ON A CLASS OF N-ARY QUASIGROUPS

Branka P. Alimpić

(Communicated October 4, 1980)

Let (Q, \cdot) be a loop with the property:

(G) For every loop (H,*), if loops (Q,\cdot) and (H,*) are isotopic, they are isomorphic.

A loop (Q, \cdot) with the property (G) is called a G-loop [1].

By Albert's theorem, any group is a G-loop. A useful characterization of G-loops was given by V. D. Belousov [1] in terms of derived operations.

Let (Q,\cdot) be a quasigroup, $a\in Q$. The operation $a\cdot$ of the set Q defined by

$$x_a\cdot y=\varrho^{-1}(x\cdot\varrho_a y)$$

is called the left derived operation determined by a [1]. Analogously, the right derived operation determined by a is defined by

$$x \cdot_a y = \lambda_a^{-1}(\lambda_a x \cdot y)$$

V. D. Belousov obtained the following result.

A loop (Q, \cdot) is a G-loop if and only if (Q, \cdot) is isomorphic to all its left and all its right derived operations.

We establish here an analogous result for n-ary quasigroups. Previously, we give some definitions. The notation is standard in quasigroup theory [2]. If (Q, A) is an n-ary quasigroup, and $\bar{a} = a_1^{i-1}a_{i+1}^n \in Q^{n-1}$, then $L_i(\bar{a})x \stackrel{\text{de} f}{=} A(a_1^{i-1}, x, a_{i+1}^n)$.

Definition 1. Let (Q, A) be an n-ary quasigroup, and $\bar{a} \in Q^{n-1}$. The n-ary operation of the set Q defined by

$$A_{\bar{a}}^{i}(x_{1}^{n}) \stackrel{\mathrm{de}f}{=} L_{i}^{-1}(\bar{a})A([L_{i}(\bar{a})x_{\alpha}]_{\alpha=1}^{i-1},\ x_{i},\ [L_{i}(\bar{a})x_{\alpha}]_{\alpha=i+1}^{n})$$

is called the *i*-th derived operation of A determined by the sequence $\bar{a}, i = 1, \ldots, n$.

If n = 2, we obtain the left and the right derived operations determined by the element a of Q:

$$A_a^1(x,y) = L_1^{-1}(a)A(x, L_1(a)\dot{y}),$$

$$A_a^2(x,y) = L_2^{-1}(a)A(L_2(a)x,y).$$

Since operations $A^i_{\bar{a}}$ are isotopic to the operation A, they all are quasigroups, too.

If (Q,A) ia an n-ary quasigroup, a sequence $\tilde{\mathbf{g}}=e_1^{i-1}e_{i+1}^n\in Q^{n-1},$ such that

$$(\forall x \in Q) L_i(\tilde{g}) x = x,$$

is called an i-th identity sequence of (Q, A).

Lemma 1. The n-ary quasigroup $(Q, A_{\bar{a}}^i)$ has an i-th identity sequence $(i = 1, \ldots, n)$.

$$\begin{split} \textit{Proof.} \ \ &\text{If} \ e_{\alpha} \stackrel{\text{def}}{=} L_{i}^{-1}(\bar{a})a_{\alpha}, \ \alpha \in \{1, \dots, n\}, \ \alpha \neq 1, \ \text{we have} \\ &A_{\bar{a}}^{i}(e_{1}^{i-1}, x, e_{i+1}^{n}) = L_{i}^{-1}(\bar{a})A(a_{1}^{i-1}, x, a_{i+1}^{n}) = L_{i}^{-1}(\bar{a})L_{i}(\bar{a})x = x. \end{split}$$

The next lemma establishes a connection between derived operations and pseudo-automorphisms of an n-ary quasigroup [3].

Lemma 2. A sequence $\bar{a} \in Q^{n-1}$ is a companion of some i-th pseudo-automorphism φ of an n-ary quasigroup (Q,A), if and only if and only if the quasigroups (Q,A) and $(Q,A_{\bar{a}})$ are isomorphic.

