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THE SOLUTION OF THE COVARIOGRAM
PROBLEM FOR PLANE C2+ CONVEX BODIES

GABRIELE BIANCHI, FAUSTO SEGALA & ALJOŠA VOLČIČ

Abstract
We prove that the geometric covariogram determines (up to translation and
reflection), among all convex bodies, any plane convex body which is C2 and
has positive curvature everywhere. This gives a partial answer to a problem
posed by G. Matheron.

1. Position of the problem

A convex body in R
m is a compact convex set K with non empty

interior. We say that a convex body is of class C2+ if ∂K, the boundary
of K, is a C2 (m − 1)-dimensional submanifold of R

m and if its Gauss
curvature is positive at every z ∈ ∂K.

By Sm−1 we denote the unit m-sphere, i.e., the set of all vectors
u ∈ R

m such that ‖u‖ = 1.
The width function of a convex body K in direction u is the distance

between the planes supporting K orthogonal to u, and is denoted by
wK(u).

A convex bodyK ⊂ R
m, belonging to the class C2+, is strictly convex,

therefore the point zu ∈ ∂K where the outward normal is u, is uniquely
determined for each u ∈ Sm−1.

By τK(u) we will denote the Gauss curvature of ∂K at zu.
We will denote by λm the m-dimensional Lebesgue measure on R

m.
If x ∈ R

m, K + x denotes the translate of K by x, i.e.,

K + x = {z : z ∈ R
m, z = x+ y, y ∈ K}.
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If K ⊂ R
m is a convex body, then its (geometric) covariogram gK(x) is

the function defined for x ∈ R
m by

gK(x) = λm(K ∩ (K + x)).

G. Matheron investigated in [24] the covariogram function and posed in
[25] the following question.

Covariogram Problem. Does the geometric covariogram deter-
mine a convex body K in R

m, among all convex bodies, up to translation
and reflection?

Reflection in this paper always means reflection at a point.
W. Nagel [30] gave a first partial answer to the problem confirming

the conjecture for the class of plane convex polygons.
The problem is related to other chord-length distributions and we

refer to [26], [27] and [30] for an account on them and to related bib-
liography. In the update of the book [9], which can be reached at
http://www.ac.wwu.edu/˜gardner, there is a reference to the covari-
ogram problem, and more about it can be found in [13].

The problem is posed here in purely geometric terms. It is worth-
while to note that Nagel’s paper basically uses geometric ideas, and
that also this paper presents a proof based on geometric tools. As such
the problem belongs to integral geometry and geometric tomography,
but it is interesting to note that it is a special case of a widely stud-
ied problem in Fourier analysis, and also that an important step in our
proof (see Section 3) can be achieved by Fourier analysis methods, as
an alternative to a geometric method developed in Section 2.

The covariogram function can be in fact defined more generally for
any real valued square integrable function f defined on R

m, by

gf (x) =
∫

Rm

f(t)f(t− x) dλm(t),

and therefore gf (x) = (f ∗ f−)(x), where f−(x) = f(−x). Taking the
Fourier transforms, it turns out that

ĝf (ξ) = f̂(ξ)f̂−(ξ) = f̂(ξ)f̂(ξ) = |f̂(ξ)|2.
When f = χK is the indicator function of K, gf = gK .

The more general problem of the determination of the function f , or
of some of its features, from the modulus of its Fourier transform, has

http://www.ac.wwu.edu/~gardner


the solution of the covariogram problem 179

a vast literature. In this context, the reconstruction of f is called phase
retrieval problem and has attracted the attention of many authors in
various fields of mathematics (Fourier analysis [18], numerical analysis
[1], probability [28], [5], [6]) and in the applications. A general reference
is [17].

As it will be shown in Section 3, methods of Fourier analysis are ac-
tually relevant in solving the covariogram problem, since an appropriate
asymptotic formula provides information about curvature, for strictly
convex and sufficiently smooth convex bodies, at points of the boundary
where supporting lines have opposite normals. The formula has been
obtained first for the planar case in [16], and then extended to R

m in
[15]. The papers [20] and [14] are also standard references. For recent
and more general results concerning nonsmooth or nonconvex domains,
see [31] and [4].

Phase retrieval has important applications in optics and optical de-
sign, quantum mechanics (Pauli uniqueness problem), radar ambiguity
problem, astronomy, light and electron microscopy, X-ray crystallogra-
phy, wave-front sensing, pupil-function determination and particle scat-
tering (see for instance [19], [32], [38]). Since the solution of the phase
retrieval problem is highly nonunique (even apart from the already men-
tioned translation and reflection), and ill-posed, one usually assumes
some additional condition or a priori information on the function to be
reconstructed (see [37], [3], [7], [8]). Matheron’s problem can also be
seen from this point of view.

