ON ASYMPTOTIC BEHAVIOUR OF SOLUTIONS OF A FIRST ORDER FUNCTIONAL DIFFERENTIAL EQUATION

D. C. Angelova and D. D. Bainov

Abstract. Necessary and sufficient conditions for oscillation of solutions of the equation

$$y'(t) + \gamma f(t, y(t), y(\Delta_1(t, y(t))), \dots, y(\Delta_n(t, y(t)))) = Q(t), \ t \ge t_0 \in R, \ \gamma = \pm 1, \ n \ge 1$$

are obtained in the case when $Q(t) \equiv 0$ on $[t_0, \infty)$ and sufficient conditions for oscillation and/or nonoscillation are obtained in the case when $Q(t) \not\equiv 0$ on $[t_0, \infty)$. The asymptotic behaviour of oscillatory and nonoscillatory solutions of this equation is studied, too.

In this paper we consider the first order functional differential equation

$$y'(t) + \gamma f(t, y(t), y(\Delta_1(t, y(t))), \dots, y(\Delta_n(t, y(t)))) = Q(t)$$
 (1)

for $\gamma = \pm 1, t \geq t_0 \in R$, which includes as a particular case the equations

$$y'(t) + ay(t - r(y(t))) = 0, \ a > 0$$
(2)

$$y'(t) - ay(t - h(t, y(t))) = 0, \ a > 0,$$
(3)

used by Cooke [4] in modeling infectious diseases and studied in [4, 5, 14].

Our main purpose is to obtain necessary and sufficient conditions for oscillation of solutions of (1) when $Q(t) \equiv 0$ for $t \geq t_0$, sufficient conditions for oscillation and/or nonoscillation of all solutions of (1) when $Q(t) \not\equiv 0$ for $t \geq t_0$, and to study the asymptotic behaviour of oscillatory and nonoscillatory solutions of (1) in the cases when $Q(t) \equiv 0$ and $Q(t) \not\equiv 0$ for $t \geq t_0$.

The function $\psi(t) \in C[t_0, \infty)$ is said to be oscillatory if there exists an infinite set $\{\tau_{\nu}\}_{\nu=1}^{\infty} \subseteq [t_0, \infty)$ of zeros of $\psi(t)$ such that $\tau_{\nu} \to \infty$ $\nu \to \infty$; otherwise it is said to be nonoscillatory.

An oscillatory function $\psi(t)$ is said to be quickly (moderately) oscillatory if $|\tau_{\nu+1} - \tau_{\nu}| \to 0$, $\nu \to \infty$ (sup $|\tau_{\nu+1} - \tau_{\nu}| < \infty$) for any pair of consecutive zeros of $\psi(t)$.

Further on, we suppose that the functions f, Δ_i $(i = \overline{1, n})$ and Q are continuous and that the conditions (H) are fulfilled:

- H1. $f(t, u_0, u_1, ..., u_n) > 0 \ (< O) \text{ for } u_0 u_i > 0 \ (< 0) \ (i = \overline{0, n}) \text{ and } t > t_0.$
- H2. $\Delta_i(t,v) \to \infty$, for $t \to \infty$, for any fixed $v \in R$, $\Delta_i(t,v) \le \Delta_i(t,\overline{v})$, for $|v| \le |\overline{v}|$ $(i=\overline{1,n})$.

We need the following lemmas:

LEMMA 1. [12]. Let $\psi(t) \in C^1[t_0, \infty)$ be a quickly oscillatiory function and let $\psi'(t)$ be bounded. Then $\psi(t) \to 0$, for $t \to \infty$.

LEMMA 2. [13]. Let $\psi(t) \in C^1[t_0, \infty)$ be a moderately oscillatory function $\psi'(t) \to 0$, for $t \to \infty$. Then $\psi(t) \to 0$, for $t \to \infty$.

Lemma 3. Suppose that the following conditions hold:

- 1. Conditions (H) are fulfilled, $Q(t) \equiv 0$ for $t \geq t_0$, $\Delta_i(t, v) \leq t$, for every $v \in R$ $(i = \overline{1, n})$.
- 2. The functions f(t, ., ..., .) and $\Delta_i(t, .)$ are Lipshitzian with Lipshitz constants A > 0 and $B_i > 0$ $(i = \overline{1, n})$, respectively.
- 3. $f(t, u_0, \ldots, u_n)$ is bounded with respect to every fixed u_i and it is either nondecreasing or nonincreasing in u_i $(i = \overline{1, n})$.

Then the necessary and sufficient condition for the existence of a nonoscillatory solution of (1), which tends to a nonzero constant as $t \to \infty$, is

$$\int_{t_0}^{\infty} |(ft, c, \dots, c)| dt < \infty \qquad \text{for some } c \neq 0.$$
 (4)

Proof. Necessity. Let y(t) be a nonoscillatory solution of (1) whit $\lim_{t\to\infty}y(t)=a\neq 0$ and let, for instance a>0 (the proof is similar when a<0). Then for each $\varepsilon\in(0,a)$ there exists, $t_1\geq t_0$ such that $|y(t)-a|<\varepsilon$ for $t\geq t_1$ and by H2 $|y(\Delta_i(t,y(t)))-a|<\varepsilon$ for $t\geq t_2\geq t_1$ $(i=\overline{1,n})$. Then

$$f(t, y(t), y(\Delta_1(t, y(t))), \dots, y(\Delta_n(t, y(t)))) \ge f(t, c, \dots, c) \text{ for } t \ge t_2$$
 (5)

where $c = a - \varepsilon$ when f(t, ..., ...) is nondecreasing and $c = a + \varepsilon$ when f(t, ..., ...) is nonincreasing. Integrating (1) from t_2 to t and using (5), we get

$$0 = y(t) - y(t_2) + \gamma \int_{t_2}^t f(s, y(s), \dots, y(\Delta_n(s, y(s)))) ds$$

$$\begin{cases} \geq a - \varepsilon - y(t_2) + \int_{t_2}^t f(s, c, \dots, c) ds, & \text{when } \gamma = 1 \\ \leq a + \varepsilon - y(t_2) + \int_{t_2}^t f(s, c, \dots, c) ds, & \text{when } \gamma = -1 \end{cases}$$

which yields (4).

