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AN APPLICATION OF THE RUSCHEWEYH DERIVATIVES II

Shigeyoshi Owa

Abstract. We introduce the class R(«a) of functions of the form

f(z)=2— Z apz® (ax >0)

k=2

satisfying the condition

R{D**1f(2)/D* f(2)} > a/(a +1)
for some (a > 0) and for all z € U = {z: |2| < 1}, where D* f(z) denotes the Hadamard product
of z/(1 —2)*! and f(z). The object of the present paper is to prove some distortion and closure
theorems for functions f(z) in R(a), and to give the result for the modified Hadamard product
of functions f(z) belonging to the class R(«). Furthermore, we determine the radii of starlikeness
and convexity of functions f(z) in the class R(a).

1. Introduction

Let A denote the class of functions f(z) of the form

(1.1) fz)= Z*akzk

which are analytic in the unit disk U = {z : |2| < 1}. We denote by S the
subclass of univalent functions f(z) in A, and by S* and K the subclasses of S
whose members are starlike with respect to the origin and convex in the unit disk
U, respectively. A function f(z) belonging to the class A is said to be starlike of
order 3(0 < B3 < 1) in the unit disk U if and only if

(1.2) R{zf'(2)/f(2)}>B  (2€D)

for some 3 (0 < B < 1). Further, a function f(z) belonging to the class A is said
to he convex of order 8 (0 < 8 < 1) in the unit disk U if and only if

(1.3) R{1+2f"()/f'(2)}>B  (2€0)
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for some B(0 < B < 1). We denote by S*(8) and K(8) the subclasses of A
whose members satisfy (1.2) and (1.3), respectively. Then, it is well-known that
S*(B) C S*, K(B) C K for O < beta < 1, and that S*(0) = S*, K(0) = K for
8=0.

Let f x g(z) denote the Hadamard product of two functions f(z) € A and
g(z) € A, that is, if f(z) is given by (1.1) and g(2) is given by

9(z) =2z + Z bz,
then
fxS(z)=2z+ Zakbkz’“.
By using the Hadamard product, Ruscheweyh [15] defined
Df(2) = (/(1 = 2)*") % f(z)  (a21)
which implies that
(1.4) D" f(2) = {=(z""" f(2)™ /n!

for n € N U {0}, where N = {1,2,3,...}. We note that D°f(z) = f(z) and
D'f(z) = zf'(z). The symbol D" f(z) was named by Al-Amiri [1] the n-th order
Ruscheweyh derivative of f(z). With the notation (1.4), Ruscheweyh [15] intro-
duced the classes K, of functions f(z) in A satisfying the following condition

(1.5) R{D" f(2)/D"(2)} >1/2 (2 €U)
for n € N U {0}, and he showed the basic property
(16) Kn+1 Cc K,

for each n € N U {0}, where Ky = S*(1/2) and K; = K. Further, in the notation
(1.5) a class K_; can be defined as the class of functions f(z) in A satisfying

R{f(2)/z} >1/2 (z €U).

Since Ko = S*(1/2) C S*, Ruscheweyhs result (1.6) implies that K,, C S* C S for
each n € NU{0}.
Recently, by using the n-th order Ruscheweyh derivative of f(z), Singh and

Singh [18] introduced the subclass R, of A whose members are characterized by
the following condition

R{D"™f(2)/D"f(2)} >n/(n+1)  (2€D)

for n € N U{0}. We can immediately see that Ry = S* and R, C K, for each
n € N. Hence R, is a subclass of S* C S for each n € N U {0}. Further we can
observe that R,+1 C Ry, for every n € N U {0}.

In recent years, many classes defined by using the n-th order Ruscheweyh
derivative of f(z) were studied by Al-Amiri ([2], [3]), Bulboaca [4], Goel and Sohi
(6], [7]), and Owa ([10], [11]).
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In this paper, we introduce the following classes R(«) by using the symbol

D*f(z).
Definition 1. We say that f(z) is in the class R(a) (a > 0), if f(z) defined by

(L.7) f)=2=Y az* (4 20)
satisfies the condition
(1.8) R{D** f(2)/D*f(2)} > z/(a+1)  (2€U)

for some a (a > 0).

