PUBLICATIONS DE L’INSTITUT MATHEMATIQUE
Nouvelle série, tome 34 (48), 1983, pp. 183-192

THE o—TEMPERED DERIVATIVE AND SOME SPACES OF
EXPONENTIAL DISTRIBUTIONS

Stevan Pilipovié

In this paper we introduce the a-tempered integral and the a-tempered de-
rivative for which almost all results from [5] can be simply transferred. Using the
special sequences of a-tempered integrals and and a-tempered derivatives, from the
point of view of sequential approach, we characterize some subspaces of D’. These
spaces are of K{M,}-type ([2]) for the special sequences {M}.

The a-tempered integral and a-tempered derivative

We are going to define the a-tempered derivative and the a-tempered integral
similarly as in [1], p. 161.

Let £ — a(x), = € R, be an infinitely differentiable function. If f € D' and
k € N, the a-tempered derivative of order k is defined by
(1) Duf = exp(—a(@))(exp(a(z))f(z))'; Dof = f; Daf = Du(Ds ' f)

It is clear that

(2) D.f =d'f+f'5 gDaf =Du(fg)—9'f
where g(z) € C*.

The a-tempered integral of a function G(z) € L (R) of order k € N is
defined by

(3) S.G = exp(—a(x)) /exp(a(t))G(t)dt; S°%G =G; SkG =S,(SF1G).

0

If G € L},, then D*S*G = G, but the converse does not hod.

loc
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The operators S¥ and D¥ are linear for any k € N. It is easy to verify that

T

5£G = exp(-a@)) |

0

%G(t) exp(a(t))dt, ke N.

If we define for a > 0
546 = expl(-a(e)) [ % exp(a(t))G(1)dt,
0

we may prove as in ([5]) that S¢+° G = S¢SPG, a >0, 8> 0.

In [5] the so-called rapidly decreasing functions in zero (RDZ) are defined.
Let us repeat the definition:

The function f is RDZ iff for every r € N there exists M, > 0 such that
| f() |< M, |x| for |z |<1.

The set of RDZ functions is a linear space.

Since all results from [5] can be easily transfered for the a-tempered derivative
and integral we shall only state these facts here.

If f is RDZ function then for any oo > 0 S¢ f iz RDZ function and S¢ f has
the value 0 at z = 0.

We say that f € D' is a-rapidly decreasing distribution (a-RDZ) if f is of
the form f = D*F for some k € N and some RDZ function F.

The set of such distributions forms a subspace of the space D' and evert such
distribution has the value 0 at z = 0.

For any a-RDZ distribution f there exists a unique a-RDZ distribution ¢
such that f = D,g. This result is used in defining the a-tempered derivative of
order @ > 0 of a-RDZ distributions as D% f = D+ SP=2 f where f = D! F for some
continuous RDZ functions, | € N and p is an integer such that 0 <p—-1<a <p.

The operator DY, a > 0, is linear in the space of a-RDZ distributions and for any

a>0, 3>0 D¢D8f = D3P f where f is an a-RDZ distribution.

In our further observations for the first derivative of the function a(z) we
shall suppose that there exist C' > 0 and m > 0 such that a'(z) > m for z > C and
a'(z) < —m for z < —C.

Let us prove some properties of the operator S,.
LEMMA 1. (i) If F € L? then S,F € Ly; (i) If (F,) is sequence from

L2, and F, 3 F then S,F, > S,F; (i) If F € L}, then | exp(—a(z))SoF |<
Sa(exp(—a(z)) | F|).

Proof. (i) We shall use the idea of the proof of Lemma 7.4.2 from [1]. As
some tehnical changes are needed, we shall give the complete proof of this assertion.
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Let us denote

In = / exp(—2a(z)) M?(z)dz

where

M(z) = / exp(a(t)) | F(t) | dt and B > 0.
0

As we supposed there exists C' > 0 such that for z > C a'(z) > m.
¢ B
=[],
0

first we shall estimate f and after that, f

Since

T

C C =z
exp(—2a(z))( [ exp(a(t)) | F(t) | dt)’de < Ko [ ([ exp(a(t)) | F(2) | dt)’dz <
[t [

0

Koi((jexp(2a(t)dt) (/z | F(t) |? dt))da:

0

oo
Soif A= [ | F(t)|? dt, for a suitable K; we obtain
— o0

(4) ‘/‘ < KA.

