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ON FIXED EDGES OF ANTITONE SELF-MAPPINGS
OF COMPLETE LATTICES

Rade M. Dacié

Abstract Studying fixed edges we start from a more general notion—p-pairs and p—points
proving first that the set of all p—points of an antitone self-mapping of a complete lattice L is a
sublattice of L. In this way we obtain as a direct consequence J. Klime§’s Fixed edge Theorem
and provide an easy proof of his Theorem 2. Besides, this approach sheds much more light on the
treated problems. In the sequel (Theorem 2) we examine under which conditions a distinguished
pair (s,t) (see Notation) appearing in inconditionally complete posets is a fixed edge. In Theorem
3 the Problem in the text is solved in a special case.

In his paper [3] J. Klime§ introduced the concept of a fized edge for the
mapping of a partially ordered set (=poset) into itself and investigated conditions
under which a mapping of a poset into itself has a fixed edge. For a single antitone
mapping of a complete lattice into itself J. Klime§ proved the two theorems cited
below.

The definition of fixed edge is as follows. Let f be a mapping of a poset P
into itself and let < y be elements of P. An ordered pair (z,y) is a fixed edge of
fif f(z) =y and f(y) = =

Similar pairs of points are considered in our paper [1] and also earlier in
Kurepa’s paper [4]. We give our definition.

Definition. Let P be a poset and f : P — P. An unordered pair {z,y} of
elements of P is a p — pair of f if f(x) = y and f(y) = x. If, in this definition,
we take the ordered pair (z,y) (instead of {z y}) then we call it an ordered p-pair
of f. Any member of an (ordered or unordered) p-pair of f is said to be a p-point
of f. Fixed edges are evidently ordered p-pairs but set of all fixed edges can be a
proper subset of the set of ordered p-pairs. (See the proof of Theorem 3).

THEOREM A. (A fixed edges Theorem of [2, Theorem 1]). Let complete lattice
and f an antitone mapping of L into itself. Then there exists a fived edge of f. In
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particular, (u,v) is a fized edge of f, where
u=infly e L|y> ()}, v=supfzel|s< @)}
and u is the least element in L such that (u, f(u)) is a fized edge of f.

THEOREM B. [2, Theorem 2]. Let L be a complete lattice and f an antitone
mapping of L into itself. Then there exists a maximal element p in L such that

(0, f(p)) is a fized edge of f.

Notation. We use following notation. If f : L — L, then I(f,L) = {z € L |
f(x) =z}, and f? denotes fo f. Furthermore, A = {z € I(f?>,L) |z < f(z)}, B =
{z € I(f%,L) |z > f(z)},sup A = s, inf B =1¢. If S C L, then the restriction of
f to S denoted by f | S. If neither a < b, nor b < a, then we write al|b.

2. THEOREM 1. Let L be a complete lattice and f : L — L be an antitone
mapping. Then the set of p-points of L is nonempty and is a complete lattice (a
sublattice of L).

Proof. In fact we shall prove that the set of all p-points of an antitone self-
mapping f of a complete lattice L coincides with the set of all fixed points of the
mapping f2.

Since f? is isotone, by Tarski’s theorem [6, Theorem 1], the set I(f2, L)
is nonempty and forms a complete lattice, a sublattice of L. Let x € I(f2,L).
Then f(z) = f*(z) = f*(f(2)), and so f(z) € I(f? L). Moreover, f | I(f* L)
is permutation of I(f2, L); otherwise, for z # y and f(z) = f(y) we would have
f?(xz) = f2(y), or x = y, which is a contradiction. For any = € I(f?,L),{x, f(z)}
is evidently a p-pair.

Conversely, let {z,y} be a p-pair of f. Then f(z) = y and f(y) = =, or
f2(z) = z; hence, x € I(f2,L). Also y € I(f2, L), which completes the proof.

Remark 1. Since evidently the ordered pair (m, M), where m = inf I(f2, L),
M =sup I(f? L) is a fixed edge of f, Theorem A follows.

Remark 2. Having Theorem 1 in mind the proof of Theorem B becomes very
easy. Let C be a maximal chain of A, p = sup C and z € C. For y > z it
follows that f(z) > f(y) > y; so, f(z) is an upper bound for C. Hence, p < f(x).
Applying f we obtain z < f(p), for all z € C, implies p < f(p), or p € C. The
maximality of p follows from the maximality of C, and Theorem B is proved.

THEOREM 2. (i) The ordered pair (s, t) (see Notation) is an ordered p-pair,
but need not be a fixed edge of f.

(ii) The ordered pair (s, t) is a fixed edge of f if and only if s € A.
Proof. (i) Since f is a permutation of I(f2, L) (see the proof of Theorem 1),

it follows that f(A) = B and f(B) = A. Hence f(s) is a lower bound for B, and
S0

*) fls) <t
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Also f(t) is an upper bound for A, and so
**) s < f(t).

From (x) it follows that s > f(¢), which together with gives f(t) = s, proving
the first part of the theorem.

