THE a-TEMPERED DERIVATIVE AND SOME SPACES OF EXPONENTIAL DISTRIBUTIONS

Stevan Pilipović

In this paper we introduce the a-tempered integral and the a-tempered derivative for which almost all results from [5] can be simply transferred. Using the special sequences of a-tempered integrals and and a-tempered derivatives, from the point of view of sequential approach, we characterize some subspaces of D'. These spaces are of $K\{M_p\}$ -type ([2]) for the special sequences $\{M_p\}$.

The a-tempered integral and a-tempered derivative

We are going to define the a-tempered derivative and the a-tempered integral similarly as in [1], p. 161.

Let $x \to a(x), x \in R$, be an infinitely differentiable function. If $f \in D'$ and $k \in N$, the a-tempered derivative of order k is defined by

(1)
$$D_a f = \exp(-a(x))(\exp(a(x))f(x))'; \quad D_a^0 f = f; \quad D_a^k f = D_a(D_a^{k-1}f)$$

It is clear that

(2)
$$D_a f = a' f + f'; \quad g D_a f = D_a(fg) - g' f$$

where $g(x) \in C^{\infty}$.

The a-tempered integral of a function $G(x) \in L^1_{loc}(R)$ of order $k \in N$ is defined by

(3)
$$S_a G = \exp(-a(x)) \int_0^x \exp(a(t)) G(t) dt; \quad S_a^0 G = G; \quad S_a^k G = S_a(S_a^{k-1} G).$$

If $G \in L^1_{loc}$ then $D^k_a S^k_a G = G$, but the converse does not hod.

AMS Subject Classification (1980): Primary 46 F xx.

The operators S_a^k and D_a^k are linear for any $k \in N$. It is easy to verify that

$$S_a^k G = \exp(-a(x)) \int_0^x \frac{(x-t)^{k-1}}{\Gamma(k)} G(t) \exp(a(t)) dt, \quad k \in \mathbb{N}.$$

If we define for $\alpha \geq 0$

$$S_a^k G = \exp(-a(x)) \int_0^x \frac{(x-t)^{\alpha-1}}{\Gamma(\alpha)} \exp(a(t)) G(t) dt,$$

we may prove as in ([5]) that $S_a^{\alpha+\beta}$ $G = S_a^{\alpha} S_a^{\beta} G$, $\alpha \geq 0$, $\beta \geq 0$.

In [5] the so-called rapidly decreasing functions in zero (RDZ) are defined. Let us repeat the definition:

The function f is RDZ iff for every $r \in N$ there exists $M_r > 0$ such that $|f(x)| \leq M_r |x|^r$ for $|x| \leq 1$.

The set of RDZ functions is a linear space.

Since all results from [5] can be easily transferred for the a-tempered derivative and integral we shall only state these facts here.

If f is RDZ function then for any $\alpha \geq 0$ $S_a^{\alpha} f$ iz RDZ function and $S_a^{\alpha} f$ has the value 0 at x=0.

We say that $f \in D'$ is a-rapidly decreasing distribution (a-RDZ) if f is of the form $f = D_a^k F$ for some $k \in N$ and some RDZ function F.

The set of such distributions forms a subspace of the space D' and evert such distribution has the value 0 at x = 0.

For any a-RDZ distribution f there exists a unique a-RDZ distribution g such that $f=D_ag$. This result is used in defining the a-tempered derivative of order $\alpha \geq 0$ of a-RDZ distributions as $D_a^{\alpha}f=D_a^{p+l}S_a^{p-\alpha}f$ where $f=D_a^lF$ for some continuous RDZ functions, $l \in N$ and p is an integer such that $0 \leq p-1 < \alpha \leq p$. The operator D_a^{α} , $\alpha \geq 0$, is linear in the space of a-RDZ distributions and for any $\alpha \geq 0$, $\beta \geq 0$ $D_a^{\alpha}D_a^{\beta}f=D_a^{\alpha+\beta}f$ where f is an a-RDZ distribution.