Proof. φ is an *i*-th pseudo-automorphism with a companion \bar{a} .

$$\begin{aligned}
& \leftrightarrow L_i(\bar{a})\varphi A(x_1^n) = A([L_i(\bar{a})\varphi x_\alpha]_{\alpha=1}^{i-1}, \ \varphi x_i, \ [L_i(\bar{a})\varphi x_\alpha]_{\alpha=i+1}^n) \\
& \leftrightarrow \varphi A(x_1^n) = A_{\bar{a}}^i(\varphi x_1, \dots, \varphi x_n) \\
& \leftrightarrow (Q, A) \cong (Q, A_{\bar{a}}^i).
\end{aligned}$$

Definition 2. An *n*-ary quasigroup (Q, A) is a generalized *n*-ary loop if for every $i = 1, \ldots, n$ there exists an *i*-th identity sequence $\tilde{\mathbf{e}}_i = [e_{i\alpha}]_{\alpha=1}^{i-1} [e_{i\alpha}]_{\alpha=i+1}^n, e_{ij} \in Q$.

Clearly, every *n*-ary loop [2] with an identity e, is a generalized n-ary loop with $\tilde{\mathbf{e}}_i = \tilde{\mathbf{e}} = {n-1 \choose e}$. In the binary case, every generalized loop is a loop.

Lemma 3. If (Q,A) is an n-ary loop, then every derived quasigroup $(Q,A^i_{\tilde{a}})$ is a generalized n-ary loop.

Proof. Let (Q,A) be an n-ary loop with an identity, e, and let $A^i_{\bar{a}}$ be a derived operation. By lemma 1, $A^i_{\bar{a}}$ has an i-th identity sequence. If $f = L^{-1}_i(\bar{a})e$,

we have for every j, $1 \le j < i$,

$$\begin{split} &A_{\bar{a}}^{i}(\stackrel{j-1}{f}, \ x, \stackrel{i-1-j}{f}, e, \stackrel{n-i}{f}) \\ &= L_{i}^{-1}(\bar{a}) A(\stackrel{j-1}{L_{i}(\bar{a})} \stackrel{j}{L_{i}(\bar{a})} e, \ L_{i}(\bar{a}) x, \stackrel{i-1-j}{L_{i}(\bar{a})} \stackrel{i-1-j}{L_{i}(\bar{a})} e, \ e, \stackrel{n-i}{L_{i}(\bar{a})} \stackrel{i-1}{L_{i}(\bar{a})} e) \\ &L_{i}^{-1}(\bar{a}) A(\stackrel{j-1}{e}, \ L_{i}(\bar{a}) x, \stackrel{n-j}{e}) = L_{i}^{-1}(\bar{a}) L_{i}(\bar{a}) x = x, \end{split}$$

hence, $A_{\bar{a}}^i$ has a j-th identity sequence, for $1 \leq j < i$.

Similarly we prove that $A^i_{\bar{a}}$ has j-th identity sequences for $i < j \le n$, thus, $(Q, A^i_{\bar{a}})$ is a generalized n-ary loop.

Let (Q, A) be an *n*-ary quasigroup and let $\bar{a}_i = [a_{i\alpha}]_{\alpha=1}^{i-1} [a_{i\alpha}]_{\alpha=i+1}^n$, $i = 1, \ldots, n, a_{i\alpha} \in Q$. We introduce the following operation of Q:

$$A_{\bar{a}_1 \cdots \bar{a}_n}(x_1^n) \stackrel{\text{de}f}{=} A(L_1^{-1}(\bar{a}_1)x_1, \dots, L_n^{-1}(\bar{a}_n)x_n),$$

which is a principal isotop of A. It is easy to verify that $(Q, A_{\bar{a}_1...\bar{a}_n})$ is a generalized n-ary loop with i-th identity sequence

$$\tilde{\mathbf{g}} = [L_{\alpha}(\bar{a}_{\alpha})a_{i\alpha}]_{\alpha=1}^{i-1}[L_{\alpha}(\bar{a}_{\alpha})a_{i\alpha}]_{\alpha=i+1}^{n}, \quad i=1,\ldots,n.$$