Sufficiency. Let $\gamma=1$ and (4) hold for c>0 (The proof is similar when c<0). Denote $\delta=c/2$ when $f(t,\ldots,\ldots)$ nondecreasing and $\delta=c$ when $f(t,\ldots,\ldots)$ is nonincreasing. Using (4) and H2 we can find $T_1\geq t_0$ so that.

$$\int_{T_1}^{\infty} f(t, c, \dots, c) dt \le \delta \tag{6}$$

and $T_2 = \min_i \{\inf_{t \geq T_1, v \in R} \Delta_i(t, v)\} \geq t_0$. Let $T_0 = \min\{T_1, T_2\}$ and $f_0 = \sup_{t > T_0} f(t, c, \dots, c)$.

Denote by X the space of all continuous functions $x:[T_0,\infty)\to R$ with the topology of uniform convergence on compact subintervals $[T_0,\sigma]$ of $[T_0,\infty)$, where $\sigma>T_0$ is an integer, by Y the set of these elements $x\in X$ for which

$$\sigma \ge x(t) \ge 2\delta \text{ for } t \ge T_0 \text{ and } |x(t) - x(\overline{t})| \ge f_0 |t - \overline{t}| \text{ for } t, \overline{t} \in [T_0, \infty)$$
 (7)

and by $\Phi: Y \to X$ the operator, which is defined by the formula

$$(\Phi x)(t) = \begin{cases} 2\delta, & t \in [T_0, T_1] \\ 2\delta - \int_{T_1}^t f(s, x(s), x(\Delta_1(s, x(s)))), \dots, x(\Delta_n(s, x(s)))) ds, & t \ge T_1. \end{cases}$$

It is easy to see that X is a Frechet space and Y is bounded, convex and closed. Let $x \in Y$. Then $(\Phi x)(t)$ is continuous in $[T_0, \infty)$ and

$$\begin{split} 2\delta & \geq (\Phi x)(t) \geq 2\delta - \int\limits_{T_1}^t f(s,c,\ldots,c)ds \geq 2\delta - \int\limits_{T_1}^\infty f(s,c,\ldots,c)ds \geq \delta \ \text{ for } \ t \geq T_0, \\ & |(\Phi x)(t) - (\Phi x)(\overline{t})|, \ \text{ for } \ t,\overline{t} \in [T_0,T_1] \\ & |(\Phi x)(t) - (\Phi x)(\overline{t})| = \int\limits_{T_1}^{\overline{t}} f(s,x(s),\ldots,x(\Delta_n(s,x(s)))) - \\ & - \int\limits_{T_1}^t f(s,x(s),\ldots,x(\Delta_n(s,x(s))))ds \geq \int\limits_{T_1}^{\overline{t}} |f(s,x(s),\ldots,x(\Delta_n(s,x(s))))|ds \geq \\ & \geq \int\limits_t^{\overline{t}} f(s,c,\ldots,c)ds \geq f_0|t-\overline{t}| \ \text{ for } \ \overline{t} > t \geq T_1 \end{split}$$

since (6) and (7) hold. Thus $\Phi(Y) \subset Y$ and the functions in $\Phi(Y)$ are equicontinuous on $[T_0, \infty)$ and hence, on compact subintervals $[T_0, \sigma] \subset [T_0, \infty)$.

Let $\{x_{\nu}\}_{\nu=1}^{\infty} \subset Y$ be uniformly convergent to x_0 . It is clear that $x_0 \in Y$ and

$$|(\Phi x_{\nu})(t) - (\Phi x_0)(t)| = 0$$
 for $t \in [T_0, T_1]$, and

$$(\Phi x_
u)(t) - (\Phi x_0)(t) \geq \int_{T_1}^t |f(s,x_
u(s),\dots,x_
u(\Delta_n(s,x_
u(s)))) - f(s,x_0(s),\dots,x_0(\Delta_n(s,x_0(s))))|ds \geq \int\limits_{T_1}^t |f(s,x_
u(s),\dots,x_u(\Delta_n(s,x_u(s))))|ds \geq \int\limits_{T_1}^t |f(s,x_
u(s),\dots,x_u(\Delta_n(s,x_u(s))))|ds \geq \int\limits_{T_1}^t |f(s,x_
u(s),\dots,x_u(\Delta_n(s,x_u(s))))|ds \geq \int\limits_{T_1}^t |f(s,x_
u(s),\dots,x_u(\Delta_n(s),\dots,x_u(\Delta_n(s,x_u(s))))|ds$$

for $t \in [T_1, \sigma]$ when $\sigma > T_1$ and $F_{\nu}(s) = |f(s, x_{\nu}(s), \dots, x_{\nu}(\Delta_n(s, x_{\nu}(s)))) - f(s, x_0(s), \dots, x_0(\Delta_n(s, x_0(s))))|$.