Some aspects of the phase retrieval problem are of combinatorial
nature. Two finite multisets (sets with repetitions allowed) A and B
in R

n are said to be homometric if the sets of the vector differences
{x − y : x, y ∈ A} and {x − y : x, y ∈ B} are identical, counting
multiplicities. The problem consists in determining all the multisets
which are homometric to a given multiset. The paper [33] is devoted
to this question and gives also some examples of sets of integers (not
multisets) which are not uniquely determined by their vector differences.
From these examples one can easily construct sets of positive measure
on the real line or in R

m which are not uniquely determined by their
covariogram function. Since the sets A = {0, 1, 3, 8, 9, 11, 12, 13, 15} and
B = {0, 1, 3, 4, 5, 7, 12, 13, 15} are homometric, a cover of A and B by a
union of intervals of length δ < 1

2 , centered at the points of A and B,
respectively, produces two sets of real numbers, A′ and B′, which are not
translates or reflections of each other, but have the same covariogram.
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The sets A′ × [0, 1]m−1 and B′ × [0, 1]m−1 are now two subsets of R
m,

which are not translations or reflections of each other, but have the same
covariogram.

The paper [23] provides a general algebraic approach to the gener-
ation of homometric sets. That paper is also the first to mention the
method described above, which permits one to construct, from finite
homometric sets, sets of positive measure on the real line with the same
covariogram, which are not reflections or translations of each other.

Homometric sets have applications in beam manipulation [2].

An entirely different planar example of nonuniqueness has been
found by R. Gardner and P. Gronchi (private communication). It is
obtained as connected union of fifteen adjacent lattice squares such that
every line parallel to one of the sides intersects the set in a segment.

As we have already mentioned, the covariogram identifies (up to
translation and reflection) a set A or a density f only in special cases
(within a restricted class, or with additional information). Therefore the
covariogram is often used as a tool for “disentangling different structures
imbricated within each other” [35]. The covariogram can be used for ex-
ample to describe structures with distinct size distributions, to identify
superposition of scales, to analyse clusters of particles, to identify pe-
riodicities or pseudo-periodicities, noise due to technology, multiphased
structures, “rose of directions” and anisotropies. Moreover, the covar-
iogram can be used to estimate the variance of samplings. For more
information, see the rich literature quoted in [35] and the papers [36]
and [21].

We will give in this paper another partial positive answer to Math-
eron’s question, proving the following theorem:

Theorem 1.1. If K is a plane convex body in C2+, then its geometric
covariogram determines K among all convex bodies up to translation and
reflection.

The plan of the proof is the following.
Sections 2 and 3 provide two different methods for proving that the

covariogram function of a C2+ convex body determines the (nonordered)
pair of curvatures {τ(u), τ(−u)} for all u ∈ S1. The first method is
direct (and allows possible extensions to classes of other planar convex
bodies), while the other method uses a Fourier transform approach and
admits extensions to higher dimensions.
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In the short discussion at the beginning of Section 4 we will describe
how this result allows one to determine uniquely, up to translation and
reflection, certain opposite arcs of ∂K.

A geometric argument (Lemma 4.2) and a little bit of analysis
(Proposition 4.3) will then show, under the assumption that K ∈ C2+,
that there is just one way of gluing together these arcs and that their
union gives all of ∂K.

In Section 5 we shall prove that the covariogram of a convex body in
C2+ determines the C2+ regularity of the body and therefore that a body
K ∈ C2+ is uniquely determined by its covariogram function among all
convex bodies.

In the last section we shall show that most convex bodies in R
m

are uniquely determined (up to reflection and translation) by their co-
variogram function. For m ≥ 3, this follows from a result by Goodey,
Schneider and Weil [12], while our result covers the case m = 2. For
m=1 much more is known, namely that any bounded interval is deter-
mined up to translation by its covariogram function.

The first author was the first to obtain the results from Sections 2
and 4 (with proofs that differ from those which are presented in this
paper). Section 3 is due to the second author. The third author worked
out independently Sections 2 and 4. At this point the cooperation be-
tween the three authors produced Sections 5 and 6. Section 5 is mainly
due to the first author, while Section 6 is mainly due to the third author.

The authors are indebted with Richard Gardner, who introduced
them to the covariogram problem and had with them many stimulating
discussions.

Very shortly before the submission of this paper, the first author
has been able to construct pairs of convex bodies in R

n, for any n ≥ 4,
which have the same covariogram and which are not a translation or a
reflection of each other. This result will appear elsewhere.

2. Local determination of the curvature

From now on, all the convex bodies will be planar, except other-
wise stated. The next lemma determines locally, up to reflection, the
curvature of ∂K from the covariogram function.

Lemma 2.1. If K ∈ C2+ then the covariogram function of K deter-
mines the (nonordered pair) {τK(u), τK(−u)} of curvatures at the points
zu and z−u.
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Proof. Changing, if necessary, the coordinate system, we may as-
sume that zu is the origin and that the line supporting K at zu is the
x-axis and that K is contained in the half-plane {(x, y) : y ≤ 0}.