Since a'(z) > m for z € [C, 00), there exists a > 0 such that 2aa’(z) > 1 (for
z € [C,0)). By the partial integration we obtain

B B
[ exp(-2a(2)M*@)do < a [ 20/(a) exp(~2a(e)) M (o) =
C C
B B
= a [l expt-20(0))) M2 (@)ds < 20 [exp(-20() M (@) exp(ale)) | F(o) | do <
C C

B B
< 2aa( /exp —2a(x)) M?(x) 1/2 / | F(z 1/2
c 0
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From that it follows that for a suitable K5
B
(5) | / ‘ < Kov/T5A.
C

From (4) and (5) we obtain Ig < K1 A + Ko\/IgA.

If IB Z KlA than (IB - KlA)2 S K22 IBA and IB S (2K1 +K22)A

In any case there exists K3 > 0 such that Ig < K3A.
-B

Similarly, we can prove that | J exp(—2a(z))M 2(x)da¢| < K4 A and so we
0

obtain the assertion.
(ii) If in the proof of the part (i) we put

xz

M (z) = / exp(a(t)) | Fa(t) — F(t) | dt and A, = / | Fa(t) — F(t) 2 dt

0 —o00

then the assertion follows from the inequality

/ exp(—2a(z))M2(z)dr < KA,, where K = max(K3, K,).

(iii) is simple.

Remark. If (a(z) = o(xz) when z — oo, similarly as in [1] we may prove that
S.(1) € L.

Some spaces of exponential distribution

Let (mp(z)), p € N, 0 <z < 00, be a sequence of nondecreasing continuous
functions such that for every p,mp(0) = 0;mp(z) = o0 as © — oo;mi(z) <
mo(z) < ---. We define

|z
(6) my(z) = / my(t)dt, = € R, peN.
0

This implies that for every p € N the functions m,(z) are convex (this implies that
if z -y > 0 then my(z) + mp(y) < my(x +y)) and increase to infinity faster than
any linear function when | £ |- co. We suppose that the following condition is
satisfied

(A) For every p € N there exists z, > 0 and p' € N, such that m,(pz) < my,(z)
for | z |> xp.
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In [6] we have proved that (A) implies the so-called nuclearity condition for
the sequence (exp(my,(x))):

(N) For every p there exists p' € N, such that exp(m,(z)—m, (z)) is a summable
function on R and exp(mp(z) — my (z)) = 0 when | z |- oo.

Also, we suppose that for the elements of the sequence (exp(mp(z))) the
following condition holds.

(E) For every p € N and every k € N there are ¢, € (0,1), Cr, >0and Z, >0
such that mf(z) < Cy exp(mp((1 —ex)(2))) if | z |> Zp.

We shall use the sequence (n,(z)) constructed in the following way:

Let w(z) be a smooth positive function on R such that suppw € [0;1] and
Jw(z)dz = 1. For | z |> 1 we put ny(z) = np(| z |), where ny(z) = (mp(t) *
R
w(t))(z), x > 1. For | « |< 1 we define ny(z) to be smooth non-decreasing, positive
and ny(z) < nyyq(z), pe N.

It is easy to verify that for x > 1

(7) my(z —1) < ny(x) < my(z).

Every function n,(z), p € N, satisfies conditions as the function a(z) from
the first part of the paper. So using these functions we define the sequence of
ny-tempered integrals (Spp) and the sequence of n,-tempered derivatives (Dpyp).

Let us define a subset of D’ in the following way: A distribution f is in
H' iff there exist p € N, k € Ny and a locally integrable function F for which
F(z)exp(—n,(z)) € L?, such that

(8) f=D} F.

