ON A DECOMPOSITION OF NEAR-RINGS IN A SUBDIRECT SUM OF NEAR-FIELDS

Vučić Dašić

Abstract. We extend some results from [1] on one class of near-rings and we give a decomposition of near-rings from this class by a subdirect sum of near-fields.

First we give some basic notations and definitions. We recall that a (left zero symmetric) near-ring is a system $(R, +, \cdot)$ where:

- (i) (R, +) is a (not necessarily abelian) group;
- (ii) (R, \cdot) is a semigroup;
- (iii) x(y+z) = xy + xz for all x, y, z in R;
- (iv) 0x = 0 for all x in R, where 0 is the identity of (R, +).

A near-ring R with more than one element is a near-field if the set of nonzero elements of R forms a multiplicative group. An element x in R is said to be distributive if (y+z)x=yx+zx for all y,z in R. The set of all distributive elements of R forms a multiplicative semigroup. A distributively generated (d.g.) near-ring is a near-ring R which is additively generated by some subsemigroup S of distributive elements of R. Thus if R is distributively generated by S, then every element r in R can be expressed as a finite sum $r = \sum_{+s_i} (s \in S)$.

A subgroup B of (R, +) is an R-subgroup (right R-subgroup) if $b \in B$ and $r \in R$ implies $br \in B$. A right ideal of R is a subset B such that (B, +) is a normal subgroup of (R, +) and $(x + b)y - xy \in B$ for each $b \in B$, $x, y \in R$. A subset B of R is an ideal of R if it is a right ideal and $rb \in B$ for each $r \in R$, $b \in B$. A right ideal Q of R is called completely prime if and only if $Q \in R$ and $ab \in Q$ implies that $a \in Q$ or $b \in Q$.

Definition 1. We say that a right ideal P of R has a minimal strict extension if there exists an R-subgroup Q such that $P \subset Q$ and $P \subset T \subset Q$ implies T = Q, where T is an R-subgroup of R.

44 Vučić Dašić

A proper right ideal of R is called strictly maximal if it is maximal as an R-subgroup. It is evident that every strictly maximal right ideal of R is a right ideal which has a minimal strict extension. A partial converse is given by

Lemma 1. Let R be a near-ring. Then every completely prime right ideal of R which has a minimal strict extension is a strictly maximal right ideal of R.

Proof. Let P be completely prime right ideal which has a minimal strict extension. Thus there is an R-subgroup Q of R such that $P \subset Q$. For all $a \in Q \setminus P$ we have $aQ \not\subset P$. Therefore, $P \subset P + aQ \subseteq Q$ and hence Q = P + aQ. For this we have a = p + ae for suitable $p \in P$ and $e \in Q$. Then for $x \in R$, ax = (p + ae)x - aex + aex and so $a(x - ex) = (p + ae)x - aex \in P$ since P is a right ideal. But $a \not\in P$, $x - ex \in P \subseteq Q$, so $x \in Q$ and P = Q as required.

A right ideal B of R is modular if and only if there is an element $e \in R$ with $ex - x \in B$ for each $x \in R$ (e is a left identity modulo B). A right ideal B of R is called 2-modular if B is modular and R/B is an R-group of type 2.

Lemma 2. If B is a right ideal of a near-ring R and e is a left identity modulo B, then e + b for $b \in B$ is a left identity modulo B, too.

Proof. Since $(u+b)v-uv \in B$, then for u=e, v=x we have $(e+b)x-ex \in B$, thus $(e+b)x-x+x-ex \in B$. But $x+ex \in B$ and hence $(e+b)x-x \in B$.

Let A, B be subsets of R. Let us denote by (B:A) the set $\{x \in B/Ax \subseteq B\}$. We write briefly (B:q) instead of $(B:\{q\})$.

Lemma 3. If P is a strictly maximal right ideal of a near-ring R, then for $q \notin P$ R = P + qR and (P : q) is a 2-modular right ideal of R.

Proof. The set P + qR is an R-subgroup strictly containing P. But, P is a strictly maximal right ideal of R and consequently R = P + qR.

Taking q = p + qe for suitable $e \in R$, $p \in P$ we get immediately that $q(x - ex) = gx - qex = (p + qe)x - qex \in P$ for all $x \in R$. Hence $x - ex \in (P:Q)$. We need to prove yet that (P:q) is a strictly maximal right ideal of R. If $r \notin (P:q)$ then $r \notin P$ so $qrR \not\subseteq P$. It follows that R = P + qrR and $qR \subseteq P + qrR$. For any $x \in R$, we have qx = p + gry for some $p \in P$, $y \in R$. Thus $x - ry \in (P:q)$ and R = (P:q) + rR. Hence (P:q) is strictly maximal in R.

In the following considerations we introduce a condition (D) as follows.

Definition 2. A near-ring R has a property (D) if for every strictly maximal right ideal P of R, $q \notin P$ implies $qR \not\subseteq P$.

