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Abstract. We define a notion of (one-sided) shift spaces over infinite
alphabets. Unlike many previous approaches to shift spaces over count-
able alphabets, our shift spaces are compact Hausdorff spaces. We ex-
amine shift morphisms between these shift spaces, and identify three
distinct classes that generalize the shifts of finite type. We show that
when our shift spaces satisfy a property that we call “row-finite”, shift
morphisms on them may be identified with sliding block codes. As ap-
plications, we show that if two (possibly infinite) directed graphs have
edge shifts that are conjugate, then the groupoids of the graphs are
isomorphic, and the C∗-algebras of the graphs are isomorphic.
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1. Introduction

In symbolic dynamics one begins with a set of symbols and considers
spaces consisting of sequences of these symbols that are closed under the
shift map. There are two approaches that are used: one-sided shift spaces
that use sequences of symbols indexed by N, and two-sided shift spaces that
use bi-infinite sequences indexed by Z. In this paper, we shall be concerned
exclusively with one-sided shifts.

In the classical construction of a one-sided shift space, one begins with a
finite set A (called the alphabet or symbol space) and then considers the set

AN := A×A× · · ·

consisting of all sequences of elements of A. If we give A the discrete topol-
ogy, then A is compact (since A is finite), and Tychonoff’s theorem implies
that AN with the product topology is also compact. In addition, the shift
map σ : AN → AN defined by σ(x1x2x3 . . .) := x2x3x4 . . . is continuous.
The pair (AN, σ) is called the (one-sided) full shift space, and a shift space is
defined to be a pair (X,σ|X) where X is subset of AN such that X is closed
and σ(X) ⊆ X. Since X is a closed subset of a compact space, X is also
compact. In the analysis of shift spaces the compactness plays an essential
role, and many fundamental results rely on this property.

Attempts to develop a theory of shift spaces when the alphabet A is
infinite (even countably infinite) have often been stymied by the fact that the
spaces considered are no longer compact — and worse yet, not even locally
compact. For instance, if one takes a countably infinite set A = {a1, a2, . . .},
one can give A the discrete topology and consider the space

AN := A×A× · · ·

with the product topology. In this situation, the shift map σ : AN → AN

defined by σ(x1x2x3 . . .) := x2x3x4 . . . is continuous. However, the space AN

is no longer compact or even locally compact. For example, any open set U
in AN must contain a basis element of the form

Z(x1 . . . xm) =
{
x1 . . . xmzm+1zm+2 . . . ∈ AN : zk ∈ A for k ≥ m+ 1

}
,

and if we define xn := x1 . . . xmananan . . ., then {xn}∞n=1 is a sequence in
Z(x1 . . . xm) without a convergent subsequence. Hence the closure of U is
not (sequentially) compact, and AN is not locally compact. Therefore, if we
define a shift space over A to be a pair (X,σ|X) where X is a closed subset
of AN with the property that σ(X) ⊆ X, then the set X will be a closed, but
not necessarily compact, subset of AN. This lack of compactness makes it
difficult to establish results for such subspaces, and as a result this approach
to shift spaces over countable alphabets has encountered difficulties.

The purpose of this paper is to give a new definition for the (one-sided)
full shift and its subshifts when the alphabet A is infinite. In this new
definition the full shift and all shift spaces are compact, and this will allow
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techniques from the classical theory of shifts over finite alphabets to be more
readily generalized to this setting. It is our hope that this new definition
will allow for applications to dynamics that are unavailable using current
methods. Furthermore, our new definition reduces to the classical definition
when A is finite.

The key idea of our new definition of the full shift is to begin with an
infinite alphabet A that we endow with the discrete topology. We then let
A∞ = A ∪ {∞} denote the one-point compactification of A. Since A∞ is
compact, the product space

XA := A∞ ×A∞ × · · ·

is compact. However, we do not want to take XA as our definition of the full
shift, since it includes sequences that contain the symbol ∞, which is not in
our original alphabet. Therefore, we shall consider an identification of ele-
ments of XA with infinite and finite sequences of elements in A. Specifically,
we do the following: If x = x1x2 . . . ∈ XA has the property that xi 6=∞ for
all i ∈ N, then we do nothing and simply consider this as an infinite sequence
of elements of A. If x = x1x2 . . . ∈ XA has an ∞ occurring, we consider the
first place that such an ∞ appears; for example, write x = x1 . . . xn∞ . . .
with xi 6=∞ for 1 ≤ i ≤ n and identify x with the finite sequence x1 . . . xn.
In this way we define an equivalence relation ∼ on XA such that the quotient
space XA/ ∼ of all equivalence classes is identified with the collection of all
sequences of symbols from A that are either infinite or finite (details of this
equivalence relation are described in Section 2.1). We let ΣA denote the
set of all finite and infinite sequences of elements of A, and using the iden-
tification of ΣA with XA/ ∼, we give ΣA the quotient topology it inherits
from XA. While quotient topologies are in general not well behaved, we can
prove that with this topology the space ΣA is both compact and Hausdorff.
Moreover, the shift map σ : ΣA → ΣA, which simply removes the first entry
from any sequence, is a map on ΣA that is continuous at all points except
the empty sequence. We then define the one-sided full shift to be the pair
(ΣA, σ).

Next we define shift spaces. As usual, we want to consider subsets of ΣA
that are closed and invariant under σ; however, we also want an additional
property. Motivated by classical edge shifts of finite graphs having no sinks,
we require that any finite sequence in the subset can be extended to an infi-
nite sequence in the subset with infinitely many choices of the next symbol
(or, in more precise language: for any finite sequence w in our shift space
there exist sequences of the form wax in the shift space for infinitely many
distinct a ∈ A). We call this the “infinite-extension property”, and a precise
definition is given in Definition 3.1. We thus define a shift space to be a pair
(X,σ|X) where X is a subset of ΣA such that X is closed, σ(X) ⊆ X, and
X has the “infinite-extension property”. As closed subsets of ΣA, our shift
spaces will necessarily be compact. In this paper we lay the groundwork
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for the study of these spaces, and a study of morphisms between them. We
hope that this approach will be useful for extending certain aspects of sym-
bolic dynamics to the case of infinite alphabets, as well as allowing methods
from symbolic dynamics to be applied to graph C∗-algebras of graphs with
infinitely many edges.

Many of our inspirations for the topology on the set ΣA come from the
theory of graph C∗-algebras and the study of the boundary path space of
a graph. Since the fundamental work of Cuntz and Krieger in [8, 9] it has
been known that the Cuntz–Krieger algebras (i.e., C∗-algebras associated
with finite graphs having no sinks or sources) are intimately related to the
shift spaces of the graphs — and, in particular, that conjugacy of the one-
sided shift spaces of two graphs implies isomorphism of the C∗-algebras of
those graphs.

This relationship has been explored in many contexts throughout the
three decades since Cuntz and Krieger’s work. The ideas that are most
influential for us in defining a notion of one-sided shift spaces for infinite
alphabets are Paterson’s work on (topological) groupoids for infinite graphs
[19], Paterson and Welch’s construction of a product of locally compact
spaces that satisfies a Tychonoff theorem [20], Yeend’s work on groupoids of
topological graphs [30, 31], and Webster’s work on path spaces and boundary
path spaces of graphs [28, 29]. These constructions, which are all related,
provide motivation for our construction of the space ΣA — both as a set
and as a topological space.

In the past few decades there have been numerous efforts by various au-
thors to define and study analogues of shift spaces over countable alphabets,
most commonly in the context of countable-state Markov chains (or equiv-
alently, shifts coming from countable directed graphs or matrices). For the
reader’s benefit we mention a few of these: The paper [14] by Gurevich
and Savchenko contains a detailed survey of the theory of symbolic Markov
chains over an infinite alphabet as well as several expositions of results of
the authors; Petersen has shown in [22] that there is no Curtis–Hedlund–
Lyndon theorem for factor maps between tiling dynamical systems; in the
paper [12] D. Fiebig and U. Fiebig examine continuous shift-commuting
maps from transitive countable-state Markov shifts into compact subshifts;
and Wagoner in [26, 27] has studied the group of uniformly continuous shift-
commuting maps with uniformly continuous inverse on two-sided Markov
shifts over countable alphabets. Significant progress has also been made on
the development of thermodynamic formalism for symbolic Markov chains
with countably many states (e.g. [6, 10, 13, 14, 15, 18, 23]). Phase transitions
have been investigated in this context (e.g. [21, 24, 25]), and some countable-
state Markov shifts have been classified up to almost isomorphism. Boyle,
Buzzi, and Gómez [5] show that two strongly positive recurrent Markov
shifts are almost isomorphic if and only if they have the same entropy and
period. Markov towers, abstract models resembling countable-state Markov



6 WILLIAM OTT, MARK TOMFORDE AND PAULETTE N. WILLIS

chains, encode statistical properties of many dynamical systems that possess
some hyperbolicity. Young [32, 33] introduces the abstract tower model and
uses it to prove that correlations in the finite-horizon Lorentz gas decay at
an exponential rate. We also mention the work of Exel and Laca in [11],
where they construct “Cuntz–Krieger algebras for infinite matrices”. Their
realization of these C∗-algebras as a crossed product allows them to identity
the spectrum of the diagonal algebra with a compactification of the set of
infinite paths, and in the last sentence of the introduction of [11] the authors
suggest this space may be a suitable replacement for the infinite path space
in the study of topological Markov chains with infinitely many states.

The papers listed in the previous paragraph show that there have been
many different approaches to shift spaces over infinite alphabets, and even
many different definitions of what a shift space (or Markov chain) over an
infinite alphabet should be. The results produced by these different theories
suggest the possibility that there is no one correct definition of a shift space
over an infinite alphabet, but rather different definitions that are useful
for different purposes. (A remark to this effect is explicit in [14], where
the authors emphasized this viewpoint with a descriptor for countable-state
shifts of symbolic Markov chains rather than topological Markov chains, and
this idea is also alluded to in [5].)

Our definition of a shift space over an infinite alphabet provides a new
addition to the panoply of definitions that have come before and a new av-
enue for exploration. The novel features of our definition are (1) our shift
spaces are compact, which allows for many topological results from the finite
alphabet case to be generalized to our spaces, and (2) our shift spaces are
intimately related to path spaces of directed graphs, and as a result have
applications to Cuntz–Krieger algebras and C∗-algebras of graphs. This sec-
ond feature, in particular, shows that among the myriad definitions given
by prior authors, our definition of a shift space seems to be the most advan-
tageous for working with C∗-algebras.

This paper is organized as follows: In Section 2 we give a formal definition
of our one-sided shift space (ΣA, σ) for an infinite alphabetA. Specifically, in
Section 2.1 we define ΣA as a topological space, and prove that it is compact
and Hausdorff. In Section 2.2 we show that ΣA has a basis of “generalized
cylinder sets”, and we use this basis to get a better understanding of the
topology and describe pointwise convergence in ΣA. In Section 2.3 we show
that when A is countable (and hence ΣA is second countable), there exists a
natural family of metrics on ΣA that produces our topology. In Section 2.4
we prove that the shift map σ : ΣA → ΣA is continuous at all points except
the empty sequence ~0 ∈ ΣA, and the restriction of σA to ΣA \ {~0} is a local
homeomorphism.

In Section 3 we define shift spaces as closed subspaces of ΣA that are
invariant under the shift map σ and have the “infinite-extension property”
(see Definition 3.1). The infinite-extension property, which is vacuously
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satisfied in the finite alphabet case, ensures that finite sequences in shift
spaces can be extended to infinite sequences and this extension can be done
with an infinite number of choices for the next symbol. (In dynamics terms,
this is often described as saying that finite sequences end at symbols with
“infinite followers sets”; in graph terms it is often said the sequences end
at vertices that are “infinite emitters”.) We show that with our definition,
shift spaces can be described in terms of forbidden blocks, and any shift
space may be recovered from those blocks that do not appear in any of
its (finite or infinite) sequences. We also establish some basic properties
of shift spaces, and identify two important classes: the finite-symbol shift
spaces, which can be realized as shift spaces over finite alphabets as in the
classical case, and the row-finite shift spaces in which every symbol has
a finite number of symbols that may follow it. In particular, row-finite
spaces have no nonempty finite sequences, and thus every element in a row-
finite shift space is either an infinite sequence or the empty sequence ~0. We
conclude Section 3 with several characterizations of the finite-symbol shift
spaces and the row-finite shift spaces.

In Section 4 we define shift morphisms as maps between shift spaces that
are continuous, commute with the shift, and preserve lengths of sequences.
These shift morphisms appear to be more complicated than the “sliding
block codes” that arise in the finite alphabet setting. We establish some
basic results in this section, and conclude the section by defining conjugacy,
which is the notion of isomorphism in our category.

In Section 5 we consider analogues of shifts of finite type. In the finite
alphabet case, it is well known that a shift space is a shift of finite type (i.e.,
described by a finite set of forbidden blocks) if and only if it is conjugate
to the edge shift coming from a finite graph with no sinks if and only if it
is an M -step shift (i.e., the shift is described by a set of forbidden blocks
all of length M + 1). We show that in the infinite alphabet case these
three classes are distinct — namely, the conjugacy classes of shifts of finite
type, edge shifts, and M -step shifts are distinct. We describe how these
classes are related and identify the class of edge shifts as the class that is
the most reasonable for extending classical results for shifts of finite type to
the infinite alphabet situation.

In Section 6 we analyze our three generalizations of shifts of finite type
in the row-finite setting. Here things are a bit nicer: We show that the
only row-finite shifts of finite type are the finite-symbol shifts, and are thus
covered by the classical case. We also show that the class of row-finite edge
shifts coincides with the class of row-finite M -step shifts. Again, it is this
class of row-finite edge shifts (equivalently, row-finite M -step shifts) that
seems most reasonable for extending classical results for shifts of finite type
to the infinite alphabet situation.

In Section 7 we consider shift morphisms on row-finite shift spaces. We
show that in the row-finite setting all shift morphisms come from “sliding
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block codes” (see Theorem 7.6). Unlike the finite alphabet case, however, we
classify these into two types: unbounded and bounded (see Definition 7.1).
The bounded sliding block codes are just like the sliding block codes in
the finite alphabet case, but the unbounded sliding block codes require a se-
quence of N -block maps, one for each symbol, that are unbounded in N . We
show that, as in the finite alphabet case, bounded sliding block codes may
be recoded to 1-block codes (see Proposition 7.6). We conclude Section 7
with a characterization of bounded sliding block codes in Proposition 7.13.

In Section 8 we connect our ideas with C∗-algebras and give applications
of our results. In Section 8.1 we show that if we have two (possibly infi-
nite) graphs with no sinks, then conjugacy of the edge shifts of these graphs
implies isomorphism of the C∗-algebras of the graphs (see Corollary 8.9).
Indeed we are able to prove something slightly stronger: conjugacy of the
edge shifts of the graphs implies isomorphism of the graph groupoids (see
Theorem 8.8). We consider this strong supporting evidence that our defini-
tion of the one-sided edge shift given in this paper is the correct one in the
context of working with C∗-algebras. Given the long-standing relationship
between symbolic dynamics and C∗-algebras, it is reassuring to see that
these important implications still hold in the infinite alphabet case. In Sec-
tion 8.2 we establish as a corollary that if E and F are (possibly infinite)
graphs with no sinks, then conjugacy of the edge shifts of these graphs im-
plies isomorphism of the complex Leavitt path algebras LC(E) and LC(F ).
In Section 8.3 we show that when we have a bounded sliding block code
between row-finite edge shifts, we can recode to a 1-block map and obtain
an explicit isomorphism between the graph C∗-algebras and also between
the Leavitt path algebras over any field (see Theorem 8.13). Since all shift
morphisms are bounded sliding block codes in the finite alphabet case, this
implies that if K is any field, and if E and F are finite graphs with no sinks
and conjugate edge shifts, then the Leavitt path algebras LK(E) and LK(F )
are isomorphic.

Notation and Terminology. Throughout we take the natural numbers
to be the set N = {1, 2, 3 . . .}. The term countable will mean either finite
or countably infinite. Since we are writing for two audiences that may
have different backgrounds (symbolic dynamicists and C∗-algebraists) we
strive to make the exposition as clear as possible, explain our motivations,
and provide examples. We do our best to be clear without being pedantic.
Throughout we will often choose terminology motivated by graph algebras
(e.g., “row-finite”, “sinks”, “infinite emitters”) — even though we know
these are not the terms most dynamicists would choose. We do this because
the study of graphs, and the theory of their C∗-algebras, are where our
motivation comes from, and we believe that interactions with graph C∗-
algebras will be at the forefront of the applications of these ideas.
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2. The full shift over an infinite alphabet

In this section we define the one-sided full shift (ΣA, σ) over a (possibly
infinite) alphabet A. We shall first define the set ΣA, and topologize ΣA in
such a way that it is a compact Hausdorff space. Afterward, we describe a
convenient basis for ΣA that gives us a better understanding of the topology,
and we use this basis to characterize sequential convergence in ΣA. At the
end of this section we define the shift map σ : ΣA → ΣA and show that it is
continuous at all points except the empty sequence ~0 ∈ ΣA.

