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ON OSCILLATION FUNCTION OF ONE CLASS OF
STOCHASTIC PROCESSES

Jelena Bulatovié and Slobodanka Jangié

0. Let X = {X(t), 0 <t < 1} be a stochastic process of second order, i.e.
a process for which the inequality || X (¢)|| < oo holds for any ¢, where the norm
of arbitrary random variable z is defined by ||z|| = (z,2)'/? = (E|z|?)'/2. By the
convergence of a sequence of random variables we mean the convergence in the
norm, i.e. the convergence in quadratic mean. We say that the left (right) limit
of X at t exists if there exists a random variable X (t — 0) (X (¢ + 0)), such that
X(t-0)= 1}._i>¥r£1(.)X(u) (X(t+0) = 1}—1>tr-1;-10X(u)) If at least one of the equalities

X(t—0)=X() =X(t+0) do not hold, we say that X has the discontinuity of
the kind at t. If at least one of limits X (¢ — 0), z(t +0) do not exist, we say that X
has the discontinuity of the second kind at t; if only X (¢t — 0) (X (¢ + 0)) does not
exist, then we say that X has the left (right) discontinuity of the second kind at t.

In the following we shall suppose, without loss of generality, that, if for some
t there exists only one of limits X (¢ — 0), X (¢ 4+ 0), then it is equal to X (¢), and if
there exist the both limits X (¢ — 0) and X (¢ + 0), then the eqality X (t —0) = X (¢)
is satisfied. We shall say that X is mean square continuous from the left (right) at
t if the eqality X(t — 0) = X (¢) (X(¢t) = X (¢ +0)) holds. The process X is mean
square cotninuos from the left (right) if it is mean square continuous from the left
(right) at any t.

Let us define the function w = w(t) by

(1) wt)= sup  lim [[X(t,) - X(t)ll,  t€[0:1],
(tn)i(tnl)ert n—oo

where I'; denotes the set of all sequences which converge to ¢ and whose members
are from [0; 1]; the function w we shall call the oscillation function of the process
X. If the set [0; 1] N[t — h; ¢ + h] we denote by i; 4, then it is easy to show that the
following equality holds:

(2) w(t)=inf sup [X(u)-X()[, te0;1].
h>0y,v€i; g,
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In this paper we shall prove some properties of the function w, and some
statements about stochastic processes we shall prove by means of the function w;
also, we shall that, in one special case, for any function w of fixed properties there
exists a stochastic process (not unique) whose oscillation function is just equal to
given function w.

1. It is evident that the equality w(t) = 0 holds if and only if X is mean
square continuous at t. The following lemma contains the proposition which is well
known for real function, [3].

LEMMA 1. The function w is an upper semi-continuous function.

PROOF. Let ¢ be arbitrary point from [0; 1] and w(¢) = s > 0. In order the
function w to be upper semi-continuous at t it is necessary and sufficient that for
any € > 0 there § > 0, such that the inequality w(u) < s+ ¢ holds for each u € i 6.
Let us suppose that this is not the case, that is that there is g > 0, such that for
each § > 0 there is at least one u € ;5 for which the inequality w(u) > s + &¢
is satisfied. This means that, on at least one side of ¢, there is a sequence (u,),
converging to ¢, whose members have the property

w(un) > s + &o, n=12,...;
that implies, by reason of the definition (1), that for each n there are u,’, u,"
(un',un” S it,3|t—un|/2)7 such that

1X (un") — X (un")|| > s +€0/2,

which gives as a consequence

lim || X (u,") — X (u,")|| > s +¢€0/2,

n—oo

which contradicts the assumption w(t) = s.
COROLLARY 1.1. The set Dy = {t:w(t) > s} is closed for any s > 0, [3].

COROLLARY 1.2. The function w is continuous at all points at which it is
equal to zero.

LEMMA 2. If X(to — 0) exists, then w(to — 0) exists and w(to — 0) = 0.

ProOF. Let (t,) be an arbitrary increasing sequence converging to to; we
are going to show that w(t,) — 0 when n — oco. For each £ > 0 there is he > 0,
such that the inequality

3) [X(u) = X(v)l| <e

ia true for all u, v € (to — he;to); let us denote by k. the smallest natural number
such that ¢, € (to — he;to). From (3) it follows that for arbitraty sequences (¢ ),
(tg,n) from T, it will be

T | X (th,0) — X(t,)]| < € for each k > k.,
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which is equivalent to the fact that w(tx) — 0 when k¥ — co. As the same conclusion
holds for each sequence increasingly converging to g, our lemma is proved.