We are going to show that H' is a subspace of D' identical to the space
H'{exp mp(z))} which we have introduced in | 6 |.

THEOREM 1. A distribution f is in H' iff there exist p € N, m € N and o
bounded continuous function F(x) such that

9) f() = (F(x) exp(my(2))) ™.

Proof . If (8) holds for the corresponding p, and F, then f = DI Fy where
Fy =S, F is a continuous function. From Lemma 1 (iii) and (i) it follows

exp(=1p(2))Sn, | F(z) |< Sn, (exp(=ny(2)) | F(x) |) € L*.

Applying (2) we obtain

k+1

(10) Dyt =) a(Ni(@)Fi(2)"
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where ¢; are the corresponding constants, N;(x) are the products of the members
of the form (ngf))s, r<k+1, s<k+ 1, with the corresponding r and s which
depend on .

From the construction of n,(z) and condition (E) it follows that for sufficiently
large | z | and suitable C' and C4

(11) sup | Ni(z) |< C' | mp+! (2) |< Crexp(mp((1 = ep41)2))
I1<k+1
since | n§f’ (@) |< M, | mp(z) | for some constant M,.
For Fi(z) the folowing estimate holds.

T

| Fi(2) [< Sn, | Fz) [= exp(—ny(2)) /exp(2np(t)) | F(t) | exp(—ny(t))dt <

0
T

1/2 1/2
< (exp(=2n,(x)) / exp(dny(t))dt) ' - ( / | F(t) ? exp(=2n,())de) /2.

0 R
In fact, for the corresponding C' > 0 we have

(12) | Fi(z) |[< OV exp(—ny(z)).
In order to simplify notations, from this point up to the end of the paper we
shall put npe, My, - . ., instead of npe, Mpo, - .- .

From (7), condition (A) and convexity of the function my(z) for some € > 0
for which g1 — e > 0 holds, it follows

= Tpo(#) < =Mpo(x — 1) < —mpo((1 = x41)2 +7) <
< =Mpo((1 = Ek41)E) — Mpo(€)
for sufficiently large | z |.
Using (11), (12) and (13) if po > p we obtain (for some new C' > 0)
exp(npo (7)) exp(—npo(w)) | F1(@) || Ni(z) |< CVzexp(—mypo (e2) + 1y () + 1150 ()

Since mp(z) increases to infinity faster than any linear function, from (A) it
follows that for a given p there exists pg > p such that /z exp(—mpo(ez) + np(z))
is bounded on R. It means that

DEIFR = 3 (exp(nyo(x))Fi(2) Y
1<k+1

(13)

where F(z) are the corresponding bounded continuous functions.
By the partial integration we obtain

T

/ exp(npo(£))Fy(£)dt = exp(npo(u)) / Fy(t)dt
0

0

T
0
T

- / (nipg () exp(ngpo (u)) / Fy(t)dt) du.
0

0
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From (E) it follows that
T

[ explnsa() Fit)at = expnn)
0

where P, (x) is the corresponding bounded continuous function and p; is the corre-
sponding integer greater than py. Using the preceding argument sufficiently many
times we obtain that for some new p and new F (9) holds.

Let us suppose that (9) holds. From (7) and (A) it follows that there exists
p1 > p such that my(z) < np(z + 1) < np(2z) < np, () holds for sufficiently large
|z |.

Since F'(z) is bounded, from (E) it follows that there exists pg > p; such that

F(x) exp(—npo(z) +my (@) (nyg)" € L
for any I <m, r <m. If we put
F~'(a:) = F(z) exp(—npo(x) + my(x)) than F(z) = (ﬁ'(m) exp(npo (x))(m).

After using the Leibniz formula and (2) we obtain that f(x) is a linear combination
of expressions of the form

DiPO(S;PO(n% (2))°F), r, I, s <j <m, where F = Fexp(ny(z)).