SinceK is sufficiently smooth, ∂K can be approximated (up to terms
of higher order) by the graph of the parabola y = −βx2 for some positive
β. Let (z1, z2) be the coordinates of z−u in the new coordinate system.
The bodies K and K − z−u intersect at the origin. Let us approximate,
up to terms of higher order, the part of ∂K − z−u containing the origin
by the parabola y = αx2, for some positive α.

For t > 0 and s sufficiently small, K ∩ (K + (−z1 + s,−z2 − t)) is
contained in a set{

(x, y) : α2(s, t)(x− s)2 − t ≤ y ≤ −β2(s, t)x2
}

and contains a set{
(x, y) : α1(s, t)(x− s)2 − t ≤ y ≤ −β1(s, t)x2

}
,

where 0 < α1(s, t) < α < α2(s, t) and 0 < β1(s, t) < β < β2(s, t), with

lim
s→0 ,t→0+

αi(s, t) = α

and
lim

s→0 ,t→0+
βi(s, t) = β,

for i = 1, 2.
A simple calculation shows that the area of the two sets is

4
3

1
(αi(s, t) + βi(s, t))2

((αi(s, t) + βi(s, t))t− αi(s, t)βi(s, t)s2)
3
2 ,

for i = 1, 2, and therefore

(1) gK((−z1 + s,−z2 − t))

=
(
4
3

1
(α+ β)2

((α+ β)t− αβs2)
3
2

)
(1 + ε(s, t)),

with lims→0 ,t→0+ ε(s, t) = 0.
Letting s = 0, we get

gK((−z1,−z2 + t)) =
4
3

t
3
2√

α+ β
(1 + ε(0, t))
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and this permits to evaluate α + β. Combining this with (1), we can
also evaluate α · β, and therefore the pair {α, β}.

Since the pair of curvatures {τK(u), τK(−u)} of ∂K at zu and z−u

is {2α, 2β}, Lemma 2.1 is proved. q.e.d.

Remark 2.2.

a) An alternative proof of Lemma 2.1 could be obtained from the
observation that the radius of curvature RS(u) of the support S
of gK at the point with outer normal u is the sum of the radii
RK(u) and RK(−u) of K at zu and z−u and from the formula

gK(zu − z−u − tu)

= 4/3
√

2RK(u)RK(−u)/(RK(u) +RK(−u)) t3/2 + o(t3/2).

The claim regarding RS(u) is a consequence of the fact that S
coincides with K + (−K) = {z = x− y : x, y ∈ K}.

b) With a technique similar to the one used in Lemma 2.1 we can
find for planar C2+ bodies the directional Taylor expansion of the
covariogram function for small displacements, which may be of
independent interest.

If u ∈ S1, let us denote by u⊥ the line orthogonal to u through
the origin. Then we have (with the usual notation)

gK(tu) = λ2(K)− t · wK(u⊥) +
t3

24

(
1

τ(u)
+

1
τ(−u)

+ η(t)
)
,

with limt→0 η(t) = 0.

3. The curvature in terms of the Fourier transform

Let us introduce the distribution χ∂K defined by

(2) χ∂K(φ) =
∫

∂K
φ(x)(dx1 + i dx2), x = (x1, x2), φ ∈ C∞

0 (R2).

From the point of view of the distributions, we have

χ̂∂K(φ) = χ∂K(φ̂) =
∫

∂K
φ̂(x)(dx1 + i dx2)

=
∫

R2

φ(ξ) dξ
∫

∂K
e−i〈x,ξ〉(dx1 + i dx2),
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where ξ = (ξ1, ξ2). Therefore the Fourier transform of the distribution
χ∂K is given by the analytic function

(3) χ̂∂K(ξ) =
∫

∂K
e−i〈x,ξ〉(dx1 + i dx2).

An application of the divergence theorem gives

(4)
∫

∂K
e−i〈x,ξ〉(dx1 + idx2) =

∫
K

(
i
∂

∂x1
− ∂

∂x2

)
e−i〈x,ξ〉 dx1 dx2

and therefore

(5) χ̂∂K(ξ) = (ξ1 + i ξ2)χ̂K(ξ).

The method of the stationary phase allows us to know the asymp-
totic behaviour of the integral in (3) as |ξ| → ∞. We recall that the
asymptotic analysis of the Fourier transforms related to convex sets
originated with Haviland and Wintner [16] (see also [20], [15], [14] and
[31]).

In the next two statements we put u = ξ/|ξ|.
Lemma 3.1. Let K be a plane convex body whose boundary is C4

and has positive curvature everywhere. Then, as |ξ| → ∞,

χ̂∂K(ξ) =

√
2π
|ξ| σ

∗(u)

(
1√

τK(u)
eiπ/4e−i〈zu,ξ〉(6)

− 1√
τK(−u)

e−iπ/4e−i〈z−u,ξ〉 +O

(
1√|ξ|

))
,

where σ∗(u) = (−ξ2 + i ξ1)/|ξ|.
The proof of this result under these regularity assumptions is given

in [14].
Since

(7) ĝK(ξ) = |χ̂K(ξ)|2,
from (5) and (7) we deduce that

(8) ĝK(ξ) =
1
|ξ|2 |χ̂∂K(ξ)|2.