In our further observations for the first derivative of the function a(x) we shall suppose that there exist C>0 and m>0 such that $a'(x)\geq m$ for x>C and $a'(x)\leq -m$ for x<-C.

Let us prove some properties of the operator S_a .

Lemma 1. (i) If $F \in L^2$ then $S_aF \in L_2$; (ii) If (F_n) is sequence from L^2 , and $F_n \stackrel{2}{\to} F$ then $S_aF_n \stackrel{2}{\to} S_aF$; (iii) If $F \in L^1_{loc}$ then $|\exp(-a(x))S_aF| \leq S_a(\exp(-a(x)) \mid F \mid)$.

Proof. (i) We shall use the idea of the proof of Lemma 7.4.2 from [1]. As some tehnical changes are needed, we shall give the complete proof of this assertion.

Let us denote

$$I_B = \int\limits_0^B \exp(-2a(x))M^2(x)dx$$

where

$$M(x) = \int\limits_0^x \exp(a(t)) \mid F(t) \mid dt \quad ext{and} \quad B > 0.$$

As we supposed there exists $C \ge 0$ such that for $x \ge C$ a'(x) > m. Since

$$I_B = \int_{0}^{C} + \int_{C}^{B},$$

first we shall estimate $\int\limits_0^C$ and after that, $\int\limits_C^B$.

$$\int\limits_0^C \exp(-2a(x)) \Big(\int\limits_0^x \exp(a(t)) \mid F(t) \mid dt\Big)^2 dx \leq K_0 \int\limits_0^C \Big(\int\limits_0^x \exp(a(t)) \mid F(t) \mid dt\Big)^2 dx \leq K_0 \int\limits_0^C \Big(\int\limits_0^x \exp(2a(t)dt) \Big(\int\limits_0^x \mid F(t) \mid^2 dt\Big)\Big) dx.$$

So if $A = \int_{-\infty}^{\infty} |F(t)|^2 dt$, for a suitable K_1 we obtain

$$\left|\int\limits_{0}^{C}\right| \leq K_{1}A.$$

Since a'(x) > m for $x \in [C, \infty)$, there exists $\alpha > 0$ such that $2\alpha a'(x) \ge 1$ (for $x \in [C, \infty)$). By the partial integration we obtain

$$\int_{C}^{B} \exp(-2a(x))M^{2}(x)dx \le \alpha \int_{C}^{B} 2a'(x) \exp(-2a(x))M^{2}(x)dx =$$

$$= \alpha \int_{C}^{B} (-\exp(-2a(x)))'M^{2}(x)dx \le 2\alpha \int_{C}^{B} \exp(-2a(x))M(x) \exp(a(x)) \mid F(x) \mid dx \le$$

$$\le 2\alpha a \left(\int_{C}^{B} \exp(-2a(x))M^{2}(x)dx\right)^{1/2} \left(\int_{0}^{B} \mid F(x) \mid^{2} dx\right)^{1/2}.$$

From that it follows that for a suitable K_2

$$\left|\int_{C}^{B}\right| \leq K_{2}\sqrt{I_{B}A}.$$

From (4) and (5) we obtain $I_B \leq K_1 A + K_2 \sqrt{I_B A}$.

If $I_B \ge K_1 A$ than $(I_B - K_1 A)^2 \le K_2^2 I_B A$ and $I_B \le (2K_1 + K_2^2)A$.

In any case there exists $K_3 > 0$ such that $I_B \leq K_3 A$.

Similarly, we can prove that $\Big|\int\limits_0^{-B}\exp(-2a(x))M^2(x)dx\Big|\leq K_4A$ and so we obtain the assertion.

(ii) If in the proof of the part (i) we put

$$M_n(x) = \int\limits_0^x \exp(a(t)) \mid F_n(t) - F(t) \mid dt \; ext{and} \; A_n = \int\limits_{-\infty}^\infty \mid F_n(t) - F(t) \mid^2 dt$$

then the assertion follows from the inequality

$$\int_{-\infty}^{\infty} \exp(-2a(x)) M_n^2(x) dx \le K A_n, \quad \text{where } K = \max(K_3, K_4).$$

(iii) is simple.