There is a class of near-rings with property (D). For example, such a class form all near-rings with identity. Also, all d.g. near-rings with $R^2 \not\subseteq P$ have a property (D). Namely, if P is a strictly maximal right ideal of a d.g. near-ring R and $q \not\in P$, then $R = (q)_R + P$, where $(q)_R$ is the R-subgroup generated by q. The elements of the R-subgroup (q)R have the from $\sum (\pm qs_i + m_iq)$, where $s_i \in S$ and

 $m_i \in Z$ (S is a multiplicative subsemigroup of distributive elements). Thus, for $s,t \in S, m \in Z$ we have

$$(\pm qs + mq + P)t = \pm qst + mgt + Pt = q(\pm st + mt) + Pt \in qR + P$$

and it follows that $R^2 \subseteq qR + P$. Since $R^2 \not\subseteq P$ we have $qR \not\subseteq P$ as required,

An ideal P of R ($P \neq R$) is called strictly prime if $A \subseteq P$ or $B \subseteq P$ for any two R-subgroups A and B of R such that $AB \subseteq P$. Call R a strictly prime near-ring if $\{0\}$ is a strictly prime ideal.

PROPOSITION 1. If P is a strictly maximal right ideal of u near-ring R with property (D) such that for $x \in R$, $Rx \subseteq P$ implies $x \in P$, then P is a strictly prime right ideal of R.

Proof. First we prove that if from $Rb \subseteq P$ follows $b \in P$, then $aRb \subseteq P$ implies $a \in P$ or $b \in P$. Let $aRb \subseteq P$ and $a \notin P$, then by property (D) $aR \in P$, i.e. R = P + aR. Hence, every r in R is of the form $r = p_1 + ar_1$ for some $r_1 \in R$, $p_1 \in P$. Thus,

$$rb = (p_1 + ar_1)b - ar_1b + ar_1b \in P + aRb \subseteq P$$

But $Rb \subseteq P$ implies $b \in P$ as required. Let for any two R-subgroups A and B of R, $AB \subseteq P$. Since $ARB \subseteq AB \subseteq P$, then for all $a \in A$ and $b \in B$ it follows that $aRb \subseteq P$ and that implies $a \in P$ or $b \in P$. Thus $A \subseteq P$ or $B \subseteq P$ and P is strictly prime.

COROLLARY. If R is a near-ring with property (D), then every 2-modular right ideal of R is strictly prime or R is strictly prime.

Proof. Let P be a 2-modular right ideal of R and let $e \in R$ be a left identity modulo P. If $Rx \subseteq P$ then from $ex - x \in P$ it follows that $x \in P$. Thus the conditions of Proposition 1 hold and hence P is a strictly prime right ideal of R.

Definition 3. An ideal T of a near-ring R is called a factor near-field ideal if and only if R/T is a near-field.

According to Theorem 8.3d of [2] for a factor near-field ideal T, R/T is a 2-primitive near-ring with a right identity. Thus T is a strictly maximal right ideal of R. Also, T is a modular right ideal of R, because in R/T there is an identity $\bar{e} = e + T$ ($e \in R$). Thus (e + T)(x + T) - x + T, i.e. $ex - x \in T$ for all $x \in R$. Therefore, every factor near-field ideal is a 2-modular right ideal of R. In fact, for near-rings with property (D) we have

PROPOSITION 2. Let R be a near-ring with property (D). The 2-modular right ideal P of R is a factor near field ideal if and only if for each left identity e modulo P, $re \in P$ $(r \in R)$ implies $rRe \subseteq P$.

Proof. Suppose $re \in P$ implies $rRe \subseteq P$ for some 2-modular right ideal P of R where $r \in R$ and e is a left identity modulo P. We need to show only that P

46 Vučić Dašić

is an ideal of R. If P is not an ideal, then $rp \notin P$ for some $r \in R$, $p \in P$ ($r \notin P$) and thus $R^2 \not\subseteq P$. Since $rp \notin P$ it follows by condition (D) that R = P + rpR. Then $re = p_1 + rpr_1$ for some $r_1 \in R$, $p_1 \in P$ and so $r(e - pr_1) = p_1 \in P$. By Lemma 2, $e_1 = e - pr_1$ is a left identity modulo P and $re_1 \in P$ implies $rRe_1 \subseteq P$, i.e. $rRe_1R \subseteq P$. From the Corollary we have $rR \subseteq P$ or $e_1R \subseteq P$. But $rp \notin P$ so $e_1R \subseteq P$. However P is left modular and $e_1e - e \in P$ implies $e \in P$ which is false. Namely if e is a left identity modulo P, then $e \in P$ iff P = R (Remarks 3.21, [2]). Hence P is an ideal of R.

The converse is immediate.

