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ON THE SPECTRAL RADIUS OF CONNECTED GRAPHS

Richard A. Brualdi and Ernie S. Solheid

Abstract. We prove a general theorem about the maximum spectral radius of connected
graphs with n vertices and e edges and use it to determine the graphs with maximum spectral
radius when e < n + 5 and n is sufficiently large.

1. Introduction. Let G(n,e) be the set of all graphs with n vertices and e
edges in which the vertices are labeled 1,2,...,n. Those graphs in G(n,e) which
are connected form a subset which we denote by H(n,e). The spectrum of a graph
in G(n, e) is taken to be the spectrum of its adjacency matriz A = Ag = [a;;] which
is defined in the usual way as follows. A is a matrix of 0's and 1's in which a;; =1
if and only if there is an edge joining vertices ¢ and j (1 < 4,5 < n). In particular,
A is a symmetric matrix with zero trace. The spectral radius p(G) of the graph G
is defined to be the spectral radius p(A) of A, that is the maximum absolute value
of an eigenvalue of A. By the Perron-Frobenius theory of nonnegative matrices [3],
p(A) is itself an eigenvalue of A.

In [1] Brualdi and Hoffman investigated the maximum spectral radius g(n, e)
of a graph in G(n,e) and showed in particular that for G = G(n, ), p(G) = g(n,e)
only if after possibly relabeling the vertices of G, the adjacency matrix A = [a;;]
of G satisfies

(1.1) If1<r<s<n and a,s =1, then ay =1 for all £ and 1

with k<1, 1<k<r, and 1 <[ <s.
Let G(n,e) denote the subset of G(n,e) consisting of those graphs whose adjacency
matrices A = [a;;] satisfy (1.1), and let g*(n, e) be the maximum spectral radius of

a graph in G*(n,e). An example of a graph whose adjacency matrix satisfies (1.1)
is given in Figure 0. The result of [1] cited above can be restated

(1.2) g(n,e) = g*(n,e),
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and p(G) < g*(n,e) if the vertices of G cannot be labeled so that its adjacency
matrix satisfies (1.1).

In this paper we prove the analogue of (1.2) for H(n, e) and use it to determine
the graphs in H(n, e) with maximum spectral radius when e < n+5. In analogy with
the above, we let H x (n,e) denote the subset of H(n,e) whose adjacency matrices
satisfy (1.1), and we let h(n,e) and h*(n,e) denote respectively, the maximum
spectral radius for graphs in H(n,e) and H*(n,e).

2. The basic theorem. Let G € H*(n,e). Since G is connected there is an
edge joining vertex n and some vertex r with r < n. Since the adjacency matrix
A = [a;;] satisfies (1.1) it follows that ai;r = 1 for all kK = 2,...,n and thus vertex
1 is joined to all other vertices. Note that a graph in G(n,e) with vertex 1 joined
to all other vertices is necessarily connected and thus is in H(n,e); if, in addition,
the graph is in G*(n,e), it belongs to H*(n,e).

In our proof of the theorem we shall make use of some well known properties
of symmetric and nonnegative matrices. These properties will be cited as needed.

THEOREM 2.1. Let G € H(n,e). Then p(G) < h*(n,e), with equality only if
the vertices of G can be labeled so that the resulting graph belongs to H*(n,e). In
particular h(n,e) = h*(n,e).

Proof. Let G € H(n,e) \ H*(n,e), and let A = [a;;] be the adjacency matrix
of G with p = p(A). Since G is connected, A is an irreducible matrix and hence A
has a positive eigenvector x = (z1,...,z,)" corresponding to the eigenvalue p. We
may choose z so that 2tz = 1. After possibly relabeling the vertices of G, we may
assume that the components of x are monotone nonincreasing. Thus

(2.1) Ax =px, x1>29>---2> 1, >0.

Casel. a1a =---=ay, = 1.

Since G & H*(n,e), there exist integers r and s with 1 < r < s < n such that
ars+1 = 1 and either a,5 = 0 or a,_1,s4+1 = 0. Suppose a,s = 0. Then we argue
as in [1]. Let B be the matrix obtained from A by switching the entries a,, and
ar,s+1 and by switching the entries a,, and as41,-. Then B is the adjacency matrix
of a graph in H(n,e) (since the non-diagonal entries in its first row are all 1). We
calculate that

(2.2) 2'Br — 2' Az = 2z, (x5 — 2511) > 0.
Suppose equality holds in (2.2) Then !Bz = zt Az = p so that
(2.3) Bz = pr = Aux.
But calculating the st* component of Bz, we see that

(Bz)s = (Az)s + 27 > (Az)s = pas.

