) = −(2ab/l) +O(|ab|2),
which defines a homeomorphism between a neighborhood of 0 in the
line {ab ∈ C | Im(ab) = 0} and a neighborhood of (1, 0) in the line
{(p, q) ∈ R2 | p = 1}.

For (a, b) in general we have:

p =
−2πRe(v)

Re(u) Im(v)− Im(u)Re(v)
=

−2πRe(v)
− Im(u)Re(v) +O(|ab|2) .

Since Re(v) = l+O(|ab|) and Im(u) = 2π+2 Im(ab)+O(|ab|2), it follows
that

p =
2π

Im(u) +O(|ab|2) =
2π

2π + 2 Im(ab) +O(|ab|2)
= 1− 1

π
Im(ab) +O(|ab|2).

In addition

q =
2πRe(u)

Re(u) Im(v)− Im(u)Re(v)
=

2πRe(u)
−2πl +O(|ab|)

= −2Re(ab)
l

+O(|ab|2).

These computations show that the Dehn-filling coefficients defined in a
neighborhood of 0 in the half plane {ab ∈ C | Im(ab) ≤ 0} are restriction
of a homeomorphism defined in a neighborhood of 0 in the complex plane
C. Combining this with the fact that it maps the line Im(ab) = 0 to the
line p = 1, we obtain the proposition. q.e.d.

When Im(ab) > 0, then Dab reverses the orientation and the co-
efficients which we obtain are the same up to sign, according to the
orientation convention.

Remark 7.5. In the proof of this proposition, we have shown that
the coefficients of u and v as an analytic function on ab are real (except
for the zero order term of u, which is 2πi) by using Remark 5.8.

This finishes the proof of Theorem B in the case where the matrix
of monodromy φ : T 2 → T 2 has positive trace.
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Proof of Theorem B (case with negative trace). When the mon-
odromy matrix of M has negative trace, the same proof as in the case
with positive trace applies, with some changes that we explain now.
In this case the eigenvalues of the monodromy are −e±l, with l ∈ R,
l > 0. Thus the holonomy of the Sol structure is not contained in
Sol itself but in Sol � Z/2Z, where Z/2Z is generated by the involu-
tion (x, y, t) �→ (−x,−y, t). More precisely, the holonomy of λ is the
transformation

hol(λ) : Sol → Sol
(x, y, t) �→ (−elx,−e−l, t+ l).

The exact sequence (1) generalizes to

1 → R2 → Sol � Z/2Z
Lin−→R × Z/2Z → 0

The representation ρ0 = Lin ◦hol has cyclic image generated by ρ0(λ) =
(l,−1) ∈ R×Z/2Z. We view it as the abelian representation in SL2(C)
of translations and rotations around the geodesic σ, such that ρ0(λ) =
Tl+πi (i.e., ρ0(λ) is a rotation of length l plus a rotation of angle π
around σ). In the Poincaré model of H3, if σ has end-points 0 and ∞,
then

ρ0(λ) = ±
(
e(l+πi)/2 0

0 e−(l+πi)/2

)
.

All the constructions of Sections 2 to 6 apply to this situation. For
instance e±(l+πi) is a simple root of the Alexander polynomial, hence
the results of [8] allow to construct a deformation space as in Section 5.
In Remark 5.8 the group SL2(R) should be replaced by SL2(R)∪SL2(Ri),
which is the group that preserves a plane H2.

There are also some differences in the computation of Dehn-filling
coefficients. The function u(ab) = 2πi+2ab+O(|ab|2) does not change,
but v becomes v(ab) = l+πi+O(|ab|). This explains the change of line
p = 1 to a line p± 12q = 1, but the proof applies with no other change.

q.e.d.

8. Proof of Theorem A.

Theorem B provides a family of hyperbolic cone structures Cα with
cone angle α ∈ (2π − ε, 2π): it is sufficient to take q = 0 and p = 2π/α.
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In addition, Kojima’s theorem [13] says that if we can reach angle α = π,
then the cone angle can decrease until zero. In order to make the cone
angle decrease from 2π − ε until π, we work in a quotient of Cα.