PROPOSITION 3. If P is a strictly maximal right ideal of a near-ring R with property (D), then the following assertions are equivalent:

- (i) P is a factor near field ideal;
- (ii) P is a completely prime ideal;
- (iii) There exists $q \in R$ for which $(P:q) \subseteq P$ and for every left identity e modulo $P, re \in P$ $(r \in R)$ implies $rRe \subseteq P$.
 - *Proof.* (i) \Rightarrow (ii). This is obvious.
- (ii) Rightarrow (iii). Let P be a completely prime ideal of R. If $x \in (P:q)$ i.e. $qx \in P$, then for $q \notin P$ we have $x \in P$. Thus $(P:q) \subseteq P$. Let e be a left identity modulo P, then $e \notin P$ and therefore $re \in P$ implies $r \in P$. Consequently $rRe \subseteq P$.
- (iii) \Rightarrow (i). As a consequence of Lemma 3 it follows that (P:q) is a 2-modular rigt ideal of R. Since $(P:q) \subseteq P$ we have P=(P:q). Also, by the hypothesis $re \in P$ implies $rRe \subseteq P$. Using Proposition 2, it follows that P is a factor near-field ideal of R.

Theorem 1. A right ideal P of a near-ring R with property (D) is a factor near field ideal if and only if P is a completely prime right ideal which has a minimal strict extension.

Proof. Let P be a completely prime right ideal of R which has a minimal strict extension. By Lemma 1 P is a strictly maximal right ideal of R. Applying Proposition 3 it follows that P is a factor near-field ideal of R.

Conversely, if P is a factor near-field ideal of R then P is a 2-modular right ideal and hence a strictly maximal right ideal of R. It follows that P has a minimal strict extension. By Proposition 3, P is a completely prime right ideal of R.

Lemma 4. Let B he a nonzero ideal of a near-ring R. If T_B is a factor near-field ideal of B, then $B \not\subseteq (T_B : B)$ and $(T_B : B)$ is a factor near field ideal of R.

Proof. Since B/T_B is a near-field, so $B^2 \not\subset T_B$. Hence $B \subset (T_B : B)$.

The near-field B/T_B has an identity. Thus there is $e \in B$ such that $b-be \in T_B$ for all $b \in B$. Since $T_B \triangleleft B \triangleleft R$ it follows by Theorem 4.63 of [2] that T_B is an ideal of R. Hence $(b-be)x \in T_B$ for all $x \in R$. But $bx = (b-be+be)x-bex+bex \in T_B+bex$

and so $b(x-ex) \in T_B$. Hence $B(x-ex) \subseteq T_B$, i.e. $x-ex \in (T_B:B) \equiv T$. Consequently, $x \in T + ex \subseteq T + B$ for arbitrary $x \in R$, that is R = T + B. Since $T_B \subseteq B$ we have $T_B \subseteq B \cap T$. But T_B is a strictly maximal in B, so $T_B - B \cap T$. Now

$$\frac{R}{T} = \frac{T+B}{T} \simeq \frac{B}{T\cap B} = \frac{B}{T_B}$$

where B/T_B is a near-field. Thus, T is a factor near-field ideal of R.

Definition 4. A near-ring R has a strict property (D) if every nonzero ideal of R, used as a near-ring, has a property (D).

We say that a near-ring R is a subdirect sum of near-rings R_k if and only if there exist the ideals I_k of R with $\bigcap I_k = (0)$ and $R_k \simeq R/I_k$ as near-rings.

Theorem 2. A near-ring R with a strict property (D) is isomorphic to a subdirect sum of near fields if and only if every nonzero ideal of R, used as a nearring, contains a completely prime right ideal which has a minimal strict extension.

Proof. If a near-ring R is isomorphic to subdirect sum of near-fields R_k , then there exist ideals T_k with $\bigcap T_k = (0)$ and $R/T_k \simeq R_k$. Let B be a nonzero ideal of R, then there is a near-field T_k such that $B \not\subseteq T_k$ and hence $R - T_k + B$. If $T_B = T_k \cap B$, then

$$\frac{B}{T_B} = \frac{b}{T_k \cap B} \simeq \frac{T_k + B}{T_k} = \frac{R}{T_k} \simeq R_k$$

Thus, T_B is a near-field ideal of B. Hence T_B is a completely prime right ideal of B which has a minimal strict extension.

Conversely, let every nonzero ideal of a near-ring R with a strict property (D) contains a completely prime right ideal which has a minimal strict extension. Assume that the intersection $B = \bigcap T_k$ of all factor near-field ideals T_k of R is a nonzero ideal of R. By the hypothesis, B contains a completely prime right ideal T_B which has a minimal strict extension. According to Theorem 1, T_B is a factor near-field ideal of B. By Lemma 4, $(T_B:B) \equiv T$ is a factor near-field ideal of R and thus $B \subseteq T$. But this contradicts to the fact proved in Lemma 4 that $B \not\subseteq T$. Consequently, $B = \bigcap T_k = (0)$ and hence R is isomorphic to a subdirect sum of near-fields.

REFERENCES

- А.Б. Андрунакиевич, О вполне первичных идеалах кольца, Мат. сборник 121(163) (1983) 291-296.
- [2] G. Pilz, Near-rings, North Holland, Amsterdam, 1983,

Institut za matematiku i fiziku Cetinjski put bb 81000 Titograd Yugoslavia (Received 12 07 1986)