2.1. Definition of the topological space ΣA. Suppose that A is an
infinite set, which we shall call an alphabet. The elements of A will be called
letters or symbols.

We define A0 := {~0} where ~0 is the empty sequence consisting of no terms,
and for each k ∈ N we define

Ak := A× · · · × A︸ ︷︷ ︸
k copies

to be the product of k copies of A. We also define

AN := A×A× · · ·

to be the product of a countably infinite number of copies of A. Observe
that the sets AN and Ak for k ∈ N ∪ {0} are pairwise disjoint.

Definition 2.1. We define ΣA to be the disjoint union

ΣA := AN ∪
∞⋃
k=0

Ak.

We refer to the elements of ΣA as sequences. (We use this terminology
despite the fact that some of our sequences have a finite number of terms.)
We define a function l : ΣA → {0, 1, 2, . . . ,∞} by l(x) = ∞ if x ∈ AN and

l(x) = k if x ∈ Ak. Note that the empty word ~0 is the unique sequence with

l(~0) = 0. We call the value l(x) the length of the sequence x. We define
Σinf
A := AN and call the elements of this set infinite sequences, and we define

Σfin
A :=

⋃∞
k=0Ak and call the elements of this set finite sequences. If x ∈ ΣA,

then when 0 < l(x) < ∞ we denote the entries of x as x = x1 . . . xl(x) with
xi ∈ A, and when l(x) = ∞, we denote the entries of x as x = x1x2x3 . . .
with xi ∈ A.

At this point we wish to topologize ΣA.

Definition 2.2. If A is an infinite set, give A the discrete topology and
define A∞ := A ∪ {∞} to be minimal compactification of A. Since A is
infinite, A∞ := A ∪ {∞} is the one-point compactification of A. Note, in
particular, that the topology on A∞ is given by the collection:

{U : U ⊆ A} ∪ {A∞ \ F : F is a finite subset of A}.
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so that the open sets of A∞ are the subsets of A together with the comple-
ments of finite subsets of A.

Let A be an infinite set. Then A∞ is a compact Hausdorff space, and by
Tychonoff’s theorem the countably infinite product space

XA := A∞ ×A∞ × · · ·

is a compact Hausdorff space. Define a function

Q : XA → ΣA

by

Q(x1x2 . . .) =


~0 if x1 =∞
x1 . . . xn if xn+1 =∞ and xi 6=∞ for 1 ≤ i ≤ n
x1x2x3 . . . if xi 6=∞ for all i ∈ N.

Observe that Q is surjective. We give ΣA the quotient topology induced
from XA via the map Q; in particular, with this definition U ⊆ ΣA is open
if and only if Q−1(U) ⊆ XA is open.

Remark 2.3. The map Q defines an equivalence relation on the space XA
by x ∼ y if and only if Q(x) = Q(y). Under this equivalence relation, two
elements of XA are equivalent precisely when they have all entries equal up
to the first appearance of the symbol ∞, and the equivalence class of such
an x ∈ XA is identified with the (finite or infinite) sequence in ΣA having
the same entries as x up to the first appearance of ∞. Note that it is quite
possible that there are no occurrences of ∞ in x.

Example 2.4. Suppose A = {a1, a2, . . .}. The elements

x := a1a2∞a1∞∞a1 . . . ∈ XA
y := a1a2∞a2a7∞a2 . . . ∈ XA

are equivalent in XA and each is identified with the finite sequence a1a2 ∈
ΣA of length 2. The element

z := a1a2a3a4∞a2 . . . ∈ XA
is not equivalent to either x or y and is identified with the finite sequence
a1a2a3a4 ∈ ΣA of length 4. Any element x = x1x2x3 . . . ∈ XA with xi 6=∞
for all i ∈ N is identified with the infinite sequence x1x2x3 . . . ∈ ΣA, and no
element of XA other than x itself is equivalent to x. The element

∞∞∞ . . . ∈ XA
is identified with the empty sequence ~0 ∈ ΣA. In fact, every element x ∈ XA
such that x1 =∞ is equivalent to ∞∞∞ . . ..

Proposition 2.5. The space ΣA is a compact Hausdorff space.
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Proof. Since the quotient map Q : XA → ΣA is continuous, and XA is
compact, it follows that ΣA is compact. To prove that ΣA is Hausdorff,
[17, Proposition 5.4 of Appendix A] shows it suffices to show that the set
G := {(x, y) ∈ XA×XA : Q(x) = Q(y)} is closed in XA×XA. Suppose that
{(xn, yn)}∞n=1 is a sequence of points in G with limn→∞(xn, yn) = (x, y) ∈
XA × XA. Write xn := xn1x

n
2x

n
3 . . . and yn := yn1 y

n
2 y

n
3 . . . for each n ∈ N.

Also write x = x1x2x3 . . . and y = y1y2y3 . . .. Then limn→∞ x
n
i = xi and

limn→∞ y
n
i = yi for all i ∈ N.

For each z = z1z2z3 . . . ∈ XA, define

L(z) :=


0 if z1 =∞
N if xN+1 =∞ and xi 6=∞ for 1 ≤ i ≤ N
∞ if xi 6=∞ for all i ∈ N.

Note that L(z) = l(Q(z)). Since Q(xn) = Q(yn) for all n ∈ N, we see that
L(xn) = L(yn) for all n ∈ N. We shall look at the sequence {L(xn)}∞n=1,
and consider two cases.

The first case is that {L(xn)}∞n=1 is bounded. Then, by passing to a
subsequence, we may suppose that L(xn) is equal to a constant value N for
all n ∈ N. Then xnN+1 = ynN+1 = ∞ for all n ∈ N, and taking limits shows
xN+1 = yN+1 =∞. Also, since xni 6=∞ and yni 6=∞ for all 1 ≤ i ≤ N , and
since Q(xn) = Q(yn) for all n ∈ N, we have xni = yni for all 1 ≤ i ≤ N . Thus
xi = limn→∞ x

n
i = limn→∞ y

n
i = yi for all 1 ≤ i ≤ N . Hence Q(x) = Q(y)

and (x, y) ∈ G.
The second case is that {L(xn)}∞n=1 is not bounded. By passing to a

subsequence, we may assume that limn→∞ L(xn) =∞. Choose i ∈ N. Since
L(xn) > i eventually, the fact that Q(xn) = Q(yn) implies that xni = yni for
large enough n. Thus limn→∞ x

n
i = limn→∞ y

n
i = yi. Hence xi = yi for all

i ∈ N, and x = y. Hence Q(x) = Q(y) and (x, y) ∈ G. �

2.2. A basis for the topology on ΣA. Since ΣA is defined as a quotient
space —and quotient topologies are notoriously difficult to work with — we
shall exhibit a basis for ΣA that will be convenient in many applications.
The basis we give is in terms of “generalized cylinder sets” and it generalizes
the topology one encounters in shift spaces over finite alphabets. Using
this basis we derive a characterization of sequential convergence in ΣA (see
Corollary 2.17.)

Definition 2.6. If x ∈ Σfin
A and y ∈ ΣA we define the concatenation of

x and y to be the sequence xy ∈ ΣA obtained by listing the entries of x
followed by the entries of y. We interpret x~0 = x for all x ∈ Σfin

A and ~0y = y

for all y ∈ ΣA. Note that l(xy) = l(x) + l(y) for all x ∈ Σfin
A and y ∈ ΣA.

Definition 2.7. If x ∈ Σfin
A , we define the cylinder set of x to be the set

Z(x) := {xy : y ∈ ΣA}.
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Note that we always have x ∈ Z(x) (simply take y = ~0), and if x, y ∈ Σfin
A

the following relation is satisfied:

(2.1) Z(x) ∩ Z(y) =


Z(y) if y = xz for some z ∈ Σfin

A
Z(x) if x = yz for some z ∈ Σfin

A
∅ otherwise.

In addition, we have Z(~0) = ΣA.

Definition 2.8. If x ∈ Σfin
A and F ⊆ A is a finite subset, we define the

generalized cylinder set of the pair (x, F ) to be the set

Z(x, F ) := Z(x) \
⋃
e∈F

Z(xe).

Note that if F = ∅, then Z(x, F ) = Z(x) is a cylinder set. Thus every
cylinder set is also a generalized cylinder set.

Lemma 2.9. If x ∈ Σfin
A and F ⊆ A is a finite subset, the generalized

cylinder set Z(x, F ) is a compact open subset of ΣA.

Proof. Let us first prove that any generalized cylinder set Z(x, F ) is open.
Write x = x1 . . . xn. Since

Q−1(Z(x, F )) = {x1} × · · · × {xn} × (A∞ \ F )×A∞ ×A∞ × · · ·
is open in XA, it follows that Z(x, F ) is open.

Next we shall show that every cylinder set Z(x) is closed. Suppose
y /∈ Z(x) and l(x) = n. Then either y = x1 . . . xk for k < n, or y =
x1 . . . xkyk+1 . . . with yk+1 6= xk+1 for some k < n. In the first case,
the generalized cylinder set Z(x1 . . . xk, {xk+1}) is an open set with y ∈
Z(x1 . . . xk, {xk+1}) and Z(x1 . . . xk, {xk+1}) ∩ Z(x) = ∅. In the second
case, the cylinder set Z(x1 . . . xkyk+1) is open with y ∈ Z(x1 . . . xkyk+1) and
Z(x1 . . . xkyk+1) ∩ Z(x) = ∅. Hence Z(x) is closed.

Because every cylinder set is clopen, any generalized cylinder set

Z(x, F ) := Z(x) \
⋃
y∈F

Z(xy) = Z(x) ∩

⋃
y∈F

Z(xy)

c

is an intersection of closed sets and hence a closed set. Since Z(x, F ) is
a closed subset of the compact set ΣA, it follows that Z(x, F ) is compact.
Hence any generalized cylinder set Z(x, F ) is compact and open. �

Next we shall exhibit a basis for the topology on ΣA. To do so, we will find

it convenient to embed ΣA into the space 2Σfin
A = {0, 1}Σfin

A . Throughout, we

consider {0, 1}Σfin
A as a topological space with the product topology.

Definition 2.10. We define a function α : ΣA → {0, 1}Σ
fin
A by

α(x)(y) =

{
1 if x ∈ Z(y)

0 otherwise.
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Remark 2.11. We may think of {0, 1}Σfin
A as the space of all subsets of Σfin

A .

The map α : ΣA → {0, 1}Σ
fin
A then sends any element x ∈ ΣA to the set of

all the finite initial subsequences of x.

Definition 2.12. If F,G ⊆ Σfin
A are disjoint finite subsets of Σfin

A , we define

a subset N(F,G) ⊆ {0, 1}Σfin
A by

N(F,G) =
∏

x∈Σfin
A

N(F,G)(x),

where

N(F,G)(x) :=


{1} if x ∈ F
{0} if x ∈ G
{0, 1} otherwise.

We see that {N(F,G) : F,G ⊆ Σfin
A are disjoint finite subsets of Σfin

A } is a

basis for the topology on {0, 1}Σfin
A .

Lemma 2.13 (cf. Proposition 2.1.1 of [28] and Theorem 2.1 of [29]). If
F,G ⊆ Σfin

A are disjoint finite subsets of Σfin
A , then

α−1(N(F,G)) =

(⋂
x∈F

Z(x)

)
\

⋃
y∈G

Z(y)

 .

Proof. If z ∈ ΣA, then

z ∈ α−1(N(F,G))⇐⇒ α(z) ∈ N(F,G)

⇐⇒ α(z)(x) =

{
1 if x ∈ F
0 if x ∈ G

⇐⇒ z ∈ Z(x) for all x ∈ F and z /∈ Z(y) for all y ∈ G

⇐⇒ z ∈

(⋂
x∈F

Z(x)

)
\

⋃
y∈G

Z(y)

 .

�

Proposition 2.14. The function α : ΣA → {0, 1}Σ
fin
A is an embedding; that

is, α is a homeomorphism onto its image.

Proof. Let us first show that α is injective. Suppose that x, y ∈ ΣA
and α(x) = α(y). Write x = x1x2 . . . and y = y1y2 . . .. For every n we
have α(y)(x1 . . . xn) = α(x)(x1 . . . xn) = 1, so that y ∈ Z(x1 . . . xn) and
y1 . . . yn = x1 . . . xn. Since this holds for all n, we have x = y.

Next we shall show that α is continuous. Since the collection of N(F,G),
where F and G range over all disjoint finite subsets of Σfin

A , forms a ba-

sis for {0, 1}Σfin
A , it suffices to show that α−1(N(F,G)) is open. However,

Lemma 2.13 shows that α−1(N(F,G)) =
(⋂

x∈F Z(x)
)
\
(⋃

y∈G Z(y)
)

, and
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since the cylinder sets are clopen by Lemma 2.9, it follows that the set(⋂
x∈F Z(x)

)
\
(⋃

y∈G Z(y)
)

is open. Hence α is continuous.

Because ΣA is compact, and α : ΣA → α(ΣA) is a continuous bijection,
it follows from elementary point-set topology that α is a homeomorphism
onto its image. �

Our proof of the following theorem relies on Lemma 2.9 and techniques
similar to those used by Webster in the proof of [28, Proposition 2.1.1] and
the proof of [29, Theorem 2.1].

Theorem 2.15. The collection of generalized cylinder sets

{Z(x, F ) : x ∈ Σfin
A and F ⊆ A is a finite subset}

is a basis for the topology of ΣA consisting of compact open subsets. In
addition, if x ∈ ΣA and l(x) = ∞, then a neighborhood base for x is given
by

{Z(x1 . . . xn) : n ∈ N},
and if x ∈ ΣA and l(x) <∞, then a neighborhood base for x is given by

{Z(x, F ) : F is a finite subset of A}.

Proof. It follows from Lemma 2.9 that the generalized cylinder sets Z(x, F )
are compact open subsets of ΣA. In addition, Proposition 2.14 shows that

α : ΣA → {0, 1}Σ
fin
A is an embedding. Since

{N(F,G) : F,G ⊆ Σfin
A are disjoint finite subsets of Σfin

A }

is a basis for the topology on {0, 1}Σfin
A , it follows that

{α−1(N(F,G)) : F,G ⊆ Σfin
A are disjoint finite subsets of Σfin

A }

is a basis for the topology on ΣA. Thus it suffices to show that for any
N(F,G) and any z ∈ α−1(N(F,G)) there exists a generalized cylinder set
Z(x, F ′) such that z ∈ Z(x, F ′) ⊆ α−1(N(F,G)). We shall accomplish this
in a few steps.

First, we shall show α−1(N(F,G)) can be written in a nicer form than
that shown in Lemma 2.13. Given disjoint finite subsets F,G ⊆ Σfin

A , we
have

α−1(N(F,G)) =

(⋂
x∈F

Z(x)

)
\

⋃
y∈G

Z(y)

 .

If α−1(N(F,G)) 6= ∅, then
⋂
x∈F Z(x) 6= ∅. It follows from (2.1) that⋂

x∈F Z(x) = Z(w) for some w ∈ F . Thus

α−1(N(F,G)) = Z(w) \

⋃
y∈G

Z(y)

 = Z(w) \

 ⋃
y∈G∩Z(w)

Z(y)

 .
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In addition, if we let G′ := {u ∈ Σfin
A : wu ∈ G ∩ Z(w)}, then⋃

y∈G∩Z(w)

Z(y) =
⋃
u∈G′

Z(wu)

so that

α−1(N(F,G)) = Z(w) \

( ⋃
u∈G′

Z(wu)

)
.

Next, let z ∈ Z(w) \
(⋃

u∈G′ Z(wu)
)
. We wish to find x ∈ Σfin

A and a

finite subset F ′ ⊆ A such that z ∈ Z(x, F ′) ⊆ Z(w) \
(⋃

u∈G′ Z(wu)
)
. We

consider two cases: l(z) =∞ and l(z) <∞.
If l(z) =∞, let N = max{l(wu) : u ∈ G′} if G′ 6= ∅ or N = l(w) if G′ = ∅.