Since $F_{\nu}(s) \leq 2f(s, c, \dots, c)$ and

$$\begin{split} F_{\nu}(s) & \leq A \left\{ |x_{\nu}(s) - x_{0}(s)| + \sum_{i=1}^{n} |x_{\nu}(\Delta_{i}(s, x_{\nu}(s) - x_{0}(\Delta_{i}(s, x_{0}(s))))| \right\} \leq \\ A \left\{ ||x_{\nu}(s) - x_{0}(s)|| + \sum_{i=1}^{n} [|x_{\nu}(\Delta_{i}(s, x_{\nu}(s) - x_{\nu}\Delta_{i}(s, x_{0}(s)))| + |x_{\nu}(\Delta_{i}(s, x_{0}(s))) - x_{0}\Delta_{i}(s, x_{0}(s)))| \right\} \leq A \left\{ ||x_{\nu}(s) - x_{0}(s)||_{\sigma}(n+1) + f_{0} \sum_{i=1}^{n} |(\Delta_{i}(s, x_{\nu}(s))) - \Delta_{i}(s, x_{0}(s)))| \right\} \leq A \left\{ ||x_{\nu}(s) - x_{0}(s)||_{\sigma}(n+1) + f_{0} \sum_{i=1}^{n} B_{i}|x_{\nu}(s) - x_{0}(s)| \right\} \\ A \left(n + 1 + f_{0} \sum_{i=1}^{n} B_{i} \right) ||x_{\nu} - x_{0}||_{\sigma} \to 0, \quad \nu \to \infty, \end{split}$$

we conclude according to Lebesgue's dominated convergence theorem, that $\lim_{\nu \to \infty} \left[\sup_{[T_0,\sigma]} |(\Phi x_{\nu})(t) - (\Phi x_0)(t)| \right] = 0$, i.e. Φ is a continuous operator.

By Schauder-Tykhonoff fixed point theorem [6, p. 9] it follows that there exists $y \in Y$ such that $y = \Phi y$ and the function y = y(t) is a solution of (1) for $t \geq T_1$. Since $y'(t) = -f(s, y(s), \ldots, y(\Delta_n(s, y(s)))) < 0$ for $y \in Y$ and $y(t) \geq \delta$ for $t \geq T_0$, we obtain that there exists $\lim_{t \to \infty} y(t) \neq 0$.

Let $\gamma=-1.$ The proof is the same as above, but the operator Φ is defined by the formula

$$(\Phi x)(t) = \begin{cases} \delta, & t \in [T_0, T_1] \\ \delta + \int_{T_1}^t f(s, x(s), x(\Delta_1(s, x(s)))), \dots, x(\Delta_n(s, x(s)))) ds, & t \ge T_1. \end{cases}$$

Lemma 3 is proved.

Theorem 1. Let conditions of Lemma 3 hold. Then the condition

$$\int_{t_0}^{\infty} |f(t, c, \dots, c)| dt = \infty, \quad \text{for any } c \neq 0$$
 (8)

is necessary and sufficient

- 1) either for oscillation or for monotonous convergence to zero as $t \to \infty$ of all solutions of (1) when $\gamma = 1$;
- 2) for oscilation of all bounded solutions of (1) when $\gamma = -1$.

Proof. Necessity. Suppose that (8) is false. Then (4) holds and according to Lemma 3 there exists a nonoscilatory solution of (1) which converges to a nonzero constant, which is a contradiction.

Sufficiency. Let (8) be true for any $c \neq 0$. Suppose that there exists a nonoscillatory solution y(t) of (1) and let, for instance, y(t) > 0 for $t \geq t_1 \geq t_0$ when $\gamma = 1$ and $0 < y(t) \leq L$ for $t \geq t_1 \geq t_0$ when $\gamma = -1$ (L = const).

Let $\gamma=1$. Then H1 and (1) imply that y'(t)>0 for $t\geq t_1$ and there exists $\lim_{t\to\infty}y(t)=k$ for some $k=\mathrm{const}>0$. If we suppose that k>0 then by Lemma 3 we obtain (4), which is a contradiction.

Let $\gamma=-1$. Then H1 and (1) imply that y'(t)>0 for $t\geq t_1$. Since y(t) is bounded, then $\lim_{t\to\infty}y(t)\neq \mathrm{const}\neq 0$ and by Lemma 3 we obtain (4) which is a contradiction again.

Theorem 1 is thus proved.

Theorem 2. Let conditions (H) hold, $Q(t) \equiv 0$ on $[t_0, \infty)$, $f(t, u_0, \ldots, u_n)$ be bounded with respect to t for every fixed u_i and nondecreasing in u_i ($i = \overline{1, n}$. Then all bounded quickly oscillatory solutions of (1) tend to zero as $t \to \infty$.

Proof. Let y(t) be a bounded quickly oscillatory solution of (1) such that $|y(t)| \leq L$ for $t \geq t_1 \geq t_0$ and L = const > 0. In view of H2 we can find $t_2 \geq t_1$ so that $\Delta_i(t,y(t)) \geq t_1$ for $t \geq t_2$ ($i = \overline{1,n}$) and hence $|y(\Delta_i(t,y(t)))| \leq L$ for $t \geq t_2$. Then

$$f(t, -L, \dots, -L) \le f(t, y(t), \dots, y(\Delta_n(t, y(t)))) \le f(t, L, \dots, L)$$
 for $t \ge t_2$

and from (1) it follows

$$-f(t,L,\ldots,L) \le y'(t) \le -f(t,-L,\ldots,-L)$$
 when $\gamma = 1$

and

$$-f(t, L, ..., L) < y'(t) < -f(t, L, ..., L)$$
 when $\gamma = -1$

i.e. y'(t) is bounded. By Lemma 1 $y(t) \to 0$, $t \to \infty$, and Theorem 2 is proved.

