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COMMUTATIVE WEAK GENERALIZED INVERSES OF A
SQUARE MATRIX AND SOME RELATED MATRIX EQUATIONS

Jovan D. Keckié

Abstract. The chief concern of this paper is the existence and the construction of all weak
generalized inverses which commute with the original matrix; in other words we are concerned
with the system AXA = A, AX = XA. Some other matrix systems and equations are also
considered.

1. The (unique) generalized inverse of an arbitrary m X n complex matrix A
is defined (see [1]) as the n x m matrix AT which satisfies the conditions:

1) AATA=A, ATAAT = AT AA' and At A are Hermitian.

However, in various applications (particularly in solving linear matrix equations) it
is not necessary to use the generalized inverse A*. Instead, it is enough to take a
matrix which satisfies only the first of the conditions (1), i.e. a matrix A such that

(2) AAA = A.

We note in passing that Bjerhammar [2] defined by the first equality of (1) the
generalized inverses, and by the first two equalities of (1) the reciprocal inverses of
the given matrix A.

A matrix A satisfying (2) will be called here a weak generalized inverse of
A (w.g.i. of A). Unless A is a regular matrix (in which case the only w.g.i. is the
inverse A~!), any matrix A has an infinity of w.g.i.’s. We shall first investigate
whether among them there exists a w.g.i. A which commutes with A, i.e. whether
there exists a matrix A which satisfies (2) and also

3) AA =4A.

Notice that possible commutative reciprocal inverses of A, i.e. solutions of the

system
AXA=A, XAX=X, AX=XA
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were considered e.g. in [3] or [4].

We shall characterize commutative w.g.i.’s, and more generally solutions of
the system in X:
AXA=A, A*X =XA* (keN)
by means of the coefficients of the minimal polynomial of A. Such an approach was
not, as far as we know, employed before.

The existence of a commutative w.g.i. facilitates certain problems. For in-

stance, in that case a w.g.i. of A" is A" (n € N); the equations A”X = 0 and
AX = 0 are equivalent for all n € N; equalities of the form A™Y = A™Z can be
canceled by A (m,n integers > 1), and so on.

Naturally, the search for commutative w.g.i.’s restricts us to square matrices.
We also exclude from our considerations regular matrices.

2. Suppose that A is a singular square matrix. We may take that the minimal
polynomial of A has the form

(4) mA) = A"+ ap A" A
since the existence of the constant term oy # 0 would imply that A is regular.

THEOREM 1. The matriz A with the minimal polynomial (4) has a commu-
tative w.g.1. if and only if a1 # 0.

Proof. If a; # 0, it is easily verified that the matrix A defined by
A= —(1/0&1)(14"72 + an,lA"73 + -4 CMQI)

is a commutative w.g.i. of A.

Conversely, suppose that A is a commutative w.g.i. of A and that a; = 0.
Then from the equality

A"+ ap 1 AV 4+ @A =0,
after multiplying by A, and noting that AA* = A¥~1 (k =2,3,...) follows
A" b, AP 4 A =0,

implying that (4) is not the minimal polynomial of A. This completes the proof.

As a direct consequence of the above theorem we obtain

THEOREM 2. IfAisa commutative w.g.i. of A, then there exist a commutative
w.g.i. Ao and a polynomial P such that Ag = P(A).

Proof. If A is a commutative w.g.i. of A, then the minimal polynomial of A
has the form (4), with a; # 0. But then the polynomial P(\) = —aj'(A"~2 +
Qn_ 1 A" 73 + -+ 4 @) is such that Ay = P(A) is a commutative w.g.i. of A.
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The above theorem suggests the question: If A is a commutative w.g.i. of A,
does there exist a polynomial P such that A = P(A)? The answer is negative.
Indeed, the matrix

14 4 -5
1 1 1

is a commutative w.g.i. of
111
A=1{1 1 1
111

but it cannot be expressed in the form of a polynomial in A. In fact, since A2 = 34,
any polynomial in A can be reduced to a polynomial of the form aA + 8I. But
then it easily verified that there are no a and S such that A = a4 + 1.

At the end of this section we deduce a formula which enables us to write down
all commutative w.g.i.’s of a given matrix, provided that one of them is known.

THEOREM 3. Suppose that A is a commutative w.g.i. of A. Then all the
solutions of the system in X:

(5) AXA=A AX=XA

are given by

(6) X =AAA+T — AAT — TAA + AATAA,
where T is an arbitrary matriz.

Proof. The proof is based on the fact that the general solutions of the equa-

tions in X:
AXA=A, AXB=0

are given by
X =AAA+U - AAUAA, X =U-AAUBB,

respectively, where A, B are w.g.i’s of A and B, and U is an arbitrary matrix.