Define x := z1 . . . zN and F ′ := ∅. Then z ∈ Z(x, F ′), and since any element
in Z(x, F ′) has x, and hence also w, as its initial segment, we have Z(x, F ′) ⊆
Z(w). Furthermore, any element of Z(x, F ′) has x = z1 . . . zN as an initial
segment, and since N ≥ l(wu) for all u ∈ G′, and z /∈ Z(wu), this element
does not have wu as an initial segment. Thus Z(x, F ′) ⊆

(⋃
u∈G′ Z(wu)

)c
.

It follows that

z ∈ Z(x, F ′) ⊆ Z(w) \

( ⋃
u∈G′

Z(wu)

)
as desired. This also shows that {Z(z1 . . . zn) : n ∈ N} is a neighborhood
base of z.

If l(z) <∞, let x := z and

F ′ := {(wu)l(z)+1 : u ∈ G′ and l(wu) > l(z)}.

Then z ∈ Z(x, F ′) since x = z. To see that

Z(x, F ′) ⊆ Z(w) \

( ⋃
u∈G′

Z(wu)

)
,

fix α ∈ Z(x, F ′). Write z = wz′ for z′ ∈ Σfin
A , and α = xα′ for α′ ∈ ΣA.

Then α = xα′ = zα′ = wz′α′ ∈ Z(w). Also, fix u ∈ G′. If l(wu) ≤ l(z), then
l(u) ≤ l(z′), and since z′ /∈ Z(u), we have z′α′ /∈ Z(u), and wz′α′ /∈ Z(wu),
and α /∈ Z(wu). On the other hand, if l(wu) > l(z), then since α ∈ Z(x, F ′)
we have α′1 /∈ F ′, and

αl(z)+1 = (wz′α′)l(z)+1 = (zα′)l(z)+1 = α′1 6= (wu)l(z)+1.

Hence α /∈ Z(wu). It follows that Z(x, F ′) ⊆
(⋃

u∈G′ Z(wu)
)c

. Thus

z ∈ Z(x, F ′) ⊆ Z(w) \

( ⋃
u∈G′

Z(wu)

)
as desired. This also shows that {Z(z, F ) : F is a finite subset of A} is a
neighborhood base of z. �
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Remark 2.16. A basis for a similar topology was described in [20, Corol-
lary 2.4], however, as pointed out in [28, p.12] there is a minor oversight
in [20, Corollary 2.4] and it fails to include some of the necessary basis
elements.

Corollary 2.17. Let {xn}∞n=1 be a sequence of elements in ΣA and write
xn = xn1x

n
2 . . . with xni ∈ A for all i ∈ N. Also let x = x1x2 . . . ∈ ΣA.

(a) If l(x) =∞, then limn→∞ x
n = x with respect to the topology on ΣA

if and only if for every M ∈ N there exists N ∈ N such that n > N
implies xni = xi for all 1 ≤ i ≤M .

(b) If l(x) < ∞, then limn→∞ x
n = x with respect to the topology on

ΣA if and only if for every finite subset F ⊆ A there exists N ∈ N
such that n > N implies l(xn) ≥ l(x), xnl(x)+1 /∈ F , and xni = xi for

all 1 ≤ i ≤ l(x). (Note: If l(xn) = l(x) we consider the condition
xnl(x)+1 /∈ F to be vacuously satisfied.)

Proof. This follows from the description of the neighborhood bases of points
described in Theorem 2.15. �

Corollary 2.18. The following are equivalent:

(i) The set A is countable.
(ii) The space ΣA is second countable.
(iii) The space ΣA is first countable.

Proof. If (i) holds, then Σfin
A is countable and the collection of finite subsets

of A is countable, and hence the collection

{Z(x, F ) : x ∈ Σfin
A and F ⊆ A is a finite subset}

of generalized cylinder sets is countable. Thus ΣA is second countable and
(ii) holds. We have (ii) implies (iii) trivially.

If (iii) holds, choose x ∈ Σfin
A and choose a countable neighborhood base

{Ui}i∈N for x. For each i ∈ N choose a finite subset Fi ⊆ A such that
Z(x, Fi) ⊆ Ui. Since ΣA is Hausdorff, we have

⋂∞
i=1 Ui = {x}. Thus,

x ∈
∞⋂
i=1

Z(x, Fi) ⊆
∞⋂
i=1

Ui = {x},

so that
⋂∞
i=1 Z(x, Fi) = {x} and

⋃∞
i=1 Fi = A. Since A is the countable

union of finite sets, A is countable and (i) holds. �

Remark 2.19. When A is countable, Corollary 2.18 shows that ΣA is first
(and second) countable. In this case, sequences suffice to determine the
topology, and all topological information can be obtained using the sequen-
tial convergence described in Corollary 2.17.

Remark 2.20. Even though Corollary 2.18 shows that the space ΣA is first
countable if and only if the alphabet A is countable, for any A and any
x ∈ Σinf

A the collection {Z(x1 . . . xn) : n ∈ N} is a countable neighborhood
base of x.
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2.3. A family of metrics on ΣA when A is countable. When A is
countable, Corollary 2.18 shows that ΣA is a second countable compact
Hausdorff space and hence is metrizable. Assuming A is countable, we
describe a family of metrics on ΣA that induce the topology. We do so by
embedding ΣA into a metric space and then using the embedding to “pull
back” the metric to a metric on ΣA.

Example 2.21. We use the embedding α : ΣA → {0, 1}Σ
fin
A described in

Proposition 2.14. If A is countable, then the set of finite sequences Σfin
A is

countable. Thus we may list the elements of Σfin
A as Σfin

A = {p1, p2, p3, . . .},
order {0, 1}Σfin

A as

{0, 1}Σfin
A = {0, 1}p1 × {0, 1}p2 × · · · ,

and define a metric dfin on {0, 1}Σfin
A by

dfin(µ, ν) :=

{
1/2i i ∈ N is the smallest value such that µ(i) 6= ν(i)

0 if µ(i) = ν(i) for all i ∈ N.

The metric dfin induces the product topology on {0, 1}Σfin
A , and hence the

topology on ΣA is induced by the metric dA on ΣA defined by

dA(x, y) := dfin(α(x), α(y)).

Note that for x, y ∈ ΣA, we have

dA(x, y) :=


1/2i i ∈ N is the smallest value such that pi is an initial

subsequence of one of x or y but not the other

0 if x = y.

The metric dA depends on the order we choose for Σfin
A = {p1, p2, p3, . . .}.

2.4. The shift map. We next consider the “shift map” on ΣA.

Definition 2.22. The shift map is the function σ : ΣA → ΣA defined by

σ(x) =


x2x3 . . . if x = x1x2 . . . ∈ AN

x2 . . . xn if x = x1 . . . xn ∈
⋃∞
k=2Ak

~0 if x ∈ A1 ∪ {~0}.

Note that

l(σ(x)) =


∞ if l(x) =∞
l(x)− 1 if l(x) ∈ N
0 if l(x) = 0.

Also note that if x ∈ ΣA \ {~0}, then σ(x)i = xi+1 for 1 ≤ i < l(x).

Proposition 2.23. Let A be an infinite alphabet. The shift map

σ : ΣA → ΣA
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is continuous at all points in ΣA \ {~0} and discontinuous at the point ~0.

In addition, if x ∈ ΣA \ {0}, then there exists an open set U ⊆ ΣA \ {~0}
such that x ∈ U , σ(U) is an open subset of ΣA, and σ|U : U → σ(U) is a
homeomorphism.

Proof. Let x ∈ ΣA \ {~0}, and let V ⊆ ΣA be an open set with σ(x) ∈ V .

Since x 6= ~0, there exists a ∈ A such that x = aσ(x). By Theorem 2.15 there
exists a compact open neighborhood Z(y, F ) of ΣA with σ(x) ∈ Z(y, F ) ⊆
V . If we let U := Z(ay, F ), then U is an compact open subset of ΣA, x ∈ U ,
and σ(U) = Z(y, F ) ⊆ V . Hence σ is continuous at x.

In addition, since σ|U : U → σ(U) is bijective with inverse z 7→ az, we see
that σ|U : U → σ(U) is a continuous bijection from the compact open set U
onto the open set σ(U), and hence σ|U : U → σ(U) is a homeomorphism.

To see that σ is discontinuous at ~0, choose a sequence of distinct elements
a1, a2, . . . ∈ A. For each n ∈ N, define a sequence {xn}∞n=1 defined by xn :=

ana1a1a1 . . .. Then limn→∞ x
n = ~0, and we see σ(limn→∞ x

n) = σ(~0) = ~0,
while limn→∞ σ(xn) = limn→∞ a1a1 . . . = a1a1 . . .. Hence σ(limn→∞ x

n) 6=
limn→∞ σ(xn), and σ is not continuous at ~0. �

Remark 2.24. Recall that in the case of a finite alphabet, the full shift
ΣA consists of infinite sequences of letters from A, and in particular ΣA
does not contain the empty sequence ~0, and the shift map σ : ΣA → ΣA is
continuous at all points. WhenA is infinite, ΣA contains the empty sequence
~0, and Proposition 2.23 shows that the shift map σ : ΣA → ΣA has a single
discontinuity at ~0. This lack of continuity will not cause us any difficulty,
since nothing we do in the sequel will require continuity of the shift map.

The results of this section allow us to make the following definition.

Definition 2.25. If A is an infinite alphabet, we define the one-sided full
shift to be the pair (ΣA, σ) where ΣA is the topological space from Defini-
tion 2.1 and σ : ΣA → ΣA is the map from Definition 2.22. When it is clear
from context that we are discussing one-sided shifts, we shall often refer to
(ΣA, σ) as simply the full shift on the alphabet A. In addition, as in the
classical case we engage in some standard sloppiness and often refer to the
space ΣA as the full shift with the understanding that the map σ is attached
to it.

Remark 2.26. We assumed throughout this past section that A is infinite,
but when A is finite we can repeat our construction. In this case A with
the discrete topology is compact, and the minimal compactification of A is
A itself, so that A∞ = A. We perform our construction as above, and all
statements about the element ∞ are then vacuous. Thus

XA = A×A×A× · · · = AN

with the product topology, and the quotient map Q : XA → AN∪
⋃∞
k=0Ak is

the inclusion map AN ↪→ AN ∪
⋃∞
k=0Ak. Thus the image of Q is simply the
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space AN and the quotient topology induced by Q is the product topology
on AN. Hence when A is finite, we recover the usual definition of the full
shift as ΣA := AN with the product topology, and every sequence in the full
shift has infinite length. We also observe that in this case the collection of
cylinder sets

{Z(x1 . . . xn) : n ∈ N and xi ∈ A for 1 ≤ i ≤ n}
forms a basis for the topology on ΣA.

3. Shift spaces over infinite alphabets

Having defined the full shift over an arbitrary alphabet in the previous
section, we now use it to define shift spaces as subspaces of the full shift
having certain properties. In addition to requiring a shift space to be closed
and invariant under the shift map, we will also require that it satisfies what
we call the “infinite-extension property”.

Definition 3.1. If A is an alphabet and X ⊆ ΣA, we say X has the infinite-
extension property if for all x ∈ X with l(x) <∞, there are infinitely many
a ∈ A such that Z(xa) ∩X 6= ∅.
Remark 3.2. Note that X has the infinite-extension property if and only
if whenever x ∈ X and l(x) <∞, then the set

{a ∈ A : xay ∈ X for some y ∈ ΣA}
is infinite.

Definition 3.3. Let A be an alphabet, and (ΣA, σ) be the full shift over
A. A shift space over A is defined to be a subset X ⊆ ΣA satisfying the
following three properties:

(i) X is a closed subset of ΣA.
(ii) σ(X) ⊆ X.
(iii) X has the infinite-extension property.

For any shift space X we define X inf := X ∩ Σinf
A and Xfin := X ∩ Σfin

A .

Remark 3.4. Since ΣA is compact, Property (i) implies that any shift space
is compact. In addition, Property (ii) implies that σ : ΣA → ΣA restricts
to a map σ|X : X → X. Thus we will often attach the map σ|X to X and
refer to the pair (X,σ|X) as a shift space. Note that our definition allows
the empty set X = ∅ as a shift space. However, Property (iii) shows that
if X 6= ∅, then X inf 6= ∅, so that nonempty shift spaces will always have
sequences of infinite length (see Proposition 3.7).

Remark 3.5. If A is finite, then ΣA contains no finite sequences and any
subset of ΣA vacuously satisfies the infinite-extension property. Conse-
quently, when A is finite a subset X ⊆ Σinf

A is a shift space if and only
if X is closed and σ(X) ⊆ X. Thus when A is finite we recover the “classi-
cal theory” of shift spaces. We also observe that if X is a shift space over a
finite alphabet, then X inf = X and Xfin = ∅.
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Remark 3.6. Any shift space is a topological space with the subspace
topology generated by the basis elements

ZX(α, F ) := Z(α, F ) ∩X = {αβ : αβ ∈ X and β1 /∈ F}
for all α ∈ Σfin

A and all finite subsets F ⊆ A. When we are working with a
given shift X, we shall often omit the subscript X and simply write Z(α, F )
for the intersection of the generalized cylinder set with X.

The following proposition shows that the infinite-extension property im-
plies that a finite sequence in a shift space may be extended to an infinite
sequence in the shift space with infinitely many choices of the first symbol.

Proposition 3.7. If X is a shift space and x ∈ Xfin, then there exists
y ∈ Σinf

A such that xy ∈ X. Moreover, if F is a finite subset of A, then y
may be chosen so that y1 /∈ F .

Proof. If x ∈ Xfin, then by the infinite-extension property of X there exists
a1 ∈ A \ F and y1 ∈ ΣA with xa1y

1 ∈ X. If xa1y
1 ∈ X is infinite, we are

done. If not, we do the same process to xa1y
1 and continue recursively, at

each step either finding an infinite-extension of x that is in X or finding an
element

zn := xa1y
1a2y

2 . . . any
n ∈ X

of finite length. We see that {zn}∞n=1 is a sequence in X with

lim
n→∞

zn = xa1y
1a2y

2 . . . ∈ X.

Moreover, xa1y
1a2y

2 . . . is an infinite sequence. �

The following proposition shows that a shift space X is determined by
the subset X inf.

Proposition 3.8. If X ⊆ ΣA is a shift space, then X inf is dense in X.

Proof. Suppose that x ∈ X with l(x) < ∞. By Proposition 2.15 the
collection of Z(x, F ) such that F is a finite subset of A is a neighborhood
base of x. By Proposition 3.7 there exists y ∈ Σinf

A such that y1 /∈ F and

xy ∈ X. Hence xy ∈ Z(x, F ) ∩X inf, and x is a limit point of X inf. �

Corollary 3.9. If X ⊆ ΣA and Y ⊆ ΣA are shift spaces over A, then
X = Y if and only if X inf = Y inf.

Having defined shift spaces, our next order of business is to show that, as
in the classical case, we can describe any shift space in terms of its “forbidden
blocks”.

Definition 3.10. We will use the term block as another name for the ele-
ments of Σfin

A :=
⋃∞
k=0Ak, with the empty block being our empty sequence

~0. If x ∈ ΣA, a subblock of x is an element u ∈ Σfin
A such that x = yuz for

some y ∈ Σfin
A and some z ∈ ΣA. By convention, the empty block ~0 is a

subblock of every element of ΣA.
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Definition 3.11. If F ⊆ Σfin
A , we define:

X inf
F := {x ∈ Σinf

A : no subblock of x is in F}

Xfin
F := {x ∈ Σfin

A : there are infinitely many a ∈ A for which

there exists y ∈ Σinf
A such that xay ∈ X inf

F }

XF := X inf
F ∪Xfin

F .

Remark 3.12. Note that if ~0 ∈ F , then XF = ∅ is the empty shift space.
Hence one must have F ⊆ Σfin

A \{~0} to produce a nondegenerate shift space.

Remark 3.13. If A is infinite and F = ∅, then XF = ΣA is the full shift.

Proposition 3.14. If F ⊆ Σfin
A , then XF is a shift space.

Proof. First, we show that XF is closed. Suppose that we have a sequence
{xn}∞n=1 ⊆ XF and that limn→∞ x

n = x ∈ ΣA. If l(x) = ∞, then by
Corollary 2.17 for every M ∈ N there exists N ∈ N such that n > N implies
that xni = xi for all 1 ≤ i ≤M . Hence x1 . . . xM = xn1 . . . x

n
M for all n > N .