Remark. If $(a(x) = o(x) \text{ when } x \to \infty$, similarly as in [1] we may prove that $S_a(1) \in L^2$.

Some spaces of exponential distribution

Let $(\tilde{m}_p(x))$, $p \in N$, $0 \le x < \infty$, be a sequence of nondecreasing continuous functions such that for every $p, \tilde{m}_p(o) = 0; \tilde{m}_p(x) \to \infty$ as $x \to \infty; \tilde{m}_1(x) \le \tilde{m}_2(x) \le \cdots$. We define

(6)
$$m_p(x) = \int_0^{|x|} \tilde{m}_p(t)dt, \quad x \in R, \quad p \in N.$$

This implies that for every $p \in N$ the functions $m_p(x)$ are convex (this implies that if $x \cdot y \geq 0$ then $m_p(x) + m_p(y) \leq m_p(x+y)$) and increase to infinity faster than any linear function when $|\dot{x}| \to \infty$. We suppose that the following condition is satisfied

(A) For every $p \in N$ there exists $x_p > 0$ and $p' \in N$, such that $m_p(px) \leq m'_p(x)$ for $|x| \geq x_p$.

In [6] we have proved that (A) implies the so-called nuclearity condition for the sequence $(\exp(m_v(x)))$:

(N) For every p there exists $p' \in N$, such that $\exp(m_p(x) - m_{p'}(x))$ is a summable function on R and $\exp(m_p(x) - m_{p'}(x)) \to 0$ when $|x| \to \infty$.

Also, we suppose that for the elements of the sequence $(\exp(m_p(x)))$ the following condition holds.

(E) For every $p \in N$ and every $k \in N$ there are $\varepsilon_k \in (0,1)$, $C_k > 0$ and $\bar{x}_p > 0$ such that $m_p^k(x) < C_k \exp(m_p((1-\varepsilon_k)(x)))$ if $|x| \ge \bar{x}_p$.

We shall use the sequence $(n_p(x))$ constructed in the following way:

Let $\omega(x)$ be a smooth positive function on R such that $\operatorname{supp} \omega \in [0;1]$ and $\int\limits_R \omega(x) dx = 1$. For |x| > 1 we put $n_p(x) = \bar{n}_p(|x|)$, where $\bar{n}_p(x) = (m_p(t) * \omega(t))(x)$, x > 1. For $|x| \le 1$ we define $n_p(x)$ to be smooth non-decreasing, positive and $n_p(x) \le n_{p+1}(x)$, $p \in N$.

It is easy to verify that for $x \geq 1$

(7)
$$m_p(x-1) \le n_p(x) \le m_p(x)$$
.

Every function $n_p(x)$, $p \in N$, satisfies conditions as the function a(x) from the first part of the paper. So using these functions we define the sequence of n_p -tempered integrals (S_{np}) and the sequence of n_p -tempered derivatives (D_{np}) .

Let us define a subset of D' in the following way: A distribution f is in H' iff there exist $p \in N$, $k \in N_0$ and a locally integrable function F for which $F(x) \exp(-n_p(x)) \in L^2$, such that

$$(8) f = D_{n_p}^k F.$$

We are going to show that H' is a subspace of D' identical to the space $H'\{\exp m_p(x))\}$ which we have introduced in |6|.

Theorem 1. A distribution f is in H' iff there exist $p \in N$, $m \in N$ and a bounded continuous function F(x) such that

(9)
$$f(x) = (F(x) \exp(m_n(x)))^{(m)}.$$

Proof. If (8) holds for the corresponding p, and F, then $f=D_{np}^{k+1}F_1$ where $F_1=S_{np}F$ is a continuous function. From Lemma 1 (iii) and (i) it follows

$$\exp(-n_p(x))S_{n_p} \mid F(x) \mid \le S_{n_p}(\exp(-n_p(x)) \mid F(x) \mid) \in L^2.$$

Applying (2) we obtain

(10)
$$D_{n_p}^{k+1} F_1 = \sum_{l=0}^{k+1} c_l (N_l(x) F_1(x))^{(l)}$$

where c_l are the corresponding constants, $N_l(x)$ are the products of the members of the form $(n_p^{(r)})^s$, $r \leq k+1$, $s \leq k+1$, with the corresponding r and s which depend on l.