Since D' f(z) = zf'(z) and D°f(z) = f(z), we can see that R(0) = T* for
a = 0, which is the subclass of S* consisting of functions f(z) of the form (1.7)
and was studied by Silverman [17]. R(1) is the subclass of K1 = K consisting of
functions f(z) of the form (1.7). Further, R(n) is the subclass of R,, consisting of
functions f(z) of the form (1.7).

2. Fractional calculus

Many essentially equivalent definitions of the fractional calculus that is, frac-
tional derivatives and fractional integrals, have been given in the literature (cf.
e.g., [5, Chapter 13), [8], [9], [14], [16], and [19, P. 28 et seq.]). We find it to be
convenient, to recall here the following definitions which were used recently by Owa,
[12].

Definition 2. The fractional integral of order a is defined by

L[ RQd
D) = 1y || G g

where @ > 0, f(2) is an analytic function in a simply connected region of the z-
plane containing the origin and the multiplicity of (z —()~® is removed by requiring
log(z — ¢) to be real when (2 — ¢) > 0.

Definition 3. The fractional derivative of order « is defined by

apy_ L d [ f(QdC
PO @ by G- o7

where 0 < a < 1, f(2) is an analytic function in a simply connected region of
the z-plane containing the origin and the multiplicity of (z — )™ is removed by
requiring log(z — ¢) to be real when (2 — {) > 0.

Definition 4. Under the hypotheses of Definition 3, the fractional derivative
of order (n + a) is defined by

DI f(z) = d"Dg f(2)/dz",

where 0 < a < 1and n € NU{0}.
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With these definitions, recently, Owa [13] showed the following lemma.

LEMMA. Let the function f(z) be defined by (1.7). Then
DM f(z) = 2 { DI (z" 07 f(2))} /T(n+ @+ 1)
for0<a<1l,ne NU{0} and z € U.

3. Distortion theorems

By using the lemma, we state and prove

THEOREM 1. Let n € NU{0}, 0 < a < 1 and the function f(z) be defined by
(1.7). Then f(z) is in the class R(n + «) if and only if

3.1) Z(n+ak4gkk)_Ff1)1!+a+k)akSr(n+a+2)_
Equality holds for functions f(z) given by
(3.2) F) =7 — Fn+a+2)(k-1)! (k> 2)

(n+ak+kTn+atk)

Proof. Assume that the inequality (3.1) holds true and let |z| = 1. Then, by
virtue of the lemma, we obtain that

(1—kK)I'(n+a+k) 1

Dttt f(z) _ 2 Grratne—nt w2

Def(z) | Tnta+1) -3 W(MH

F(nt+a+k)
> (ntat1)(k—2) Uk

N I‘(n+a+1)—2ﬂ%1ak

This shows that the values of D™ e+!f(z)/ D"+ f(z) lie in a circle centered at
w = 1 whose radius is 1/(a + 1). Consequently, we can see that the function f(z)
satisfies the condition (1.8), hence, f(z) € R(n + «).

For the converse, assume that the function f(z) belongs to the class R(n + «)
forn € NU{0} and 0 < a < 1. Then we get

'n+a+1)-3 %akz*1

Fn+a+1)-3 W%z’“l
for z € U. Choose values of z on the real axis so that D"+l f(z)/Dnte f(z)

is real. Upon clearing the denominator in (3.3) and letting z — 1~ through real
values, we can observe that

<1/(a+1).

>af(a+1)

'n+a+1)-— Z (E(f;_f;;(];;t?)!ak

o P(n+a+k)




An application of the Ruscheweyh derivatives II 103

which implies (3.1).

Finally we can show that the function f(z) given by (3.2) is an extremal
function for the theorem. This completes the proof of Theorem 1.

COROLLARY 1. Let the function f(z) defined by (1.7) be in the class R(n+ «)
forne NU{0} and 0 < a < 1. Then

W < k=1DT(n+a+2)
F=n+ak+kI(n+athk)

for k > 2. The eguality holds for the function f(z) of the form (3.2).