The next result follows from Lemma 3.1 and (8).
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Proposition 3.2. Let K be a plane convex body whose boundary
is C4 and has positive curvature everywhere. Then, as |ξ| → ∞, the
function ĝK admits the following asymptotic expansion

ĝK(ξ) =
2π
|ξ|3

(
1

τK(u)
+

1
τK(−u)

(9)

− 2√
τK(u) τK(−u)

sin (|ξ|wK(u)) +O

(
1√|ξ|

))
.

As a consequence of formula (9), the knowledge of the function gK

(and hence its Fourier transform ĝK) implies the knowledge of the set
{τK(u), τK(−u)}. This can be proved as follows. Let

(10) ξ′k =
2πk

wK(u)
, ξ′′k =

(4k + 1)π
2wK(u)

.

From (10) we obtain

1
τK(u)

+
1

τK(−u)
=

1
2π

lim
k

|ξ′k|3ĝK(ξ′k)

and

1√
τK(u) τK(−u)

=
1

2τK(u)
+

1
2τK(−u)

− 1
4π

lim
k

|ξ′′k |3ĝK(ξ′′k),

and obviously the last two equations determine {τK(u), τK(−u)}.
Remark 3.3. When K ∈ C2+, an extension of Lemma 3.1 proved

by Podkorytov [31] under the sole assumption of convexity implies that
the asymptotic expansion of ĝK determines the set {τK(u), τK(−u)} for
almost any u ∈ S1. The continuity of the curvature implies then that
this set is determined for all u.

4. Determination of opposite arcs

Sections 2 and 3 only determine the nonordered pair of curvatures
{τK(u), τK(−u)} for every u ∈ S1, since a reflection does not change
the covariogram function. Therefore these results are just a first step in
the desired direction, but more is needed. Of course, if τK(u) = τK(−u)
for all u ∈ S1, then K is centrally symmetric and it is determined by
the knowledge of K + (−K), the support of gK , which in the case of
symmetry coincides with 2K.
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Suppose now that τK(u) �= τK(−u) for some u ∈ S1. The invariance
under translation allows us to fix for zu ∈ ∂K an arbitrary point in
R
2. The covariogram function determines z−u. Up to reflection we may

assume that ∂K has curvature τK(u) at zu. Then, by continuity of
the curvature, there is a whole maximal open arc of S1 containing u,
such that the curvatures at zv and z−v are different for all the points
v of that arc, and by continuity it is determined by the choice of the
curvature at zu. At the endpoints of this arc there may be (on one side
or on both sides) an adjacent arc on which the curvatures at zv and
z−v coincide. By continuity of the curvature however, we have to reach
finally two points v1 and v2, determining an arc U , where the curvatures
bifurcate, i.e., on each arc adjacent to U , there are points v such that
the curvature at zv differs from the curvature at z−v. The knowledge of
the curvatures uniquely determines the arcs of ∂K corresponding to U
and −U via the parametric representation (see for instance [11], p. 79)

x(v) = x(u) +
∫ θ(v)

θ(u)

− sin t
τK(cos t, sin t)

dt,

y(v) = y(u) +
∫ θ(v)

θ(u)

cos t
τK(cos t, sin t)

dt,

where θ(v) denotes the angular coordinate of v ∈ S1.
This is how far we can get with the results from Sections 2 and 3.

It remains to prove that there is just one way of gluing together the
opposite arcs of ∂K determined in that manner.

This, by the way, is a problem very similar to the one faced by Nagel
in his paper dealing with convex polygons. Once he was able to prove
that the covariogram function determines the length of all the edges,
and — up to the sign — the corresponding outer normals, he refers to
an “exhaustive case study” carried out in a previous paper [29], where
he proved that the covariogram function provides all the information
needed to assemble the edges, up to translation and reflection, in one
way only.

Let us denote by A and B the arcs of ∂K corresponding to U and
−U respectively, obtained as above. Suppose that there are two distinct
convex bodiesK andH having A and B in common and let us denote by
A′ and B′ the connected components of ∂K ∩ ∂H containing A and B,
respectively. It follows from the discussion above that A′ and B′ are not
reflections of each other, that K and H have the same tangents at the
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endpoints of A′ and B′, and that these tangents are pairwise parallel.
Moreover the subinterval of S1 which consists of the outer normals of
A′ has length less than π and thus A′ can be represented as the graph
of a convex function.

We will prove our claim if we show that A′ (and hence B′) is not
maximal, that is ∂K ∩ ∂H contains an arc which is strictly larger than
A′.

We now have to introduce a definition.