In order to solve (5), we substitute the general solution
(7) X =AAA+U - AAUAA

where U is arbitrary, of the first equation into the second equation of the system,
to obtain the following equation in U:

) AU — AUAA = UA — AAUA.
The equation (8), when multiplied by A from the right becomes
UA®> — AAUA? = 0,
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and again multiplying by A we obtain

UA—AAUA=0, ie, (I—-AAUA=0,
and since I is a w.g.i. of T — AA, its general solution is
9) U=V —(I—-A4AVAA,

where V' is an arbitrary matrix. We now substitute (9) into (8), to obtain the
following equation in V:
AV — AVAA =0,

i.e. o
AV (I — AA) =0.

The general solution of the last equation is
(10) V =T — AAT(I — AA),

where T is an arbitrary matrix. From (7), (9) and (10) we conclude that (5) implies
(6). Conversely, it is easily verified that (6) is a solution of (5), and the proof is
complete.

3. As we have seen, a matrix A need not have a commutative w.g.i. We
therefore investigate whether for a given matrix A it is possible to find a matrix X
which satisfies the weaker conditions:

(11) AXA=A, AFX =XAF,

for some k > 1. Such matrices are called k-commutative w.g.i.’s of A (of course,
we suppose that k is the smallest positive integer such that (11) holds). Note that
systems of the form

AXA=A, XAX =X, AFX =XxAF AXF=X*A

were considered by Erdelyi [5].
As before, we suppose that

(12) AN b, (AT 4 ag )
is the minimal polynomial of A.

THEOREM 4. If the matrix A has a k-commutative w.g.i. then at least one of
the coefficients ay, ..., ax differs from zero.

Proof. The proof is similar to the proof of Theorem 1. Namely, suppose that
ay =---=a =0, so that

(13) A" 4oy 1 AT 4 g AR =0,

If there exists a matrix X which satisfies (11), then multiplying (13) by X, and
noting that from (11) follows X A™ = A™~! for m > k+1, we see that (13) reduces
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to A" +a, A" 2 4+ ... + a1 A¥ = 0, implying that (11) is not the minimal
polynomial of A.

THEOREM 5. Suppose that k is the smallest positive integer (1 < k <n —1)
such that ay, # 0. Then there exists a k-commutative w.g.i. of A.

Proof. Since the minimal polynomial of A is
A"t AT At (o #0),

the matrix A is similar to a Jordan matrix J, which can be written in the form
J =T @& R, where T is a Jordan matrix of order > k, with zeros on the diagonal,
and R is a regular matrix. Moreover, T* = 0, and so J* = 0@ RF

Therefore, if T is a w.g.i. of T, then J = TU ® R is a w.g.i. of J, and J
commutes with J* since

J*JT=0eRTeR')=0a R =JJ%

Now since A is similar to J, there exists a regular matrix S such that 4 =
SJS~!. But then the matrix X defined by X = SJS~! satisfies both equations
(11), which is easily verified.

From Theorems 4 and 5 we obtain

THEOREM 6. Let 1 < k <n—1 and suppose that a; =---+ar_1 = 0. Then
the matriz A has a k-commutative w.g.i. if and only if ay # 0.

Again, we can deduce a formula which gives all k-commutative w.g.i.’s of A,
provided that one of them is known.

THEOREM 7. If A is a k-commutative w.g.i. of A, then all the solutions of
the system (11) are given by

(14) X = AAA+ T — TA¥A" + AATAVA" — A°AFT + A" AVT AA — AAT AA.
where T is an arbitrary matriz.

Proof. The proof is similar to the proof of Theorem 3, and we therefore omit

it. Tt should only be noted that from AAA = A, A¥A = AA* follows that A" is a
w.g.i. of Ak,

Remark. For k =1 formula (14) reduces to formula (6).

4. Notice that Theorems 3 and 7 can be carried over to arbitrary rings.
Indeed, if (R, +,-) is a ring, and if @ is a solution of the system in z:

aza =a, a*z=zad* (k € N,a € R fixed),
then all the solutions of that system are given by

z =aaa + t — ta*a* + aata*a* — @ a*t + a¥a*taa — aataa,
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where t € R is arbitrary.

5. Commutative and k-commutative w.g.i.’s can be used to solve various
matrix equations. As an example we consider the equation in X:

(15) AMX A" = cAP,

where m,n_are nonnegative integers, p is a positive integer, and ¢ is a complex
number. If 4 is a commutative w.g.i. of A, then the general solution of the equation
(15) is given by

(16) X =cA"APA" + T - A"TAA",
where T is an arbitrary matrix.

However, if A does not have a commutative w.g.i., but only a k-commutative
w.g.i. (k > 1), then the equation (15) can be solved by this method provided that
one of the following conditions is fulfilled:

(i) k < min(m,n,p);
(ii) £ <min(m,p) n € {0,1};
(ili) £ < min(n,p), m € {0,1};
(iv) k<p m,n € {0,1},
and the general solution of (15) in all those cases is again (16).

The equation (15) can be treated analogously in an arbitrary ring, provided
that c is an integer.
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