From 2π − ε to π. Let τ denote the involution of the torus T 2 that
has four fixed points. That is, if we view T 2 ∼= R2/Z2, then τ lifts to

τ̃ : R2 → R2

x �→ −x.
Notice that τ is central in the mapping class group of T 2, and in par-
ticular it commutes with the monodromy φ : T 2 → T 2. Thus τ extends
to an involution ofM and also of N , because the fixed point of φ is also
fixed by τ . We also denote by τ the involution on N .

The quotient N/τ is a three-orbifold with fiber a punctured sphere
with three singular points that have ramification index two. The ramifi-
cation set of N/τ is a link that may have one, two or three components
(according to the matrix of φ in SL2(Z/2Z)). The orbifold M/τ is
compact and has one singular component more than N/τ , which is the
projection of Σ (that is fixed by τ).

Lemma 8.1. The involution τ is an isometry of the hyperbolic cone
manifold Cα, for α ∈ (2π − ε, 2π).

Proof. Let τ̃ be a lift of τ to the universal covering of Ñ . We want
to show that τ̃ may be chosen so that Da,b ◦ τ̃ = Tπi ◦Da,b, where Tπi
is a rotation around σ of angle π.

Let D : Ñ → Sol denote the developing map. We may choose τ̃ so
that

D ◦ τ̃ = θ ◦ D
where θ is the involution of Sol that maps (x, y, t) to (−x,−y, t). Then
it follows that

∆a,b ◦ D ◦ τ̃ = ∆−a,−b ◦ D = Tπi ◦∆a,b ◦ D.
In addition, by choosing τ∗(α) = α−1, then ρa,b ◦ τ∗ = ρ−a,−b. (Here we
have used the equality d±(α−1) = −e±ρ0(α)d±(α) = −d±(α), because
ρ0(α) = 0).

Hence it follows from the construction of Da,b that Da,b◦τ̃ = D−a,−b.
By Lemma 6.3, we have that D−a,−b = Tπi ◦Da,b. Hence

Da,b ◦ τ̃ = Tπi ◦Da,b
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and the lemma follows. q.e.d.

This lemma provides a family of cone manifolds Cα/τ with the same
topological type (|Cα/τ |,ΣCα/τ ) as the orbifold M/τ , cone angle α/2 ∈
(π − ε, π) in one singular component and cone angle π in the other
singular components.

Now we would like to apply Kojima’s Theorem to Cα/τ , but we have
to be careful: in Kojima’s deformation all cone angles decrease, but in
Cα/τ only one cone angle decreases and the other ones stay constant
equal π. With respect to Kojima’s paper [13], the only thing we need
to control is that, when a sequence (αn) decreases, then Cαn/τ does
not collapse. The arguments in [13] go through once we establish next
lemma, and allow to conclude that Cα is hyperbolic for α ∈ [π, 2π).

Lemma 8.2. If (αn) decreases, then Cαn/τ does not collapse.

Proof. The proof is by contradiction. We assume that Cαn/τ col-
lapses, namely the sequence sup{cone-inj(x) | x ∈ Cαn/τ} converges to
0 as n→ ∞, where cone-inj denotes the cone injectivity radius (see [2]
or [3] for the definition).

First we notice that the diameter of Cαn (and of Cαn/τ) does not
converge to zero, because the volume of Cαn increases with n. This is
a consequence of Schläfli’s variation formula (see Proposition 7.3.1 in
[13]).

Next we want to show that the length of the singular component of
Cαn converges to zero. We choose a singular point xn ∈ Cαn and we
project it to xn ∈ Cαn/τ . The pointed rescaled sequence(

1
cone-inj(xn)

Cαn/τ, xn

)

has a partial subsequence converging to a pointed non-compact Eu-
clidean 3-manifold (E, x∞), by the compactness theorem of [2] and be-
cause the diameter of Cαn is bounded away from zero. The cone mani-
fold E has at least one singular point with cone angle α∞/2 < π. By the
classification of non-compact Euclidean cone manifolds with cone angle
≤ π, either E = S2(α, β, γ)×R (where S2(α, β, γ) is a sphere with three
cone points such that α + β + γ = 2π) or E = S1×(open cone disk) is
the infinite tubular neighborhood of a closed singular geodesic.

