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ON TWO OPEN PROBLEMS OF CONTRACTIVE MAPPINGS

V. Totik

Abstract. Two open problems are solved concerning the fixed points of contractive map-
pings. The first is an example of a shrinking mapping of the closed unit ball in a Banach space
without any fixed point. The second solves a question of B. Fischer.

1. Let (X, d) be a metric space, T : X — X a mapping of X into itself. T
is said to be shrinking if d(T'z, T'y) < d(z,y) for every z,y € X.

It is well known (see e.g. [3]) that if X is compact and T : X — X is a
shrinking mapping, then 7" has a fixed point. By a beautiful theorem of Browder
[1] the same conclusion holds provided X is the closed unit ball of a Hilbert
space and T is shrinking. In connection with these results D. R. Smart raised
the following question [3, p. 39]: “Does every shrinking mapping of the closed unit
ball in a Banach space have a fixed point?” The aim of this paragraph is to give
negative answer to this problem.

THEOREM 1. There exists a Banach space B and an affine shrinking mapping
T of the closed unit ball U of B into the boundary OU of U such that T does
not have any fized point.

Proof. Let ¢ = {z = {z;}2, | lim #; = 0} be the space real se-
71— 00

quences converging to 0 with norm |[|z|| = sup | z; |. Let B = ¢ and
i

T(x1,Z2,-.- ,Zn,...) = (1,22/2+1/2, 222/3+1/3,..., (1-1/n)x,+1/n,...) ie.

T is defined by (Tz),) = (1—1/n)zp+1/n. If U is the unit ball in B, then clearly
T:U — 0U and T is affine. T is shringing. Let z = {x;}°, v = {y:i}°, z # .
Then

0<e:=|z—yll =Ty — Ynol

for some ng. Let N > 2 be so large that the inequalities

lzn| <e/4, |yn| <e/4 (n > N)
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be satisfied. Now
2¢/4=¢/2 fi>N

|(Tx)i — (Ty)il = (1 = 1/i)|w; — yi| < {(1 —1/N)|z; —yi| <|1—1/NJe if i <N

i.e.
1Tz — Tyl < (1 —1/N)e,

and so T is really a shrinking mapping.

Finally T does not have any fixed point: if z = {z;}{° where a fixed point
of T', then we would have

(1 - 1/’&).’1‘71 + l/i = (T.’L‘)z = ;
i.e. z; =1 for all 4, but the sequence {1}$° does not belong to B = cy.

We have proved our theorem.

2. In [2] B. Fischer made the following conjecture. Suppose S and T are
mapping of the complete matrix space X into itself, with either S or T continuous,
satisfying the inequality

(1) d(Sz,TSy) < cdiam{z, Sz, Sy, TSy}

for all z,y in X, where 0 < ¢ < 1. Then S and T have a unique common fixed
point.

This conjecture has been open even for compact X. Now we show that it is
true for ¢ < 1/2 but false for ¢ > 1/2.

THEOREM 2. If X is complete, S : X — X, T : X — X with property (1),
where ¢ < 1/2, then S and T have a unique common fized point. On the other
hand, there are a four point X and S : X — X, T : X - X mappings of X
without fized point satisfying

d(Sz, TSy) > 1/2 diam {z, Sz, Sy, TSy}.

Thus, if & < 1/2 we do not need any continuity assumption, and for a > 1/2
even the simultaneous continuity of S and T and the compactness of X do not
help.

Proof. To prove the first part of our theorem let o € X be arbitrary and let
(TS)"x,, if n is even
" S(T8)m=1/2gy. if n is odd.
By (1)

d(CL'Qn_H 5 .’Ezn) = d(STS.’L'Qn_z, TSCL’Qn_Q) S C diam{ngn_g, TSSL'QH_Q, STSIL'Qn_Q} =

= cdiam{zan_1, Ton, Tont1} < c(d(@an, Ton—1) + d(T2nt1, Tan))
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and thus
(2) d(Tant1, T2n) < (¢/(1 = ¢))d(T2n, T2n-1) (n>1)

Similarly,

d(zant2, Tant1) = d(Szon, TSzay) < ¢ diam {zon, Tont1, Tont2} <
< c(d(@2nt1s Tan) + d(T2ny2, T2ny1))
by which
(3) d(T2n+2, Tant1) < (¢/(1 = c))d(Tant1, T2n)

Since ¢ < 1/2 we have ¢/(1 — ¢) < 1, and so (2) and (3) imply that the sequence
Zn is a Cauchy sequnce and thus, by completeness, z, = z(n — ooz € X). Using
again (1) we get

d(Sz, Tonio) < ¢ diam{z, Sz, Tapi1, Tonta}t <
c(d(Sz, z) + d(z, x2nt1) + d(X2n+1, Tont2))

Letting here n — oo we obtain d(Sz, z) < ¢d(Sz, 2) i.e. d(Sz,2) =0, Sz = 2.
But then

d(z, Tz) =d(Sz,TSz) < ¢ diam{z,Sz, TSz} = cd(z, Tz)

ie. d(z, Tz) =0, Tz = z and thus z is a common fixed point of S and 7. The
uniqueness of the common fixed point follows easily from (1).

After this let us prove that the conjecture is false for ¢ = 1/2 and hence
also ¢ > 1.2. Let X = {4,B,C,D} with d(4,D) = d(B,C) = d(B,D) =1 and
d(A, B) = d(C, D) = 2 (see the first figure) and let S and T be the two mapping
indicated below:

A‘I’R___z_'"'?B A B A B
N\ 71
X ! \ // | S.' T
N

1 v ool

{ 1// \\1 :

: // \\ |

D¥—-2-—Nc D C D

Neither S nor T have any fixed point. However, Sz € {D,C}, TSy €
{A, B} and so d(Sz, TSy) =1 for every z,y € X; furthermore

a) d(z,Sz)=2, ifzx=Coraz=D
b) d(Sz,Sy) =2, if z+ A and y€ {B,D} or x =B and y € {4,C}
c) d(z,TSy)=2, if x=A and y € {A,C}lor z =B and y € {B, D},
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i.e. in any case diam{z, Sz, Sy, TSy} = 2 and so (1) holds for every z,y € X with
c=1/2.

We have proved our theorem.
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