This contradicts (2.3) and hence x'Bz > zt Az = p. It follows from the maximum
characterization of p for symmetric matrices [5] that p(B) > p. A similar conclusion
holds when a,_1 541 = 0. Hence in this case, when G ¢ H?st(n, e), p(G) < h(n,e).
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Case 2. a;; = 0 for some j with 1 < j > n.

Determine k so that a12 = --- = a1 = 1 and a; 441 = 0. We show how
to determine a graph H € #(n,e) whose adjacency matrix B = [b;;] satisfies
bio1 = -+ = big = b1 k1 = 1 and p(G) < p(H). Since G is connected, there exists

an elementary chain v which connects vertex 1 to vertex k + 1. Let p be the first
vertex on v with p > k. Let ¢ be the vertex of v which immediately precedes p.
Let G be the graph obtained from G by deleting the edge [g,p] and let H be be
obtained from G’ by adding the edge [1, %k + 1]. The adjacency matrix B = [b;;] of
H satisfies big = --- = by p4+1 = 1. We consider two subcases.

Subcase 2.1. p=Fk + 1.

Since there is no edge in G joining 1 and k + 1, it follows that 2 < ¢ < k and
hence 1 and ¢ are joined by an edge in G. Thus 1 and q are in the same connected
component of G’ which implies that H is connected. We calculate that

(2.4) 'Bx — v' Az = 2zp 41 (21 — 24) > 0.
Supose equality holds in (2.4). Then it follows that (2.3) holds again. But
(Bz)1 = (Az)1 + Thy1 > (Az)1,

a contradiction. Thus strict inequality holds in (2.4).
Subcase 2.2. p >k + 1.

First suppose that ¢ = 1. Since p and k + 1 are joined by a chain in G',
p and k + 1 are in the same connected component of G’ and it follows that H is
connected. We calculate that

(2.5) z'Br — ' Az = 21 (T 41 — zp) > 0,

and as in the above subcase we conclude that strict inequality holds in (2.4).

Now suppose g > 1. Since 1 and g are joined by a chain in G', we obtain that
H is connected and calculate that

(2.6) z'Bx — 2" Az = 2(21%411 — T4Tp) = 221 (21 — T4) + 224 (Tpr1 — T,) > 0.

As above we conclude that strict inequality holds in (2.6).
Thus in this case the matrix B and positive eigenvector x of A satisfy

z'Bx > x' Az = p,

and we conclude as in Case 1, that p(B) > p. Hence p(G) < h(n,e).
Combining cases 1 and 2, we obtain the theorem. O

By the star S, we shall mean the labelled graph in #*(n,n — 1) drawn in
Figure 1. A star with n vertices is any graph isomorphic to S,,.

COROLLARY 2.2. Let G be a connected graph with n vertices and e edges
having the largest possible spectral radius h(n,e). Then G contains a star as a



48 Brualdi and Solheid

spanning tree, and the vertices of G can be labeled so that its adjacency matriz
satisfies (1.1).

COROLLARY 2.3. Let GinH(n,e) satisfy p(G) = h(n,e). Let (z1,...,2,)"
be the positive eigenvector corresponding to the eigenvalue h(n,e) of the adjacency
matriz A of G. If r is such that x, = max(x; : 1 < ¢ < n), then ar; = 1 for
j=1,...,nandj #£r.

In the next section we use Theorem 2.1 to determine the graphs in #H(n,e)
which have the largest spectral radius when e < n + 5.

3. Graphs with largest spectral radius. Let G be a tree with n vertices,
that is, a graph in H(n,e) with e = n — 1. It was shown by Collatz and Singowitz
[2] and later by Lovasz and Pelikan [4] that p(G) < +/n — 1 with equality if and
only if G is a star with n vertices. We note here that this result is a special case of
Corollary 2.2 which we state as follows.

THEOREM 3.1. h(n,n — 1) = /n—1. Moreover, for G € H(n,n — 1),
p(G) = /n —1, if and only if G is a star with n vertices.