From the construction of $n_p(x)$ and condition (E) it follows that for sufficiently large |x| and suitable C and C_1

(11)
$$\sup_{l \le k+1} |N_l(x)| \le C |m_p^{k+1}(x)| \le C_1 \exp(m_p((1-\varepsilon_{k+1})x))$$

since $|n_p^{(r)}(x)| \leq M_r |m_p(x)|$ for some constant M_r .

For $F_1(x)$ the following estimate holds.

$$\mid F_1(x) \mid \leq S_{n_p} \mid F(x) \mid = \exp(-n_p(x)) \int_0^x \exp(2n_p(t)) \mid F(t) \mid \exp(-n_p(t)) dt \leq$$

$$\leq \left(\exp(-2n_p(x))\int\limits_0^x \exp(4n_p(t))dt\right)^{1/2} \cdot \left(\int\limits_R \mid F(t)\mid^2 \exp(-2n_p(t))dt\right)^{1/2}.$$

In fact, for the corresponding C > 0 we have

$$(12) |F_1(x)| \le C\sqrt{x} \exp(-n_p(x)).$$

In order to simplify notations, from this point up to the end of the paper we shall put n_{po}, m_{po}, \ldots , instead of n_{po}, m_{po}, \ldots

From (7), condition (A) and convexity of the function $m_p(x)$ for some $\varepsilon > 0$ for which $\varepsilon_{k+1} - \varepsilon > 0$ holds, it follows

(13)
$$-n_{po}(x) \leq -m_{po}(x-1) \leq -m_{po}((1-\varepsilon_{k+1})x + \varepsilon x) \leq \\ \leq -m_{po}((1-\varepsilon_{k+1})x) - m_{po}(\varepsilon x)$$

for sufficiently large |x|.

Using (11), (12) and (13) if $p_0 > p$ we obtain (for some new C > 0) $\exp(n_{p0}(x)) \exp(-n_{p0}(x)) \mid F_1(x) \mid \mid N_l(x) \mid \leq C\sqrt{x} \exp(-m_{p0}(\varepsilon x) + n_p(x) + n_{p0}(x))$

Since $m_p(x)$ increases to infinity faster than any linear function, from (A) it follows that for a given p there exists $p_0 > p$ such that $\sqrt{x} \exp(-m_{p0}(\varepsilon x) + n_p(x))$ is bounded on R. It means that

$$D_{n_p}^{k+1} F_1 = \sum_{l \le k+1} (\exp(n_{p0}(x)) \overline{F}_l(x))^{(l)}$$

where $\overline{F}(x)$ are the corresponding bounded continuous functions.

By the partial integration we obtain

$$\int_{0}^{x} \exp(n_{p0}(t)) \overline{F}_{l}(t) dt = \exp(n_{p0}(u)) \int_{0}^{u} \overline{F}_{l}(t) dt \Big|_{0}^{x} - \int_{0}^{x} (n'_{p6}(u) \exp(n_{p0}(u)) \int_{0}^{u} \overline{F}_{l}(t) dt) du.$$

From (E) it follows that

$$\int_{0}^{x} \exp(n_{p0}(t)) \overline{F}_{l}(t) dt = \exp(n_{p1}) \overline{\overline{F}}_{l}$$

where $\overline{\overline{F}}_l(x)$ is the corresponding bounded continuous function and p_1 is the corresponding integer greater than p_0 . Using the preceding argument sufficiently many times we obtain that for some new p and new F (9) holds.

