ON THE A-COMPATIBILITY OF SUPPORTS OF DISTRIBUTIONS OF $\mathcal{K}'\{M_p\}$ -TYPE

Stevan Pilipović

Abstract. We determine relations between the notions of A-compatibility and of M_p -convolution of distributions from $\mathcal{K}'\{M_p\}$.

1. Introduction. First we shall repeat two definitions. Let A and B be subsets of \mathbf{R} . If these sets satisfy the condition:

(1)
$$x_n \in A, y_n \in B, |x_n| + |y_n| \to \infty \Rightarrow |x_n + y_n| \to \infty, (n \to \infty)$$

then they are called compatible.

The sets A and B are called polynomially compatible if there exists a polynomial P on $\mathbf R$ such that

$$(2) x \in A, \ y \in B \Rightarrow |x| + |y| \le P(|x+y|).$$

It is known that if $f, g \in \mathcal{D}'$ $(f, g \in \mathcal{S}')$ and the sets $A = \operatorname{supp} f$, $B = \operatorname{supp} g$ are compatible (polynomially compatible), then the convolution (tempered convolution) exists. The notion of compatibility of supports of distributions from \mathcal{D}' was investigated for example in [1] and the notion of tempered convolution and polynomial compatibility of supports of tempered distributions is introduced and investigated in [3], [4], [5].

In [5, Theorems 5.1 and 5.2] Kamiński proved that the notion of compatibility (polynomial compatibility) is essential for the convolution (tempered covolution) of distributions (tempered distributions).

Kamińiski's Theorem [5]. Let A and B be subsets of ${\bf R}$ and let for every two non-negative measures (non-negative tempered measures) f and g with supp $f\subset A$, supp $g\subset B$, the convolution (tempered convolution) f*g exist. Then the sets A and B are compatible (polynomially compatible).

The space S' is an example of a space of $\|'\{M_p\}$ -type [2]. In [7] we generalize the notions of tempered convolution and of polynomial compatibility. We introduced the definition of M_p -convolution of elements from $\|'\{M_p\}$ and the definition of A-compatibility.

In this paper we shall further investigate relations between the notions of \mathcal{A} -compatibility and of M_p -convolution. (We use the symbol $\underline{*}$ for this convolution). We shall give conditions on the sequence (M_p) such that the notion of \mathcal{A} -compatibility is essential for the M_p -convolution.

2. $\mathcal{A}\{M_p\}$ -compatible sets. The space of $\mathcal{K}'\{M_p\}$ -type, where $\{M_p(x)\}$ is a sequence of continuous functions on \mathbf{R} such that $1 \leq M_1(x) \leq M_2(x) \leq \ldots$, was introduced in [2] as the dual space of the space $\mathcal{K}\{M_p\}$. The space $\mathcal{K}\{M_p\}$ is a subspace of $\mathbf{C}^{\infty}(\mathbf{R})$ defined in the following way:

$$\varphi \in \mathcal{K}\{M_p\}$$
 iff $\|\varphi\|_p := \sup\{M_p\}|\varphi^{(q)}(x)| : x \in \mathbf{R}, q \le p\} < \infty$ $p = 1, 2, ...$

Topology in this space is defined by the sequence of norms $(\| \|_p; \mathcal{K}\{M\}_p)$ is an F-space, and if we suppose:

(N) for every $p \in \mathbf{N}$ there is $p' \in \mathbf{N}$ such that

$$M_p/M_{p'} \in L^1(\mathbf{R}) \text{ and } M_p(x)/M_{p'}(x) \to 0 \text{ as } |x| \to \infty,$$
 ([2])

then $\mathcal{K}\{M_n\}$ is an FS space. (N is the set of natural numbers.)

In this paper we shall suppose that $M_p(x), p \in \mathbb{N}$, are even functions which increase monotonically to infinity when $x \to \infty$. Also, we suppose that the sequence $(M_p(x))$ satisfies:

(N') (N) holds and $M_p(x)/M_{p'}(x) \to 0$ monotonically as $x \to \infty$.