For later use we observe the following. Let e > n and let G € H*(n,e). Then
as already observed the adjacency matrix A = [a;;] of G satisfies @12 = -+ = a1, =
1, and G contains the star S,, as a spanning subgraph. Since e > n, it now follows
from the theory of nonnegative matrices [3] that

p(G) > p(Sn) = Vn —1.

In our figures to follow all graphs belong to H*(n,e) for some e and hence
their adjacency matrices satisfy (1.1). The adjacency matrices are used to calculate
the characteristic polynomials given.

THEOREM 3.2. For e =n, n+ 1, and n + 2, the maximum spectral radius
h(n,e) of graphs in H(n,e) occurs uniquely as the spectral radius for those graphs
isomorphic to the graphs in Figures 2, 8, and 4, respectively.

Proof: By Theorem 2.1. a graph in #(n, e) with maximum spectral radius is
isomorphic to a graph in H*(n,e). Hence it suffices to determine which graphs in
H*(n,e) have the largest spectral radius. Recall that a graph in H*(n,e) has the
star S, as a spanning subgraph and more generally, its adjacency matrix A = [a;;]
satisfies (1.1).

e =n: Here n > 3. The only graph in H*(n,n) is the graph in Fig. 2.

e =n+1: Here n > 4. Up to isomorphism there are only two graphs in H(n,n+ 1)
which have a star as a spanning tree. Only one of these, namely the graph in Fig.
3, belongs to H*(n,n + 1).

e = n+ 2: Here n > 4. There are only two graphs in H*(n,n + 2), namely the
graph G in Figure 4 and the graph G, in Figure 5 (when n > 5). The spectral
radius p(G1) of G is the maximum root of

P1(0) = A* =202 — (n — D)A + 2(n — 4);
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while p(Gs) is the maximum root of p3(A) = A* — (n + 2)A%2 — 6A + 3(n — 5). We
calculate that @2 (A) — (A+2)p1(X) = A2 — (n—1), which is positive for A > v/n — 1.
Since p(G2) > +v/n — 1, it follows that p(G1) > p(G2). O

For e = n+ 3, n + 4, and n + 5, we obtain the following characterization of
the graph in #(n,e) with maximum spectral radius valid for n sufficiently large.

THEOREM 3.3. Fore =n+ 3, n+4, and n + 5 and for n sufficiently large,
the mazimum spectral radius h(n,e) of graphs in H(n+e) occurs uniquely for those
graphs isomorphic to the graph in Figures 6, 7, and 8 respectively.

Proof. As in the proof of Theorem 3.2. it suffices to determine which graphs
in H*(n,e) have the largest spectral radius.

e =n+3: Here n > 5. There are exactly two graphs in H*(n,n + 3), the graph G;
in Fig. 6 and the graph G in Fig. 9.

The maximum root of ¢1(A) = A* — (n + 3)A"8\ + 4(n — 6) equals p(G1)

while the maximum root of

0a(A) =A% — (n +3)A* — 10A3 + (4n — 21)A% + (2n — 8)A — (n — 5)
equals p(G2). Since p1(A) has even degree, ¢1(X) > 0 for negative A with |A| large.
But

vi(—vVn—-2)=—(n+14)+8/n—-2<0 forlarge n.

Hence ¢1(A) has a root which is less than —/n — 2. It follows from Schur’s inequal-
ity that p(G1) < v/n+ 8 for n large. Similarly one shows that p(G2) < v/n + 8.
Hence v/n — 1 < p(G1), p(G2) < v/n +8.

Now let f(A) = pa(A) — A2p1(A) = =2X3 + 322 + 2(n —4)\ — (n — 5). Then
f(¥n—=1)=—=64/n—14+2n+2 > 0 for large n. Similarly f(v/n + 8) > 0 for large
n. Now

f'N) =—6X2+6X+2(n—4)=0 when \=(3++12n—39)/6.
Since (3 +v/12n —39)/6 < v/n — 1 for n large, it follows that f'(A) < 0 for A >

vn —1 and n large. Hence f(A) > 0 for v/n —1 < X < +/n+ 8 when n is large. It
now follows that p(G1) > p(G») for n sufficiently large.

e =n +4: Here n > 5. In this case there are exactly three graphs in H*(n,n + 4).
These are the graph G3 in Fig. 7 (when n > 7), the graph G4 in Fig. 10 (when
n > 6), and the graph G5 in Fig. 11.