THEOREM 3. Let conditions (H) hold, $Q(t) \equiv 0$ on $[t_0, \infty)$, $f(t, \cdot, \dots, \cdot)$ be nondecreasing and $\lim_{t\to\infty} |f(t, c, \dots, c)| = 0$ for any fixed $c \neq 0$. Then all bounded moderately oscillatory solutions of (1) tend to zero as $t\to\infty$.

Proof. As in the proof of Theorem 2 we find

$$\frac{-f(t, L, \dots, L)}{f(t, -L, \dots, -L)} \le y'(t) \le \begin{cases} -f(t, -L, \dots, -L), & \text{when } \gamma = 1\\ f(t, L, \dots, L), & \text{when } \gamma = -1 \end{cases}$$

and hence $y'(t) \to 0$, $t \to \infty$. By Lemma 2 $y(t) \to 0$, $t \to \infty$, and Theorem 3 is proved.

Theorem 4. Let conditions (H) and (8) hold, $Q(t) \equiv 0$ on $[t_0, \infty)$ and f(t) be either nondecreasing or nonincreasing. Then 1) each nonoscillatory solution of (1), for which $\inf_{t \geq t_0} |y(t)| > 0$, is unbounded when $\gamma = 1$;

2) each nonoscillatory solution of (1) is unbounded when $\gamma = -1$.

Proof. Suppose the contrary and let $0 < y(t) \le L$ for $t \ge t_1 \ge t_0$ and L = const > 0. (The proof is similar when $-L \le y(t) < 0$ for $t \ge t_1 \ge t_0$).

Let $\gamma=1$. Then there exist $l={\rm const}>0$ and $t_2\geq t_1$ such that $y(t\geq l)$ for $t\geq t_2$. Via H2 we may find $t_3\geq t_2$ so that

$$l \le y(\Delta_i(t, y(t))) \le L$$
 for $t \ge t_3$ $(i = \overline{1, n})$. (9)

Then (5) holds for c=l when f(t,...) is nondecreasing and for c=L when f(t,...) is nonincreasing. Integrating (1) from t_3 to t, using (5) and (9) and letting $t \to \infty$ we obtain the contradiction

$$l \leq y(t) = y(t_3) - \int_{t_3}^t f(s, y(s), \dots, y(\Delta_n(s, y(s)))) ds \leq y(t_3) - \int_{t_3}^t f(s, c, \dots, c) ds \to -\infty, \ t \to \infty.$$

Thus y(t) is unbounded.

Let $\gamma = -1$. From (1) via H1 we obtain that y'(t) > 0 for $t \ge t_2 \ge t_1$. Since y(t) > 0 for $t \ge t_1$ we may find $t_3 \ge t_2$ and l = const > 0 so that $y(t) \ge l$ for $t \ge t_3$. Then as in the proof of the case when $\gamma = 1$ we obtain the contradiction

$$L \ge y(t) = y(t_3) + \int_{t_3}^t f(s, y(s), \dots, y(\Delta_n(s, y(s)))) ds \ge y(t_3) + \int_{t_2}^t f(s, c, \dots, c) ds \to \infty, \quad t \to \infty.$$

So, y(t) is unbounded and Theorem 4 is proved.

Now, we shall study the asymptotic behaviour of oscilatory solutions of (1) when $Q(t) \not\equiv 0$ for $t \geq t_0$ and $\gamma = 1$.

Lemma 4. Let conditions (H) and (8) hold, $f(t,\cdot,\ldots,\cdot)$ be nondecreasing (nonincreasing), $Q(t) \not\equiv 0$ for $t \geq t_0$ and

$$\int_{t_0}^{\infty} |Q(t)| dt < \infty. \tag{10}$$

Then

$$\lim_{t \to \infty} \inf |y(t)| = 0 \tag{11}$$

for all (all bounded) solutions of (1).

Proof. Let $f(t,\cdot,\ldots,\cdot)$ be nondecreasing and suppose there exists a nonoscilatory solution y(t) of (1) such that $y(t) \geq l$ for $t \geq t_1 \geq t_0$ and some l = const > 0 (The proof is similar when $y(t) \leq -l$ for $t \geq t_1 \geq t_0$). Using H2 we obtain (5) for $t \geq t_2 \geq t_1$ and c = l. Integrating (1) from t_2 to t, using (5) and (10) and taking $t \to \infty$ we obtain the contradiction

$$l \leq y(t) \leq y(t_2) + \int_{t_2}^t |Q(s)| ds - \int_{t_2}^t f(s, l, \dots, l) ds \to -\infty, t \to \infty.$$

Let $f(t,\cdot,\ldots,\cdot)$ be nonincreasing and there exists a bounded nonoscillatory solution y(t) of (1) such that $l \leq y(t) \leq L$ for $t \geq t_1 \geq t_0$ and some L > l > 0 (The proof is similar when l < L < 0). As above, we obtain (5) for c = L and $t \geq t_2 \geq t_1$. Integrating (1) from t_2 to t, using (5) and allowing $t \to \infty$ we obtain the contradiction

$$l \leq y(t) \leq y(t_2) + \int\limits_{t_2}^t |Q(s)| ds - \int\limits_{t_2}^t f(s,L,\ldots,L) ds
ightarrow -\infty, t
ightarrow \infty.$$

Lemma 4 is proved.