If $a_{i\alpha}=a_{\alpha}$, for $i=1,\ldots,n,\ \alpha\neq i$, then $(Q,\ A_{\bar{a}_1...\bar{a}_n})$ is an n-ary loop with identity element $e=A(a_1^n)$. Indeed, then we have $L_{\alpha}(\bar{a}_{\alpha})a_{i\alpha}=A(a_1^n)$, and if we put $e=A(a_1^n)$, then $\tilde{\S}_i=\stackrel{n}{e}^i,\ i=1,\ldots,n$.

Lemma 4. Let (Q,A) be an n-ary quasigroup. For every operation $A_{\bar{a}_1...\bar{a}_n}$ there exist sequences $\bar{b}_1,\ldots,\bar{b}_n$ of elements of Q such that $(Q,A_{\bar{a}_1...\bar{a}_n}$ and $(Q,(\cdots(A\frac{1}{b_1})\frac{2}{b_2}\cdots\frac{n}{b_n})$ are isomorphic.

Proof. First, let $\bar{b}_1, \ldots, \bar{b}_n$ be arbitrary elements of Q^{n-1} . By definition of derived operations, we have

$$(\cdots (A\frac{1}{b_1})\frac{2}{b}\cdots)\frac{n}{b}(x_1^n) = \dot{L}_n^{-1}\cdots\dot{L}_2^{-1}L_1A(\dot{L}_2\cdots\dot{L}_nx_1, L_1\dot{L}_3\cdots\dot{L}_nx_2, \dots, L_1\cdots\dot{L}_{n-1}x_n)$$

where

$$L_{1}x = L_{1}(\bar{b}_{1})x = A(x, b_{12}, \dots, b_{1n}) <$$

$$\dot{L}_{2}x = \dot{L}_{2}(\bar{b}_{2})x = A\frac{1}{b_{1}}(b_{12}, x, \dots, b_{2n}),$$

$$\dots$$

$$\dot{L}_{n}x = \dot{L}_{n}(\bar{b}_{n})x = (\dots(A\frac{1}{b_{1}})\frac{2}{b_{2}}\dots)\frac{n-1}{b_{n}}(b_{n1}, \dots, b_{nn-1}, x).$$

By induction on k, we prove

(1)
$$L_1 \dot{L}_2 \cdots \dot{L}_k = \bar{L}_k \bar{L}_{k-1} \cdots L_1, \quad k = 2, 3, \dots, n,$$

where

$$\overline{L}_2 x = L_2(\overline{\tau_2 b_2}) x = A(\tau_{21} b_{21}, x, \dots, \tau_{2n} b_{2n}),$$
.....

$$\overline{L}_n x = L_n(\overline{\tau_n b_n}) x = A(\tau_{n1} b_{n1}, \dots, \tau_{nn-1} b_{nn-1}, x),$$

and τ_{ij} are certain bijections of Q, which depend only on b_k , k < i.

First we prove $L_1\dot{L}_2 = \overline{L}_2L_1$. By definition of \dot{L}_2 , we have

$$\dot{L}_2 x = L_1^{-1} A(b_{21}, L_1 x, \dots, L_1 b_{2n})$$

= $L_1^{-1} \overline{L}_2 L_1 x$,

hence, $L_1\dot{L}_2 = \overline{L}_2L_1$.