Condition (N') implies that for every $p' \in \mathbf{N}$ which correspond to some $p \in \mathbf{N}$ in (N)

(3)
$$M_{p'}(x)/x \to \infty \text{ as } x \to \infty.$$

Namely, from the fact that $M_p/M_{p'} \in L^1$ and $M_p/M_{p'}(x) \to 0$ monotonically, it follows that for some $\tilde{x}_{p,p'} > 0$

$$(3^*) M_n(x)/M_{n'}(x) < 1/x if x > \tilde{x}_{n,n'}.$$

If (3*) does not hold, then there exists a sequence (x_k) of positive numbers such that $x_{k+1} > 1 + x_k^2$, $k \in \mathbb{N}$, and $M_p(x_k)/M_{p'}(x_k) > x_k^{-1}$. But then

$$\int_{x_1}^{\infty} (M_p(x)/M_{p'}(x)) dx \ge \sum_{k=1}^{\infty} x_{k+1}^{-1}(x_{k+1} - x_k) = \infty.$$

Condition (3*) implies that for a fixed $m \geq 1$

$$M_p(mx) \le M_{p'}(xm)/(xm)$$
 if $x > \tilde{x}_{p,p'}/m$.

Since $mM_p(x) \leq mxM_p(mx)$ if $m \geq 1$ and $x \geq 1$ we obtain that for every $p \in \mathbf{N}$ there exists a $p' \in \mathbf{N}$ and an $x_{p,p'}$ such that

(C)
$$mM_p(x) \le M_{p'}(mx) \quad \text{if } x > \tilde{x}_{p,p'}.$$

Without loss of generality we can suppose that (3) holds for every $p \in \mathbf{N}$.

For our investigations of M_p -convolutions the following condition on the sequence (M_p) is also needed:

(4) For every $p \in \mathbf{N}$ there is a $p' \in \mathbf{N}$ and a $C_{p,p'} > 0$ such that $M_p^2(x) \leq C_{p,p'} M_{p'}(x)$ for $x > C_{p,p'}$.

Now we shall give a definition of the set A that is somewhat different from the definition of this set in [7].

We denote by \mathcal{A} a set of non-negative functions defined on \mathbf{R}^+ , bounded on bounded domains, directed according to the ordinary relation \leq (i.e. for every f and g from \mathcal{A} there is an $h \in \mathcal{A}$ such $\max\{f(x), g(x)\} \leq h(x), x \in \mathbf{R}$) such that:

- (A1) If a non-negative function φ defined on \mathbf{R}^+ satisfies the inequality $\varphi(x) \leq \psi(x), x \in \mathbf{R}^+$ for some $\psi \in \mathcal{A}$, then $\varphi \in \mathcal{A}$;
- (A2) There are $\varphi \in A$ and $x_0 \ge 0$ such that $\varphi(x) \ge x$ for $x \ge x_0$;
- (A3) For every $\varphi \in A$, $m \in N$ and $n \in N_0$ there is a $\psi \in A$ such that $m\varphi(x+n) \le \psi(x)$, $x \in \mathbf{R}^+$. ($\mathbf{N}_0 = \mathbf{N} \cup \{0\}$.)

Let us suppose that for a given sequence (M_p) and set \mathcal{A} the following condition holds:

(S) For every $p \in \mathbf{N}$ and $\varphi \in \mathcal{A}$ there is a $p' \in \mathbf{N}$ and an $x_{p,p'} > 0$ such that $M_p(\varphi(x)) \leq M_{p'}(x)$ if $x > x_{p,p'}$.

In this case we shall denote the set \mathcal{A} by $\mathcal{A}(M_p)$.

Condition (S) implies some properties of the sequence $(M_p(x))$. For example:

(5) For every $p \in \mathbf{N}$ there are $p' \in \mathbf{N}$ and $x_{p,p'} > 0$ such that $M_p(px) \leq M_{p'}(x)$ if $x > x_{p,p'}$.

Let us prove this. From (A2) and (A3) it follows that there exists a $\varphi \in \mathcal{A}$ such that $px \leq \varphi(x), x \in \mathbf{R}^+$. Therefore (S) implies (5) because $M_p(x)$ is monotonous for $x \geq 0$.

Sequences $(M_p(x))$ which define spaces of exponential distributions quoted in [7, part 5], satisfy all the conditions above.

Let (M_p) be a sequence of even, monotonically increasing functions (when $x \to \infty$) for which (N'), (4) and (5) hold. Then, we denote by $\mathcal{B}(M_p)$ the set of all sets $\mathcal{A}(M_p)$.

Proposition 1. $\mathcal{B}(M_p) \neq 0$.

Proof. We denote by \mathcal{A} the set of all non-negative functions which are smaller or equal to some non-negative (on \mathbf{R}^+) polynomial of order 1. It is easy to check that $\mathcal{A}_0 \in \mathcal{B}(M_p)$.