Definition 4.1. Suppose A′ and B′ are two arcs of ∂K correspond-
ing to two opposite arcs U ′ and −U ′ of S1, with K strictly convex. Let
z be one of the endpoints of B′. Let us denote by B

′ the convex curve
obtained by joining B′ and the appropriate half of the tangent to B′

at z. We say that the point z can be “captured” by the arc A′, if an
appropriate translation of A′ intersects B′ in two points determining an
arc of B′ containing z in its relative interior.

Lemma 4.2. Let A′ and B′ be disjoint arcs of the boundary of a
strictly convex body K corresponding to U and −U , respectively, such
that they are not reflections of each other. Then one of the arcs has an
endpoint which can be captured by the other arc.

Proof. Let zu and zv be the endpoints of A′, z−u and z−v those of
B′.

Changing, if necessary, the coordinate system, we may assume that
zu = (0, 0), that u = (0,−1) and that locally the arc A′ is represented
by the graph of a convex function defined in a right neighborhood of 0.
Let B̃ = −(B′ + zu − z−u): B̃ is tangent to A′ in zu.

Let us consider A′ and B̃: either B̃ ⊂ A′, or A′ ⊂ B̃ or there is a
point (x, y) on one of the two arcs such that the other arc contains a
point of the form (x′, y), with x′ > x.

The first two alternatives cannot happen since A′ and B̃ are strictly
convex arcs with the same set of outer normals, and if B̃ ⊂ A′, or
A′ ⊂ B̃, then A′ = B̃, contrary to the assumptions.

Let us assume that (x, y) ∈ A′: the map z → −z + (x, y) maps B̃
in a translate of B′ with one endpoint in (x, y) and a point (the image
of (x′, y)) on the negative x−axis. The origin is thus an endpoint of A′

which is captured by B′. q.e.d.

The lemma will be used now to conclude that a body K is uniquely
determined by its covariogram function among all the C2+ bodies, show-
ing that the arcs A′ and B′ of ∂K ∩ ∂H, as defined at the beginning of
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this section, can be extended, contradicting so their maximality.

By Lemma 4.2, there is an endpoint z of A′, say, which can be
captured by B′: let Tτ be the translation that makes B′ capture z.

Changing, if necessary, the coordinate system, we may assume that z
is the origin, and that the arc A′ is represented by the graph of a convex
function g defined in a right neighborhood of 0, such that g(0) = 0 and
g′(0) is finite. It is possible to extend the definition of the function g
to a left neighborhood of 0 in such a way to represent a portion of ∂K
adjacent to A′. Let f be the concave function whose graph is B′ + τ .
The arc B′ + τ intersects A′ in a point (b, c) with b > 0 and moreover,
changing possibly the translation Tτ , we may assume that B′ + τ also
intersects the graph of g in a point with a negative abscissa a.

If we show that the covariogram function determines the boundary
of K ∩ (K + τ), we are done, since this means that the arc A′ is not
maximal in ∂K ∩ ∂H.

On the other hand the covariogram function gives the area of K ∩
(K+τ−(0, t)) for every t > 0. If we denote by [at, bt] the interval where
f(x)− t ≥ g(x), then

gK(τ − (0, t)) =
∫ bt

at

(f(x)− t− g(x)) dx

=
∫ 0

at

(f(x)− t− g(x)) dx+
∫ bt

0
(f(x)− t− g(x)) dx.

The second integral in the last line is known for any t ∈ [0, f(0)],
since f and g are, by assumption, known on [0, b]. Therefore we can
deduce from the covariogram function the value of∫ 0

at

(f(x)− t− g(x)) dx

for any t ∈ [0, f(0)]. By assumption f is known on [a, 0].

The next proposition will show that this information is sufficient to
determine g on [a, 0].

Proposition 4.3. Suppose f is a given continuous strictly increas-
ing function on [a, 0], with f(0) > 0.

If g is continuous and strictly decreasing on [a, 0] such that g(a) >
f(a) and g(0) = 0, then g is uniquely determined in a left neighborhood
of 0 by the areas of

(11) {(x, y) : x ∈ [a, 0], g(x) ≤ y ≤ f(x)− t},
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for 0 ≤ t ≤ f(0).

Proof. Let us denote by at the point where g(at) = f(at) − t: it is
a0 < 0. The mapping h(t) = at is continuous since h is the inverse of
the increasing and continuous mapping f − g restricted to [a0, 0].

Let us denote by A(t) the area of (11). An elementary calculation
shows that for every δ > 0,

δ · at+δ ≤ A(t)−A(t+ δ) ≤ δ · at.

It follows that A(t)−A(t+δ)
δ → at = h(t), when δ → 0, because h is

continuous.
We see from this that h is uniquely determined on its natural domain

[0, f(0)], and so is therefore its inverse f − g, defined on [a0, 0]. But f
is determined by assumption, so g is determined on [a0, 0], as claimed.

q.e.d.

In this section we have proved that the covariogram function deter-
mines a C2+ convex body within the class C2+. In the next section we
shall prove that uniqueness holds in the wider class of all convex bodies.