The case E = S2(α, β, γ)× R can not occur by topological reasons.
Here we use pointed bi-Lipschitz convergence that preserves the singu-
lar locus (denoted geometric convergence in [2, 3, 4]). Hence, if this
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case occurs, then S2(α, β, γ)× {0} is an embedded sphere of M/τ that
intersects the singular locus in three points. In particular it does not
separate in M/τ , and it lifts to a sphere in the torus bundle M which
does not separate. Hence we have a contradiction and the Euclidean
limit is S1×(open cone disk). It follows that the length of the singular
set of Cαn converges to zero at the same speed as cone-inj(xn).

Now we can conclude in several ways. For instance, by Proposi-
tion 5.2.3 in [2], if Cαn/τ collapses, then the fact that E = S1 ×
(open cone disk) implies that the simplicial volume of N = M � Σ
vanishes, which contradicts the hyperbolicity of N .

We can also use Proposition 5.3 of [4], which implies that the singular
set of Cαn has a tubular neighborhood of radius bounded below by
some positive constant. With this lower bound, we can deduce that
Cαn does not collapse by applying either Proposition 5.1.1 of [13], or
Proposition 2.6 of [4]. q.e.d.

Rescaling the cone manifolds. To finish the proof of Theorem A,
it remains to check that the metrics on the cone manifolds Cα can be
rescaled in the direction of the fibers, so that they to converge to the
Sol-manifold M as α→ 2π. This is the aim of the following lemma.

Lemma 8.3. If the metric in the fiber direction of the cone mani-
folds Cα is rescaled by 1/

√
2π − α, then, as α → 2π, the rescaled cone

manifolds converge to the Sol-manifold M .

Proof. Let (a(α), b(α)) denote the parameters corresponding to Cα

for α approaching 2π. By the computation of Dehn-filling coefficients
in (12) and setting u = αi, we have:

a(α)b(α) = − i
2
(2π − α) +O(|2π − α|2).

Hence we can choose a(α) = b(α) = 1−i
2

√
2π − α+O(|2π − α|).

We also choose P ⊂ Ñ to be a fundamental domain for the action of
π1(N). In particular D(P ) ⊂ Sol is a fundamental domain for the action
of π1(M) on Sol, where D is the developing map of the Sol-structure.

We consider Pα = Da(α),a(α)(P ) ⊂ H3, so that Cα is obtained from
Pα by metric identifications on its boundary. Let P ′

α and P ′′
α be Pα with

the metric rescaled by 1√
2π−α

in the following directions:

• the directions tangent to the planes orthogonal to σ ⊂ H3, for P ′
α;

• the directions tangent to the fibers, for P ′′
α .
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It follows from the construction of Da,a that the angle between the plane
tangent to the fibers and the plane orthogonal to σ is O(|a(α)|2). Hence
the metrics on P ′

α and on P ′′
α differ by a term O(|a(α)|). In particular,

since by construction P ′
α → D(P ), it follows that P ′′

α → D(P ). This
limit proves the lemma, because D(P )/∼=M and P ′′

α/∼ is Cα with the
metric rescaled on the fibers (here ∼ stands for metric identifications
on the boundary).

This concludes the proof of Lemma 8.3 and also of Theorem A. q.e.d.

Proof of Proposition 1.1. The proof consists in constructing three
different paths γi : (2π − ε, 2π] → U , i = 1, 2, 3, with γi(α) = (ai(α),
bi(α)) such that:

(i) Dai(α),bi(α) is the developing map of the cone hyperbolic manifold
Cα with cone angle α ∈ (2π − ε, 2π).

(ii) Dai(2π),bi(2π)) is the developing map of the fibration by tori, when
i = 1, and of a transversely hyperbolic foliation, when i = 2, 3.