To see that (s,t) need not be a fixed edge of f, let us consider the following
example. Let L be the lattice in Figure 1 and let f : L — L be defined by

f_Oabcdegl
"\l e g d c¢c a b 0

Here A = {0,a,b}, B = {e,g,1}, sup A = ¢, inf B = d, but ¢||d, hence
(¢,d) is not a fixed edge of f.

(ii) If (s,t) is a fixed edge, then s < t, i.e. (by (1)) s < f(s); so, s € A.

Conversely, let s € A. Then s < f(s), or s < t (again by (ii), proving the
assertion.

Remark. The example above shows that s||t can occur. Note that it can be
shown by examples that all other logical possibilities are possible, i.e.: s < t, s =
t, s >t.

3. In this section we prove the existence of multifunctions using a more
general definition of an antitone multifunction than it was done in [3]. (Compare
[2] and [5]).

A multifunction F' (or a multivalued function) from a set X to a set Y is
a correspondence such that & # F(z) C Y for each z € X.

We say that a multifunction F' on a poset X to a poset Y is antitone if, for
all z,y € X,z <y implies:

Condition I. For each v € F(y) there exists a u € F(z) such that v < w.

Remark 1. This definition is more general than the following one, given in
[3]:

We say that a multifunction F' on a poset P into a poset () is antitone if
x1,%2 € P, x1 < xo implies y» < yq for all y; € F(x1) and y2 € F(z2).

The following definition is also given in [3].

Let F : P — P be an antitone multifunction and let x,y be elements of P.
We say that the ordered pair (z,y) is a fized edge of F if x <y, x € F(y) and
y € F(x).
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We say that a multifunction f : P — P, where P is a complete lattice, is
sup-containing if sup F(z) € F(x), for all z € P.

THEOREM 3. Let L be a complete lattice and let F' : L — L be a sup-containing
antitone multifunction. Then there exists a fixed edge of F.

Proof . Let us define a single-valued mapping f : L — L by f(x) = sup F(z)-f
is well defined, since sup F'(x) exists for each x € L. If x < y and if we put
m = sup F(y), then by Condition I, exists a n € F(z) such that m < n. Then
m < n < sup F(z), or f(y) < f(x), so that f is antitone. By Theorem 1 there
exist u,v € L such that v < wv, f(u) = v and f(v) = u. It follows that v € F(u)
and u € F(v) and the Theorem is proved.

Remark. Since the notion of antitone multifunction given by J. Klimes is a
special case of that given in our definition it follows that Theorem 7 in [3] is a
corollary of Theorem 3.

4. Let L be a complete lattice and let f : L — L be an antitone self-mapping.
In the set E of all fixed edges of f J. Klimes introduced a partial order, defining
(a,b) < ¢,d) by (a > cand b < d). He also showed that this set is a lattice (provided
that L is a complete lattice) with a zero 6 added, if necessary.

Here we shall treat the converse problem but first we shall make clear the
meaning of some words.

Let P be a poset and let E be a set of ordered pairs (u,v) of elements of P
ordered by: (u,v) < (u',v") if and only if v > «' and v < v'. Suppose that the set
E (to which, if necessary, is added a zero ) is a complete lattice, which we shall
call an edge lattice defined on P. The set of all 2's in P such that there exists an
y in P such that (x,y) € E, or (y,z) € E, will be caled the body of E.

Problem. Let P be a poset and E an edge lattice on P with the body Q.
Is there an antitone selfmapping of P such that E\{6} is the set of all fixed edges
of f.

The following theorem solves this problem in a special case.

THEOREM 4. Let P be a poset and E an edge lattice defined on P. If the body
Q of E is a complete sublattice of P, Then there exists an antitone self-mapping of
P such that E is the set of all fized edges of f.

Proof. On the body ) of E the mapping f is defined in the natural way:
for all z,y € Q if (x,y) € E, then f(z) =y and f(y) = x.

Now for any z € P, let M(z) = {z € Q | 2 < z}. Since @ is a complete
lattice sup M(z) exists in @, provided M (z) # &. Denote this supremum by s,.
For any z € P\Q, such that M(z) # @, we put f(z) = f(s;), where f(s;) is
already defined, s, being in Q. Let us prove that an f so defined is antitone. Take
z < y. We distringuish the following four cases.
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1° z,y € P\Q. If z < z, then z < y; hence, sup M (z) < sup M(y), so that
f(z) < f(y), f being antitone on Q.

2° £ €@, y € P\Q. Then = € M(y); hence, z < sup M(y) and so, f(z) >
1)

3° 2€ P\Q, y€ Q. Thensup{z € Q| 2z <z} <y. Also f(z) > f(y).

4° x,y € P. Tt is clear that f(x) > f(y)-

In this way f is defined for all € P such that M (z) # @. If M(z) = @ for
some x € P, then we put f(x) = max Q. Now f is defined on the whole set P
and it is antitone, since there isno y € P, > y with M (z) = @ and M(y) # @.
It follows that for all z € P with M(z) =@ and ally € P with M(y) =9, z <y
or z||y.
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