LEMMA 3. If the process X is mean square continuous from the left on
everywhere dense set E, Leb (E) = 1, then for each € > 0 there exists a set C C
[0;1], Leb (C) > 1 — ¢, such that X is mean square continuous on C.

ProOOF. From the fact that the function w is measurable [2], it follows that
for any € > 0 there is a continuous function w,, such that [2]

Leb ({t: w(t) = w.(t)}) > 1 —¢;

put C = {t: w(t) = w.(t)}. Since w.(t —0) =0 for all t € C' N E, and the function
w, is continuous, it follows that w.(t) = 0 for all t € C'N E. But, as the set CN E
is dence in C, this implies that the equality w.(t) = 0 holds for each ¢ € C, which
means that X is mean square continuous on C, as we wanted to prove.

Let us denote by T} the set of all sequences which decreasingly converge to
t, and by wt = w™(t) the function defined by

(4) wh(t)=  sup  lim [ X(tn) = X(t)ll, t€[0;1).

(tn)o(tn")elF "7

It is easy to see that the equality wt(t) = 0 holds if and only if X (¢t + 0) exists,
which immediately implies the inequality

(5) wt(t) < w(t) for each te€[0;1).
The function w' we shall call the right oscillation function of X.

THEOREM 1. Suppose that the process X is mean square continuous from
the left everywhere except at some set D~ , which is at most countable. Then the
following statements are true:

I. The process X has at most countably many right discontinuities of the
second kind.

II. The set D} = {t:wt(t) > s} is nowhere dense for any s > 0.

Proor. I. This statement is equivalent to the statement that the set DT =
{t:wt(t) > 0} is at most contable. Let us suppose that this is not true, i.e. that

(6) card (DV) = ¥;.
This implies that there is s > 0, such that
(7) card (D}) = Ny;

for, if the contrary is the case, i.e. if card (D) < Nq for any s > 0, then the set
Dt = U;’f:lD;L/n is also at most countable, contary to the hypothesis (6). Let
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s = 5o be one of values for which (7) is true. Since, by reason of Corollary 1.1,
the set D;'B is closed (namely, we can show, by the procedure which is similar
to that from Lemma 1, that the function w™ is upper semi-continuous), it has to
contain one perfect subset P, , such that card (P,) = Ny, [3]. From the assumption
card (D) < Ny it follows card (D~ N Py,) < Rp, which means that there are at
most countably many values ¢ for which the inequalities wt(t — 0) > so hold; this
implies, for the set Py, is perfect and card (Ps,) = ¥;, that card ({t:wt(t +0) >
S0}) = N1. But, that means that there are continuously many values ¢ for which the
inequalities wt(t — 0) # wt(t + 0) hold, which is impossible, [3]. Hence, it must be
card (D}) < Ng for any s > 0, that is card (D) < Ng.

II. Let us suppose that the statement does not hold, i.e. that, for some s > 0,
there are to € D} and h > 0, such that in the neighbourhood iy, p, to to there is no
interval whose all points are from the complement D} of the set D}; hence, the
set D} Ny, p is dense in iy,,. From that, and from the fact that the set D} is
closed, it follows that i, ,, C D}, which contradicts the statement from. I. Thus
the proof is completed.

It is clear that the result from I is stronger than the statement (i) from [1].

Note that in proofs of statement, in which the mean square continuity from
the left of the process X is presupposed, only the assumption about the existence
of left limits of X is used.

2. We showed that any stochastic process, mean square continuous from the
left, uniquely determines a non-negative function wt with the following properties:

(a) wt is upper semi-continuous function;

(b) wt(t—0) =0 for any t € (0;1];

() card (D*) < Ro;

(d) the set D is nowhere dense for any s > 0.

The natural question is: if wy is arbitrary non-negative function with the
above properties (a)—(d), does there always exist a process X, whose function w™,
defined by (4), satisfies the equality

wt(t) = wo(t) for each t.

If we were to answer that question, we need some preliminary results.

LEMMA 4. Suppose that a non-negative upper semi-continuous function wy,
defined on [0; 1], satisfies the condition wo(t —0) = 0 for all t € (0;1]. If the set
D = {t:wy(t) > 0} is at most countable and nowhere dense, then there exists a
process X, whose right oscillation function satisfied the equality

(8) wh (t) = wo(t) for each t.

ProoF. First of all we shall show that for each v € [0;1) and any s > 0
there exists a process X, s, whose right oscillation function wf[, 5 is defined by

s fort=wu
9 () = ’
©) “ia(®) {0 for t # u.
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Really, if W = {W(t),0 < ¢t < 1} is Brownian motion process (i.e. process such
that P{W(0) = 0} = 1, and for all ¢,s € [0;1] the random variable W (t) — W (s)
has the probability distribution N'(0,| ¢ — s |)), and if the process X, , is defined
by

0, t <wu,

(10) XU,S(t) = s-W (1 (sin 1 + 1)) , t>u,
2 t—u

then the oscillation function wf , of X, ; has the form (9).

