COMMUTATIVE WEAK GENERALIZED INVERSES OF A SQUARE MATRIX AND SOME RELATED MATRIX EQUATIONS

Jovan D. Kečkić

Abstract. The chief concern of this paper is the existence and the construction of all weak generalized inverses which commute with the original matrix; in other words we are concerned with the system AXA = A, AX = XA. Some other matrix systems and equations are also considered.

1. The (unique) generalized inverse of an arbitrary $m \times n$ complex matrix A is defined (see [1]) as the $n \times m$ matrix A^+ which satisfies the conditions:

(1)
$$AA^+A = A$$
, $A^+AA^+ = A^+$, AA^+ and A^+A are Hermitian.

However, in various applications (particularly in solving linear matrix equations) it is not necessary to use the generalized inverse A^+ . Instead, it is enough to take a matrix which satisfies only the first of the conditions (1), i.e. a matrix \overline{A} such that

$$(2) A\overline{A}A = A.$$

We note in passing that Bjerhammar [2] defined by the first equality of (1) the generalized inverses, and by the first two equalities of (1) the reciprocal inverses of the given matrix A.

A matrix \overline{A} satisfying (2) will be called here a weak generalized inverse of A (w.g.i. of A). Unless A is a regular matrix (in which case the only w.g.i. is the inverse A^{-1}), any matrix A has an infinity of w.g.i.'s. We shall first investigate whether among them there exists a w.g.i. \overline{A} which commutes with A, i.e. whether there exists a matrix \overline{A} which satisfies (2) and also

$$(3) A\overline{A} = \overline{A}A.$$

Notice that possible commutative reciprocal inverses of A, i.e. solutions of the system

$$AXA = A$$
, $XAX = X$, $AX = XA$

40 J. Kečkić

were considered e.g. in [3] or [4].

We shall characterize commutative w.g.i.'s, and more generally solutions of the system in X:

$$AXA = A, \quad A^kX = XA^k \qquad (k \in N)$$

by means of the coefficients of the minimal polynomial of A. Such an approach was not, as far as we know, employed before.

The existence of a commutative w.g.i. facilitates certain problems. For instance, in that case a w.g.i. of A^n is \overline{A}^n $(n \in N)$; the equations $A^nX = 0$ and AX = 0 are equivalent for all $n \in N$; equalities of the form $A^mY = A^nZ$ can be canceled by A (m, n integers > 1), and so on.

Naturally, the search for commutative w.g.i.'s restricts us to square matrices. We also exclude from our considerations regular matrices.

2. Suppose that A is a singular square matrix. We may take that the minimal polynomial of A has the form

(4)
$$m(\lambda) = \lambda^n + \alpha_{n-1}\lambda^{n-1} + \dots + \alpha_1\lambda$$

since the existence of the constant term $\alpha_0 \neq 0$ would imply that A is regular.

Theorem 1. The matrix A with the minimal polynomial (4) has a commutative w.g.i. if and only if $\alpha_1 \neq 0$.

Proof. If $\alpha_1 \neq 0$, it is easily verified that the matrix \overline{A} defined by

$$\overline{A} = -(1/\alpha_1)(A^{n-2} + \alpha_{n-1}A^{n-3} + \dots + \alpha_2I)$$

is a commutative w.g.i. of A.

Conversely, suppose that \overline{A} is a commutative w.g.i. of A and that $\alpha_1 = 0$. Then from the equality

$$A^{n} + \alpha_{n-1}A^{n-1} + \dots + \alpha_{2}A^{2} = 0.$$

after multiplying by \overline{A} , and noting that $\overline{A}A^k = A^{k-1}$ (k = 2, 3, ...) follows

$$A^{n-1} + \alpha_{n-1}A^{n-2} + \dots + \alpha_2A = 0,$$

implying that (4) is not the minimal polynomial of A. This completes the proof.

As a direct consequence of the above theorem we obtain

Theorem 2. If \overline{A} is a commutative w.g.i. of A, then there exist a commutative w.g.i. \overline{A}_0 and a polynomial P such that $\overline{A}_0 = P(A)$.

Proof. If \overline{A} is a commutative w.g.i. of A, then the minimal polynomial of A has the form (4), with $\alpha_1 \neq 0$. But then the polynomial $P(\lambda) = -\alpha_1^{-1}(\lambda^{n-2} + \alpha_{n-1}\lambda^{n-3} + \cdots + \alpha_2)$ is such that $\overline{A}_0 = P(A)$ is a commutative w.g.i. of A.