Remark 4.4. Note that the discussion preceding Proposition 4.3
only requires that K is strictly convex and that Proposition 4.3 itself
requires even less on f and g, which are only supposed to be strictly
increasing and decreasing, respectively, in addition to being continuous.

5. Regularity of the convex body from the covariogram
function

In this section we shall prove that it is possible to recognize from
the covariogram function gK that the convex body K is C2+. This will
be obtained in several steps.

If we want to recognize from gP that P is a polygon it suffices to look
at the support of gP . On the other hand, if we want to know if K ∈ Cm,
we have to consider also properties of the covariogram function, since
its support does not give the information we require. To be convinced of
this, note that the support of gK , when K is a convex body of constant
width, is a disc, and hence analytic, while we know that there are convex
bodies of constant width which are not C1.

Proposition 5.1. Let K ∈ C2+ and H be two convex bodies having
the same covariogram. Then H ∈ C2+.
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First let us note that it follows immediately from the inspection of
the support of gK that H is strictly convex.

Moreover H belongs to C1. This follows from the asymptotic behav-
ior of the covariogram function near to the boundary of its support. If
u is a normal at a point where the tangent does not exist, interior to
the normal cone, then gH(zu − z−u − tu) = O(t2), while the fact that
K ∈ C2+ implies that gK(zu − z−u − tu) behaves, when t tends to zero,
as a constant times t3/2, as shown in Lemma 2.1.

The second, and more difficult step, is to prove that ∂H is twice
differentiable at every point. To achieve that, we need some lemmas.

Lemma 5.2. Let f be a strictly convex and C1 function in [a, b],
with f(a) = f(b). Given 0 < r < b − a, let us consider the horizontal
segment with endpoints on the graph of f having length r. Let us denote
by (x1(r), f(x1(r))) and (x2(r), f(x2(r))), x1(r) < x2(r) these endpoints
and with D(r) the distance between a given fixed point (x0, y0), with
y0 < min[a,b] f , and the line containing the segment.

Then, if for a given r0 f admits second derivative at x1(r0) and
x2(r0), the second derivative D′′(r0) exists. If on the other hand the
second derivative of f does exist in one (and only one) of the two points
x1(r), x2(r), then D′′(r0) does not exist.

Proof. The functions xi(r) are uniquely determined and satisfy the
conditions

(12)

{
f(x1(r)) = f(x2(r))
x2(r)− x1(r) = r.

Let c be such that f ′(c) = 0: If we consider the equation f(u) = f(v),
with u < c < v, since f ∈ C1 and f ′(t) �= 0 for t �= c, it follows from
the implicit function theorem that there exists ϕ ∈ C1, defined on [a, c),
such that v = ϕ(u) with ϕ′(u) < 0.

Given r > 0, we want to determine u such that v − u = r, i.e.,
ϕ(u)− u = r.

Since d
du(ϕ(u) − u) < 0, the function ϕ(u) − u is invertible. Let

us denote the inverse by x1(r). Clearly x1(r) ∈ C1 and also x2(r) =
x1(r) + r ∈ C1.

We may differentiate therefore (12) with respect to r to obtain

d

dr
x1(r) =

f ′(x2(r))
f ′(x1(r))− f ′(x2(r))
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and
d

dr
x2(r) =

f ′(x1(r))
f ′(x1(r))− f ′(x2(r))

.

The function D(r) has the simple expression

D(r) = f(x1(r))− y0.

Differentiating the right-hand side, we get

D′(r) = f ′(x1)
d

dr
x1(r) =

f ′(x2(r))f ′(x1(r))
f ′(x1(r))− f ′(x2(r))

=
1

1
f ′(x1(r))

− 1
f ′(x2(r))

,

and from the last identity we get immediately the conclusion. q.e.d.

Lemma 5.3. Suppose H is a C1 plane convex body. Given v ∈ S1

and r > 0, let DH(r, v) be the distance between the two chords of H
parallel to v and having length r. If for given r0 and v0, ∂H admits
curvature at all the four endpoints of the two corresponding chords, then
∂2

∂r2DH(r0, v0) exists. If on the other hand ∂H does not admit curvature
at exactly one of the endpoints, then ∂2

∂r2DH(r0, v0) does not exist.

Proof. We may suppose v0 = (0, 1). The function DH can be ex-
pressed as the sum (or difference) of the distances of the two chords
from a given point. The conclusion follows now from Lemma 5.2. q.e.d.

Proof of Proposition 5.1. Suppose that ∂H does not admit curvature
in a point P . We may assume that the outer normal toH at P is (0,−1).
In a polar coordinate system centered at P let θ0 denote the angular
coordinate of the point of ∂H whose outer normal is (0, 1). For any
θ ∈ (0, θ0) let P2 = P2(θ) be the point of ∂H with the property that
the chord P2 − P is parallel to (cos θ, sin θ) and let P3 = P3(θ), and
P4 = P4(θ) be points of ∂H with P4 − P3 = P2 − P , P4 �= P2, P3 �= P .