Let us suppose that (9) holds. From (7) and (A) it follows that there exists $p_1 > p$ such that $m_p(x) \le n_p(x+1) \le n_p(2x) \le n_p$, (x) holds for sufficiently large |x|.

Since F(x) is bounded, from (E) it follows that there exists $p_0 > p_1$ such that

$$F(x) \exp(-n_{p0}(x) + m_p(x))(n_{p0}^{(l)})^r \in L^2$$

for any $l \leq m, \ r \leq m$. If we put

$$\tilde{F}(x) = F(x) \exp(-n_{p0}(x) + m_p(x))$$
 than $F(x) = (\tilde{F}(x) \exp(n_{p0}(x))^{(m)})$.

After using the Leibniz formula and (2) we obtain that f(x) is a linear combination of expressions of the form

$$D_{n_{p}0}^{j}(S_{n_{p}0}^{r}(n_{p0}^{(l)}(x))^{s}\widetilde{\tilde{F}}), \ r, \ l, \ s \leq j \leq m, \ \text{ where } \stackrel{\sim}{\tilde{F}} = \tilde{F}\exp(n_{p0}(x)).$$

From the fact $(n_{p0}^{(l)}(x))^s \tilde{F} \in L^2$ and Lemma 1 (iii) it follows that this expression can be represented in the form of

$$D_{n_p0}^j \overset{\sim}{\tilde{F}}_j$$
 where $\exp(-n_{p0})F_j \in L_2$

From the linearity of the operator D_{n_p0} and from the identity

(14)
$$D_{n_p0}^m(S_{n_p0}^{m-j}\tilde{F}_j) = D_{n_p0}^j\tilde{F}_j.$$

it follows that $f \in H'$.

Theorem 2. The set H' is a linear space.

Proof. We have only to prove that if

$$f_1 = D_{n_p 3}^{r_1} \tilde{F}_1$$
 and $f_2 = D_{n_p 4}^{r_2} \tilde{F}_2$

then $f_1 + f_2 \in H'$.

From the preceding theorem it follows that

$$f_1(x) = (\exp(m_{p1}(x))F_1(x))^{(m1)}$$
 and $f_2(x) = \exp(m_{p2}(x))F_2(x))^{(m2)}$

for the corresponding p_1 , F_1 , m_1 , p_2 , F_2 , m_2 . If $m_1 < m_2$ (or $m_1 > m_2$), using the partial integration on $\exp(m_p(x))F_1(x)$ (or $\exp(m_{p^2}(x))F_2(x)$) we obtain the representation of f_1 and f_2 with $m_1 = m_2$. If $p_1 < p_2$ we can put

$$\exp(m_{p1}(x))F_1(x) = \exp(m_{p2}(x))\tilde{F}_1(x)$$
 where $\tilde{F}_1(x) = \exp(m_{p1}(x) - m_{p2}(x))F_1(x)$.

If $p_1 > p_2$, we make the similar change on f_2 . In any case we obtain that arbitrary two elements from H' have the representation of the form (9) with the same p and m. From that it follows the assertion of this theorem.

In the space H' we introduce the convergent structure in the following way:

 $f_n \to f$ in H' iff there exists a sequence of locally integrable functions (F_n) , a locally integrable function F(x), $p \in N$ and $k \in N_0$ such that

(15)
$$D_{n_p}^k F_n = f_n, \quad D_{n_p}^k F = f,$$

and a sequence $F_n \exp(-n_p(x))$ is from L^2 and in L^2 norm converges to $F \exp(-n_p(x))$.

THEOREM 3. A sequence (f_n) from H' converges in H' to $f \in H'$ iff there exists a sequence of bounded continuous functions $(F_n(x))$, bounded continuous function F(x), $p \in N$ and $m \in N_0$ such that

(16)
$$f_n(x) = (F_n(x)\exp(m_p(x)))^{(m)}, \ f(x) = (F(x)\exp(m_p(x)))^{(m)}$$

and $F_n(x)$ converges to F(x) for every $x \in R$.