THEOREM 5. If conditions (H) and (10) hold, then:

- 1) Each oscillatory solution of (1), which does not change its sign, tends to zero as $t \to \infty$.
- 2) Each oscillatory solution of (1), which changes its sign, tends to zero as $t \to \infty$ if the following conditions are fulfilled:
 - a) $f(t, \cdot, \dots, \cdot)$ is nondecreasing and

$$\int_{t_0}^{\infty} |f(t,c,\ldots,c)dt| < \infty \quad \text{for any } c \neq 0;$$
 (12)

- b) $\Delta_i(t,v) \leq t \ (i=\overline{1,n}) \ for \ any \ fixed \ v \in R;$
- c) there exists the uniform on t bound

$$arphi(t) = \lim_{|u| \to \infty} rac{f(t, u, \dots, u)}{u} \quad such \ that \int\limits_{t_0}^{\infty} ilde{f}(t) dt < \infty$$

$$where \ ilde{f}(t) \geq rac{f(t, u, \dots, u)}{u} \ for \ u \neq 0.$$

Proof. First we will prove that all oscillatory solutions of (1) are bounded. Suppose the contrary, i.e. there exists an unbounded solution y(t) of (1). Then we can find $t_1 \geq t_0$ so that $\Delta_i(t,y(t)) \geq t_0$ $(i=\overline{1,n})$ for $t \geq t_1$ and sets $\{\tau_\mu\}_{\mu=1}^{\infty} \subset [t_1,\infty)$ and $\{\xi_\nu\}_{\nu=1}^{\infty} \subset (\tau_1,\infty)$ of zeros and extremal points of y(t), respectively, with the properties: $\tau_\mu \to \infty$, $\mu \to \infty$; $\xi_\nu \to \infty$, $\nu \to \infty$, and if $M_\nu = |y(\xi_\nu)|$, then $\sup_{[t_0,t_1]} |y(t)| \leq M_1 \leq M_1 \leq \ldots$ and $M_\nu \to \infty$, $\nu \to \infty$, (the index μ may be greater than the index ν , since sticknesses of y(t) with the zero solution are possible).

Let y(t) does not change its sign and let for instance, $y(t) \ge 0$ for $t \ge t_0$ (The proof is similar when $y(t) \le 0$ for $t \ge t_0$). Via H2 and H1 (1) yields

$$y'(t) \le Q(t) \qquad \text{for } t \ge t_1. \tag{13}$$

Integrating (13) from τ_{μ} to ξ_{ν} and taking $\nu \to \infty$ we get the contradiction

$$\infty > \int_{t_0}^{\infty} |Q(t)| dt \ge M_{\nu} \to \infty, \quad \nu \to \infty.$$

Let y(t) change its sign and $(\tau_{\mu}, \tau_{\mu+1}) \ni \xi_{\nu}$ be its positive semicycle (The proof is similar when $(\tau_{\mu}, \tau_{\mu+1})$ is a negative semicycle). Let $t_1 \ge t_0$ be chosen so large that $\int_{t_1}^{\infty} \varphi(t)dt < 1/2$. Since $y(t) \le M_{\nu}$ and $M_{\nu} \ge |y(\Delta_i(t, y(t)))|$ $(i = \overline{1, n})$ for $t \in (\tau_{\mu}, \tau_{\mu+1})$, then

$$f(t, -M_{\nu}, \dots, -M_{\nu}) \le f(t, y(t), \dots, y(\Delta_n(t, y(t))))$$
 for $t \in (\tau_{\mu}, \tau_{\mu+1})$.

Integrating (1) from τ_{μ} to ξ_{ν} , dividing by M_{ν} and tending $\nu \to \infty$ we obtain the contradiction

$$\begin{split} 1 &\leq \frac{1}{M_{\nu}} \int\limits_{\tau_{\mu}}^{\xi_{\nu}} |Q(t)| dt + \int\limits_{\tau_{\mu}}^{\xi_{\nu}} \frac{f(t, -M_{\nu}, \dots, -M_{\nu})}{-M_{\nu}} dt \leq \\ &\leq \frac{1}{M_{\nu}} \int\limits_{t_{0}}^{\infty} |Q(t)| dt + \int\limits_{t_{1}}^{\infty} \frac{f(t, -M_{\nu}, \dots, -M_{\nu})}{-M_{\nu}} dt \xrightarrow[\nu \to \infty]{} \int\limits_{t_{1}}^{\infty} \varphi(t) dt < \frac{1}{2}. \end{split}$$

Thus, all oscilatory solutions of (1) are bounded. If we suppose that there exists an oscilatory solution y(t) of (1) such that $\lim_{t\to\infty}\sup|y(t)|=2m$ for some m= const > 0, then using H2 and (10) we can find numbers $t_0\le t_1\le \tau_{\nu}<\xi_{\nu}$ so, that $\Delta_i(t,y(t))\ge t_0$ $(i=\overline{1,n})$ for $t\ge t_1$, $\int_{t_1}^{\infty}|Q(T)|dt< m/3$ $y(\tau_{\nu})=0$ and $|y(\xi_{\nu})|>m$.