Condition (i) implies that, for each α, the product ai(α)bi(α) has a fixed
value, corresponding to the geometric structure of Cα. In particular
for the collapsed structures ai(2π)bi(2π) = 0. However there is some
freedom when choosing ai(α), and to satisfy condition (ii), we have to
take a1(2π) = b1(2π) = 0, a2(2π) �= 0 but b2(2π) = 0, and a3(2π) = 0
but b3(2π) �= 0. q.e.d.

9. An example: torus bundles which are regular branched
coverings of S3

In this section we are interested in the case where the orientable torus
bundle with hyperbolic monodromy M is a regular branched covering
of S3.

In [15], Sakuma shows that an orientable torus bundle M is a reg-
ular branched covering of S3 if and only if M admits an orientation-
preserving involution h which preserves the base circle Σ and acts on
Σ by a reflection. In this case, M is in fact a branched covering of S3

with deck-transformation group Z/2Z + Z/2Z, generated by any such
involution h and the involution τ extending the standard involution of
T 2 with four fixed points (see the proof of Theorem A), cf. Theorem VII
in [15].
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Let us first consider the quotient M/h. The involution h leaves two
fibers T1, T2 invariant, whose quotient under h is either a Möbius strip
or an annulus. Denote by Σi the boundary of Ti/h. Topologically, M/h
is the union of two solid tori (tubular neighborhoods of T1/h and T2/h),
i.e., a lens space. It is easy to check that the involution h is realized
as a symmetry of order 2 of any complete Sol structure on M . In the
universal cover, h lifts to a Sol isometry of the form

h̃(x, y, t) = (esy, e−sx,−t+ s) or h̃(x, y, t) = (−esy,−e−sx,−t+ s)

for some s ∈ R. The quotient M/h is a Sol orbifold with underlying
space a lens space and singularity the link Σ1 ∪Σ2, with all cone angles
equal to π. The quotient of the base circle Σ under h is a segment Σ
joining a point of Σ1 to a point of Σ2.

Now let us consider the quotient M/ < h, τ >. It is a Sol orbifold
with underlying space S3 and singularity a graph G that contains Σ as
an edge. All cone angles are equal to π.

Remark 9.1. The pictures of the graphs G that appear in this way
can be found in [7], but the distinguished edge Σ is not marked there.

Proposition 9.2. Let G and Σ be as above. There exists a family
of hyperbolic cone structures on S3 with singular set the graph G, cone
angle α varying between 0 and π on the edge Σ, and all other cone angles
equal to π. When α tends to π, these structures collapse to a segment.

Before proving this proposition, we give a corollary and an example.

Corollary 9.3. The lens space M/h has hyperbolic cone structures
with singularity the graph Σ1∪Σ2∪Σ, cone angle α ∈ (0, 2π) on the edge
Σ and all other cone angles equal to π. When α→ 2π, these structures
collapse to a segment.

Example. As a particular example, let us consider the torus bundles
which are two-fold branched cyclic covers of S3, i.e., those for which
the lens space M/h is already S3. Sakuma shows in [14] that these are
exactly the torus bundles Mm,n with monodromy matrix of the form

A =
(−1 −m
n mn− 1

)

for some pair of integers m, n. The branching locus is the link in S3 in
Figure 1.
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n right-hand

half-twists

right-hand

half-twists

m

Figure 1: The singular set of M/h.

The torus bundle Mm,n has Anosov monodromy when |mn−2| > 2.
Then Proposition 9.2 tells that S3 has hyperbolic cone structures with
singularity the graphs shown in Figures 2 and 3, cone angle α ∈ (0, 2π)
on the marked edge Σ in Figure 2 (resp. α ∈ (0, π) in Figure 3), and
all other cone angles equal to π. When α → 2π (resp. α → π) these
structures collapse to the segment Σ.

n right-hand

half-twists

n right-hand

half-twists

right-hand

half-twists

m

mn –2 | >2| | n | >2

Σ
Σ

Figure 2: Cone angle α ∈ (0, 2π) on the edge Σ.