The spectral radii of the graphs G3, G4, and G5 are, respectively, the maxi-
mum roots of

e3(A) =A' = (n+ )N —10A+5(n —7)
es(A) =A% — (n+ X" — 12X° + (5n — 29)A* + 2(n — 4)A — 2(n — 6)
©5(A) =A% — (n +4)X% — 14)% + (5n — 31)A + 4(n = 5).
We begin by comparing p(G3) and p(G4). Since 3(A) has even degree,
©3(A) > 0 for negative A large. But
w3(—vn —2) = —(n 4+ 23) + 10v/n — 2 < 0 for large n.
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Hence ¢3(A) has a root which is less than —/n — 2. Schur’s inequality implies that
p(G3) < v/n+10 for n large. Similarly one shows that p(G4) < v/n + 10 for n
large. Thus vn — 1 < p(Gs), p(G4) < +/n + 10.

Let f(A) = pa(A) = A2p3()) = —2X3 + 612 +2(n—4)A\—2(n —6). We calculate
that f(v/n—1) = —6¢/n—1+4n + 6 > 0 for large n. Also f(v/n+10) > 0 for

large n. Now
f'(N) ==6X2+120+2(n—4) =0 when A= (3++3n-3)/3.

Since (3++/3n — 3/3 < v/n — 1 for n large, it follows that f'(A) < 0for A > +/n—1
for n large. Hence f(A) > 0 for v/n—1 < XA < v/n+ 10 when n is large. Thus
p(G3) > p(G,4) for n sufficiently large.

We now compare p(G3) and p(Gs). Since ¢5(\) has odd degree, ¢5(\) < 0
for negative A with |\| large. But

ws(—vVn—2)=(n—9)vn—2—10n+8 > 0 for large n.

Hence ¢5(A) has a root which is less than —y/n — 2. As above we obtain p(G5) <
v/n'+10. Thus v/n — 1 < p(Gs) < v/n +10. Let g(A) = @5(A) —Apz(A) = —4(A% —
A — (n—5)). Then g(A) = 0 when A = (1 4+ +/4n — 19)/2.

Since (1 + v/4n —19)/2 is greater than both v/n — 1 and v/n + 10 for n suf-

ficiently large, it follows that g(A) > 0 for v/n — 1 < X <+/n + 10 when n is large.
Thus p(G3) > p(G5s) for n sufficiently large.
e = n+ 5: We must have n > 5. There are exactly four graphs in H*(n,n + 5).
These are the graph G in Fig. 8 (when n > 8), G7 in Fig. 12 (when n > 6), Gs in
Fig. 13 (when n > 7), and Gy in Fig. 14.

Let

0s(A) = At — (n 4+ 5)A* — 12X 4 6(n — 8)
or(A\) =2 — (n + 5)/\4 —16)3 + (6n — 38)A% + 4(n — 5)A — 2(n — 6)
0g(A) = A8 — (n 4+ 5)A — 1403 + (6n — 39)N2 +2(n —HA = 3(n - 7)
0o(A) =A% =322 — (n — 1)A + 3(n — 5).
We compare p(Gg) with each of p(Gr), p(Gs), and p(Gy).

p(Ge) and p(Gr): Since @g(A) has even degree, pg(A\) > 0 for negative A with |\
large. But pg(—vn —2) = —(n + 34) + 124/n — 2 < 0 for large n. Hence g ()
has a root which is less than —/n — 2. It then follows from Schur’s inequality that
p(Gs) < +/n+ 12 for n large. Similarly we obtain p(G7) < v/n + 12. Hence
vn —1<p(Gs), p(Gr) < vVn+12.

Now let f(A) = p7(X) — AN2pg(A) = —4X3 + 10A2 + 4(n — 5)A — 2(n — 6). Then
f(¥n—=1) = —16¢/n—1+8n + 2 > 0 for large n. Similarly f(v/n + 12) > 0 for

large n. Now

f'(\) = =12X% + 207\ + 4(n — 5) = 0 when X\ = (5+/12n — 35)/6.
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Since (5 + v/12n — 35)/6 < v/n — 1 for n large, it follows that f'(A) < 0 for A >

vn —1 and n large. Hence f(A) > 0 for vn —1 < A < +/n+ 12 when n is large.
It now follows that p(Gg) > p(G7) for n sufficiently large.

p(Gg) and p(Gsg): Let
gN) = ws(A) = X6(A) = =22 + 9X* + (2n — 8)X — 3(n — 7).