We denote by $\mathcal{A}_{\max}(M_p)$ the set defined by $\mathcal{A}_m ax(M_p) = \bigcup_{A \in \mathcal{B}} \mathcal{A}(M_p)$. It is easy to prove that $\mathcal{A}_{\max}(M_p) \in \mathcal{B}(M_p)$.

Let $f, g \in \mathcal{K}'M_p$ and A = supp f, B = supp g. As in [7] we say that A and B are compatible if there exists a $\varphi \in \mathcal{A}(M_p)$ such that

$$x \in A, y \in B \Rightarrow |x| = |y| \le \varphi(|x+y|).$$

We give now Theorem 9 from [7] in the following version:

THEOREM 2. If A and B are $A_{\max}(M_p)$ -compatible, then the convolution f * g exists. (supp $f \in A$, supp $\in B$.)

Consider now the precise characterization of the sets $\mathcal{A}(M_p)$ for a given sequence $(M_p(x))$ (which satisfies all the conditions mentioned).

Theorem 3. Let $(M_p(x))$ satisfy the following condition:

(B) For every $p \in \mathbf{N}$, $r \in \mathbf{N}$ and $\varepsilon > 0$ there exists $p' \in \mathbf{N}$ and $an x_{p,r,p',\varepsilon} > 0$ such that $M_p^{-1}(M_r(x)) \leq \varepsilon M_p^{-1}(M_{p',\varepsilon}(x))$ if $x > x_{p,r,p',\varepsilon}$.

Then $\mathcal{A}_{\max}(M_p)$ is the set of all non-negative functions which are smaller or equal to some linear combinations of functions of the form $x \to M_p^{-1}(M_q(x))$, $(p,q) \in \mathbf{N}^2$, x > 0, and a constant function.

Proof. We put $\varphi_{p,q}(x)=M_p^{-1}(M_q(x)), x\in \mathbf{R}^+, (p,q)\in \mathbf{N}^2$ and denote by A the set of all non-negative functions which are smaller or equal to some linear combinations of functions of the form $x\to \varphi_{p,q}(x), (p,q)\in \mathbf{R}^2, x>0$ and a constant function.

We have $0 \le \varphi_{p,p}(x)$, for every $p \in \mathbb{N}$ and

$$\max\{\varphi_{p_1,q_1}(x),\varphi_{p_2,p_2}(x)\} \le \varphi_{p_0,q_0}(x), x \in \mathbf{R}^+,$$

where $p_0 = \min\{p_1, p_2\}$, $q_0 = \max\{q_1, q_2\}$. From (5) and (B) it follows that for every $p, q, m \in \mathbb{N}$ and $n \in \mathbb{N}_0$ there exists a $q' \in \mathbb{N}$ and \tilde{x} such that

$$m\varphi_{p,q}(x+n) \le \varphi_{p,q'}(x)$$
 if $x > \tilde{x}$.

Namely, for sufficiently large x > 0 have

$$mM_P^{-1}(M_q(x+n)) \leq mM_p^{-1}(M_q(2x)) \leq mM_p^{-1}(M_{q_1}(x)) \leq M_p^{-1}(M_q,(x)).$$

If for some non-negative function φ on \mathbf{R}^+ we have the estimate $\varphi(x) \leq M_p^{-1}(M_q(x))$ if $x > x_{pq} > 0$ for some $(p,q) \in \mathbf{N}^2$, then $\varphi(x) \in A$ because for suitable C > 0

$$\varphi(x) \le M_p^{-1}(M_q(x)) + C, \quad x \in \mathbf{R}^+.$$

Now it is clear that $A \in \mathcal{B}(M_p)$.

Condition (S) implies that if $\varphi \in \mathcal{A}_{\max}(M_p)$, then $\varphi(x) \leq M_p^{-1}(M_p'(x))$ for $x > x_{p,p'} > 0$; that is $\varphi \in A$. Since $A \in \mathcal{B}(M_p)$, the assertion is proved.

Let us remark that the sequences (M_p) given in [7, part 5] satisfy condition (B) and that the corresponding sets \mathcal{A} can be redefined to be $\mathcal{A}_{\max}(M_p)$.

3. Conditions for the $\mathcal{A}(M_p)$ -compatibility. Let $(M_p(x))$ be a sequence which satisfies all the conditions from Section 2 and let $\mathcal{A}(M_p)$ be an element from $\mathcal{B}(M_p)$ (we suppose that condition (S) is satisfied).

In Theorem 5, which will be stated later, the following condition concerning (M_p) and $\mathcal{A}(M_p)$ will be used:

(B1) For every $p \in \mathbf{N}$ and every $q \in \mathbf{N}$ there exists $\varphi \in \mathcal{A}(M_p)$ and an $x_{\varphi} > 0$ such that $M_p(\varphi(x)) \geq M_q(x)$ if $x > x_{\varphi}$.