Applying Theorem 1, we prove

THEOREM 2. Let the function f(z) defined by (1.7) be in the class R(n + «)
forne NU{0} and 0 <a < 1. Then

2] = (n+2a +2)7 2] < f(2) < 2] + (n 4+ 2a +2) 7 [2]?
for z € U. The result is sharp.

Proof. Since f(z) belongs to the class R(n + ), by using Theorem 1, we have

+E(n+a+k)
(k—1)!

which gives that >~ ay < (n + 2a + 2)~1. Hence we can see that
1FR) > |2 = 2P Y ar > |2] = (n +2a +2) 1|2,
[F@ < Jel + 1217 Y ak < [zl + (0 + 2004+ 2) 7|2

k
(n+2a+2)r(n+a+2)zakﬁz(n+a ar <T(n+a+2)

for z € U.
Further, by taking the function

f(z)=2z—(n+2a+2)7122
we can prove that the result of the theorem is sharp.

COROLLARY 2. Let the function f(z) defined by (1.7) be in the class R(n+ «)
forn € NU{0} and 0 < a < 1. Then f(z) is included in a disk with its center at
the origin and radius R given by R = (n + 2a + 3)(n + 2a + 2)7!

THEOREM 3. Let the function f(z) defined by (1.7) be in the class R(n + «)
forne NU{0} and 0 <a < 1. Then, for z € U,

1-2+a)z|/(n+2a+2) <|f'(2)] <1+ 2+ a)lz|/(n+2a+2).

Proof. In view of Theorem 1, we have

(n+2a+2)In+a+2)2+a)” Zkak

n+ak+E)I(n+a+k)
> (k1)

ar <T(n+a+2)
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which implies that
(3.4) > kap < (2+a)(n+20+2)7"
Consequently, by using (3.4), we have
£ 21— 12l kap > 1= @+ a)lal/(n + 20 +2),
IF() <1412 ) kar <1+ 2+ a)|z|/(n+ 20 +2)
forz € U.

Remark. We have not been able to obtain a sharp estimate |f'(z)| in Theorem

COROLLARY 3. Let the function f(z) defined by (1.7) be in the class R(n+ a)
forne NU{0} and 0 < a < 1. Then f'(z) is included in a disk with its center at
the origin and radius R' given by R' = (n + 3a +4)(n + 2a + 2)~ L.

The following sharp estimation for |f'(z)| is due to Professor M. Obradovic.

THEOREM 3'. Let the function f(z) defined by (1.7) be in the class R(n + «)
forne NU{0} and 0 < a < 1. Then, for z € U,

1-2|z|/(n+20+2) <|f'(2)] <1+2|z|/(n+2a+2).
The result is sharp.

Proof. By using Theorem 1, we have

11(n+a+2)gz(n+ozk+l<:)1“(n+cx+k:)

(k—1)! @k
n+aok+k)l(n+a+k
-y o Jha. *)
Consider the expression
(n+ak+k)(n+a+k)
k! N
m+ak+k)(n+ak+k-1)...n+a+2)I’'(n+a+2)
k!
forn = 0:
(ak + E)(a+k)/k! > (a+ DI (a+2)
forn € N:

m+ak+kE)n+a+k)/k!'>n+2a+2)(n+a+2)/2.
So, we can conclude that, for every n € N U {0}, we have

(n+ak+kE)n+a+k)/k!'>n+2a+2)I(n+a+2)/2,
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and then from (*) we obtain
Zkak >2/(n+ 20+ 2).

The rest of the proof is as for Theorem 3.
Furthermore, that this estimation is the best possible is shown by the function

f(z) =2-2*/(n+2a+2).

We derive some distortion inequalities for the fractional calculus of functions
belonging to the class R(n + «).

THEOREM 4. Let the function f(z) defined by (1.7) be in the class R(n + «)
forne NU{0} and 0 <a < 1. Then

_ Eli 2|z|
(3.5) DA f(2)] > m{ - (2+,\)(n+2a+2)}
(3.6) DM (2)| < 1A { + 212 }
. z “T(2+) 2+ N1 +2a+2)

for A> 0 and z € U. The results in (3.5) and (3.6) are sharp.