Since xn ∈ XF , no subblock of xn is in F . Hence no subblock of x1 . . . xM
is in F , and since this holds for all M ∈ N, it follows no subblock of x is in
F , and hence x ∈ X inf

F ⊆ XF .
If l(x) < ∞, then let F be any finite subset of A. By Corollary 2.17

there exists n ∈ N such that l(xn) ≥ l(x), xnl(x)+1 /∈ F , and xni = xi for all

1 ≤ i ≤ l(x). Thus x agrees with xn in the first l(x) entries with xnl(x)+1 /∈ F .

Since xn is either in X inf
F or Xfin

F , we can find a /∈ F and y ∈ X inf
F such that

xay ∈ X inf
F . Since this is true for any finite subset F ⊆ A, there exist

infinitely many a ∈ A with the property that there is y ∈ X inf
F such that

xay ∈ X inf
F . Hence x ∈ Xfin

F ⊆ XF . Thus XF is closed.

Next, we observe that σ(X inf
F ) ⊆ X inf

F and σ(Xfin
F ) ⊆ Xfin

F so that σ(XF ) ⊆
XF . Finally, we verify that XF has the infinite-extension property. This is
an immediate consequence of the definition of Xfin

F : If x ∈ XF and l(x) <∞,

then x ∈ Xfin
F and by the definition of Xfin

F there exist infinitely many a ∈ A
for which there is an element y ∈ Σinf

A such that xay ∈ X inf
F ⊆ XF . Hence

XF has the infinite-extension property. �

Definition 3.15. Let X ⊆ ΣA. We define the set of blocks of X to be

B(X) := {u ∈ Σfin
A : u is a subblock of some element of X}.

For n ∈ N ∪ {0} we define the set of n-blocks of X to be

Bn(X) := {u ∈ An : u is a subblock of some element of X}.

Note that B0(X) = {~0}, and B1(X) ⊆ A is the set of symbols that appear
in the elements of X. In addition, B(X) =

⋃∞
n=0Bn(X).

Theorem 3.16. A subset X ⊆ ΣA is a shift space if and only if X = XF
for some subset F ⊆ Σfin

A .
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Proof. If X = XF for some subset F ⊆ Σfin
A , then X is a shift space by

Proposition 3.14.
Conversely, let X ⊆ ΣA be a shift space. Define F := Σfin

A \ B(X), so

that F consists of those elements in Σfin
A that are not subblocks of elements

of X. We shall show that X = XF .
Let x ∈ XF , and consider two cases.

Case I. l(x) =∞.

Then x ∈ X inf
F , and no subblock of x is in F . Thus for all n ∈ N

we have that x1 . . . xn /∈ F , and x1 . . . xn ∈ B(X). Hence for all n ∈ N,
there exists un ∈ Σfin

A and yn ∈ ΣA such that unx1 . . . xny
n ∈ X. Because

σ(X) ⊆ X, it follows x1 . . . xny
n = σl(u

n)(unx1 . . . xny
n) ∈ X. Because

x = limn→∞ x1 . . . xny
n and X is closed, we have x ∈ X.

Case II. l(x) <∞.

Then x ∈ Xfin
F , and there exists an infinite sequence of distinct elements

a1, a2, . . . ∈ A such that for each n ∈ N there exists yn ∈ Σinf
A such that

xany
n ∈ X inf

F . By the argument of Case I we have xany
n ∈ X for all n ∈ N.

Since X is closed, x = limn→∞ xany
n ∈ X.

Thus we have shown that XF ⊆ X. For the reverse inclusion, suppose
that x ∈ X. If x ∈ X inf, then x has infinite length and no subblock of x is
in F , so x ∈ X inf ⊆ XF . If x ∈ Xfin, then by the infinite-extension property
of X, there exist an infinite sequence of distinct elements a1, a2, . . . ∈ A
such that for each n ∈ N there exists yn ∈ ΣA such that xany

n ∈ X. By
Proposition 3.7 we may assume that each yn is infinite, and hence each
xany

n is infinite. Since each xany
n ∈ X is infinite, and no subblock of

xany
n is in F , we have xany

n ∈ X inf
F , and hence by the definition of Xfin

F ,

we have x ∈ Xfin
F . Thus X ⊆ XF . �

We conclude this section by discussing shift spaces with certain finiteness
restrictions on the allowed symbols.

Definition 3.17. Let A be an alphabet, and let X ⊆ ΣA be a shift space
over A. We say that X is finite-symbol (or finite) if B1(X) is finite, and we
say X is infinite-symbol (or infinite) otherwise. We say that X is row-finite
if for every a ∈ A, the set {b ∈ A : ab ∈ B(X)} is finite.

Remark 3.18. Note that every finite-symbol shift space is row-finite. Also
note that if A is a finite set, then every shift space over A is finite-symbol.

The following propositions give us several alternate ways to characterize
finite-symbol and row-finite shift spaces.

Proposition 3.19. Let X ⊆ ΣA be a shift space. Then the following are
equivalent:

(i) X is finite-symbol.
(ii) Xfin = ∅.
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(iii) X = X inf.
(iv) X inf is a closed subset of ΣA.

(v) ~0 is not a limit point of X inf.

(vi) ~0 /∈ X.

Proof. (i) ⇒ (ii). Since B1(X) is finite, the infinite-extension property of
X implies that Xfin = ∅.

(ii)⇒ (iii). Since X = X inf ∪Xfin, the result follows.

(iii) ⇒ (iv). If X = X inf, then Proposition 3.8 implies that X inf = X =
X inf, so X inf is closed.

(iv) ⇒ (v). Since ~0 /∈ X inf and X inf is closed, ~0 is not a limit point of
X inf.

(v) ⇒ (vi). Proposition 3.8 implies that X inf = X. Thus if ~0 is not a

limit point of X inf, it follows that ~0 /∈ X.
(vi) ⇒ (i). Suppose X is not finite-symbol. Then there exists an infi-

nite sequence a1, a2, . . . ∈ B1(X) of distinct elements. Hence, using Propo-
sition 3.7 for each n ∈ N there exists zn ∈ Σfin

A and xn ∈ Σinf
A such

that znanx
n ∈ X. Since X is closed under the shift map σ, we have

anx
n = σl(z

n)(znanx
n) ∈ X. Finally, since X is closed and the an are

distinct, ~0 = limn→∞ anx
n ∈ X. �

Remark 3.20. The astute reader may be concerned that Proposition 3.19
implies that the collection of infinite paths in a row-finite infinite graph is
not a shift space. This is true, and we will give a satisfactory explanation in
Section 5. In particular, we shall see in Definition 5.11 and Proposition 5.12
that the edge shift of a graph is defined to be the closure of the collection of
infinite paths, and thus the edge shift of a row-finite infinite path is equal
to the infinite path space together with the empty sequence ~0. The next
proposition shows that in a row-finite shift space the only possible finite
sequence is ~0.

Proposition 3.21. Let X ⊆ ΣA be a shift space. Then the following are
equivalent:

(i) X is row-finite.

(ii) Xfin ⊆ {~0}.
(iii) X inf ∪ {~0} is a closed subset of ΣA.

(iv) Either X = X inf ∪ {~0} or X is finite-symbol.
(v) For each a ∈ A, the set {b ∈ A : there exists x ∈ X inf with abx ∈ X}

is finite.

Proof. (i)⇒ (ii). If x ∈ Xfin, then by the infinite-extension property there
are infinitely many a ∈ A such that xa ∈ B(X). However, since X is a

row-finite shift space, the only way this can occur is if x = ~0.
(ii) ⇒ (iii). If Xfin ⊆ {~0}, then either Xfin = {~0} or Xfin = ∅. If

Xfin = {~0}, then X inf ∪ {~0} = X inf ∪Xfin = X is closed since X is a shift
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space. If Xfin = ∅, then X = X inf and X inf ∪ {~0} = X ∪ {~0} is the union of
two closed sets, and hence closed.

(iii) ⇒ (iv). If X inf ∪ {~0} is closed, then X inf is equal to either X inf

or X inf ∪ {~0}. From Proposition 3.8 we have that X inf = X. Thus either

X = X inf ∪ {~0} or X = X inf. In the latter case, X is finite-symbol by
Proposition 3.19(iii).

(iv)⇒ (v). If (v) does not hold, then for some a ∈ A, there is an infinite
sequence b1, b2, . . . ∈ A of distinct elements with the property that for each
n ∈ N there exists xn ∈ X inf such that abnx

n ∈ X. Then bn ∈ B(X)
for all n ∈ N, and X is not finite-symbol. In addition, since X is a shift
space and therefore closed, we have a = limn→∞ abnx

n ∈ X, which implies
X 6= X inf ∪ {~0}. Hence (iv) does not hold.

(v) ⇒ (i). If (i) does not hold, then there exists a ∈ A and an infinite
sequence b1, b2, . . . ∈ A of distinct elements with the property that abn ∈
B(X) for all n ∈ N. This implies that for each n ∈ N the block abn is
a subblock of an element of X. Hence, using Proposition 3.7 there exists
z ∈ Σfin

A and x ∈ Σinf
A such that zabnx ∈ X. Because X is closed under the

shift map σ, we have abnx = σl(z)(zabnx) ∈ X. Since the bn are distinct,
this shows (v) does not hold. �

Proposition 3.19 and Proposition 3.21 show that if we have a row-finite
shift space, then the presence of the empty sequence ~0 determines whether
X is finite-symbol or infinite-symbol.

Corollary 3.22. Let X be a row-finite shift space. Then either X = X inf

or X = X inf ∪{~0}. If X = X inf, then X is finite-symbol. If X = X inf ∪{~0},
then X is infinite-symbol.

Remark 3.23. Suppose that A is an alphabet, and that X ⊆ ΣA is a
symbol-finite shift space. Then it follows from Proposition 3.19 that Xfin =
∅. Moreover, X is then a subset of ΣB1(X), the full shift over the finite
alphabet B1(X). As described in Remark 3.5, since X is a shift space,
X is a subset of Σinf

B1(X), which is the “classical full shift” over the finite

alphabet B1(X). Hence X is a shift space in the classical sense, over the
finite alphabet B1(X). This shows that any finite-symbol shift — even one
that is a priori over an infinite alphabet — may be viewed as a shift space
over a finite alphabet.

Remark 3.24. Recall that if X is a shift space, for any x ∈ Σfin
A and finite

subset F ⊆ A we define ZX(x) := Z(x) ∩X and ZX(x, F ) := Z(x, F ) ∩X.
It follows from Theorem 2.15 that

{ZX(x, F ) : x ∈ Σfin
A and F ⊆ A is a finite subset}

is a basis for the topology on X. If X is a row-finite shift, then the set

{ZX(x) : x ∈ Σfin
A } ∪ {ZX(~0, F ) : F ⊆ A is a finite subset}
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is a basis for the topology on X. If X is a finite-symbol shift, then

{ZX(α) : α ∈ Σfin
A }

forms a basis for the topology on X.

4. Shift morphisms and conjugacy of shift spaces

In the previous section we defined our basic objects of study, the shift
spaces. We now turn our attention to describing the appropriate morphisms
between these objects.

Definition 4.1. Let A be an alphabet, and let X,Y ⊆ ΣA be shift spaces
over A. A function φ : X → Y is a shift morphism if the following three
conditions are satisfied:

(i) φ : X → Y is continuous.
(ii) φ ◦ σ = σ ◦ φ.
(iii) l(φ(x)) = l(x) for all x ∈ X.

Note that if φ : X → Y is a shift morphism, then Condition (iii) implies
that φ(X inf) ⊆ Y inf and φ(Xfin) ⊆ Y fin. When X and Y are infinite-symbol
shift spaces, the following proposition shows Condition (iii) may be replaced
by another condition that is easier to verify.

Proposition 4.2. Let A be an alphabet, and let X,Y ⊆ ΣA be infinite-
symbol shift spaces over A. Then ~0 ∈ X and ~0 ∈ Y , and φ : X → Y is a
shift morphism if and only if φ satisfies the following three conditions:

(i) φ : X → Y is continuous.
(ii) φ ◦ σ = σ ◦ φ.

(iii′) φ(x) = ~0 if and only if x = ~0.

Proof. Because X and Y are infinite-symbol, it follows from Proposition
3.19 that ~0 ∈ X and ~0 ∈ Y . It is clear that any shift morphism must
satisfy (iii′). Suppose φ satisfies (i), (ii), and (iii′). We shall show that
φ must satisfy Condition (iii) in Definition 4.1. If x ∈ X and l(x) = ∞,

then for every k ∈ N we have σk(x) 6= ~0. Hence for all k ∈ N, we have

σk(φ(x)) = φ(σk(x)) 6= ~0, and l(φ(x)) = ∞. Likewise, if l(x) < ∞, then

σl(x)(φ(x)) = φ(σl(x)(x)) = φ(~0) = ~0, and for any k < l(x) we have σk(x) 6= ~0

and σk(φ(x)) = φ(σk(x)) 6= ~0. Thus l(φ(x)) = l(x). �

Remark 4.3. If X and Y are finite-symbol shift spaces, then X = X inf

and Y = Y inf, so Condition (iii) in Definition 4.1 is always satisfied. Thus
if X and Y are finite-symbol shift spaces, a function φ : X → Y is a shift
morphism if and only if φ is continuous and φ ◦ σ = σ ◦ φ. Thus we recover
the “classical definition” of a shift morphism in the finite-symbol case.

Remark 4.4. If X and Y are shift spaces, there are four cases to consider
depending on whether each of X and Y is finite-symbol or infinite-symbol.
If X and Y are both infinite-symbol, conditions for a function φ : X → Y
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to be a shift morphism are given by Proposition 4.2. If X and Y are both
finite-symbol, then Remark 4.3 shows that a function φ : X → Y is a shift
morphism if and only if Condition (i) and Condition (ii) of Definition 4.1 are
satisfied. If X is finite-symbol and Y is infinite-symbol, then X = X inf and
a function φ : X → Y is a shift morphism if and only if Condition (i) and
Condition (ii) of Definition 4.1 are satisfied and φ(X) ⊆ Y inf. If X is infinite-

symbol and Y is finite-symbol, then ~0 ∈ X and ~0 /∈ Y by Proposition 3.19,
so that Condition (iii) of Definition 4.1 is never satisfied, and there are no
shift morphisms from X to Y .

Remark 4.5. If X is a shift space, the shift map σ|X : X → X is not

in general a shift morphism because σ|X is not continuous at ~0. In fact,
σ|X : X → X is a shift morphism if and only if X is a finite-symbol shift

space, in which case ~0 /∈ X and X = X inf (cf. Proposition 3.19).

The following lemma is elementary but very useful.

Lemma 4.6. Let A be an alphabet, let X,Y ⊆ ΣA be shift spaces over A,
and let φ : X → Y be a shift morphism. If a ∈ A, x ∈ ΣA, and ax ∈ X,
then

φ(ax) = bφ(x)

for some b ∈ A.

Proof. Since σ(φ(ax)) = φ(σ(ax)) = φ(x), it follows that φ(ax) = bφ(x)
for some b ∈ A. �

Remark 4.7. Note that in Lemma 4.6 although ax ∈ X implies x ∈ X,
it is not necessarily the case that a ∈ X. Hence it does not make sense in
general to apply φ to a. Moreover, even when a ∈ X, it is in general not
true that φ(ax) = φ(a)φ(x) — so the b in Lemma 4.6 need not be φ(a) even
when φ(a) is defined.

Definition 4.8. Let A be an alphabet, and let X,Y ⊆ ΣA be shift spaces
over A. A function φ : X → Y is a conjugacy if φ is a shift morphism and
φ is bijective. If there exists a conjugacy from X to Y , we say X and Y are
conjugate and we write X ∼= Y .

Remark 4.9. Since any shift space is compact, we see that if φ : X → Y
is a conjugacy, then φ must be a homeomorphism. Thus if φ : X → Y is a
conjugacy, its set-theoretic inverse φ−1 : Y → X is also a conjugacy.

Remark 4.10. If we fix an alphabet A, we may form a category whose ob-
jects are all shift spaces over A and whose morphisms are the shift morphisms
between these shift spaces. Using Remark 4.9 we see that isomorphism in
this category is precisely the relation of conjugacy.
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5. Analogues of shifts of finite type

In the theory of shift spaces over finite alphabets, the most widely studied
class of shift spaces are the “shifts of finite type”. Shifts of finite type
provide tractable examples of shift spaces that also have many applications
throughout dynamics and other parts of mathematics. A shift of finite type
is defined to be a shift that can be described by a finite number of forbidden
blocks; that is, X = XF for a finite set F of blocks. When the alphabet is
finite, one can show that X is a shift of finite type if and only if X is an
M -step shift (i.e., X = XF for a set F with each block in F having length
M+1) if and only if X is an edge shift (i.e., X is the shift space coming from
a finite directed graph with no sinks where the edges are used as symbols).