Put D = {t1,t2,... }. For any t; € D, because the set D is nowhere dense, it
can be contructed a sequence of intervals (a; k;b;x] £ = 1,2, ..., with the following
properties (compare with [4]):

1. (aik; bik] does not contain points from D, k=1,2,...;

2. a5 >t forall k=1,2,...;

3. (ai,k; bz',k] N (ai,j; bi,j] =0forall j,k=1,2,... and j £ k;

4. by, = t; when k — o0;
for the sequence of intervals with the above properties we say that conveges to t;
(it is clear that it converges descreasingly). These convergent sequences can be

contructed so that -
ﬂ U (@ik; bik) = 0.
i(tieD) k=1

Let Z be a process, defined on [0;1], continuous on (0;1], and such that its
right oscillation at t = 0 is w}(0) = 1 (we can, for example, put Z(t) = X (t),
0 <t <1, where the process Xy, is defined by (10) for v = 0 and s = 1). Put

T; = U2 (ask; bik), i = 1,2,..., and the process X;, i = 1,2,..., define by

0, teT,
X;i(t) = t—t;
l( ) wO(ti)Z(l—tl') , teT;.
2
Finally, if the process X is defined by
0, t e U;T;,
(11) x(0 = { -
Xi(t), te Tz',

then it is easy to see that the right oscillation function w of X satisfies (8). The
proof is completed.

It can happen that X has discontinuities of the first kind on the ends of
intervals (a;,k; bs,x] for some or all values of indices 4, k. Let us show it is possible
to contruct a process X, which has no discontinuities of the first kind, and whose
right oscillation function w™ satisfies (8). Suppose that on [0;1] a mean square
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continuous process Z is defined, such that P{Z(0) = 0} = P{Z(1) =0} =1 and

maxo<i<1 ||Z(t)|| = 1. By using denotations from Lemma 4, we can define the
process X, i =1,2,..., by
0, teT;
X () = t—a;
’ ( ) wo(ti)Z (#> , t€ (ai,k;bi,k]a k= L,2,...
bik —aik

If in (11) we exchange X; by X} for ¢ = 1,2,..., we shall see that so obtained
process X has no discontinuities of the first kind and that its right oscillation
function w™ satisfies (8).

COROLLARY 4.1. Let wy be a non-negative function, defined on [0;1], and
satisfying the conditions (a) — (d). If the indicator function of the set {t:0 < wy(t) <
e} we denote by I. = I.(t), then for any € > 0 there exists a process X., whose
right oscillation function w satisfies the equality

wi(t) = (1= L{®)wo(t), te[0;1).

LEMMA 5. Suppose that Xy and X5 are arbitrary stochastic processes of
second order, and that the process X is defined by Xo(t) = X1 (t)+Xa(t), 0 <t < 1.
If w; is the oscillation function of X;, i = 0,1,2, then the inequality

(12) wo(t) Swi(t) +we(t), 0<t<1,

holds. This inequality becomes equality if the following conditions are satisfied:
(i) processes X1 and Xs are mutually orthogonal;
(i) Dy N Dy =@ where D; = {t:w;(t) > 0},i=1,2.

PrROOF. The inequality (12) follows immediately from the properties of
norm and function lim and sup. If the condition (i) is satisfied, then for each ¢ and
arbitrary sequences (t,), (t,') from T’y the equality

1 Xo(tn) — Xo(tn")| = 1K1 (tn) — Xa (ta)| + 1 Xa(tn) — Xo(t ), n=1,2,...,

holds. We shall show that, from the assumption that the condition (ii) is also
satisfied, it follows

2
. ! —_ . . . !
(13) T 1) = Xo(t) = 3 T 1Xitn) = Xt
1=

The condition (i) implies that ¢ can belong te at most one of the sets Dy, Dy; if
t € D1 U Dy, then the both sides in (13) are obviously equal to zero. If ¢ belongs
to one of the sets Dy, D5, for example ¢t € Dy, then it holds

2
‘nxo(tn) = Xa(ta )l = 32 I3t = Xt <
=

(14)
< |I1X1 () = Xa(ta)l| = T [1X1(tn) = Xa b))l + 1Xa(tn) = Xalta')]
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From the definition of lim and the fact that ¢ € D it follows that the right side in
(14) will be smaller than arbitrary ¢ > 0 for infinitely many values of n. Thus we
proved that (13) is true. This implies, by reason of (ii), that the equality

wo(t) = wi(t) +wa(t), 0Lt<,
holds, as we wanted to prove.