Proposition 4. (i) If $A(M) = A_{\max}(M_p)$, then (B) implies (B1).

- (ii) Conditions (S) and (B1), concerning the given set $A = A(M_p)$, imply that (B) holds and that $A(M_p) = A_{\max}(M_p)$.
 - *Proof.* (i) This follows easily from Theorem 3.
- (ii) It follows from (B1) that for every p and every $r \in \mathbf{N}$ there exists a $\varphi \in \mathcal{A}(M_p)$ such that $M_p^{-1}(M_r(x)) \leq \varphi(x)$ for sufficiently large x. From (A3) and (S) it follows that:

$$m\varphi(x) \leq \psi(x),$$
 for some $\psi \in \mathcal{A}(M_p)$.
 $\psi(x) \leq M_p^{-1}(M_{p'}(x))$ for some p' and sufficiently large x .

Thus we obtain that for arbitrary $m \in \mathbb{N}$, $p \in \mathbb{N}$, $r \in \mathbb{N}$, there exists a $p' \in \mathbb{N}$ and an $\tilde{x} > 0$ such that

$$mM_p^{-1}(M_r(x)) \le M_p^{-1}(M_{p'}(x))$$
 if $x > \tilde{x}$.

that is, condition (B) holds. Since $\mathcal{A}(M_p)$ contains functions of the form $M_p^{-1} \cdot (M_q(x))$, $(p,q) \in N^2$, and their non-negative linear combinations, it follows that $\mathcal{A}(M_p) = \mathcal{A}_{\max}(M_p)$.

Theorem 5. We suppose that $(M_p(x))$ is a sequence of functions which satisfies all the conditions from Section 2 and that (S) and (B1) hold for a given set \mathcal{A} . Then the following assertion holds:

(*) If A and B are subsets of $\mathbf R$ such that for every two non-negative measures f and g from $\mathcal K'\{M_p\}$ with supports in A and B respectively, the convolution f*g exists, then A and B are $\mathcal A_{\max}(M_p)$ -compatible.

Proof. We shall use the idea of the proof of Theorem 5.2. from [5]. Since tempered non-negative measures are non-negative measures from $\mathcal{K}'\{M_p\}$, we have that the sets A and B are compatible.

Let us suppose that A and B are not $\mathcal{A}_{\max}\{M_p\}$ -compatible. Let $p \in \mathbb{N}$ be fixed. There are points $x_i \in A$, $y_i \in B$ such that

(6)
$$|x_i| + |y_i| \ge 2^i (M_p^{-1}(M_i(|x_i| + |y_i|)) + 1), \quad i \in \mathbf{N}.$$

This holds because functions of the form $2^{i}(M_{p}^{-1}(M_{i}(x)+1))$. $x \in \mathbf{R}^{+}$, $i \in \mathbf{N}$, belong to $\mathcal{A}_{\max}(M_{p})$. Condition (6) implies that $|x_{i}|+|y_{i}|\to\infty$, and therefore, $|z_{i}|=|x_{i}+y_{i}|\to\infty$ as $i\to\infty$.

There are three possibilities:

- (i) $|x_i| \to \infty$ and $y_i| \to \infty$;
- (ii) $|x_i| \to \infty$ and $|y_i| \not\to \infty$;
- (iii) $|x_i| \not\to \infty$ and $y_i| \to \infty$.

First we consider case (i). It is not a restriction if we suppose that $|x_{i+1}>|x_i|$, $|y_{i+1}|>|y_i|+1$ and $z_{i+1}>|z_i|+1$, $i\in\mathbf{N}$.

We put

$$f(t) = \sum_{i=1}^{\infty} M_{p'}(|x_i|) \delta(t-x_i); \quad g(t) = \sum_{i=1}^{\infty} M_{p'}(|y_i|) \delta(t-y_i),$$

where we shall choose $p' \in N$ later.

From (5) we obtain that for a given $p \in \mathbf{N}$ there exists a p' and $x_{pp'}$ such that

(7)
$$M_p(x) \le M_{p'}(x/2) \le M_{p'}(x-t)M_{p'}(t)$$
 if $x > x_{pp'}$ and $t \in \mathbf{R}$.