Since @g(—v/n — 2) < 0, we obtain as above that vn — 1 < p(Gg) < v/n + 12. We
calculate that

g(vn—1)=—6vn—1+4+6n+12 > 0 for large n,
and similarly that g(v/n + 12) > 0 for large n. Now
g (\) =—-2(3X? =9A — (n —4)) =0 when X = (9+ v/12n + 33)/6.

Since (9 +/12n+ 33)/6 < v/n —1 for n large, it follows as above that p(Gs) >
p(Gs) for n sufficiently large.

p(Ge) and p(Gy): We calculate that
A+ 3)po(A) — ps(A) — 1322 +3n —3 > 0 for all \.

Hence p(Gg) > p(Gy).
This completes the proof of the theorem. O

In the case e = n + 5, we have verified numerically that the graph in Figure
14 has a larger spectral radius than the graph in Figure 8 for n < 25. Similarly, in
the cases e = n+ 3 and e = n + 4, for small values of n, the graphs of Figure 6 and
7 do not have the largest spectral radius. Thus the conclusions of Theorem 3.3 do
not hold for all n.

We conclude with the following conjecture. Let e = n + k where k£ > 0.
We have verified that for £ = 0,1,3,4,5 and n sufficiently large, there is, up to
isomorphism, exactly one graph in H(n,n + k) with maximum spectral radius and
it is the graph obtained from the star S,, by adding the edges from vertex 2 to each
of vertices 3, ...,k + 3. We conjecture that the same conclusions hold for all £ with

k# 2.
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Figure 0. A graph in G*(n,e) and its
adjacency matrix.

Figure 1. The Star S,,.

Figure 2. The graph in H*(n, n) with
n maximum spectral radius. Its char-
acteristic polynomial is A" 4(\ + 1)
A=A —(n—1DA+ (n—23)).

Figure 3. The graph in H*(n,n + 1)
with maximum spectral radius. Its
characteristic polynomial is

A (A = (n+1)A2 —4X+2(n—4)).

Figure 4. The graph in H*(n,n + 2)
with maximum spectral radius. Its
characteristic polynomial is A"~ (A+
1203 =222 — (n — )X +2(n —4)).

Figure 5. A graph in H*(n,n + 2).
Its characteristic polynomial is A»~*
(M — (n+2)X2 — 6\ + 3(n — 5)).

Figure 6. The graph in H*(n,n + 3)
with maximum spectral radius for n
sufficiently large. Its characteristic
polynomial is A"~2(A* — (n + 3)A\% —
8A +4(n — 6)).

Figure 7. The graph in H*(n,n + 4)
with maximum spectral radius for n
sufficiently large. Its characteristic
polynomial is A"~ *(A* — (n + 4)\? —
10A +5(n —7)).
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Figure 8. The graph in H*(n,n + 5)
with maximum spectral radius for n
sufficiently large. Its characteristic
polynomial is A"~4(A\* — (n 4+ 5)A\2 —
12X + 6(n — 8)).

Figure 9. The graph in H*(n,n + 3).
Its characteristic polynomial is
A6 (X6 — (n+3)A* — 10A3 + (4n —
21)A% +2(n — 8))A — (n — 5)).

Figure 10. The graph in H*(n,n+4).
Its characteristic polynomial is
A6 (A6 — (n+4)A —12X3 — (5n —
29)A%2 + 2(n — 4)X — 2(n — 6)).

Figure 11. A graph in H*(n,n + 4).
Its characteristic polynomial is

AP75 (N5 — (n+4)A% — 14)% + (5n —
3DA + (4n — b)).

Figure 12. The graph in H*(n,n + 3)
Its characteristic polynomial is
APE6(X6 — (n + 5)A* — 16)3 + (6n —
38)A% +4(n — 5)\ — 2(n — 6)).

Figure 13. The graph in H*(n,n +4)
Its characteristic polynomial is
AP8(A6 — (n + 5)A* — 14X3 + (6n —
39)A% + (2n — 8)X —3(n —7)).

Figure 14. The graph in H*(n,n +5)
Its characteristic polynomial is
AT+ 12N =3X2 —(n— 1A+
3(n —5)).
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