Let y(t) does not change its sign on $[t_0, \infty)$. As above we obtain (13). Integrating (13) from τ_{ν} to $\xi_n u$ and having in mind the above assumptions, we obtain the contradiction

$$m \leq \int\limits_{t_1}^{\xi_{\nu}} |Q(t)| dt \leq \int\limits_{t_1}^{\infty} |Q(T)| dt < \frac{m}{3}.$$

Let y(t) change its sign on $[t_0, \infty)$ and $y(\xi_{\nu}) > 0$ (The proof is similar when $y(\xi_{\nu}) < 0$). Let t_1 be chosen so large that

$$\int_{t_1}^{\infty} |f(t,-2m,\ldots,-2m)| dt < \frac{m}{3}.$$

Integrating (1) from τ_{ν} to $\xi_{n}u$ and using the assumptions on f and Q we obtain the contradiction

$$m \leq \int\limits_{ au_
u}^{\xi_
u} |Q(t)| dt - \int\limits_{ au_
u}^{\xi_
u} f(t, -2m, \dots, -2m) dt \leq \int\limits_{t_1}^{\infty} |Q(T)| dt + \int\limits_{t_1}^{\infty} |f(t, -2m, \dots, -2m)| dt < \frac{2m}{3}.$$

Theorem 5 is thus proved.

THEOREM 6. Let conditions (H) and (12) hold, f(t,...) be nondecreasing, Q(t)|>0 on $[t_0,\infty)$ and

$$\int_{t_0}^{\infty} |Q(t)| dt = \infty. \tag{14}$$

Then all oscillatory solutions of (1) are unbounded.

Proof. Let Q(t)>0 on $[t_0,\infty)$ (The proof is similar when Q(t)< O for $t\geq t_0$) and there exists a bounded oscillatory solution y(t) of (1) such that

$$|y(t)| \le c$$
 for $t \ge t_1 \ge t_0$ and $|y(\Delta_i(t,y(t)))| \le c$ $(i = \overline{1,n})$ for $t \ge t_2 \ge t_1$

for some c>0. Then $f(t,y(t),\ldots,y(\Delta_n(t,y(t))))\leq f(t,c,\ldots,c)$ for $t\geq t_2$ and integrating (1) from t_2 to t and using (12) and (14), we obtain the contradiction $c\geq y(t)\geq y(t_2)+\int_{t_2}^t Q(s)ds-\int_{t_2}^t f(s,c,\ldots,c)ds\to\infty,\ t\to\infty.$

Theorem 6 is proved.

Now we will obtain sufficient conditions for nonocillation of all solutions of (1) and we will study their asymptotic behaviour.

THEOREM 7. Let conditions (H) and (14) hold, |Q(t)>0 on $[t_0,\infty)$ and conditions a) -c) of Theorem 5 be fulfilled. Then all solutions of (1) are nonoscillatory.

Proof. Let Q(t) > 0 on $[t_0, \infty)$ (The proof is similar when Q(t) < O on $[t_0, \infty)$). Suppose there exists an oscillatory solution y(t) of (1). According to Theorem 6, y(t) is unbounded.

Let t_1 be a zero of y(t) such that $\Delta_i(t,y(t)) \geq t_0$ $(i=\overline{1,n})$ for $t \geq t_1$ and $\int_{t_1}^{\infty} \varphi(t)dt < \frac{1}{2}$. As in the proof of the first part of Theorem 5 we obtain that $f(t,y(t),\ldots,y(\Delta_n(t,y(t)))) \leq f(t,M_{\nu},\ldots,M_{\nu})$ for $t \in (\tau_{\mu},\tau_{\mu+1})$.

Integrating (1) from ξ_{ν} to $\tau_{\mu+1}$, dividing by M_{ν} and taking $\nu \to \infty$ we get the contradiction

$$1 \leq \int_{\xi_{\nu}}^{\tau_{\mu+1}} \frac{f(t, M_{\nu}, \dots, M_{\nu})}{M_{\nu}} dt \leq \int_{t_{1}}^{\infty} \frac{f(t, M_{\nu}, \dots, M_{\nu})}{M_{\nu}} dt \xrightarrow[\nu \to \infty]{} \int_{t_{1}}^{\infty} \varphi(t) dt < \frac{1}{2}.$$

Theorem 7 is proved.

COROLLARY 1. Let conditions of Theorem 7 hold. Then all solutions of (1) are positive (negative) and unbounded ahore (below) when Q(t) > 0 (< 0) on $[t_0, \infty)$.

Proof. Let Q(t) > 0 on $[t_0, \infty)$ (The proof is similar when Q(t) < O on $[t_0, \infty)$). According to Theorem 7, all solutions of (1) are nonoscillatory. Suppose there exists a solution y(t) < O for $t \ge t_1 \ge t_0$ of (1). From H1 and (1) we obtain $y'(t) \ge Q(t)$ for $t \ge t_1$. Integrating this inequality from t_1 to t and taking $t \to \infty$ we obtain the contradiction

$$0 > y(t) \ge y(t_1) + \int_{t_1}^t Q(s)ds \xrightarrow[\nu \to \infty]{} y(t_1) + \int_{t_1}^\infty Q(s)ds = \infty.$$

Thus all solutions of (1) are positive.

Suppose that $0 < y(t) \le M$ for $t \ge t_2 \ge t_1$ and some M = const > 0. Then $y(\Delta_i(t,y(t))) \ge M$ for $t \ge t_2 \ge t_1$ $(i = \overline{1,n})$ and hence $f(t,y(t),\ldots,y(\Delta_n(t,y(t)))) \le f((t,M,\ldots,M))$ for $t \ge t_2$. Integrating (1) from t_2 to t using (12) and (14) we obtain the contradiction

$$M \ge \nu(t) \ge y(t_2) + \int_{t_2}^t Q(s)ds - \int_{t_2}^t f(s, M, \dots, M)ds \to \infty, \ t \le \infty.$$

Corollary 1 is established.