Proof of Proposition 9.2. Let Da,b the family of developing maps
constructed in Proposition 6.1. We shall construct a path (a(t), b(t))
with t ∈ [0, ε) such that the involutions can be lifted to Ñ , in such a
way that, for every t ∈ [0, ε), the following hold:

(i) a(t) b(t) = γ(t), where γ(t) corresponds to the singular cone struc-
ture with cone angle 2π − t.
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4 − 2 > 2 m + n − 2 > 2

m + n + 1) − 2 > 2 n 2 n + 1 > 2
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Figure 3: Cone angle α ∈ (0, π) on the edge Σ.

(ii) Da(t),b(t) ◦ τ̃ = Φ1 ◦Da(t),b(t) for some hyperbolic isometry Φ1.

(iii) Da(t),b(t) ◦ h̃ = Φ2 ◦Da(t),b(t) for some hyperbolic isometry Φ2.

Condition (i) implies that Da(t),b(t) is the developing map of the
hyperbolic cone manifold with cone angle 2π − t, t ∈ (0, ε). Conditions
(ii) and (iii) imply that those structures are compatible with τ and h
and therefore they induce the structures of the proposition. Notice that
condition (ii) is always satisfied, as proved in Lemma 8.1.

This only proves that the cone structures are invariant by τ and h
when the cone angles are close to 2π. But this is sufficient, because the
action of τ and h on the variety of representations is algebraic, and the
local rigidity theorem of [11] shows that this space of representations
is a path contained in a real curve (and the path consists of smooth
points).

The value of a(t) b(t) = γ(t) is fixed for each t. In Particular γ(0) =
0. However we have to choose specifically a(t) and b(t).

For simplicity, let us choose the Sol structure on M so that h lifts
in the universal cover to one of the Sol isometries ϑ(x, y, t) = (y, x,−t)
or ϑ(x, y, t) = (−y,−x,−t). Let us moreover assume that ϑ(x, y, t) =
(y, x,−t).

Let h̃ : Ñ → Ñ be a lift of h such that D ◦ h̃ = ϑ ◦ D.
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Denote by rL : H3 → H3 the isometric involution consisting in a
rotation of angle π around a line L perpendicular to σ at σ(0). We
want to prove that for every t ∈ R � {0} close to 0, we can find a pair
(a, b) ∈ C2 close to 0, such that ab = γ(t) and

Da,b ◦ h̃ = rL ◦Da,b.

Let us choose the Killing vector fields V ± so that V +σ(0) = V −
σ(0) is a

vector tangent to the line L. Then AdrLV
+ = V −, AdrLV

− = V +, and
we have:

rL ◦∆a,b(x, y, t) = rL(expσ(t)(a xV
+ + b y V −))

= expσ(−t)(a xAdrLV
+ + b y AdrLV

−)

= expσ(−t)(a xV
− + b y V +)

= ∆b,a(y, x,−t) = ∆b,a ◦ ϑ(x, y, t)
for all (x, y, t) ∈ Sol. Hence:

∆a,b ◦ D ◦ h̃ = rL ◦∆b,a ◦ D.
Unfortunately ρa,b ◦ h∗ does not necessarily equal AdrL ◦ ρb,a. If these
two representations where equal, then we would have Da,b◦h̃ = rL◦Db,a

and it would suffice to take a(t) = b(t) =
√
γ(t). To solve this question,

we have the following lemma:

Lemma 9.4. There exists an analytic map g : U ⊂ S → S with real
coefficients on (a, b), with g(0) = 0, and such that the following hold:

(i) The tangent map of g at 0 is the identity (in particular it is locally
bi-analytic).

(ii) g(−x) = −g(x).
(iii) ρg(a,b) ◦ h∗ = AdrL ◦ ρg(b,a).

Using this lemma, in the construction of Da,b we replace ρa,b by
ρg(a,b). Then, by property (i) in the lemma, the partial derivatives of
ρa,b at the origin do not change, and the construction of Da,b applies
without any change. In addition property (ii) implies that Da,b is still
compatible with τ . It is also important to notice that the coefficients of
g are real, so that Remark 5.8 can still be applied. Property (iii) implies
the compatibility with h, hence taking a(t) = b(t) =

√
γ(t) we obtain

the required developing maps Da,b.
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Finally we prove Lemma 9.4.