In this section we shall consider analogues of the shifts of finite type for
shift spaces over infinite alphabets. Here phenomena will be more ramified,
and we shall find that the shifts of finite type, the M -step shifts, and the
edge shifts give us three distinct classes of shift spaces.

Definition 5.1. Let A be an alphabet, and let X ⊆ ΣA be a shift space.
We say that X is a shift of finite type if there is a finite set of blocks F ⊆ Σfin

A
such that X = XF .

Remark 5.2. One näıve approach to extending the definition of shifts of
finite type to infinite alphabets is to consider “shifts of countable type”; that
is, shifts of the form XF for a countable set of blocks F . However, if A is
finite or countably infinite, then one can see that the collection Σfin

A of all
blocks is countable, and hence when A is finite or countably infinite, every
shift space will be a shift of countable type. Thus this definition does not
recover the familiar definition when the alphabet is finite, and moreover, the
class of “shifts of countable type” seems too broad to lend itself to tractable
study.

Definition 5.3. Let A be an alphabet, and let X ⊆ ΣA be a shift space.
If M ∈ N ∪ {0}, we say that X is an M -step shift if there is a set of blocks
F ⊆ Σfin

A such that X = XF and l(x) = M + 1 for all x ∈ F .

Remark 5.4. Note that a 0-step shift is simply the full shift over the al-
phabet A \ F . Thus our primary interest is in M -step shifts for M ≥ 1.

Proposition 5.5. Let A be an alphabet, and let X ⊆ ΣA be a shift space.
If there exists a set of blocks F ⊆ Σfin

A and a number M ∈ N∪ {0} such that
X = XF and l(x) ≤M + 1 for all x ∈ F , then X is M -step.

Proof. Let F ′ := {uv : u ∈ F , v ∈ Σfin
A , and l(v) = (M + 1)− l(u)}. Then

every element of F ′ has length M + 1. In addition, we see that X inf
F = X inf

F ′ ,
and by Corollary 3.9 we have that XF = XF ′ . Thus X is M -step. �

Corollary 5.6. Any M -step shift is also an (M + 1)-step shift.

Corollary 5.7. If X is a shift of finite type, then X is an M -step shift for
some M ∈ N ∪ {0}.
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Proof. Let X be a shift of finite type, and write X = XF for some finite
set F ⊆ Σfin

A . If F = ∅, then X is a 0-step shift. If F 6= ∅, then since
F is finite, the value N := max{l(x) : x ∈ F} is a natural number. If we
define M := N − 1, then l(x) ≤ M + 1 for all x ∈ F , and X is M -step by
Proposition 5.5. �

Example 5.17 shows that the converse of this corollary is false.

Definition 5.8. A directed graph E = (E0, E1, r, s) consists of a countable
set E0 (whose elements are called vertices), a countable set E1 (whose ele-
ments are called edges), a map r : E1 → E0 identifying the range of each
edge, and a map s : E1 → E0 identifying the source of each edge.

Definition 5.9. If E = (E0, E1, r, s) is a graph, a vertex v ∈ E0 is called a
sink if s−1(v) = ∅, and v is called an infinite emitter if s−1(v) is an infinite
set. We write E0

sinks for the set of sinks of E, and we write E0
inf for the set

of infinite emitters of E. The graph E is said to be finite if both E0 and
E1 are finite sets, and E is said to be infinite otherwise. The graph E is
said to be countable if both E0 and E1 are countable sets, and E is said to
be uncountable otherwise. The graph E is called row-finite if E contains no
infinite emitters; that is, E is row-finite if and only if E0

inf = ∅.

Definition 5.10. If E = (E0, E1, r, s) is a graph, a path in E is a finite
sequence of edges α := e1 . . . en with r(ei) = s(ei+1) for 1 ≤ i ≤ n − 1. We
say the path α has length n, and we write l(α) = n to denote this. We also
let En denote the set of paths of length n. We extend the maps r and s to
En by defining r(α) := r(en) and s(α) := s(e1). In addition, we consider
vertices to be paths of length zero, and when α = v ∈ E0, we write l(α) = 0,
r(α) := v, and s(α) := v. Note that our notation of E0 and E1, for set
of vertices and set of edges, agrees with our notation for paths of length
zero and one. We define an infinite path in E to be an infinite sequence
α := e1e2 . . . of edges with r(ei) = s(ei+1) for i ∈ N. We write E∞ for the
set of infinite paths in E, and we extend s to E∞ by defining s(α) := s(e1).

Definition 5.11. If E = (E0, E1, r, s) is a graph with no sinks, we let
A := E1 be the alphabet consisting of the edges of E, and we define the
edge shift of E to be the closure of E∞ inside ΣE1 .

Proposition 5.12. If E is a graph with no sinks, then the edge shift XE

is a shift space over A := E1. If E1 is finite, then XE = E∞, and if E1 is
infinite, then

XE = E∞ ∪

{
α : α ∈

∞⋃
n=1

En and r(α) is an infinite emitter

}
∪ {~0}

where ~0 denotes the empty path. In addition, in either case the length func-
tion on ΣA agrees with the length function on the paths (when we take the

length of the zero path ~0 to be zero), and X inf
E = E∞.
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Proof. When E1 is finite the result is well known. We shall prove the result
when E1 is infinite. Let

X := E∞ ∪

{
α : α ∈

∞⋃
n=1

En and r(α) is an infinite emitter

}
∪ {~0}.

We shall first prove that X is a shift space. To begin, we show that X is
closed in ΣA. Suppose {αn}∞n=1 ⊆ ΣA is a convergent sequence of elements
in X, and let α = limn→∞ α

n. If l(α) =∞, then α = e1e2 . . . for e1, e2, . . . ∈
E1. Since limn→∞ α

n = α, for any m ∈ N there exists αn with l(αn) ≥ m+1
and αn = e1 . . . emem+1β for some path β. Thus r(em) = s(em+1) for all
m ∈ N, and α = e1e2 . . . is an infinite path in E, and α ∈ X. If l(α) < ∞,

then either α = ~0 in which case α ∈ X, or α = e1 . . . ek for e1, . . . , ek ∈ E1.
In the latter case, we either have αn equal to α for some n (in which case
α ∈ X), or there exist infinitely many f ∈ E1 for which some αn has the form
e1 . . . ekfβ for some path β in E. Thus α = e1 . . . ek is a finite path in E,
and r(α) has infinitely many edges f with source r(ek), so that r(α) = r(ek)
is an infinite emitter in E. Hence α ∈ X.

Next, we see that σ(X) ⊆ X since the shift map σ simply removes the
first edge from any path.

Finally, we show that X satisfies the infinite-extension property. Suppose
that α ∈ X with l(α) < ∞. If α 6= ~0, then r(α) is an infinite emitter, and
there exist infinitely many e ∈ s−1(r(α)). For each such e the fact that E
has no sinks implies that there exists an infinite path β ∈ E∞ such that
s(β) = r(e). Thus αeβ is an infinite path in E, and αeβ ∈ X. If α = ~0,
then for each e ∈ E1 the fact that E has no sinks implies that there exists
an infinite path β ∈ E∞ such that s(β) = r(e). Thus αeβ = eβ is an
infinite path in E, and αeβ ∈ X for each e ∈ E1. Hence X satisfies the
infinite-extension property.

Moreover, the length functions agree since they are both equal to the
number of symbols (i.e., edges) appearing in a path. It then follows that
X inf consists of the infinite paths in X, and X inf = E∞. It follows from

Proposition 3.8 that X inf = X, and thus E∞ = X. Hence X is the edge
shift of E, and XE = X. �

Corollary 5.13. If E is a graph with no sinks, then the edge shift XE is
row-finite if and only if the graph E is row-finite, and the edge shift XE is
finite-symbol if and only if the graph E has finitely many edges.

Remark 5.14. Note that when E1 is infinite the elements of XE are infinite
paths, finite paths of positive length ending at infinite emitters, and the zero
path ~0. In particular, we observe that we do not include the vertices (i.e.,
paths of length zero) from E as elements of XE . Also note that if E1 is

finite we do not include ~0 as an element of XE , while if E1 is infinite we do
include ~0.
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Definition 5.15. A shift space X is called an edge shift if X is conjugate
to XE for a graph E with no sinks.

Proposition 5.16. If XE is an edge shift, then XE is a 1-step shift.

Proof. Suppose XE is an edge shift corresponding to a graph

E = (E0, E1, r, s).

Let
F := {ef : e, f ∈ E1 and r(e) 6= s(f)}.

Then the blocks in F all have length 2. In addition, it is easy to verify that
X inf
E = X inf

F = E∞, and by Corollary 3.9 we have that XE = XF . Hence
XE is a 1-step shift space. �

The following is an example of an edge shift that is not a shift of finite
type.

Example 5.17. Let E be the graph

• e1 // • e2 // • e3 // • e4 // · · ·
and let XE be the edge shift associated to E. We shall argue that XE is
not a shift of finite type over A := E1. Suppose F is a finite subset of Σfin

A .
Since F is a finite collection of finite sequences of edges, there exists n ∈ N
such that the edge en does not appear in any element of F . Thus the infinite
sequence enen . . . is allowed, and enen . . . ∈ XF . However, enen . . . /∈ XE , so
XE 6= XF .

The following is an example of a 1-step shift that is not an edge shift.

Example 5.18. Let A = {a1, a2, a3, . . .} be a countably infinite alphabet,
and let

F := {aiaj : i 6= 1 and i 6= j}.
Then XF is a 1-step shift, since every forbidden block in F has length 2.
We shall show that XF is not an edge shift. For the sake of contradiction,
suppose that E is a graph and that φ : XF → XE is a conjugacy. For
each i ∈ N we see that a1aiaiai . . . contains no forbidden blocks, and hence
a1aiaiai . . . ∈ XF . It follows that a1 = limi→∞ a1aiai . . . ∈ XF . Let e ∈ E1

be the edge with e := φ(a1). (Note that since φ is a conjugacy it preserves
length and takes elements of length one to elements of length one.) In
addition, from Lemma 4.6 we have that for each i ∈ N there exists xi ∈ E1

with
φ(a1aiaiai . . .) = xiφ(aiaiai . . .).

Hence

e = φ(a1) = φ( lim
i→∞

a1aiaiai . . .) = lim
i→∞

φ(a1aiaiai . . .) = lim
i→∞

xiφ(aiaiai . . .)

and it follows that there exists N ∈ N such that xi = e for all i ≥ N .
Since the element aNaNaN . . . ∈ XF has period 1 and φ is a conjugacy,
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φ(aNaNaN . . .) has period 1 and φ(aNaNaN . . .) = fff . . . for some f ∈ E1.
(Recall that the period of an element x is the smallest value of k ∈ N such
that σk(x) = x.) Thus

φ(a1aNaNaN . . .) = eφ(aNaNaN . . .) = efff . . .

and in the graph E we have r(e) = s(f) = r(f).
Furthermore, since e = limi→∞ eφ(aiaiai . . .), there exists j > N such that

φ(ajajaj . . .)1 6= f . Since ajajaj . . . has period 1, it follows φ(ajajaj . . .) has
period 1, and thus φ(ajajaj . . .) = ggg . . . for some g ∈ E1 with g 6= f . Since

φ(a1ajajaj . . .) = eφ(ajajaj . . .) = eggg . . . ,

it follows that r(e) = s(g) = r(g) in the graph E.
Thus there exist f, g ∈ E1 with s(f) = r(f) = s(g) = r(g) and f 6= g.

Hence fgfgfg . . . ∈ XE and fgfgfg . . . has period 2. Since φ−1 : XE → XF
is a conjugacy, φ−1(fgfgfg . . .) has period 2, and

φ−1(fgfgfg . . .) = b1b2b1b2b1b2 . . . ∈ XF

for some b1, b2 ∈ A with b1 6= b2. However, since b1 6= b2, one of b1 and b2
is not equal to a1, and hence either b1b2 is forbidden or b2b1 is forbidden.
Thus b1b2b1b2b1b2 . . . /∈ XF and we have a contradiction. Hence XF is not
an edge shift.

Remark 5.19. In the “classical situation” of shifts over finite alphabets
the three classes of (1) shifts of finite type, (2) edge shifts, and (3) M -step
shifts coincide. When we consider shift spaces over infinite alphabets these
three classes are distinct.

Proposition 5.16 and Example 5.18 show the class of edge shifts is a proper
subset of the class of M -step shifts.

{edge shifts} ( {M -step shifts}

Corollary 5.7 and Example 5.17 show the class of shifts of finite type is a
proper subset of the class of M -step shifts.

{shifts of finite type} ( {M -step shifts}

Finally, Example 5.17 gives an edge shift that is not a shift of finite type, so
we know the class of shifts of finite type is not the same as the class of edge
shifts.

{shifts of finite type} 6= {edge shifts}.

The authors have been unable to determine whether all shifts of finite type
are edge shifts or whether there exists a shift of finite type that is not an
edge shift.

Question 1. Is every shift of finite type an edge shift?
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We conjecture the answer to Question 1 is “No”.

It follows from Corollary 5.6 that every M -step shift is an (M + 1)-step
shift. These containments may be summarized as follows:

{0-step shifts} ⊆ {1-step shifts} ⊆ {2-step shifts} ⊆ · · ·
It is natural to ask if these containments are all proper.

Question 2. For each M ∈ N ∪ {0} does there exist an (M + 1)-step shift
space that is not conjugate to any M -step shift?

We conjecture the answer to Question 2 is “Yes”.

6. Row-finite shift spaces

Although the analogues of the shifts of finite type that we described in
the previous section seem a bit complicated, we shall show in this section
that when the shifts are also row-finite the classes of edge shifts and M -step
shifts coincide, and we are able to obtain generalizations of some classical
results.

Proposition 6.1. If A is an infinite alphabet and X is a shift of finite type
over A, then X is not row-finite.

Proof. Since X = XF for some finite subset F ⊆ Σfin
A , and A is infinite,

there exists an infinite sequence of distinct elements a1, a2, . . . ∈ A such
that an does not appear in any block contained in F . If we define xn :=
a1ananan . . ., then xn ∈ XF because no subblock of xn appears in F . Thus
a1 = limn→∞ xn ∈ XF , and Xfin contains an element other than the empty
sequence ~0. It follows from Proposition 3.21 that XF is not row-finite. �

Proposition 6.2. If A is an alphabet and X is a 1-step shift space over A
that is row-finite, then X is conjugate to the edge shift of a row-finite graph.

Proof. Since X is 1-step, we may write X = XF for some set F ⊆ A2.
Since X is row-finite, Proposition 3.21 implies that Xfin is equal to either
{~0} or ∅. Define a graph E := (E0, E1, r, s) by setting E0 := A, E1 :=
{(a, b) : ab /∈ F}, r(a, b) = b, and s(a, b) = a. (So, in particular, we draw
an edge from a to b if and only if ab is not a forbidden block.) Note that
infinite paths in E have the form (a1, a2)(a2, a3)(a3, a4) . . .. Because X is
a row-finite shift space, any symbol appearing in a sequence in X can only
be followed by finitely many symbols, and hence E is a row-finite graph. In
addition, E1 is infinite if and only if X is infinite-symbol.

Define φ : XE → X as follows:

φ(α) :=

{
a1a2a3 . . . if α = (a1, a2)(a2, a3) . . .
~0 if α = ~0

Note that a1a2 . . . is allowed in X if and only if (a1a2)(a2, a3) . . . is a path
in E. Thus the map φ does indeed take values in X.
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We will show that φ is continuous, and to this end we recall from Re-
mark 3.24 that

{Z(x) : x ∈ Σfin
A } ∪ {Z(∅, F ) : F is a finite subset of A}

is a basis for the topology on X.
Suppose x = a1 . . . ak with k ≥ 2. Then

φ−1(Z(a1 . . . ak)) = Z((a1, a2) . . . (ak−1, ak))

is an open set. Next, suppose x = a1 and let

S = {b ∈ A : a1b is a subblock of some element in X}.