Now we choose p' as an element from **N** which corresponds to p (p was fixed earlier) in (7). From (7) we have

$$M_{p'}(|x_i|)M_{p'}(|y_i|) = M_{p'}(|x_i| + |y_i| - |y_i|)M_{p'}(|y_i|)$$

$$\geq M_{p'}(|x_i| + |y_i|)/2) \geq M_p(|x_i| + |y_i|)$$

if $|x_i| > x_{pp'}$ (This is true for all i with $i \geq i_0$ for some i_0 .)

Since f and g belong to $\mathcal{K}\{M_p\}$ and supp $f \subset A$, supp $g \subset B$, then the convolutions f * g and f * g exist and

$$(f \! \pm \! g)(t) = (f^*g)(t) = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} M_{p'}(|x_i|) M_{p'}(|y_j|) \delta(t-x_i-y_j).$$

Using (7) and (6) we have

$$(f^*g)(t) \ge \sum_{i=i_0} M_{p'}(|x_i|) M_{p'}(|y_i|) \delta(t-z_i) \ge \sum_{i=i_0} M_p(|x_i|+|y_j|) \delta(t-z_i) \ge$$

$$\ge M_p(M_p^{-1}(M_i(|x_i+|y_i|))) \delta(t-z_i) = \sum_{i=i_0} M_i(|z_i|) \delta(t-z_i).$$

The last series is a distribution which does not belong to $\mathcal{K}'\{M_p\}$. Thus (f * g)(t) is not in $\mathcal{K}'\{M\}$ and so this is a contradiction.

Now we consider case (ii). It is not a restriction if we suppose that $|x_{i+1} > |x_i| + 1$, $y_i \to y$ and $|z_{i+1} > |z_i| + 1$, $i \in \mathbb{N}$. From (C) and (5) it follows that there are sequences (p_i) and (L_i) such that $2^i M_i(x) \leq M_{p_i}(x)$ if $x > L_i$.

We choose the sequence (x_i) such that $M_{p_i}(|x_i+y_i|) \geq 2^i M_i(|x_i+y_i|)$, $i \in \mathbb{N}$ (i.e. $|x_i+y_i| > L_i$) and

(8)
$$|x_i| + |y_i| \ge M_p^{-1}(M_{p_i}(|x_i + y_i)).$$

The existence of the sequence (x_i) for which (8) holds follows from the fact that the functions $M_p^{-1}(M_{p_i}(x))$ are from $\mathcal{A}_{\max}(M_p)$.

Let $f(t) = \sum_{i=1}^{\infty} M_{p'}(|x_i|)\delta(t-x_i)$ and $g(t) = \sum_{i=1}^{\infty} 2^{-i}(M_{p'}(|y_i|)\delta(t-y_i))$. Clearly, f and g are from $\mathcal{K}'\{M_p\}$. Since $f \not = g$ and $f \not = g$ exist, and

we obtain a contradiction as the last series is not an element from $\mathcal{K}'\{M\}$.

Case (iii) is symmetrical to case (ii), and the proof is complete.

From the preceding Theorem and Proposition 4 we directly obtain:

Theorem 6. If in Theorem 5 instead of (B1) we suppose that (B) holds, and in addition, if we suppose that $\mathcal{A}(M_p) = \mathcal{A}_{\max}(M_p)$ (all the otiter conditions are the same as in Theorem 5), then the assertion (*) holds.

REFERENCES

- P. Antosik, J. Mikusirński, R. Sikorski, Theory of Distributions Sequential Approach, PWN-Polish Sci. Publ., Warszawa. 1979.
- [2] I.M. Gel'fand. G.E. Shilov, Generalized Functions, Vol. 2, Academic Press, New York, 1968.
- [3] A. Kamiński, On convolutions, products and Fourier transformations, Bull. Acad. Polon. Sci. Mat. Astronom. Phys. 25(1977), 369-374.
- [4] A. Kamiński, Convolution, product and Fourier transformations of distributions, Studia Math. 74(1982), 369, 83-96.

- [5] A. Kamiński, On the Rényi theory of conditional probability, (to appear in Studia Math.).
- [6] S. Pilipović, A. Takači, The space $\mathcal{H}'\{M_p\}$ and convolutions, Proc. Int. Conf., "on Generalized Functions and its Applications in Mathematical Physics" Moskow 1980., Math. Inst. M.V. Steklov, (1981) 415–426.
- [7] S. Pilipović, On the convolution in the space of $\mathcal{K}'\{M_p\}$ -type, Math. Nachr. 120(1985), 03–112.

Institut za Matematiku 21000 Novi Sad Dr ilije Đuričića 4 (Received 13 08 1984) (Revised 30 04 1985)