Next assume that $L_1\dot{L}_2\cdots\dot{L}_{k-1}=\overline{L}_{k-1}\cdots\overline{L}_2L_1$. By definition of \dot{L}_k , it follows that

$$\dot{L}_k = \dot{L}_{k-1}^{-1} \cdots \dot{L}_2^{-1} \overline{L}_k L_1 \dot{L}_2 \cdots \dot{L}_{k-1},$$

which implies

$$L_1\dot{L}_2\cdots\dot{L}_k=\overline{L}_k\dot{L}_1\cdots\dot{L}_{k-1}.$$

Hence, by the induction assumption, it follows (1)

Consequently, we obtain

$$(\cdots(A\frac{2}{b_1})\frac{2}{b}\cdots)\frac{n}{b}(x_1^n) = \delta^{-1}A(L_1^{-1}\delta x_1, \overline{L}_2^{-1}\delta x_2, \dots, \overline{L}_n^{-1}\delta x_n),$$

where $\delta = \overline{L}_n \cdots \overline{L}_2 L_1$. Thus, $(Q, (\cdots (A \frac{1}{b_1}) \frac{2}{b_2} \cdots) \frac{n}{b})$ and $(Q, A_{\bar{a}_1 \cdots \bar{a}_n})$ are isomorphic, where

$$\bar{a}_1 = \bar{b}_1$$
 $\bar{a}_2 = \overline{\tau_2 b_2} = \tau_{21} b_{21} \tau_{23} b_{23} \cdots \tau_{2n} b_{2n}$

$$\bar{a}_n = \overline{\tau_n b_n} = \tau_{n1} b_{n1} \cdots \tau_{nn-1} b_{nn-1}$$

and τ_{ij} are bijections of the set Q.

Now it follows that for arbitrary $\bar{a}_1, \ldots \bar{a}_n$ there exist $\bar{b}_1, \ldots, \bar{b}_n$, such that $\bar{b}_1 = \bar{a}_1, \bar{b}_2 = \overline{\tau_1^{-1} a_2}, \ldots \bar{b}_n = \overline{\tau_n^{-1} a_n}$, and

$$\delta(\cdots(A\frac{1}{b_1})\frac{2}{b_n}\cdots)\frac{n}{b}(x_1^n) = A_{\bar{a}_1\cdots\bar{a}_n}(\delta x_1,\ldots,\delta x_n).$$

Lemma 5. If a generalized n-ary loop (H,B) is isotopic to an n-ary quasigroup (Q,A), then there exist sequences $\bar{a}_1,\ldots,\bar{a}_n$ of elements of Q such that (H,B) and $(Q,A_{\bar{a}_a\cdots\bar{a}_n})$ are isomorphic.

Proof. Let $\alpha_{n+1}B(x_1^n)=A(\alpha_1x_1,\cdots,\alpha_nx_n)$, and let $\tilde{e}_i,\ i=1,\ldots,n$, be identity sequences of (H,B). Then we have

$$\alpha_{n+1}x_i = A(\alpha_1 e_{i1}, \dots, \alpha_{i-1} e_{ii-1}, \alpha_i x_i, \ \alpha_{i+1} e_{ii+1}, \dots, \alpha_n e_{in})$$
$$= L_i(\overline{\alpha e_i})\alpha_i x_i$$

Hence,
$$\alpha_i x_i = L_i^{-1}(\overline{\alpha e_i})\alpha_{n+1} x_i$$
, $i = 1, \ldots, n$, and
$$\alpha_{n+1} B(x_1^n) = A(L_1^{-1}(\overline{\alpha e_a})\alpha_{n+1} x_1, \ldots, L_n^{-1}(\overline{\alpha e_n})\alpha_{n+1} x_n).$$

Thus, (H, B) and $(Q, A_{\overline{\alpha e_1}, \dots, \overline{\alpha e_n}})$ are isomorphic.

An n-ary loop (Q, A) with the property

 (G_n) For every n-ary loop (H,B), if (H,B) and (Q,A) are isotopic, then they are isomorphic

is called an n-aty G-loop.

Similarly, an n-aty loop with the property

 (G_n') For every generalized n-ary loop (H,B), if (H,B) and (Q,A) are isotopic, then they are isomorphic

is called a G'-loop.

Clearly, the property G'_n implies the property G_n . As an immediate consequence of definition of a G'-loop, it follows that every generalized loop, isotopic to a G'-loop is a loop, too.