Proof. If (15) holds, let us put $F_{1n}(x) = S_{n_p} F_n(x)$ and $F_1(x) = S_{n_p} F(x)$. It follows that

$$D_{n_p}^{k+1}(F_{1n} - F_1) = \sum_{l=0}^{k+1} c_l (N_l(x) F_{1n}(x) - F_1(x)))^{(l)}$$

where $N_l(x)$ are functions described in the proof of the preceding theorem.

From the inequality

$$|F_{1n}(x) - F_{1}(x)| \le \exp(-n_{p}(x)) \left(\int_{0}^{x} |F_{n}(t) - F(t)|^{2} \exp(-2n_{p}(t)) dt \right)^{1/2} \cdot \left(\int_{0}^{x} \exp(4n_{p}(t)) dt \right)^{1/2}$$

it follows that $F_{1n}(x) \to F_1(x)$ for every $x \in R$. Using the same fact as in the first part of the proof of Theorem 1., we can show that f_n and f satisfy (16).

Let us show that (15) follows from (16).

For the suitable p_0 from (7) it follows that f_n and f are of the form

$$f_n(x) = F_n(\exp(-n_{p0}))^{(m)}, \ n \in \mathbb{N}, \ \text{and} \ f = (F\exp(-n_{p0}))^{(m)}$$

where (F_n) is a sequence of bounded continuous functions and f is a bounded continuous function. In the same way as in the second part of the proof of Theorem., we can show that $f_n(x)$, $n \in N$, and f(x) are the finite sum of the expressions of the form

$$D_{n_p0}^j(S_{n_p0}^r(n_{p0}^{(l)}(x))^s\tilde{\tilde{F}}), \ n \in N; r, \ l, \ s \le j \le m; \ \text{and}$$

$$D_{n_p0}^j(S_{n_p0}^r(n_{n_p0}^{(l)}(x))^s\tilde{\tilde{F}}).$$

The sequence $(\exp(-n_{p0})S^r_{n_p0}((n^{(l)}_{p0}(x)^s\tilde{\tilde{F}}))$ is from L^2 and $\exp(-n_{p0})S^r_{n_p0}(n^{(l)}_{p0}(x))^s\tilde{\tilde{F}}) \in L^2$. Using Lebesgue Dominant Convergence Theorem and Lemma 1 (ii), we obtain that this sequence converges in L^2 to the element

$$\exp(-n_{p0}(x))S_{n_p0}^r((n_{n_p0}^{(l)}(x))^{s}\tilde{\tilde{F}}).$$

From the identities of the form (14) and Lemma 1 (ii) the assertion follows.

Remark 2. From Theorems 1. and 2. it follows that the space H' is identical to the space $H'\{\exp(m_p(x))\}$ (from [6]), which is the K'-type space introduced in [2]. Theorem 3. shows that the introduced convergent structure in H' is the same as the weak convergent structure in $H'\{\exp(m_p(x))\}$. In fact we have to verify that for the sequence $(\exp(m_p(x)))$, the condition (F) from [4] is satisfied and after that to use Theorem 7 (iv) from [4]

REFERENCES

- P. Antosik, J. Mikusiński, R.Sikorski, Theory of distributions, The sequential approach, Warszawa, 1973.
- [2] I. Gel'fand, G. Shilov, Generalized Functions II, New York, 1968.
- [3] I. Gel'fand, G. Shilov, Generalized Functions III, New York, 1967.
- [4] L. Kitchens, C. Swartz, Convergence in the Dual of Certain $K'\{M_p\}$ -Space, Colloq. Math. $\bf 30 (1974),\ 149-155.$
- [5] K. Skornik, On tempered integrals and derivatives of nonnegative orders, Ann. Polon. Math. 40 (1981), 47-57 (Also in Dokl. AN SSSR, 254, 1980).
- [6] S. Pilipović, A. Takači, The Space $H'\{M_p\}$ and Convolutors, Proc. Moscow Conf. on Gen. Functions, 1980, 415–426.

(Received 23 09 1982)