Proof of Lemma 9.4. We consider the involution ι : S → S defined
by ι(ρ) = AdrL ◦ ρ ◦ h∗. In coordinates (a, b), it can be written as

ι(a, b) = (ι1(a, b), ι2(a, b)).

We take g−1(a, b) = (a, ι1(a, b)) and we check that g satisfies the prop-
erties. First at all, since ι is an involution, we have that g−1◦ι = ς ◦g−1,
where ς(a, b) = (b, a). Hence ι(g(a, b)) = g(b, a), which is property (iii).

Next we compute the tangent map of ι. We recall that hol denotes
the Sol holonomy. By construction, hol(α) = (d+(α), d−(α), 0) and
hol(h∗(α)) = (d−(α), d+(α), 0). Hence

ρa,b(h∗(α)) = exp(ad−(α)V + + bd+(α)V − +O(|(a, b)|2))
by Corollary 10.4. Thus

ι(ρa,b)(α) = AdrL(ρa,b(h∗(α)))

= exp(bd+(α)V + + ad−(α)V − +O(|(a, b)|2)),
because AdrL(V ±) = V ∓. Hence the matrix of partial derivatives of ι

at the origin with coordinates (a, b) is
(
0 1
1 0

)
, and property (i) follows.

Since rL and Tπi commute, ι(−(a, b)) = −ι(a, b) and (ii) also follows.
Finally, the coefficients of ι are real (it preserves real representations

because rL preserves the hyperbolic plane containing σ and rL). This
proves Lemma 9.4 and Proposition 9.2. q.e.d.

10. The tangent space to the variety of representations

In this section we prove some results stated in Sections 5 and 6 that
involve the tangent space to the variety of representations and local
parametrizations.

We start by computing Z1(Γ, sl2(C)ρ0). Since the image of ρ0 is
contained in the group of translation along σ, the action of ρ0 preserves
the Cartan splitting sl2(C) = h+ ⊕ h− ⊕ h0. Thus:

Z1(Γ, sl2(C)ρ0) = Z1(Γ, (h+)ρ0)⊕ Z1(Γ, (h−)ρ0)⊕ Z1(Γ, (h0)ρ0).

Next we study each one of these spaces. Let V + ∈ h+, V − ∈ h− and
V 0 ∈ h0 be the elements defined in Section 5. Consider also the cocycles
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d± : Γ → R± defined in Section 3 and the morphism d0 : Γ → Z ⊂ R

such that d0(λ) = 1 and d0(α) = d0(β) = 0. In the following lemma
d0V

+ denotes the cocycle that maps γ ∈ Γ to d0(γ)V + ∈ h+, and so on
for other cocycles.

Lemma 10.1.

(i) Z1(Γ, (h±)ρ0) ∼= C2 is generated by d0V ± and d±V ±.

(ii) B1(Γ, (h±)ρ0) ∼= C is generated by d0V ±.

(iii) Z1(Γ, (h0)ρ0) ∼= C is generated by d0V 0.

(iv) B1(Γ, (h0)ρ0) ∼= 0.

Proof of Proposition 5.1 (b). We prove first that Tρ0R
ir(Γ,SL2(C))

= Z1(Γ, (h+ ⊕ h−)ρ0). We know from [8] that Tρ0R
ir(Γ,SL2(C)) is four

dimensional, hence it is sufficient to show that the cocycles d0V ± and
d±V ± belong to this tangent space. It is clear that d0V ± belongs to
Tρ0R

ir(Γ,SL2(C)), because it is a coboundary. In addition the derivation
d±V ± is tangent to a path of metabelian representations, that belong to
Rir(Γ,SL2(C)), by [8]. Thus the equality holds true. A similar argument
shows that Tρ0R

ab(Γ,SL2(C)) = Z1(Γ, hρ0
0 )⊕B1(Γ, (h+⊕h−)ρ0), because

d0V
0 is tangent to a path of abelian representations. q.e.d.

We defined the slice as:

S = {ρ ∈ Rir(Γ,SL2(C)) | ρ(λ) is a hyperbolic translation along σ}.

Lemma 10.2. Tρ0S is two dimensional generated by d+V + and
d−V −.