Since H has the same covariogram function as K ∈ C2+, it follows
from Lemma 5.3 that ∂2

∂r2DH exists for any r and v. The same lemma
implies that for any θ ∈ (0, θ0) the curvature does not exist in at least
one of the points Pi, i = 2, 3, 4. We shall show that this contradicts the
existence almost everywhere of the curvature.

Let us denote by si(θ) the length of the arc consisting of the points
of ∂H which, in counterclockwise order, follow P and precede Pi, i =
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2, 3, 4. Let us prove that the functions si(θ) are continuously differen-
tiable.

We have

s2(θ) =
∫ θ

0
‖γ′(t)‖ dt,

where γ(t) is the polar representation of ∂H in the polar coordinate
system centered at P . Since ∂H is continuously differentiable, so is
s2(θ). The functions s2(θ), s3(θ) and s4(θ) are related by the following
equations, where P = (x1, y1):

(y(s2)− y1) cos θ − (x(s2)− x1) sin θ = 0
(y(s4)− y(s3)) cos θ − (x(s4)− x(s3)) sin θ = 0
(y(s4)− y(s3))2 + (x(s4)− x(s3))2

−(y(s2)− y1)2 − (x(s2)− x1)2 = 0.

From this system, using the fact that s2(θ) ∈ C1, we can deduce a system
of two equations in s3(θ) and s4(θ) of the kind{

(y(s4)− y(s3))2 cos2 θ − (x(s4)− x(s3))2 sin2 θ = 0
(y(s4)− y(s3))2 + (x(s4)− x(s3))2 = ϕ(θ),

with ϕ ∈ C1 and ϕ(θ) > 0 for all θ ∈ (0, θ0). Multiplying the second
equation by cos2 θ and subtracting the first equation, we get

(x(s4)− x(s3))2 = ϕ(θ) cos2 θ

and taking the square root we get an equation of the kind

(13) x(s4)− x(s3) = ψ1(θ),

with ψ1 ∈ C1.
Similar considerations lead to an equation of the kind

(14) y(s4)− y(s3) = ψ2(θ),

with ψ2 ∈ C1, for all θ ∈ (0, θ0).
The determinant of the Jacobian of the system (13), (14) with re-

spect to s3 and s4 is

x′(s4)y′(s3)− x′(s3)y′(s4),
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which is not zero by the strict convexity of H. This proves that si(θ) ∈
C1 for i = 2, 3, 4.

Let us prove that there exists an interval U ⊂ (0, θ0) such that each
mapping θ → Pi, i = 2, 3, 4, restricted to U , maps sets of positive
measure to subsets of ∂H with positive measure.

This property is clear for the mapping P2(θ), for any choice of the
interval U .

The mapping P4 is not constant in (0, θ0) because otherwiseH would
be centrally symmetric about (P + P4)/2. If H is centrally symmetric
it is homothetic to its difference body H + (−H), which coincides with
the support of gH = gK and its boundary has curvature in every point,
violating the existence of P .

Now, the mapping P3 cannot be constant in some interval V . If it
were so, then the arcs described by P2(θ) and P4(θ) for θ ∈ V would
be translates of each other and this would violate the strict convexity
of H.

The regularity C1 of the two mappings s3(θ) and s4(θ) implies then
that there is an interval U where their derivatives with respect to θ
never vanish. P3 and P4 satisfy in U the required property.

In conclusion, let us denote by Ai, for i = 2, 3, 4, the subsets of
U where ∂H does not admit curvature at Pi , respectively. We have
proved that A2 ∪ A3 ∪ A4 = U and therefore at least one of the Ai’s
has positive measure. But then Pi(Ai) would be a subset of ∂H having
positive measure, where ∂H has no curvature, which is impossible.

To prove that H ∈ C2+, we have to prove that the curvature of H is
continuous.

Let us observe that the existence of the curvature of H at every
point allows us to conclude, using the same arguments as in Lemma 2.1
that

(15) {τH(u), τH(−u)} = {τK(u), τK(−u)}.
We shall show that (15) and the continuity of τK implies the continuity
of τH .

If in u0 it is τK(u) = τK(−u), then the continuity of τH at u0 and
−u0 follows immediately from (15). If on the other hand

τK(u0) �= τK(−u0),

let us take an appropriate neighborhood U of u0 and a constant c be-
tween τK(u) and τK(−u), such that

(16) τK(u) �= c, τK(−u) �= c for any u ∈ U .



194 g. bianchi, f. segala & a. volčič

If τH is discontinuous at u0, then there exist in any neighborhood of
u0 points u such that τH(u) = τK(u) and points v such that τH(v) =
τK(−v), and therefore τH would take values arbitrarily close to τK(u0)
and other values arbitrarily close to τK(−u0). But since τH is a deriva-
tive, it has the Darboux property ([34], p. 93) but this contradicts the
fact that τH(u) �= c for all u ∈ U . q.e.d.