The above theorem suggests the question: If \overline{A} is a commutative w.g.i. of A, does there exist a polynomial P such that $\overline{A} = P(A)$? The answer is negative. Indeed, the matrix

$$\overline{A} = \frac{1}{9} \begin{vmatrix} 4 & 4 & -5 \\ -2 & -2 & 7 \\ 1 & 1 & 1 \end{vmatrix}$$

is a commutative w.g.i. of

$$A = \left| \begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right|$$

but it cannot be expressed in the form of a polynomial in A. In fact, since $A^2 = 3A$, any polynomial in A can be reduced to a polynomial of the form $\alpha A + \beta I$. But then it easily verified that there are no α and β such that $\overline{A} = \alpha A + \beta I$.

At the end of this section we deduce a formula which enables us to write down all commutative w.g.i.'s of a given matrix, provided that one of them is known.

Theorem 3. Suppose that \overline{A} is a commutative w.g.i. of A. Then all the solutions of the system in X:

$$(5) AXA = A, AX = XA$$

are given by

(6)
$$X = \overline{A}A\overline{A} + T - \overline{A}AT - TA\overline{A} + \overline{A}ATA\overline{A},$$

where T is an arbitrary matrix.

Proof. The proof is based on the fact that the general solutions of the equations in X:

$$AXA = A, \quad AXB = 0$$

are given by

$$X = \overline{A}A\overline{A} + U - \overline{A}AUA\overline{A}, \quad X = U - \overline{A}AUB\overline{B}.$$

respectively, where \overline{A} , \overline{B} are w.g.i's of A and B, and U is an arbitrary matrix.

In order to solve (5), we substitute the general solution

$$(7) X = \overline{A}A\overline{A} + U - \overline{A}AUA\overline{A}$$

where U is arbitrary, of the first equation into the second equation of the system, to obtain the following equation in U:

$$AU - AUA\overline{A} = UA - \overline{A}AUA.$$

The equation (8), when multiplied by A from the right becomes

$$UA^2 - \overline{A}AUA^2 = 0,$$

42 J. Kečkić

and again multiplying by \overline{A} we obtain

$$UA - \overline{A}AUA = 0$$
, i.e., $(I - \overline{A}A)UA = 0$,

and since I is a w.g.i. of $I - \overline{A}A$, its general solution is

$$(9) U = V - (I - \overline{A}A)VA\overline{A},$$

where V is an arbitrary matrix. We now substitute (9) into (8), to obtain the following equation in V:

$$AV - AVA\overline{A} = 0$$
,

i.e.

$$AV(I - A\overline{A}) = 0.$$

The general solution of the last equation is

$$(10) V = T - \overline{A}AT(I - A\overline{A}),$$

where T is an arbitrary matrix. From (7), (9) and (10) we conclude that (5) implies (6). Conversely, it is easily verified that (6) is a solution of (5), and the proof is complete.

3. As we have seen, a matrix A need not have a commutative w.g.i. We therefore investigate whether for a given matrix A it is possible to find a matrix X which satisfies the weaker conditions:

$$(11) AXA = A, A^kX = XA^k,$$

for some k > 1. Such matrices are called k-commutative w.g.i.'s of A (of course, we suppose that k is the smallest positive integer such that (11) holds). Note that systems of the form

$$AXA = A$$
, $XAX = X$, $A^kX = XA^k$, $AX^k = X^kA$

were considered by Erdelyi [5].

As before, we suppose that

(12)
$$\lambda^n + \alpha_{n-1}\lambda^{n-1} + \dots + \alpha_1\lambda$$

is the minimal polynomial of A.

THEOREM 4. If the matrix A has a k-commutative w.g.i. then at least one of the coefficients $\alpha_1, \ldots, \alpha_k$ differs from zero.

Proof. The proof is similar to the proof of Theorem 1. Namely, suppose that $\alpha_1 = \cdots = \alpha_k = 0$, so that

(13)
$$A^{n} + \alpha_{n-1}A^{n-1} + \dots + \alpha_{k+1}A^{k+1} = 0.$$

If there exists a matrix X which satisfies (11), then multiplying (13) by X, and noting that from (11) follows $XA^m = A^{m-1}$ for $m \ge k+1$, we see that (13) reduces

to $A^{n-1} + \alpha_{n-1}A^{n-2} + \cdots + \alpha_{k+1}A^k = 0$, implying that (11) is not the minimal polynomial of A.

THEOREM 5. Suppose that k is the smallest positive integer $(1 \le k \le n-1)$ such that $\alpha_k \ne 0$. Then there exists a k-commutative w.g.i. of A.