Since X is row-finite, S is a finite set. Also, since any nonempty sequence
in X is infinite, we have Z(a1) =

⋃
b∈S Z(a1b), and

φ−1(Z(a1)) = φ−1

(⋃
b∈S

Z(a1b)

)
=
⋃
b∈S

φ−1(Z(a1b)) =
⋃
b∈S

Z(a1, b)

is an open set.
Finally, suppose x = ~0 and F is a finite subset of A. Since X is row-finite,

for each b ∈ F the set Sb := {bc : bc is a subblock of some element in X} is
finite. Let us define F ′ : {(b, c) : b ∈ F, c ∈ Sb}, which is a finite subset of
the alphabet of XE . Then

φ−1(Z(~0, F )) = φ−1

(
X \

⋃
b∈F

Z(b)

)
= φ−1

X \ ⋃
b∈F,c∈Sb

Z(bc)


= XE \

⋃
b∈F,c∈Sb

φ−1(Z(bc)) = XE \
⋃

b∈F,c∈Sb

Z(b, c) = Z(~0, F ′)

is an open set. It follows that φ : XE → X is continuous.
It is straightforward to verify that φ ◦ σ = σ ◦ φ. In addition, φ preserves

lengths of elements. (Note that every element either has infinite length or
length zero.) Thus φ is a shift morphism. Furthermore, it is straightforward
to check that φ is bijective, so that φ is a conjugacy and X is conjugate to
the edge shift XE . �

Definition 6.3. Let u = u1u2 . . . uN and v = v1v2 . . . vN be N -blocks. We
say that u and v overlap progressively if u2u3 . . . uN = v1v2 . . . vN−1.

Let X be a row-finite shift space over the alphabet A. For any N ∈ N,
we may consider the set BN (X) of allowed N -blocks of X and view it as an
alphabet in its own right. We define the N th higher block code φN : X →
ΣBN (X) to be the shift morphism given by

(φN (x))i = xixi+1 . . . xi+N−1

if x 6= ~0 and φN (~0) = ~0. Observe that (φN (x))i and (φN (x))i+1 overlap
progressively.
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Definition 6.4. Let X be a row-finite shift space over the alphabet A, let
N ∈ N, and let φN : X → ΣBN (X) be the N th higher block code. Then the

N th higher block shift X [N ] (or N th higher block presentation of X) is the

image X [N ] := φN (X).

Proposition 6.5. Let N ∈ N and let X be a row-finite shift space over the
alphabet A. Then X [N ] is a row-finite shift space over the alphabet BN (X),

and the N th higher block code φN is a conjugacy. Hence X ∼= X [N ].

Proof. The proof that X [N ] is a shift space is precisely the same as in
the finite case [16, Proposition 1.4.3]. It is also straightforward to verify
that φN is an injective shift morphism. Therefore φN is a conjugacy, and
X ∼= X [N ]. �

Proposition 6.6. If X is a row-finite M -step shift space for M ∈ N, then
X is conjugate to a row-finite 1-step shift space.

Proof. Suppose X is a row-finite M -step shift space over A. Since X is
M -step, we may write X = XF for a subset F ⊆ AM+1. Since X is row-
finite, the M th higher block shift X [M ] is row-finite and conjugate to X
by Proposition 6.5. However, X [M ] is the shift over the alphabet BM (X)
described by the forbidden blocks

F ′ := {(x1 . . . xM )(x2 . . . xM+1) : x1 . . . xM+1 ∈ F}
∪ {(u1 . . . uM )(v1 . . . vM ) : (u1 . . . uM ) and (v1 . . . vM )

do not overlap progressively}.

Since all blocks in F ′ have length 2, the shift space X [M ] is 1-step. �

Proposition 6.7. If X is a row-finite shift space, then the following are
equivalent.

(a) X is an edge shift.
(b) X is a 1-step shift space.
(c) X is an M -step shift space for some M ∈ N.

Proof. (a) ⇒ (c). This follows from Proposition 5.16.
(c) ⇒ (b). This follows from Proposition 6.6.
(b) ⇒ (a). This follows from Proposition 6.2. �

Remark 6.8. In Remark 5.19 we discussed the relationship among the
classes of (1) shifts of finite type, (2) edge shifts, and (3) M -step shifts. In
the row-finite situation, these relationships take an even nicer form: Propo-
sition 6.1 shows there are no row-finite shifts of finite type over infinite
alphabets; i.e.,

{row-finite shifts of finite type over infinite alphabets} = ∅.
Proposition 6.7 shows that in the row-finite setting the classes of edge shifts
and M -step shifts coincide; i.e.,

{row-finite edge shifts} = {row-finite M -step shifts}.
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Thus for row-finite shift spaces over infinite alphabets, the appropriate way
to generalize shifts of finite type is not to consider shift spaces described by
finite sets of forbidden blocks, but rather to study the class of edge shifts of
row-finite graphs (which coincides with the class of row-finite M -step shifts).

7. Sliding block codes on row-finite shift spaces

In the theory of shifts over finite alphabets, the Curtis–Hedlund–Lyndon
Theorem states that any shift morphism is equal to a sliding block code.
The way this is proven is as follows: If φ : X → Y is a shift morphism, then
the continuity of φ and the compactness of X implies that φ is uniformly
continuous with respect to the standard metric on X giving the topology.
Any two sequences in X that are close in this metric are equal along some
initial segment, and hence one may define a block map Φ : Bn(X)→ A and
use the fact that φ commutes with the shift to show φ is the sliding block
code coming from Φ.

For shifts over infinite alphabets, this proof does not work. A shift mor-
phism φ : X → Y is continuous, and X is compact, so φ is uniformly
continuous with respect to any metric describing the topology on X. How-
ever, two sequences that are close in such a metric need not be equal along
any initial segment — for example, their initial edges could simply be “far
out” in the space A∞ and therefore close to ∞ and close to each other, but
not equal. (See the metric described in Section 2.3.)

In general, when we work over an infinite alphabet, shift morphisms will
be more complicated than what occurs in the finite alphabet case. In this
section we prove that if we consider shift morphisms on row-finite shift
spaces, we are able to obtain a generalized “sliding block code” description
of the shift morphisms. However, these sliding block codes will be of two
kinds: unbounded and bounded. The bounded sliding block codes can be
written just as those in the finite alphabet case and come from a single N -
block map, but describing the unbounded sliding block codes will require a
sequence of block maps on blocks of unbounded size.

We restrict to countable alphabets in this section to obtain the strongest
results that we can and also to simplify some proofs.

Definition 7.1. If X and Y are shift spaces over a countable alphabet A,
and X is row-finite, we say that a function φ : X → Y is a sliding block code
if the following two criteria are satisfied:

(a) If {xn}∞n=1 ⊆ X and limn→∞ x
n = ~0, then limn→∞ φ(xn) = ~0.

(b) For each a ∈ A there exists a natural number n(a) ∈ N and a
function Φa : Bn(a)(X) ∩ Z(a)→ A such that

φ(x1x2x3 . . .)i = Φxi(xi . . . xn(xi)+i−1)

for all i ∈ N and for all x1x2x3 . . . ∈ X inf.
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We say that a sliding block code is bounded if there exists M ∈ N such that
n(a) ≤ M for all a ∈ A, and unbounded otherwise. We call a sliding block
code φ an M -block code if there exists a block map Φ : BM (X) → A such
that φ(x1x2x3 . . .)i = Φ(xi . . . xM+i−1) for all i ∈ N and for all x1x2x3 . . . ∈
X inf. (In other words, a sliding block code is an M -block code if n(a) = M
and Φa = Φ|Z(a) for all a ∈ A.)

Remark 7.2. Note that if ~0 ∈ X, then Property (a) implies that φ(~0) = ~0

and that φ is continuous at ~0. In addition, Property (b) shows that

φ(x1x2x3 . . .) = Φx1(x1 . . . xn(x1))Φ
x2(x2 . . . xn(x2)+1)Φx3(x3 . . . xn(x3)+2) . . .

for all x1x2x3 . . . ∈ X inf. This motivates the terminology: The functions
Φxi “slide” along x1x2x3 . . . to give the entries of φ(x1x2x3 . . .).

Lemma 7.3. Let A be a countable alphabet, and let X and Y be shift spaces
over A. If X is row-finite and φ : X → Y is a sliding block code, then φ is
a shift morphism.

Proof. For each a ∈ A choose n(a) ∈ N and a function Φa : Bn(a)(X) ∩
Z(a)→ A such that

φ(x1x2x3 . . .) = Φx1(x1 . . . xn(x1))Φ
x2(x2 . . . xn(x2)+1)Φx3(x3 . . . xn(x3)+2) . . .

for all x1x2x3 . . . ∈ X inf.
We shall first show that φ is continuous. Since A is countable, Corol-

lary 2.18 implies that X is first countable and it suffices to verify that φ is
sequentially continuous. By Property (a) of sliding block codes, φ is continu-

ous at ~0. Suppose that x ∈ X inf and that {xn}∞n=1 ⊆ X with limn→∞ x
n = x.

Without loss of generality, we may assume that l(xn) = ∞ for all n ∈ N.
Since limn→∞ x

n = x for any N ∈ N there exists a value M ∈ N such that
xmi = xi for 1 ≤ i ≤ N + max{n(xi) : 1 ≤ i ≤ N} whenever m ≥ M . Thus
for all 1 ≤ i ≤ N we have

φ(x)i = Φxi(xi . . . xn(xi)+i−1) = Φxi(xmi . . . x
m
n(xi)+i−1) = φ(xm)i

whenever m ≥M . Thus limn→∞ φ(xn) = φ(x) and φ is continuous.
Next we verify that φ commutes with the shift. If x ∈ X inf, then

σ(φ(x)) = σ
(
Φx1(x1 . . . xn(x1))Φ

x2(x2 . . . xn(x2)+1)Φx3(x3 . . . xn(x3)+2

)
. . .)

= Φx2(x2 . . . xn(x2)+1)Φx3(x3 . . . xn(x3)+2)Φx4(x4 . . . xn(x4)+3) . . .)

= φ(x2x3x4 . . .)

= φ(σ(x))

so that φ commutes with the shift map σ.
Finally, if ~0 ∈ X, then φ(~0) = ~0 by Property (a) in the definition of a

sliding block code. Thus φ is a shift morphism. �
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Lemma 7.4. Let A be a countable alphabet, and let X and Y be shift spaces
over A with X row-finite. If φ : X → Y is a shift morphism and a ∈ A,
then there exists n ∈ N such that whenever u ∈ Bn(X)∩Z(a), ux ∈ X, and
uy ∈ X, then

φ(ux)1 = φ(uy)1.

Proof. Suppose the claim does not hold. Then for each n ∈ N there exists
un ∈ Bn(X) ∩ Z(a), unxn ∈ X, and unyn ∈ X such that

φ(unxn)1 6= φ(unyn)1.

Consider the sequence {unxn}∞n=1 and {unyn}∞n=1 in Z(a). Since Z(a) is
compact by Lemma 2.9, there exists convergent subsequences {unkxnk}∞k=1
and {unkynk}∞k=1 converging to a (nonzero) element of Z(a). Since X
is row-finite, this implies that there exists z ∈ X with l(z) = ∞ and
limk→∞ u

nkxnk = z. Because n1 < n2 < n3 < . . . and l(unk) = nk, we
see that limk→∞ u

nkynk = z also. However, since

lim
k→∞

unkxnk = lim
k→∞

unkynk = z,

the continuity of φ implies that

lim
k→∞

φ(unkxnk) = lim
k→∞

φ(unkynk) = φ(z).

Since l(z) =∞, we know l(φ(z)) =∞. Hence for a large enough k we have

φ(unkxnk)1 = φ(unkynk)1,

which is a contradiction. �

Proposition 7.5. Let A be a countable alphabet, and let X and Y be shift
spaces over A. If X is row-finite and φ : X → Y is a shift morphism, then
φ is a sliding block code. Moreover, if φ is a bounded sliding block code with
bound M , then we may choose Φ : BM (X)→ A such that

φ(x1x2x3 . . .) = Φ(x1 . . . xM )Φ(x2 . . . xM+1)Φ(x3 . . . xM+2) . . .

and φ is an M -block code.

Proof. Since φ is a shift morphism, if ~0 ∈ X then φ(~0) = ~0 and φ is

continuous at ~0. Thus Property (a) of Definition 7.1 is satisfied.
We now establish Property (b) of Definition 7.1. For each a ∈ A, Lem-

ma 7.4 implies that there exists n(a) ∈ N such that if u ∈ Bn(a)(X) ∩ Z(a),
ux ∈ X, and uy ∈ X, then

(7.1) φ(ux)1 = φ(uy)1.

Define the map Φa : Bn(a)(X) ∩ Z(a) → A as follows: For each u ∈
Bn(a)(X) ∩ Z(a), the fact that X is row-finite implies that u is a subblock
of an infinite sequence in X, and by shifting we may choose u as the initial
segment of an infinite path. Thus there exists xn ∈ X such that uxn ∈ X.
We then define

Φa(u) := φ(uxn)1.
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We see that φ is well defined by (7.1). Furthermore, for all x ∈ X inf we have

φ(x)i = σi−1(φ(x))1 = φ(σi−1(x))1 = φ(xixi+1 . . .)1 = Φxi(xi . . . xn(xi)+i−1).

Thus φ is a sliding block code.
Moreover, if there exists M ∈ N such that n(a) ≤ M for all a ∈ A,

then when defining Φa above we can instead define Φa : BM (X) → A by
Φa(u) := φ(ux)1 for any x ∈ X with ux ∈ X. This function is likewise well
defined, and so the Φa agree for all a ∈ A. Thus we let Φ := Φa for any
(and hence all) a ∈ A, and φ is an M -block code. �

The following may be considered a generalization of the Curtis–Hedlund–
Lyndon Theorem to row-finite shift spaces over countable alphabets.

Theorem 7.6. Let A be a countable alphabet, and let X and Y be shift
spaces over A. If X is row-finite and φ : X → Y is a function, then φ is a
shift morphism if and only if φ is a sliding block code. Moreover, if φ is a
bounded sliding block code, then φ is an M -block code from some M ∈ N.

Proof. The result follows from Lemma 7.3 and Proposition 7.5. �

Proposition 7.7. Let X, Y , and Z be shift spaces over a countable alphabet
A, and let X and Y be row-finite. If φ : X → Y is a bounded sliding block
code, and ψ : Y → Z is a bounded sliding block code, then the composition
ψ ◦φ : X → Z is a bounded sliding block code. Moreover, if φ is an M -block
code and ψ is an N -block code, then ψ ◦ φ is an (M +N − 1)-block code.

Proof. Since φ and ψ are bounded sliding block codes, it follows from Theo-
rem 7.6 that φ is an M -block code and ψ is an N -block code for some M,N ∈
N. Let Φ : BM (X)→ A be an M -block map for φ and let Ψ : BN (Y )→ A
be an N -block map for ψ, so that φ(x1x2x3 . . .)i = Φ(xi . . . xM+i−1) and
ψ(y1y2y3 . . .)i = Ψ(yi . . . yN+i−1) for all i ∈ N and for all x1x2x3 . . . ∈ X inf

and y1y2y3 . . . ∈ Y inf.
Since φ and ψ are each continuous at ~0, it follows that ψ ◦φ is continuous

at ~0 and Property (a) from Definition 7.1 is satisfied. To verify Property (b),
we define an (M +N − 1)-block map ∆ : BM+N−1(X)→ A by

∆(a1 . . . aM+N−1) := Ψ(Φ(a1 . . . aM )Φ(a2 . . . aM+1) . . .Φ(aN . . . aM+N−1)).

Then for any x1x2x3 . . . ∈ X inf and any i ∈ N we have

ψ ◦ φ(x1x2x3 . . .)i

= Ψ(φ(x1x2x3 . . .)iφ(x1x2x3 . . .)i+1 . . . φ(x1x2x3 . . .)i+N−1)

= Ψ(Φ(xi . . . xM+i−1)Φ(xi+1 . . . xM+i) . . .Φ(xN+i−1 . . . xM+N+i−2))

= ∆(xi . . . xM+N+i−2)

so that ψ ◦ φ is an M + N − 1-block map, and ψ ◦ φ is a bounded sliding
block code. �
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Proposition 7.8. Let A be a countable alphabet, and let X be a row-finite
shift space over A. Choose M ∈ N, let X [M ] be the M th higher block pre-
sentation of X, and let φM : X → X [M ] be the M th-higher block code from
X to X [M ] (see Definition 6.3 and Definition 6.4). Then φM : X → X [M ] is
an M -block code that is also a conjugacy, and moreover, the inverse of φM
is a 1-block code.