Theorem 8. Let conditions (H) and (14), |Q(t)| > 0 for $t \geq t_0$ and $f(t,\cdot,\ldots,\cdot)$ be nonincreasing. If for any c>0

$$\int_{t_0}^{\infty} [Q(t) - f(t, c, \dots, c)] = -\infty \qquad \text{when } Q(t) > 0$$

$$\left(\int_{t_0}^{\infty} [Q(t) - f(t, -c, \dots, -c)] dt = \infty \qquad \text{when } Q(t) > 0 \right)$$

$$(15)$$

then all nonoscillatory solutions of (1) are positive (negative) and unbounded above (below).

Proof. As in the proof of the first part of Corollary 1 we establish that the nonoscilatory solutions of (1) are positive. Suppose that $y(t) \leq M$ for $t \geq t_1 \geq t_0$ and M = const > 0. Then $y(\Delta_i(t,y(t))) \leq M$ $(i = \overline{1,n})$ and $f(t,y(t),\ldots,y\Delta_n(t,y(t))) \geq f(t,M,\ldots,M)$ for $t \geq t_2 \geq t_1$. Integrating (1) from t_2 to t, tending $t \to \infty$ and using (15) we get

$$0 < y(t) \ge y(t_2) + \int\limits_{t_2}^t [Q(s) - f(s, M, \dots, M)] ds \to -\infty, \ \ t \to \infty.$$

This contradiction proves Theorem 8.

For the equation

$$y'(t) + \gamma f(t, y(\Delta_1(t, y(t)))) = Q(t), \ t \ge t_0 \in R, \ \gamma = \pm 1, \tag{16}$$

which is a particular case of (1), the following theorem holds:

Theorem 9. In addition to (H2) for n = 1 and (10) suppose:

1. $f(t,u) \in C([t_0,\infty) \times R)$, uf(t,u) > 0 for $u \neq 0$ and $t \geq t_0$, $f(t,\cdot)$ is either nondecreasing when $\gamma = -1$ and

$$0<\inf_{t>t_0}|f(t,u)|\leq \sup_{t\geq t_0}|f(t,u)|<\infty \quad \text{ for any fixed } u\in R. \tag{17}$$

2. There exists the derivatives $\partial \Delta_1(t,v)/\partial t$ and $\partial \Delta_1(t,v)/\partial v$ and they are bounded and nonnegative.

Then all nonoscillatory solutions of (16), which are bounded, tend to zero as $t \to \infty$.

Proof. Let y(t) > 0 for $t \ge t_1 \ge t_0$ (The proof is similar when y(t) < 0 for $t \ge t_1 \ge t_0$). As in the proof of Lemma 2 we establish (11) for all bounded nonoscillatory solutions of (16). Then

$$\lim_{t \to \infty} \inf |y(t, y(t))| = 0, \quad t \ge t_2 \ge t_1.$$
 (18)

Suppose

$$\lim_{t \to \infty} \sup |y(\Delta_1(t, y(t)))| > m > 0, \quad t \ge t_2 \ge t_1.$$
 (19)

In view of (18) and (19), there exists a sequence $\{\lambda_{\nu}\}_{\nu=1}^{\infty} \subset [t_2, \infty)$ with the following properties: $\lambda_{\nu} \to \infty$, $\nu \to \infty$ $y(\Delta_1(\lambda_n u, y(\lambda_{\nu}))) > m$ for all ν and there exists $\mu_{\nu} \in (\lambda_{\nu}, \lambda_{\nu+1})$ such that $y(\Delta_1(\mu_{\nu}, y(\mu_{\nu}))) < m/2$ for $\nu \ge 1$.

Let α_{ν} be the largest number less than λ_{ν} such that $m/2 = y(\Delta_1(\alpha_{\nu}, y(\alpha_{\nu})))$ and β_{ν} be the smallest number greater than λ_{ν} such that $m/2 = y(\Delta_1(\beta_{\nu}, y(\beta_{\nu})))$ for $\nu \geq 1$. Now in the interval $[\alpha_{\nu}, \lambda_{\nu}]$ there exists γ_{ν} such that

$$y'(\Delta_{1}(\gamma_{\nu}, y(\gamma_{\nu}))) \left[\frac{\partial \Delta_{1}(\gamma_{\nu}, y(\gamma_{n}u))}{\partial t} + \frac{\partial \Delta_{1}(\gamma_{\nu}, y(\gamma_{n}u))}{\partial v} y'(\gamma_{\nu}) \right] =$$

$$= \frac{y(\Delta_{1}(\lambda_{\nu}, y(\lambda_{\nu}))) - y(\Delta_{1}(\alpha_{\nu}, y(\alpha_{\nu})))}{\lambda_{\nu} - \alpha_{\nu}} > \frac{m - m/2}{\beta_{\nu} - \alpha_{\nu}} = \frac{m}{2(\beta_{\nu} - \alpha_{\nu})}$$
(20)

by the mean value theorem.

But in view of (16), (10) and condition 1 of Theorem 9 we obtain that y'(t), and hence $v'(\Delta_1(t, y(t)))$, are bounded for $t > t_2$. Then via condition 2 of Theorem 9 we obtain the estimate

$$\beta_n u - \alpha_{\nu} > M \quad \text{for } \nu > 1, \quad M = \text{const} > 0.$$
 (21)

On the other hand, $y(\Delta_1(t, y(t))) \geq m/2$ on $[\alpha_{\nu}, \beta_{\nu}]$ because of the way α_{ν} and β_{ν} were chosen. Denote $u = \bigcup_{\nu=1}^{\infty} [\alpha_{\nu}, \beta_{\nu}]$. Then

$$f(t, y(\Delta_1(t, y)))) \ge f(t, m/2) \quad \text{for } t \in u$$
 (22)

when $f(t,\cdot)$ is nondecreasing (The proof is similar when $f(t,\cdot)$ is nonincreasing).