COROLLARY 5.1. If X; and X, are arbitrary processes of second order and if
a process X' is defined as in Lemma 5, then it holds Dy C D;UDy. That inclusion
becomes equality if ot least one of the conditions (i) and (ii) is satisfied.

It is clear that, analogously, it can be shown that Lemma 5 and Corollary 5.1
remain valid also for right oscillation functions w;', i.e. for corresponding sets D},
1=0,1,2.

LEMMA 6. If the sequence X1, Xa,... of stochastic processes converges uni-
formly to some process X, then the sequence of corresponding oscillation functions
w1,w2, ... converges uniformly to oscillation function w of X.

ProoOF. From the uniform convergence of the sequence (X,,), i.e. from

sup || X(t) — Xe(®)|| — 0, n — oo,
0<t<1

it follows that for any € > 0 there is k. such that
I X (u) = X ()] — || Xk(u) — Xp(v)|]| <€ for all u,v €[0;1] and k > k.;

that implies the following inequalities

sup || Xi(u) — Xp ()| —e < sup || X(u) - X (v)]| <

U, VELL, u,vELL,h
< sup || Xk(u) — Xi(v)|| + € for any ¢t and all k > k.,
uaveit,h

which hold for each h > 0. This, by reason of (2), means that it will be
| w(t) —wi(t) |< e for any t and all k > k.,

which is equivalent to the statement that wy converges uniformly to w when k& — oo,
as we wanted to show.

It is easy to see that the statement from Lemma 6 remains valid if we exchange
the oscillation functions by the right oscillations functions.

THEOREM 2. Suppose that wy is a non-negative function, defined on [0;1] and
satisfying conditions (a)—(d). Then there exists a process X , whose right oscillation
function wt satisfied the equality

wh(t) = wo(t) for any t € [0;1).
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PrOOF. Denote by I,, = I,,(t) the indicator function of the set {t: 0 < wq(t) <
1/2™}. From Corollary 4.1 it follows that for each n = 1,2, ... thereis a process X,
whose right oscillation function w; satisfied the equality w () = (1 — L,(¢))wo(t),
t € [0;1). It is easy to see that the sequence (w;) converges uniformly to wp. If we
show that processes X,,, n = 1,2,..., can be constructed in such a way that the
sequence (X,) converges uniformly to some process X (i.e. that (X,) is a Cauchy
sequence in the sense of the uniform convergence), then, by reason of Lemma 6, it
will imply that our statement is true.

Let us construct processes X,, n = 1,2,.... Put D; = {t:wo(t) > %} and
define the function wy; = wy(t) by

0, tGDl,
wo(t), t € D,.

m@:{

As the function wy satisfies all conditions from Lemma 4, it must exist a process
X, whose right oscillation function wj satisfied the equality

wi (t) =wi(t), te[0;1).

Put Dy = {t: 3 <wo(t) < 3} and define the function wy = wa(t) by
0, t € D,,

m@:{ >

wo (t), t € D,.

According to Lemma 4 there is a process Xo, whose right oscillation function wy

satisfies the equality

GE () = wa(t), te[01).

It is clear that a process X, can be constructed in such a way that it is orthogonal
to X1, and that its norm satisfies the inequality

sup [|Xo(t)[] < 1.
0<t<1

By the described procedure we obtain the sequence of sets Dy, = {t:1/2" < wy(t) <
1/2"71}, n = 1,2,..., and corresponding sequence (X,) of mutually orthogonal
processes, whose norms satisfy the inequalities

- 1
15 sup [|[Xn(t)|| < =—, n=2,3,....
(15) 22 IXn(0)] <

The new processes X, n =1,2,..., we shall define by

Xn(t) = Xi(t), te[0;1], n=1,2,....
k=1
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Since the process X, for any n = 1,2, ..., satisfies the conditions (i) and (ii) from
Lemma 5, it follows that for the right oscillation function w; of X,, the equality

w0 =3 GE 0, te ),
k=1

will be satisfied. From the definition of wjf, i.e. of wf, k =1,2,..., it follows that
W (0) = (L~ L(O)wolt), t€ 1), n=1,2,...

For arbitrary natural numbers n and m (we can suppose that, for example, n > m)
it will be, by reason of mutual orthogonality of processes X, k = 1,2,..., and by
reason of (15),

n
1
||Xn(t) - Xm(t)” < E ok—2 — 07 n,m — 00,
k=m+1

which means that the sequence (X,,) converges uniform y to some process X. The
proof is completed.
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