From the fact (ngg (z))*F € L? and Lemma 1 (iii) it follows that this expression
can be represented in the form of

~

Dflpoﬁ’j where  exp(—npo)Fj € Lo
From the linearity of the operator D, o and from the identity
(14) DZO(SZEij) = Dzz,,oﬁj-
it follows that f € H'.
THEOREM 2. The set H' is a linear spase.
Proof. We have only to prove that if
fi=DpsFy and fy =D, F

then f1 + f2 e H'.
From the preceding theorem it follows that

f1(@) = (exp(myp (2))F1 ()™ and fo(2) = exp(mps (@) Fa ()™



190 Stevan Pilipovié¢

for the corresponding py, Fi, m1, pa, Fa, ma. If my < ma (or my; > my), using
the partial integration on exp(m,(z))Fi(z) (or exp(mpa(x))F>(x)) we obtain the
representation of f; and fo with my; = ms. If p; < py we can put

exp(myp1 (x))F1 (z) = exp(mpa () F1 (z) where Fi(x)= exp(mp (x)—myp2(z))Fy(z).

If p1 > p2, we make the similar change on f;. In any case we obtain that arbitrary
two elements from H' have the representation of the form (9) with the same p and
m. From that it follows the assertion of this theorem.

In the space H' we introduce the convergent structure in the following way:

fn = f in H' iff there exists a sequence of locally integrable functions (F,),
a locally integrable function F(z), p € N and k € Ny such that

(15) Dy Fo=fn, Dy F=f,

and a sequence F,exp(—n,(z)) is from L? and in L? norm converges to
Fexp(—ny ().

THEOREM 3. A sequence (f,) from H' converges in H' to f € H' iff there ex-
ists a sequence of bounded continuous functions (F,(x)), bounded continuous func-
tion F(z), p € N and m € Ny such that

(16) Fn(@) = (Fo(@) exp(my)x))™, f(z) = (F(x) exp(my(x)))™
and F,,(x) converges to F(x) for every € R.

Proof . If (15) holds, let us put Fi,(x) = Sp, Fr(z) and Fi(z) = Sy, F(x). It
follows that

k+1

DEF (Fin = Fi) = Y cl(Ni(@) Fin (@) - F1(2))

1=0
where N;(z) are functions described in the proof of the preceding theorem.
From the inequality

| Fun(z) — Fi(2) |< exp(— / | Fu(t) = F(t) [2 exp(=2n,())de) />

/exp 4ny (1) )1/2
0

it follows that Fy,(z) — Fi(z) for every z € R. Using the same fact as in the first
part of the proof of Theorem 1., we can show that f, and f satisfy (16).

Let us show that (15) follows from (16).
For the suitable pg from (7) it follows that f,, and f are of the form

folz) = Fn(exp(—npo))(m), n€N, and f= (Fexp(—npg))(m)
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where (F,,) is a sequence of bounded continuous functions and f is a bounded
continuous function. In the same way as in the second part of the proof of Theorem.,
we can show that f,(z), n € N, and f(x) are the finite sum of the expressions of
the form

Dl o(Sn o () F), n€ Nir, I, s < j <m; and

np0\"*p0
D3,0(8h,0 (4o @))" F).
The sequence (exp(—npo)S};PO((ngg (x)S}:T')) is from L? and exp(—npo)Sﬁpo(ngg (z))®
F) € L?. Using Lebesgue Dominant Convergence Theorem and Lemma 1 (ii), we
obtain that this sequence converges in L2 to the element

exp(—npo(2)) S5 o (nl)(2))° F).

From the identities of the form (14) and Lemma 1 (ii) the assertion follows.

Remark 2. From Theorems 1. and 2. it follows that the space H' is identical
to the space H'{exp(mp(z))} (from [6]), which is the K'-type space introduced in
[2]. Theorem 3. shows that the introduced convergent structure in H' is the same
as the weak convergent structure in H'{exp(mp(x))}. In fact we have to verify that
for the sequence (exp(m,(z))), the condition (F) from [4] is satisfied and after that
to use Theorem 7 (iv) from [4]
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