Proof. It is clear that the shift morphism φM : X → X [M ] is an M -
block code coming from the M -block map Φ : BM (X) → B1(X [M ]) given

by Φ(a1 . . . aM ) = a1 . . . aM . (Recall that B1(X [M ]) = BM (X).) Let

πM : X [M ] → X be the shift morphism coming from the 1-block map
Π : B1(X [M ]) → A given by Π(a1 . . . am) = a1. One can easily verify
that π is an inverse for φ. �

Proposition 7.9 (Recoding to a 1-block code). Let A be a countable alpha-
bet, let X and Y be shift spaces over A, and suppose that X is row-finite.
If ψ : X → Y is an M -block code, and if X [M ] denotes the M th higher block
presentation of X and φM : X → X [M ] denotes the M th-higher block code
from X to X [M ] (see Definition 6.3 and Definition 6.4), then there exists a

1-block code ψ[M ] : X [M ] → Y such that ψ[M ] ◦ φM = ψ. In particular, the
following diagram commutes:

X

Y

X [M ]

ψ

φM
∼=

ψ[M ]

Proof. Let Ψ : BM (X) → A be an M -block map that defines ψ. Define

the 1-block code ψ[M ] : X [M ] → Y by ψ[M ](x)i := Ψ(xi). Then for all i ∈ N
we have

(ψ[M ] ◦ φM (x))i = Ψ(φM (x)i) = Ψ(xi . . . xi+M−1) = ψ(x)i,

and ψ[M ] ◦ φM = ψ. �

Remark 7.10. Note that if the map ψ in Proposition 7.9 is a conjugacy,
then the fact that φM is a conjugacy (see Proposition 7.8) implies that ψ[M ]

is also a conjugacy. Moreover, if ψ is a conjugacy with bounded inverse,
then Proposition 7.7 and Proposition 7.8 imply that ψ[M ] has a bounded
inverse.

We now describe a method to determine if a sliding bock code is bounded.

Definition 7.11. Let X be a shift space. We define the boundedness metric
D on X inf by

D(x, y) :=

{
1/2n if n is the smallest value such that xn 6= yn

0 if x = y
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for all x, y ∈ X inf.

Remark 7.12. Note that if X is infinite-symbol, the boundedness metric
D on X inf cannot be extended to a metric on X that gives the topology of
X. In particular, if {xn}∞n=1 ⊆ X and limn→∞ x

n = ~0, then the sequence
{xn}∞n=1 is not Cauchy with respect to D — indeed there are arbitrarily
large m,n ∈ N with D(xm, xn) = 1/2.

On the other hand, if X is finite-symbol, then D induces the usual metric
on X inf = X.

Proposition 7.13. Let A be a countable alphabet, and let X and Y be shift
spaces over A. If X is row-finite and φ : X → Y is a sliding block code,
then φ is bounded if and only if φ|Xinf is uniformly continuous with respect
to the boundedness metric D of Definition 7.11.

Proof. Suppose φ is a bounded sliding block code, and let M ∈ N and
Φ : BM (X) → A such that φ(x)i = Φ(xi . . . xi+M−1) for all i ∈ N. Let
ε > 0. Choose N ∈ N such that 1/2N < ε. Let δ := 1/2M+N . If x, y ∈ X inf

and D(x, y) < δ, then D(x, y) < 1/2M+N , and xi = yi for all 1 ≤ i ≤M+N .
It follows that

φ(x)i = Φ(xi . . . xi+M−1) = Φ(yi . . . yi+M−1) = φ(y)i

for all 1 ≤ i ≤ N . Thus D(φ(x), φ(y)) < 1/2N < ε, and φ|Xinf is uniformly
continuous with respect to the boundedness metric D.

Conversely, suppose that φ is uniformly continuous with respect to the
boundedness metric D. Then there exists δ > 0 such that if x, y ∈ X inf and
D(x, y) < δ, then d(φ(x), φ(y)) < 1/2. Choose M ∈ N such that 1/2M < δ.
Define a block map Φ : BM (X) → A as follows: For any u ∈ BM (X), u
is a subblock of an element in X inf. Since σ(X) ⊆ X we may choose u so
that it is the initial segment of this element, and thus there exists x ∈ X
with ux ∈ X. We then define Φ(u) := φ(ux)1. To see that Φ is well defined,
suppose that x, y ∈ X with ux, uy ∈ X. Then D(ux, uy) < 1/2M < δ, and
hence D(φ(ux), φ(uy)) < 1/2. It follows that φ(ux)1 = φ(uy)1, and Φ is
well-defined. We shall now show that φ is equal to the sliding block code
determined by Φ. Suppose x ∈ X. Then the fact that φ commutes with the
shift map implies that

φ(x)i = σi−1(φ(x))1 = φ(σi−1(x))1 = φ(xixi+1 . . .)1 = Φ(xi . . . xi+M−1).

Thus φ is the M -block code determined by Φ, and φ is bounded. �

Corollary 7.14. If X is a finite-symbol shift space, then any shift morphism
is an M -block code for some M ∈ N.

Proof. Since X is finite-symbol, the topology induced by the boundedness
metric D is equal to the topology on X inf = X. Since X is a shift space,
X is compact. Thus any shift morphism, which is continuous by definition,
must be uniformly continuous with respect to the metric D. It follows from
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Theorem 7.6 that any shift morphism is a sliding block code, and it follows
from Proposition 7.13 that any sliding block code is bounded, and hence an
M -block code for some M ∈ N. �

8. Symbolic dynamics and C∗-algebras

Shifts of finite type have a long history of interaction with C∗-algebras of
graphs. Since the seminal work of Cuntz and Krieger in the early 1980’s, it
has been known that if two finite graphs have conjugate edge shifts, then
the Cuntz–Krieger algebras (i.e., the graph C∗-algebras) of those graphs are
isomorphic.

In this section we show how our formulation of shift spaces over infinite
alphabets allows us to extend this result to infinite graphs. In particular, we
show that if E and F are countable graphs, and the edge shifts XE and XF

are conjugate in the sense we have described in this paper, then the graph
C∗-algebras C∗(E) and C∗(F ) are isomorphic. This gives credibility to our
definition of shift spaces over countable alphabets, and shows that — at the
very least — it is a viable definition for graph C∗-algebras.

8.1. C∗-algebras of countable graphs and their groupoids.

Definition 8.1. If E = (E0, E1, r, s) is a directed graph, the graph C∗-
algebra C∗(E) is the universal C∗-algebra generated by mutually orthogonal
projections {pv : v ∈ E0} and partial isometries with mutually orthogonal
ranges {se : e ∈ E1} satisfying:

(1) s∗ese = pr(e) for all e ∈ E1.

(2) ses
∗
e ≤ ps(e) for all e ∈ E1.

(3) pv =
∑
{e∈E1:s(e)=v} ses

∗
e for all v ∈ E0 with 0 < |s−1(v)| <∞.

Definition 8.2. We call Conditions (1)–(3) in Definition 8.1 the Cuntz–
Krieger relations. Any collection {Se, Pv : e ∈ E1, v ∈ E0} where the
Pv are mutually orthogonal projections, the Se are partial isometries with
mutually orthogonal ranges, and the Cuntz–Krieger relations are satisfied
is called a Cuntz–Krieger E-family. For a path α := e1 . . . en, we define
Sα := Se1 . . . Sen and when α = v is a vertex we define Sα := Pv.

Definition 8.3. If E = (E0, E1, r, s) is a directed graph with no sinks, the
boundary path space of E is the set

∂E := E∞ ∪

{
α ∈

∞⋃
n=0

En : r(α) is an infinite emitter

}
.

For each α ∈
⋃∞
n=0E

n and any finite subset F ⊆ E1, we define

Z(α, F ) := {αγ : γ ∈ ∂E, r(α) = s(γ), and γ1 /∈ F}.
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We give ∂E the topology whose basis consists of the sets{
Z(α, F ) : α ∈

∞⋃
n=0

En and F ⊆ E1 is finite

}
.

Remark 8.4. Note that the boundary path space ∂E includes some of the
vertices — namely the infinite emitters — and that in the basis elements
Z(α, F ), the path α is allowed to be an infinite emitter. The boundary path
space is similar to the edge shift of a graph, but not exactly the same. In
fact, if E is a graph, ∂E is the boundary path space, E0

inf denotes the set of
infinite emitters in E, and XE is the edge shift of E, then

∂E = (XE \ {~0}) ∪ E0
inf

as sets. Moreover, with the topologies defined on ∂E and XE , one can see
that if {xn}∞n=1 ⊆ XE \ {~0}, and limn→∞ x

n = x with x ∈ XE \ {~0}, then
limn→∞ x

n = x in ∂E. Similarly, if {xn}∞n=1 ⊆ ∂E, limn→∞ x
n = x in ∂E,

l(x) ≥ 1, and l(xn) ≥ 1 for all n ∈ N, then limn→∞ x
n = x in XE .

Also note that if {e1, e2, . . .} are distinct edges in E, then limn→∞ en = ~0
in XE , whereas the sequence {en}∞n=1 converges in ∂E if and only if there is
a vertex v ∈ E0

inf and N ∈ N such that s(en) = v for all n ≥ N , and in this
case limn→∞ en = v in ∂E.

Definition 8.5. If E = (E0, E1, r, s) is a directed graph with no sinks, the
graph groupoid GE is defined by

GE :=

{
(αγ, l(α)− l(β), βγ) : α, β ∈

∞⋃
n=0

En,

γ ∈ ∂E, and r(α) = r(β) = s(γ)

}
.

If (x, k, y) ∈ GE we define the range map r(x, k, y) = y and source map
s(x, k, y) = x. Two elements (x, k, y), (y′, l, z) ∈ GE are composable if and
only if y = y′, in which case we define (x, k, y) · (y, l, z) := (x, k + l, z).
The inverse of (x, k, y) ∈ GE is defined to be (x, k, y)−1 = (y,−k, x). If
α, β ∈

⋃∞
n=0E

n with r(α) = r(β) = v, and if F is a finite subset of E1, we
define

Z(α, β, F ) := (αγ, l(α)− l(β), βγ) : γ ∈ ∂E, s(γ) = v, and γ1 /∈ F}.

We give GE the topology generated by the collection of all Z(α, β, F ).

Remark 8.6. Paterson shows in [19] that the collection Z(α, β, F ) forms a
basis for a locally compact Hausdorff topology making GE into a topological
groupoid, that the source map (x, k, y) 7→ x is a local homeomorphism
from GE to the boundary path space ∂E, and that the groupoid C∗-algebra
C∗(GE) is isomorphic to the graph C∗-algebra C∗(E).
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Proposition 8.7. Let E and F be countable graphs with no sinks and no
sources, and suppose that φ : XE → XF is a conjugacy. The function

φ̃ : ∂E → ∂F defined by

φ̃(α) :=

{
φ(α) if l(α) ≥ 1

r(φ(e)) if α = v ∈ E0
inf and e ∈ r−1(v)

is well defined and a homeomorphism from ∂E onto ∂F .

Proof. We first show that φ̃ is well defined. The only issue is when α = v ∈
E0

inf is an infinite emitter. Choose e, f ∈ E1 with r(e) = r(f) = v. Choose
an infinite sequence of distinct edges e1, e2, . . . ∈ s−1(v), and for each n ∈ N,
choose xn ∈ E∞ such that enx

n ∈ E∞. By Lemma 4.6 for each n ∈ N there
exists bn ∈ E1 such that

φ(eenx
n) = bnφ(enx

n)

and there exists cn ∈ E1 such that

φ(fenx
n) = cnφ(enx

n).

Since

φ(e) = φ( lim
n→∞

eenx
n) = lim

n→∞
φ(eenx

n) = lim
n→∞

bnφ(enx
n)

there exists N ∈ N such that n ≥ N implies bn = φ(e). Likewise, since

φ(f) = φ( lim
n→∞

fenx
n) = lim

n→∞
φ(fenx

n) = lim
n→∞

cnφ(enx
n)

there exists M ∈ N such that n ≥ M implies cn = φ(f). Let K :=
max{N,M}. Then

φ(eeKx
K) = φ(e)φ(eKx

K)

so that r(φ(e)) = s(φ(eKx
K)), and

φ(feKx
K) = φ(f)φ(eKx

K)

so that r(φ(f)) = s(φ(eKx
K)). Hence r(φ(e)) = r(φ(f)) and φ̃ is well-

defined.
Next, we show that φ̃ is continuous. Since E is countable, ∂E is first

countable, and it suffices to show that φ̃ is sequentially continuous. Through-
out we shall use the fact that, since φ is a conjugacy, φ preserves lengths.
Let {xn}∞n=1 ⊆ ∂E be a convergent sequence with x = limn→∞ x

n in ∂E.
If l(x) ≥ 1, then eventually l(xn) ≥ 1 and xn ∈ XE . (See Remark 8.4.)

Thus x = limn→∞ x
n in XE , and hence limn→∞ φ̃(xn) = limn→∞ φ(xn) =

φ(limn→∞ x
n) = φ(x) = φ̃(x) in XF and also ∂F . If l(x) = 0, then x =

v ∈ E0
inf is an infinite emitter, and eventually s(xn) = v. Since E has no

sources, we may choose an edge e ∈ E1 with r(e) = v. Eventually exn is
a path in ∂E, and limn→∞ ex

n = e in ∂E, so that limn→∞ ex
n = e in XE .

(See Remark 8.4.) As before, this implies that limn→∞ φ̃(exn) = φ̃(e) in ∂F .

If l(xn) ≥ 1, then by Lemma 4.6 we have that φ(exn) = bnφ(xn) = bnφ̃(xn)
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for some bn ∈ F 1. Since limn→∞ φ(exn) = φ(e) in XF there exists N ∈ N
such that

n ≥ N and l(xn) ≥ 1 =⇒ φ(exn) = φ(e)φ(xn)

and hence n ≥ N and l(xn) ≥ 1 implies s(φ(xn)) = r(φ(e)) = φ̃(v). If
l(xn) = 0, then xn is an infinite emitter and there exists M ∈ N such that

n ≥M and l(xn) = 0 =⇒ xn = r(e) = v.

Hence for n ≥M and l(xn) = 0 we have

φ(exn) = φ(e) = φ(e)r(φ(e)) = φ(e)φ̃(r(e)) = φ(e)φ̃(xn),

and thus φ̃(xn) = r(φ(e)) = φ̃(v). If we let K := max{N,M}, then for any
n ≥ K we have

φ̃(exn) = φ(exn) = φ(e)φ̃(xn)

and therefore

lim
n→∞

φ̃(exn) = lim
n→∞

φ(e)φ̃(xn)

in ∂F . Since limn→∞ φ̃(exn) = φ̃(e) = φ(e) in ∂F , we have

lim
n→∞

φ̃(xn) = r(φ(e)) = φ̃(v).

Thus φ̃ is continuous.

We have shown that φ̃ : ∂E → ∂F is well defined and continuous. To

show φ̃ is a homeomorphism, we simply define φ̃−1 : ∂F → ∂E by

φ̃−1(α) :=

{
φ−1(α) if l(α) ≥ 1

r(φ−1(f)) if α = v ∈ F 0
inf and f ∈ r−1(v).

By a symmetric argument, φ̃−1 is well defined and continuous, and it is

straightforward to check that φ̃−1 is the inverse of φ̃. Thus φ̃ is a homeo-
morphism. �

Theorem 8.8. Let E and F be countable graphs with no sinks and no
sources. If XE

∼= XF , then GE ∼= GF .

Proof. Let φ : XE → XF be a conjugacy, and define H : GE → GF by

H(αγ, l(α)− l(β), βγ) := (φ̃(αγ), l(α)− l(β), φ̃(βγ))

where φ̃ : ∂E → ∂F is the homeomorphism defined in Proposition 8.7.
Observe that if either αγ or βγ is an infinite emitter, then

(φ̃(αγ), l(α)− l(β), φ̃(βγ)) ∈ GF
because φ̃ preserves lengths. If γ has positive length, then

σl(α)(φ̃(αγ)) = σl(α)(φ(αγ)) = φ(σl(α)(αγ)) = φ(γ) = φ(σl(β)(βγ))

= σl(β)(φ(βγ)) = σl(β)(φ̃(βγ)).
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Hence φ̃(αγ) = δφ(γ) for some path δ in F with l(δ) = l(α) and φ̃(βγ) =
εφ(γ) for some path ε in F with l(ε) = l(β), and hence

(φ̃(αγ), l(α)− l(β), φ̃(βγ)) ∈ GF .
Thus H does indeed take values in GF .

To see that H is continuous, we observe that the following diagram com-
mutes:

GE
H //

rGE
��

GF
rGF
��

∂E
φ̃
// ∂F

where rGE and rGF denote the range maps on GE and GF , respectively.

Since rGE and rGF are local homeomorphisms, and φ̃ is a homeomorphism
by Proposition 8.7, it follows that H is continuous.