Proof. It follows from Lemma 10.1 and Proposition 5.1 (b), that
d+V

+, d−V −, d0V + and d0V − generate Tρ0R
ir(Γ,SL2(C)). Moreover,

d0(λ) �= 0 and d±(λ) = 0. We consider the map

F : Rir(Γ,SL2(C)) → Ĉ × Ĉ

ρ �→ (ρ(λ)(σ(+∞)), ρ(λ)(σ(−∞)))

where Ĉ = ∂H3 is the Riemann sphere at infinity, and σ(+∞), σ(−∞) ∈
Ĉ are the ends of σ. By construction,

S = F−1(σ(+∞), σ(−∞)).
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The tangent map F∗ at the point ρ0 satisfies F∗(d0V +) = (0, 1),
F∗(d0V −) = (1, 0) and F∗(d±V ±) = 0, because d0(λ) = 1 and d±(λ) =
0. The lemma follows straightforward from these computations. q.e.d.

We obtain as a corollary Proposition 5.4.

Corollary 10.3 (Proposition 5.4). There is a neighborhood U ⊂ S
of ρ0 so that the map

U → h+ ⊕ h−
ρ → pr(exp−1(ρ(α)))

is a biholomorphism between U and a neighborhood of the origin in h+⊕
h−.

Proof. This follows now from Lemma 10.2 and the facts that ρ0(α)
is trivial and that d+(α) and d−(α) do not vanish. q.e.d.

Corollary 10.4. For every γ ∈ Γ there is a neighborhood of the
origin Uγ ⊂ U such that for every (a, b) ∈ Uγ, we have:

ρa,b(γ) = exp
{
a d+(γ)V + + b d+(γ)V − +O(|(a, b)|2)} ρ0(γ).

Notice that the open set Uγ depends on γ, but we only need to apply
it to finitely many elements.

Proof. Use Lemma 10.2, Corollary 10.3 and Convention 5.5. q.e.d.

It only remains to prove Lemma 6.4. Before we need the following
one:

Lemma 10.5. For a Killing field Z ∈ sl2(C) and K ⊂ H3 a compact
subset,

d
(
expp(Z), exp(Z)(p)

)
= O(|Z|2) ∀p ∈ K,

where expp and exp denote the Riemannian exponential at p and the
Lie group exponential respectively.

Proof. We decompose Z = Zr+Zt, where Zr is a field of infinitesimal
rotations around p and Zt is a field of infinitesimal translations at p.
Since p ∈ K, |Zr|, |Zt| ≤ O(|Z|). By construction:

expp(Z) = expp(Zp) = expp(Z
t
p) = exp(Zt)(p) = exp(Zt) exp(Zr)(p).

In addition, by Campell-Hausdorff’s formula

exp(Zt) exp(Zr) = exp(O(|Z|2)) exp(Z),
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and the lemma follows. q.e.d.

Proof of Lemma 6.4. We use the notation O(n) = O(|(a, b)|n). We
want to prove that

d
(
∆a,b(hol(γ)g), ρa,b(γ)(∆a,b(g))

)
= O(2).

We write g = (x, y, t) ∈ K and hol(γ) = (d+(γ), d−(γ), s). In particular
ρ0(γ) = Ts. We use the following Killing fields:

X = a xV + + b y V − and Y = a d+(γ)V + + b d−(γ)V −,

so that expσ(t)(X) = ∆a,b(g) and expσ(t+s)(Y+AdTsX) = ∆a,b(hol(γ)g).
In addition, by Corollary 10.4, ρa,b(γ) = exp(Y + O(2))Ts, hence the
claim is equivalent to:

d
(
expσ(t+s)(Y +AdTsX), exp(Y +O(2))Ts(expσ(t)(X))

)
= O(2),

which can be reformulated as:

d
(
expσ(t+s)(Y +AdTsX), exp(Y )(expσ(t+s)(AdTsX))

)
= O(2).

And this estimate follows from Lemma 10.5 and

exp(Y +AdTsX) = exp(Y ) exp(AdTsX) exp(O(2)),

because |X|, |Y | ≤ O(1). q.e.d.
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