Theorem. If (Q,A) is an n-ary loop, then the following statements are equivalent:

- (i) (Q, A) is a G'-loop
- (ii) (Q, A) is a G'-loop, and every derived quasigroup of (Q, A) is a loop.
- (iii) (Q, A) is isomorphic to every derived quasigroup of $(Q, A^{\underline{i}}_{a}), \ \bar{a} \in Q^{n-1}, \ i = 1, \ldots, n$.
- *Proof*. (i) \Rightarrow (ii). Since all derived quasigroups are generalized loops (lemma 3), isotopic to (Q, A) they are isomorphic to (Q, A). Hence they are loops.
- (ii) \Rightarrow (iii). Trivially.
- (iii) \Rightarrow (i) Let (Q, A) be isomorphic to every derived quasigroup $(Q, A\frac{1}{a})$, and let (H, B) be a generalized loop, isotopic to (Q, A). By lemma 5, (H, B) is isomorphic to a principal isotop $(Q, A_{\bar{a}_1 \cdots \bar{a}_n})$ of the loop (Q, A). On the other hand, by lemma $4, (Q, A_{\bar{a}_1 \cdots \bar{a}_n})$ is isomorphic to $(Q, (\cdots (A\frac{1}{b_1})\frac{2}{b_2}\cdots)\frac{n}{b})$, for some $\bar{b}_1, \ldots, \bar{b}_n \in Q^{n-1}$. By (iii), (Q, A) is isomorphic to $(Q, (\cdots (A\frac{1}{b_1})\frac{2}{b_2}\cdots)\frac{n}{b})$. Consequently, (H, B) is isomorphic to (Q, A). Hence, (Q, A) is a G'-loop.

Example 1. Let (Q, A) be an n-ary loop satisfying i-th Menger's laws for all $i = 1, \dots, n$ [2]. By definition of i-th derived operation, such a loop coincides with all its derived operations. Hence, it is a G'-loop.

Example 2. Let (Q,A) be an n-ary group with identity element e. According to Hosszu-Gluskin's theorem [2] there is a binary group (Q,\cdot) such that $A(x_1^n) = x_1, \dots x_n$. A straightforward verification shows that (Q,A) is a G-loop: if $\alpha_{n+1}B(x_1^n) = \alpha_1x_1 \cdot \dots \cdot \alpha_nx_n$, then $\varphi B(x_1^n) = \varphi x_1 \cdot \dots \cdot \varphi x_n$, where

 $\varphi = \lambda_c \alpha_{n+1}, \ c = (\alpha_1 e, \dots, \alpha_n e)^{-1}$. Generally, (Q,A) is not a G'-loop. Indeed, let Q^+ be the set of all nonnegative rational numbers. If $(x_1, x_2, x_3) = x_1 \cdot x_2 \cdot x_3$, then (Q^+, A) is a ternary group, with identity element 1, but there exist derived quasigroups which are not isomorphic to (Q^+, A) . For example, if $\bar{a} = 1, 2$, we have $L_1(\bar{a})x = x \cdot 2 \cdot 1 = 2x$, $L_1^{-1}(\bar{a})x = 2^{-1}x$, $A_{\bar{a}}^1(x, y, z)) = 2xyz$, and $(\forall x \in Q^+)2xyy = x \Rightarrow y = \sqrt{2}/2$. Hence, $(Q^+, A_{\bar{a}}^1)$ is a ternary group without identity element, and it is not isomorphic to (Q^+, A) .

REFERENCES

- [1] В. Д. Белоусов, Основы теории квазигрупп и луп, Наука, Москва, 1967.
- [2] В. Д. Белоусов, *п-арные квазигруппы*, "Штиинца" Кишинеёв, 1972.
- [3] B. Alimpić, On nuclei and pseudo-automorphisms of n-ary quasigroups, Algebraic conference, Skopje, 1980, 15–21.

Institut za matematiku Prirodno-matematički fakultet 11000 Beograd, Studentski trg 16