Proof. Let
o ET(2 4+ M)

' _ Ap=A — k
(3.7 F(z)=T(24 Xz SN f(z) =2 T+ 14N apz
for A > 0. Then we can observe that
(3.8) 0<kT(2+XN)/T(k+1+X) <2/(2+A)
for A > 0 and k < 2. Hence, with the help of (3.8) and Theorem 1, we have

2 2|2|?

F(2)| > |2| - 2 > |z| —

@I > Jal = 55l 2> 12~ G0 vy
2 2|z2|?

F(2)| < 2 >

[P < el + 575 ] D a2 |2+ 2+ N (n+2a+2)

which give (3.5) and (3.6), respectively. Further, we can see that the results in (3.5)
and (3.6) are sharp for the function f(z) defined by

22

f(z):z—n+2a+2_

COROLLARY 4. Let the function f(z) defined by (1.7) be in the class R(n+ )
forn € NU{0} and 0 < a < 1. Then D;*f(2) is included in a disk with its center
at the origin and radius R~ given by

) 1 2
B = rarwy {H (2+,\)(n+2a+2)}'
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where A > 0.
Applying Theorem 3' to the function F(z), we have

THEOREM 5.Let the function f(z) defined by (1.7) be in the class R(n + «)
forne NU{0} and 0 < a < 1. Then

B |2 2+ V)|

(3.9) |D;*f(2)] > Max {0> T2+ (1 - AM) } ’
2| 2+ Az

(3.10) D72 f(2)] < % <1+A+ %)

forA>0andz€U.

Proof. Tt is easy to see that the function F(z) defined by (3.7) is also the
class R(n + «). Hence, by means of Theorem 3’ we get

1—-2z|/(n+2a+2) < F'(z) <14 2/z|/(n+ 2a +2)

for z € U which gives (3.9) and (3.10).

COROLLARY 5. Let the function f(z) defined by (1.7) be in the class R(n+ )
n € NU{0} and 0 < a < 1. Then DL=*f(2) is included in a disk with its center
at the origin and radius R'~ given by

24X

SN . 2T ) where A>0.
R r(2+,\)( At T 2a+2) Ve A

4. Closure theorems

THEOREM 6. Let the functions
(4.1) filz) =2 ari® (ki 2 0)

be in the class R(n+ a) form € NU{0}, 0 < a <1 and every i =1,2,3,...,m.
Then the function h(z) defined by

h(z) = Zcifi(z) (c; > 0)

is also in the class R(n + «), where Y *, ¢; = 1.

Proof. By means of the definition of h(z), we can write

h(z) =2z— Z (Z ciak,i> Zk-

Further, by virtue of Theorem 1, we have

Z(n+ak+k)I‘(n+a+k)

(k‘—l)' ak,igl“(n+a+2)
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for every i =1,2,3,...,m. Hence we can see that
(n+ak+k)T(n+a+k)
c;a
yrak s et ($" o,

m

(n+ ak + k)T (n+a+k)
2 ¢ {Z (k= 1)} k}

i=1

< (icl> F'n+a+2)=Tn+a+2)

which implies that h(z) is in the class R(n + «) with the aid of Theorem 1.

THEOREM 7. Let f1(2) = z and
B (k= 1)!T(n+a+k)
(42) h@)_'_m+ak+mnn+a+mk

Then f(z) is in the class R(n+ &) for n € NU{0} and 0 < a < 1 if and only if it
can be expressed in the form

(ke N —{1}).

(43) i) = Y M)

where A, > 0 for k € N and 21?;1 A =1.

Proof. Suppose that

S M) = (k— DT+ +2)

Then we obtain that
Z m+ak+k)'(n+a+k) (k-1THn+a+2)
(k—-1)! m+ak+kTn+a+k
This shows that f(z) belongs to the class R(n+a) forn € NU{0} and O < a < 1.
Again, by using Theorem 1.
For the converse, suppose that f(z) belongs to the class R(n + a) for n €
N U {0} and 0 < a < 1. Again, by using Theorem 1, we can observe that
(k—DIT(n+a+2)
(n+ak+k)I(n+a+k)

))\k} <T(n+a+2).