If we suppose that $\int_{t_2}^{\infty} f(t, y(\Delta_1(t, y(t)))) dt = \infty$, then from (16) using (10) we obtain the contradiction

$$0 < y(t) \le y(t_2) + \int_{t_2}^{t} |Q(s)| ds - \int_{t_2}^{t} f(s, y(\Delta_1(s, y(s)))) ds \to -\infty, \ t \to \infty.$$

Thus $\int_{t_2}^{\infty} f(s, y(\Delta_1(s, y(s)))) ds < \infty$. Using (21) and (22) we get

$$\int_{t_{2}}^{\infty} f(s, y(\Delta_{1}(s, y(s))))ds \geq \int_{u} f(s, y(\Delta_{1}(s, y(s))))ds \geq \int_{u} f(s, m/2)ds = \sum_{\nu=1}^{\infty} \int_{\alpha_{\nu}}^{\beta_{\nu}} f(s, m/2)ds > \sum_{\nu=1}^{\infty} f_{0}(\beta_{\nu} - \alpha_{\nu}) > f_{0}M \lim_{n \to \infty} \sum_{\nu=1}^{n} \nu = \infty$$

where $f_0 = \inf t \ge t_2 f\left(t, \frac{m}{2}\right)$.

This contradiction proves Theorem 9.

Remark. Theorem 9 is proved by the technique of Chen [3].

We note that sufficient conditions for oscillation of sclutions of first order fuctional differential equations have been obtained in [1, 2, 7-11, 15] and in the papers cited in [7, 15]. Asymptotic behaviour of oscillatory and nonoscillatory solutions of cited equations is not studied yet.

Finally we shall apply Theorems 1, 2 and 4 to the equations (2) and (3).

Consider equation (2). It is a particular case of (1) with $\gamma=1, \ f(t,u)=au$ and $\Delta(t,v)=t-r(v)$. If r(v) is Lipschitzian and $r(v)\geq r(\overline{v})$ for $|v|\leq |\overline{v}|$ then all solutions of (2) are either oscillatory or tend monotonously to zero as $t\to\infty$ according to Theorem 1. By Theorem 2 all bounded quickly oscillatory solutions of (2) tend to zero as $t\to\infty$ and by Theorem 4 every nonoscillatory solution y(t) of (2), for which $\inf_{t\geq t_0}|y(t)|>0$, is unbounded.

Consider equation (3). It is a particular case of (1) with $\gamma=-1$, f(t,u)=au and $\Delta(t,v)=t-h(t,v)$. If $h(t,\cdot)$ is Lipschitzian and $h(t,v)\geq h(t,\overline{v})$ for $|v|\leq |\overline{v}|$ then according to Theorem 1 all bounded solutions of (3) are oscillatory, by Theorem 2 all bounded quickly oscillatory solutions of (3) tend to zero as $t\to\infty$ and by Theorem 4 all nonoscillatory solutions of (3) are unbounded.

REFERENCES

- [1] C. Anderson, Asymptotic oscillation results for solutions to first order nonlinear differential difference equations of advanced type, J. Math. Anal. Appl. 24 (1968), 430-439.
- [2] Ja. Bykov, A. Matakev, Oscilation properties of first order functional differential equations, Issled. Integro-diff. equat., Ilim-Frunze, 1979, 22-28 (in Russian).
- [3] L. Chen, On the nonscillatory Properties of solutions of a functional differential equation, Bull. Soc. Math. Grece 17 (1976), 11-19.
- [4] K. Cooke, Functional differential systems: Some models and perturbation problems, Int. Symp. Differ. Equat. Dynamic Syst., Academic Press, New York, 1965, 167–188.
- [5] K. Cooke. Asymptotic theory for a delay differential equation u' = -au(t r(u(t))), J. Math. Anal. Appl. 19 (1967), 160-173.
- [6] W. Coppel, Stability and Asimptotic Behaviour of Differential Equations, Heath, Boston, 1965.
- [7] Y. Kitamura, T. Kusano, Oscillation of first order nonlinear differential equations with deviating arguments, Proc. Amer. Math. Soc. 78 (1980), 64-68.
- [8] R. Koplatadze, On monotonous solutions of first order nonlinear differential eyrrutions with a retarded argument, Proc. Inst. Appl. Math. I. N. Vecua 8 (1980j. 24-27 (in Russian).
- [9] H. Onose, Oscillation of functional differential equation arising from an industrial problem,
 J. Austral. Math. Soc. (A) 26 (1978), 323-329.
- [10] C. Ladde, Class of functional equations with applications, Nonlin. Anal. TMA 2 (1978), 259–261.
- [11] Ja. Pessin, On the behaviour of solutions of a strongly nonlinear differential equation with delay, Differ. Equat. 10 (1974), 1025-1036 (in Russian).
- [12] Ch. Philos, V. Staikos, Quick oscillations with damping, Techn. Report, Univ. Ioanina 94 (1977), 1–12.
- [13] Ch. Philos, V. Staikos, Non-slow oscillations with dumping, Techn. Report, Univ. Ioanina $\bf 92$ (1977), 1–14.
- [14] B. Stephan, Asymptotic behaviour of a functinal differential equation with bounded lag, SIAM J. Appl. Math. 17 (1969), 272-279.
- [15] L. Tomaras, Oscillatory behaviour of first order delay differential equations, Bull. Austral. Math. Soc. 19 (1978), 183-190.

Institute for social management Academy of medicine, Sofia

(Received 11 03 1985)