Finally, to see that H is a homeomorphism, we simply define H−1 : GF →
GE by

H−1(αγ, l(α)− l(β), βγ) := (φ̃−1(αγ), l(α)− l(β), φ̃−1(βγ))

and by a symmetric argument, we obtain that H−1 : GF → GE is a well-
defined continuous map. It is straightforward to check that H−1 is an inverse
for H, and thus H is a homeomorphism. �

Corollary 8.9. Let E and F be countable graphs with no sinks and no
sources. If XE

∼= XF , then C∗(E) ∼= C∗(F ).

Proof. This follows from the fact that for any graph E, the groupoid C∗-
algebra C∗(GE) is isomorphic to the graph C∗-algebra C∗(E), and from the
fact that isomorphic groupoids produce isomorphic groupoid C∗-algebras.

�

8.2. Leavitt path algebras of countable graphs. Leavitt path algebras
are algebraic counterparts of graph C∗-algebra and they have attracted a
great deal of attention in the past 8 years [1]. Here we show that if two
countable graphs have shift spaces that are conjugate, then the Leavitt path
algebras of the graphs are isomorphic.

Definition 8.10. Let E be a directed graph, and let K be a field. The
Leavitt path algebra of E with coefficients in K, denoted LK(E), is the
universal K-algebra generated by a set {v : v ∈ E0} of pairwise orthogonal
idempotents, together with a set {e, e∗ : e ∈ E1} of elements satisfying:

(1) s(e)e = er(e) = e for all e ∈ E1.
(2) r(e)e∗ = e∗s(e) = e∗ for all e ∈ E1.
(3) e∗f = δe,f r(e) for all e, f ∈ E1.

(4) v =
∑

{e∈E1:s(e)=v}

ee∗ whenever 0 < |s−1(v)| <∞.
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Theorem 8.11. Let E and F be countable graphs with no sinks and no
sources. If XE

∼= XF , then LC(E) ∼= LC(F ).

Proof. If XE and XF are conjugate, then Theorem 8.8 implies that the
groupoids GE and GF are isomorphic. It follows that the algebras A(GE)
and A(GF ) (as defined in [7, Definition 3.3]) are isomorphic. However,
[7, Proposition 4.3] and [7, Remark 4.4] imply that A(GE) ∼= LC(E) and
A(GF ) ∼= LC(F ). �

8.3. C∗-algebras and Leavitt path algebras of row-finite graphs.
In this section we prove that row-finite graphs with conjugate edge shifts
give rise to isomorphic C∗-algebras. In this setting, we explicitly define the
isomorphism (Theorem 8.13). Corollary 8.9 in Section 8.1 is similar but
distinct. Theorem 8.13 and Corollary 8.9 both assume that the underlying
graphs have no sinks. Corollary 8.9 applies in the countable graph set-
ting but assumes that the underlying graphs have no sources. By contrast,
Theorem 8.13 applies to row-finite graphs that may contain sources and
explicitly constructs the isomorphism. This result together with its general-
ization (Theorem 8.16) therefore recovers the classical fact that if two finite
graphs with no sinks have conjugate edge shifts, then their Cuntz–Krieger
algebras are isomorphic.

Remark 8.12. If E is a row-finite graph, Property (2) of the Cuntz–Krieger
relations in Definition 8.1 is redundant. If E is a row-finite graph, a collection
of elements {Se, Pv : e ∈ E1, v ∈ E0} in a C∗-algebra B is a Cuntz–Krieger
E-family if {Pv : v ∈ E0} is a collection of mutually orthogonal projections,
{Se : e ∈ E1} is a collection of partial isometries, and the following two
relations are satisfied:

(CK1) S∗eSe = Pr(e) for all e ∈ E1.

(CK2) Pv = Σs(e)=vSeS
∗
e whenever v ∈ E0 is not a sink.

In proof of the following theorem it will be convenient for us to use the
following notation: If E = (E0, E1, r, s) is a graph and v ∈ E0, we write

vEn := {α ∈ En : s(α) = v}.

Theorem 8.13. Let E and F be row-finite directed graphs with no sinks.
Let {se, pv} be a generating Cuntz–Krieger E-family for C∗(E) and {te, qv}
be a generating Cuntz–Krieger F -family for C∗(F ). If ψ : XF → XE is a 1-
block conjugacy with a bounded inverse φ : XE → XF , and if Φ : Bn(XE)→
F 1 is the n-block map associated to φ, then there exists a ∗-isomorphism
π : C∗(E)→ C∗(F ) with

π(se) =
∑
g∈F 1

∃α∈r(e)En−1

Φ(eα)=g

tg and π(pv) =
∑
g∈F 1

∃β∈vEn

Φ(β)=g

tgt
∗
g.
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Proof. Fix e ∈ E1 and define

Se :=
∑
g∈F 1

∃α∈r(e)En−1

Φ(eα)=g

tg, Pv :=
∑
g∈F 1

∃β∈vEn

Φ(β)=g

tgt
∗
g.

We have

S∗eSe =
∑
g∈F 1

∃α∈r(e)En−1

Φ(eα)=g

tg
∗

∑
h∈F 1

∃µ∈r(e)En−1

Φ(eµ)=h

th

=
∑

g,h∈F 1

∃α,µ∈r(e)En−1

Φ(eα)=g
Φ(eµ)=h

t∗gth =
∑
g∈F 1

∃α∈r(e)En−1

Φ(eα)=g

t∗gtg (by the CK-relations)

=
∑
g∈F 1

∃α∈r(e)En−1

Φ(eα)=g

qr(g) =
∑
g∈F 1

∃α∈r(e)En−1

Φ(eα)=g

∑
h∈F 1

s(h)=r(g)

tht
∗
h (by the CK-relations)

=
∑
h∈F 1

∃g∈F 1

∃α∈r(e)En−1

s(h)=r(g)
Φ(eα)=g

tht
∗
h.

We show that the set

K := {h ∈ F 1 : ∃g ∈ F 1 and α ∈ r(e)En−1

with s(h) = r(g) and Φ(eα) = g}
is equal to

L := {h ∈ F 1 : ∃β ∈ r(e)En with Φ(β) = h}.
Let Ψ be the 1-block map that defines ψ. Since ψ ◦ φ = IdXE

(8.1) Ψ ◦ Φ : Bn(XE)→ B1(XE) is defined by xi . . . xi+n−1 7→ xi.

Let h ∈ K. Then s(h) = r(g), which implies Ψ(g)Ψ(h) ∈ E2. Observe
that e = Ψ(Φ(eα)) = Ψ(g). There exists β ∈ En such that Φ(β) = h.
Thus β1 = Ψ(Φ(β)) = Ψ(h). Therefore Ψ(g)Ψ(h) = eβ1 ∈ E2. Hence
h ∈ L. To show the other containment let h ∈ L. Then eβ ∈ En+1. Define
g := Φ(eβ1 . . . βn−1). So Φ(eβ1 . . . βn−1)Φ(β) = gh ∈ F 2, thus s(h) = r(g).
Therefore h ∈ K. Now we have

S∗eSe =
∑
h∈F 1

∃g∈F 1

∃α∈r(e)En−1

s(h)=r(g)
Φ(eα)=g

tht
∗
h =

∑
h∈F 1

∃β∈r(e)En

Φ(β)=h

tht
∗
h = Pr(e).
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By definition

∑
s(e)=v

SeS
∗
e =

∑
s(e)=v


∑
g∈F 1

∃α∈r(e)En−1

Φ(eα)=g

tg
∑
h∈F 1

∃µ∈r(e)En−1

Φ(eµ)=h

t∗h

 .

Notice that tgt
∗
h = 0 unless r(g) = r(h) by the Cuntz–Krieger relations.

Suppose g, h ∈ F 1 such that r(g) = r(h). Since F has no sinks there exists
a path x1x2 . . . ∈ F∞ such that gx1x2 . . . , hx1x2 . . . ∈ F∞. The map φ is
surjective so there exists f1f2 . . . , b1b2 . . . ∈ E∞ such that φ(ef1f2 . . .) =
gx1x2 . . . and φ(eb1b2 . . .) = hx1x2 . . .. By Equation (8.1)

(8.2) fi = Ψ ◦ Φ(fi · · · fn+i−1) = Ψ(xi) = Ψ ◦ Φ(bi · · · bn+i−1) = bi

for all i ∈ N. Therefore gx1x2 . . . = φ(ef1f2 . . .) = φ(eb1b2 . . .) = hx1x2 . . .,
which implies g = h. Thus tgt

∗
h = 0 for all g 6= h. Hence

(8.3)
∑
s(e)=v


∑
g∈F 1

∃α∈r(e)En−1

Φ(eα)=g

tg
∑
h∈F 1

∃µ∈r(e)En−1

Φ(eµ)=h

t∗h

 =
∑
s(e)=v

∑
g∈F 1

∃α∈r(e)En−1

Φ(eα)=g

tgt
∗
g.

By Equation (8.2)∑
s(e)=v

SeS
∗
e =

∑
s(e)=v

∑
g∈F 1

∃α∈r(e)En−1

Φ(eα)=g

tgt
∗
g =

∑
g∈F 1

∃eα∈vEn

Φ(eα)=g

tgt
∗
g = Pv.

Therefore {Se, Pv} is a Cuntz–Krieger E-family in C∗(F ) and there exists a
∗-homomorphism π : C∗(E)→ C∗(F ) with

π(se) =
∑
g∈F 1

∃α∈r(e)En−1

Φ(eα)=g

tg and π(pv) =
∑
g∈F 1

∃β∈vEn

Φ(β)=g

tgt
∗
g.

To see that π is injective we check that the hypotheses of the gauge-
invariant uniqueness theorem hold [3, Theorem 2.1]. By assumption, the
projections qv ∈ C∗(F ) are all nonzero. Observe that for each v ∈ E0,
π(pv) is the sum of mutually orthogonal projections. So π(pv) = 0 if and
only if each summand is zero, which is not possible. We know that C∗(E)
has a gauge action γE and C∗(F ) has a gauge action γF . To check that
π ◦ γEz = γFz ◦ π it suffices to check on generators. It is clear that this
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relation holds for the projections pv. Note that

π ◦ γEz (se) = π(zse) = z(π(se)) = z
∑
g∈F 1

∃α∈r(e)En−1

Φ(eα)=g

tg =
∑
g∈F 1

∃α∈r(e)En−1

Φ(eα)=g

ztg

=
∑
g∈F 1

∃α∈r(e)En−1

Φ(eα)=g

γFz (tg) = γFz


∑
g∈F 1

∃α∈r(e)En−1

Φ(eα)=g

tg

 = γFz ◦ π(se).

Therefore, the gauge-invariant uniqueness theorem implies that π is injec-
tive.

To see that π is surjective it suffices to show that for all g ∈ F 1 the
element tg is in the image of π. Fix a ∈ F 1. By Equation (8.2) there exists
a unique edge e ∈ E1 such that for all α ∈ En with Φ(α) = a we have
α1 = e. Observe that

π

se
∑

f∈r(e)E1

∃α∈r(f)En−2

Φ(efα)=a

sfs
∗
f



=
∑
b∈F 1

∃µ∈r(e)En−1

Φ(eµ)=b

tb
∑

f∈r(e)E1

∃α∈r(f)En−2

Φ(efα)=a


∑
g∈F 1

∃β∈r(f)En−1

Φ(fβ)=g

tg
∑
h∈F 1

∃ν∈r(f)En−1

Φ(fν)=h

t∗h



=
∑
b∈F 1

∃µ∈r(e)En−1

Φ(eµ)=b

tb
∑

f∈r(e)E1

∃α∈r(f)En−2

Φ(efα)=a


∑
g∈F 1

∃β∈r(f)En−1

Φ(fβ)=g

tgt
∗
g

 by Equation (8.3).

Notice that ta is in the sum ∑
b∈F 1

∃µ∈r(e)En−1

Φ(eµ)=b

tb.
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Also observe that in the sum∑
f∈r(e)E1

∃α∈r(f)En−2

Φ(efα)=a

∑
g∈F 1

∃β∈r(f)En−1

Φ(fβ)=g

tgt
∗
g

we have that α = β1 · · ·βn−2 therefore we have

∑
b∈F 1

∃µ∈r(e)En−1

Φ(eµ)=b

tb
∑

f∈r(e)E1

∃α∈r(f)En−2

Φ(efα)=a


∑
g∈F 1

∃β∈r(f)En−1

Φ(fβ)=g

tgt
∗
g



=
∑
b∈F 1

∃µ∈r(e)En−1

Φ(eµ)=b

tb


∑
g∈F 1

f∈F 1

∃β∈r(f)En−1

Φ(fβ)=g
Φ(efβ1···βn−2)=a

tgt
∗
g



=
∑
b∈F 1

∃µ∈r(e)En−1

Φ(eµ)=b

tb


∑
g∈F 1

∃fβ∈r(e)En

Φ(fβ)=g
Φ(efβ1···βn−2)=a

tgt
∗
g


.

It is evident that the set

{g ∈ F 1 : ∃fβ ∈ r(e)En such that Φ(fβ) = g, and Φ(efβ1 · · ·βn−2) = a}

is contained in the set {g ∈ F 1 : s(g) = r(a)}. Therefore we show the other
containment. Let g ∈ F 1 such that s(g) = r(a). Then ag ∈ F 2. Thus there
exists ν ∈ r(e)En such that Φ(eν1 · · · νn−1) = a and Φ(ν) = g. Therefore

∑
b∈F 1

∃µ∈r(e)En−1

Φ(eµ)=b

tb


∑
g∈F 1

∃fβ∈r(e)En

Φ(fβ)=g
Φ(efβ1···βn−2)=a

tgt
∗
g


=

∑
b∈F 1

∃µ∈r(e)En−1

Φ(eµ)=b

tb

 ∑
r(a)=s(g)

tgt
∗
g


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=
∑
b∈F 1

∃µ∈r(e)En−1

Φ(eµ)=b

tbqr(a) = taqr(a) = ta. �

In order to simplify the description of the C∗-algebra isomorphism π in
Theorem 8.13 we assumed that ψ : XF → XE is a 1-block conjugacy. This
hypothesis can be replaced with the more general assumption that ψ is a
bounded conjugacy.

Definition 8.14. Let E = (E0, E1, r, s) be a graph, and let N ∈ N. The N th

higher block graph E[N ] is the graph whose vertex set is (E[N ])0 := EN−1,

whose edge set is (E[N ])1 := EN , and for e1 · · · eN ∈ EN the range and

source maps are defined by r[N ](e1 · · · eN ) := e2 . . . eN and s[N ](e1 · · · eN ) :=
e1 . . . eN−1.

Lemma 8.15. Let E be a row-finite graph with no sinks and let N ∈ N.
Then (XE)[N ] = XE[N ], and C∗(E) ∼= C∗(E[N ]).

Proof. The letters for (XE)[N ] are the N -blocks from XE , which are the
paths of length N in E. However, these are also the letters for XE[N ] . An
infinite sequence of these letters is in either shift space precisely when the
letters (i.e., N -blocks) overlap progressively. Thus (XE)[N ] = XE[N ] .

The fact that C∗(E) ∼= C∗(E[N ]) is [2, Theorem 3.1]. �

Theorem 8.16. If E and F are row-finite graphs with no sinks, and if
ψ : XF → XE is a bounded conjugacy with bounded inverse, then C∗(E) ∼=
C∗(F ) via an explicit isomorphism.

Remark 8.17. If ψ is a conjugacy and E and F are finite graphs with no
sinks, then ψ and its inverse are automatically bounded.

Proof. Proposition 7.9 and Remark 7.10 show that there exists a 1-block
conjugacy ψ[M ] : (XF )[M ] → XE with bounded inverse. Lemma 8.15 shows

that (XF )[M ] = XF [M ] . Hence by Theorem 8.13 there exists an isomorphism

π : C∗(E) → C∗(F [M ]). Lemma 8.15 also provides an isomorphism π′ :

C∗(F [M ])→ C∗(F ). Therefore C∗(E) ∼= C∗(F ) via the explicit isomorphism
π′ ◦ π. �

Remark 8.18. The proofs of Theorem 8.13, [2, Theorem 3.1], and The-
orem 8.16 go through mutatis mutandis for Leavitt path algebras. Thus
similar results hold, and if E and F are finite graphs with no sinks and XE

is conjugate to XF via a conjugacy ψ : XF → XE , the method described
in the proof of Theorem 8.16 can be used to give an explicit isomorphism
ρ : LK(E)→ LK(F ) between the Leavitt path algebras of E and F for any
field K.

Corollary 8.19. Let E and F be finite graphs with no sinks, and let K be
any field. If XE is conjugate to XF , then LK(E) is isomorphic to LK(F ).
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