(ke N—{1}).

ar =

Now, setting
m+a+k)T'(n+a+k)
k-=DT'n+a+2)

and Ay = 1 — )" A, we have the representation (4.3). This completes the proof of
Theorem 7.

Ap = ag (ke N - {1})
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5. Modified Hadamard product
Let f(z) be defined by (1.7) and g(z) be defined by
z):z—Zbkzk (bp > 0).
Further, let f xg(z) denote the modified Hadamard product of f(z) and g(z),
that is, f * g(2) = 2z — Y_ arbp2*.

THEOREM 8. Let the functions f;(z) defined by (4.1) be in the classes R(n; +
a;) forn; e NU{0},0< a <1 and each i =1,2,3,...,m, respectively. Then the
modified Hadamard product fi x fo*---x fr,(2) belongs to the class R(n+ «), where
n 4+ a = undersetl < i <m — Min{n; + a;}.

Proof. Since f;(z) € R(n+ ;) for each i = 1,2,3,...,m, in view of Theorem
1, we get

(5.1) ak; <1/(n; +2a+2) (t=1,2,3,...,m).

Therefore we can show that

n+ak+ k) (n+a+k)
Z( a _'Ek)_l o (H%z)

(n+2a+kTn+a+k)
= T2 (i + 204 4+ 2)

with the help of (5.1) and Theorem 1. Thus we have Theorem 8.

<T(n+a+2)

COROLLARY 6. Let the functions f;(z) defined by (4.1) be in the same class
R(n+a) forn € NU{0},0<a <1 andeveryi=1,2,3,...,m. Then the modified
Hadamard product f1 x fox--- % fr,(2) also belongs to the class R(n + «).

6. Radii of starlikeness and convexity

We determine the radii of starlikeness and convexity of functions f(z) belong-
ing to the class R(n + a).

THEOREM 9. Let the function f(z) defined by (1.7) be in the class R(n + «)
forn € NU{0} and 0 < a < 1. Then f(z) is starlike of order 3 (0 < 8 < 1) in
the disk |z| < ro, where

ro = (1—ﬁ)(n+ak+k)1‘(n+a+k)}1/(k—1)
0 =

inf
keN-{1} { G-k -—DIT(n+a+t2)
with equality for the function f(z) given by (4.2).

Proof. It suffices to shaw that
l2f'(2)/f(z) =1 <1
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for |z| < rg. Now, we can observe that

Yo (k — Daglz|**
1 =3 aglz|F!

l2f'(2)/f(2) = 1] < <1-p

if and only if
D (k= B/ = B)axlz[* < 1.

Hence, by virtue of Theorem 1, we need only find values of |z| for which

(k—ﬂ) k_1<(n+ak+k)F(n+a+k)
=) ST aoDTmtraty

which will be true when |z| < r9. This completes the proof of the Theorem.

(k>2),

Finally, we have

THEOREM 10. Let the function f(z) defined by (1.7) be in the class R(n + «)
forn e NU{0} and 0 < a < 1. Then f(z) is convez of order B (0 < 8 < 1) in the
disk |z| < r1, where

{ (1= B)(n + ok +k)(n+a+ k) }1/<k1) |

n= KT(n + o+ 2)

= 1mn
keN—{1}

Proof. Since f(z) defined by (1.7) is convex of order g if and only if z f'(2) is
starlike of order 3, we can show that the proof of the Theorem follows the proof of
Theorem 9, with a replaced by kay.

COROLLARY 7. Let the function f(z) defined by (1.7) be in the class R(n+ )
forn € NU{0} and 0 < a < 1. Then f(z) is univalent and starlike for |z| < ra,
where

= inf (n+ak+kE)(n+a+k) /(=)
> 7 keN-{1} ET(n+a+2) :

Proof. By taking # = 0 in Theorem 9, we have the Corollary.
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