6. A genericity result

Definition 6.1. If K and H are two convex bodies in R
m, the

Nikodym distance between them is defined by

δN (K,H) = λm(K �H).

Here � denotes the symmetric difference between the two sets.
It is well known that on the class Km of all convex bodies in R

m,
the Hausdorff distance δ and the Nikodym distance induce the same
topology, and it is also well known that Km is a locally compact and
hence a Baire space ([10]). When speaking of most elements of Km, we
mean all elements with a meager set (i.e., a countable union of nowhere
dense sets) of exceptions.

Given two convex bodies K, we will denote by δ(K,H) the infimum
(by compactness it is in fact a minimum) of all the distances δ(K,ϕ(H)),
the infimum being taken over all the rigid motions ϕ.

Let us denote by S(0, r) the ball in R
m, centered at the origin and

with radius r.

Theorem 6.2. Most convex bodies in R
m are uniquely determined

(up to translation and reflection) by their covariogram function.

Proof. For m ≥ 3 the result has been proved by Goodey, Schneider
and Weil ([12], Corollary to Theorem 2). Their method cannot be used,
however, for m = 2 and we will give a direct proof for the planar case.
If m = 1 it is easy to see that much more can be said, namely that
the covariogram function determines any bounded closed interval up to
translation.

Let us denote by A the class of all planar convex bodies which are
not determined (up to translation and reflection) by their covariogram
function.
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Let us define

An =
{
K : K ∈ K2, such that ∃H ∈ K2,

gK = gH , δ(K,H) ≥ 1
n
, H ⊂ S(0, n)

}
.

Obviously, we have

A = ∪nAn,

because if K is not uniquely determined (up to translation and reflec-
tion) by its covariogram function, there exists a convex body H (which
is not a translation or reflection of K, and hence such that δ(K,H) > 0)
with the same covariogram function. It follows then that there exists n
such that δ(K,H) ≥ 1

n and such that a translate of H is contained in
S(0, n).

Let us prove now that An is closed. Let {Ki} be a sequence of
convex bodies belonging to An converging to K0. Let {Hi} be the
corresponding sequence of sets with the same covariogram functions
contained in S(0, n) for each i. By compactness there exists a convergent
subsequence Hij → H0. Obviously H0 ⊂ S(0, n) and it follows easily
from the continuity of the distance that δ(K0, H0) ≥ 1

n .

Moreover, K0 and H0 have the same covariogram function, since the
mapping which assigns to each convex body its covariogram function is
continuous by the inequality

|gK(u)− gH(u)| ≤ 2λm(K �H) = 2δN (K,H), ∀u ∈ R
m

and the equivalence of the two distances.

It follows that A is a countable union of closed sets, so its comple-
ment U is a countable intersection of open sets. On the other hand U is
dense in K2, as it contains all the convex planar polygons by [30], or, if
we prefer, all C2+ bodies by Theorem 1.1, and this proves the conclusion.

q.e.d.



196 g. bianchi, f. segala & a. volčič
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an object from the support of its autocorrelation, J. Opt. Soc. Amer. 72 (1982)
610–624.

[9] R.J. Gardner, Geometric Tomography, Cambridge Univ. Press, New York, 1995.

[10] P.M. Gruber, Baire categories in convexity, in ‘Handbook of Convex Geometry’
(eds. P.M. Gruber & J.M. Wills), North-Holland, Amsterdam (1993) 1327–1346.

[11] M. Gage & R.S. Hamilton, The heat equation shrinking convex plane curves, J.
Differential Geometry 23 (1986) 69–96.

[12] P. Goodey, R. Schneider & W. Weil, On the determination of convex bodies by
projection functions, Bull. London Math. Soc. 29 (1997) 82–88.

[13] R.J. Gardner & G. Zhang, Affine inequalities and radial mean bodies, Amer. J.
Math. 120 (1998) 493–504.

[14] C.S. Herz, Fourier transforms related to convex sets, Ann. Math. 75 (1962)
81–92.

[15] E. Hlawka, Integrale auf konvexe Körpern I, II, Monatsh. Math. 54 (1950) 1–36,
81–99.

[16] E.K. Haviland & A. Wintner, On the Fourier transform of distributions on convex
curves, Duke Math. J. 2 (1936) 712–721.

[17] N.E. Hurt, Phase retrieval and zero crossing, Kluwer, Dordrecht, 1989.



the solution of the covariogram problem 197

[18] T. Isernia, G. Leone & R. Pierri, Role of support information and zero locations
in phase retrieval by a quadratic approach, J. Opt. Soc. Amer. A16 (1999)
1845–1856.

[19] P. Jaming, Phase retrieval techniques for radar ambiguity problem, J. Fourier
Anal. Appl. 5 (1999) 309–329.

[20] D.G. Kendall, On the number of lattice points inside a random oval, Quart. J.
19 (1948) 1–26.
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