Proof. Since the minimal polynomial of A is

$$\lambda^n + \alpha_{n-1}\lambda^{n-1} + \dots + \alpha_k\lambda^k \quad (\alpha_k \neq 0),$$

the matrix A is similar to a Jordan matrix J, which can be written in the form $J=T\oplus R$, where T is a Jordan matrix of order $\geq k$, with zeros on the diagonal, and R is a regular matrix. Moreover, $T^k=0$, and so $J^k=0\oplus R^k$

Therefore, if T is a w.g.i. of T, then $\overline{J}=\overline{T}U\oplus R^{-1}$ is a w.g.i. of J, and \overline{J} commutes with J^k since

$$J^{k}\overline{J} = (0 \oplus R^{k})(\overline{T} \oplus R^{-1}) = 0 \oplus R^{k-1} = \overline{J}J^{k}.$$

Now since A is similar to J, there exists a regular matrix S such that $A = SJS^{-1}$. But then the matrix X defined by $X = S\overline{J}S^{-1}$ satisfies both equations (11), which is easily verified.

From Theorems 4 and 5 we obtain

THEOREM 6. Let $1 \le k \le n-1$ and suppose that $\alpha_1 = \cdots + \alpha_{k-1} = 0$. Then the matrix A has a k-commutative w.g.i. if and only if $\alpha_k \ne 0$.

Again, we can deduce a formula which gives all k-commutative w.g.i.'s of A, provided that one of them is known.

Theorem 7. If \overline{A} is a k-commutative w.g.i. of A, then all the solutions of the system (11) are given by

$$(14) \quad X = \overline{A}A\overline{A} + T - TA^{k}\overline{A}^{k} + \overline{A}ATA^{k}\overline{A}^{k} - \overline{A}^{k}A^{k}T + \overline{A}^{k}A^{k}TA\overline{A} - \overline{A}ATA\overline{A}.$$

where T is an arbitrary matrix.

Proof. The proof is similar to the proof of Theorem 3, and we therefore omit it. It should only be noted that from $A\overline{A}A = A$, $A^k\overline{A} = \overline{A}A^k$ follows that \overline{A}^k is a w.g.i. of A^k .

Remark. For k = 1 formula (14) reduces to formula (6).

4. Notice that Theorems 3 and 7 can be carried over to arbitrary rings. Indeed, if $(R, +, \cdot)$ is a ring, and if \overline{a} is a solution of the system in x:

$$axa = a$$
, $a^k x = xa^k$ $(k \in N, a \in R \text{ fixed})$,

then all the solutions of that system are given by

$$x = \overline{a}a\overline{a} + t - ta^k \overline{a}^k + \overline{a}ata^k \overline{a}^k - \overline{a}^k a^k t + \overline{a}^k a^k t a \overline{a} - \overline{a}ata \overline{a},$$

44 J. Kečkić

where $t \in R$ is arbitrary.

5. Commutative and k-commutative w.g.i.'s can be used to solve various matrix equations. As an example we consider the equation in X:

$$A^m X A^n = c A^p,$$

where m, n are nonnegative integers, p is a positive integer, and c is a complex number. If \overline{A} is a commutative w.g.i. of A, then the general solution of the equation (15) is given by

(16)
$$X = c\overline{A}^m A^p \overline{A}^n + T - \overline{A}^m T A^n \overline{A}^n,$$

where T is an arbitrary matrix.

However, if A does not have a commutative w.g.i., but only a k-commutative w.g.i. (k > 1), then the equation (15) can be solved by this method provided that one of the following conditions is fulfilled:

- (i) $k \leq \min(m, n, p)$;
- (ii) $k \le \min(m, p) \quad n \in \{0, 1\};$
- (iii) $k \le \min(n, p), m \in \{0, 1\};$
- (iv) $k \le p$ $m, n \in \{0, 1\},$

and the general solution of (15) in all those cases is again (16).

The equation (15) can be treated analogously in an arbitrary ring, provided that c is an integer.

REFERENCES

- [1] R. Penrose, A generalized inverse for matrices, Proc. Cambridge Phil. Soc. **51**(1955), 406–413
- [2] A. Bjerhammar, A generalized matrix algebra, Kungl. Tekn. Hogsk. Handl., Stockholm, 1958.
- [3] M.J. Englefield, *The commuting inverses of a square matrix*, Proc. Cambridge Phil. Soc. **62**(1966), 667-671.
- [4] I. Erdelyi, On the matrix equation $Ax = \lambda Bx$, J. Math. Anal. Appl. 17(1967), 119-132.
- [5] I. Erdelyi, The quasi-commuting inverses for a synare matrix, Rend. Sci. Fis. Mat. Lincei 42(1967), 626-633.

Tikveška 2 11000 Beograd (Received 19 04 1985)