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MIXED NORM SPACES OF ANALYTIC
AND HARMONIC FUNCTIONS, II

M. Pavlovié

Abstract. In this paper we continue the study of the spaces h(p,q,¢) and H(p,q, ¢).
We apply the main results of Part I to obtain new information on the coefficient multipliers of
these spaces. For example, we find the multipliers from h(p, g, ¢) to h(oo,qo,¢) for any p > 1,
q,po > 0 and any quasi-normal function ¢, and this improves and generalizes a result of Shields
and Williams [16]. We also describe the multipliers from H(p, ¢, ), p < 1, to H(po, g0, ), po > P,
and [%, s > 0.

0. Introduction

Let h(Ug) be the class of all complex-valued harmonic functions in the disc
Ur ={z:|s| <R}, R> 0. For a set E of integers let hg(UR) = {f € h(UR) :
supp ( f) C E}. An A-space X is a quasi-normed space satisfying the following
conditions: 1. There exists a set E such that hg(UR) C X C hg(U) for all
R>1U=14); 2. If f € X and ¢ € U, then ||f¢|| < ||f|| where f: is defined
by fc(2) = f(¢2); 3. Let P.(f) = ||frll, f € he(U), 0 < r < 1. Then the family
{P,} defines a topology on hg(U), which coincides with the topology of uniform
convergence on compact subsets of U.

If X is complete, then the third condition may be replaced by the requirement
that X is continuously embedded into hg(U). (This can be proved by using the
closed graph theorem.) In Part I, A-spaces are defined in a different way, but it is
easily shown that the two definitions are equivalent.

A function ¢ : (0,1) = (0,00) is said to be quasi-normal if it is increasing,
absolutely continuous, ¢(0+) = 0 and ¢(2t)/p(t) < C < oo for 0 < ¢t < 1/2. If, in
addition, ¢(at) < ¢(t)/2, t > 0, for some a > 0 then ¢ is said to be normal. In
Part T we defined the scale of spaces X (g, ) in the following way:

X(q, ) consists of all f € hg(U) for which the function F(r):= o(1—r)||fr||x,
0 < r < 1, belongs to the Lebesgue space L?(m,), where dm,(r) = ¢'(1 —

rydr/¢' (1 —r).
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It was shown that X (g, ) is a complete A-space with the quasinorm
1f11x (g,0) = 11| La(mep)-

Throughout the paper we shall suppose that ¢ is extended to the interval
(0,00) so that the following holds: 1. ¢(t)e(1/t) ~ 1, t > 0, ie. 0 < ¢ <
p(t)p(1/t) < C < o0; 2. 1/¢p is convex on (1,00) and p(14) = ¢(1). Such an
extension is possible; for example

o(1)/(t) = / PG ), > 1.

In this part we consider coefficient multipliers from X (g, ¢) to Y (gg, ). Mul-
tiplier problems for various spaces of analytic and harmonic functions have been
considered by many authors. See, for example, [1, 2, 3, 4, 12, 15, 16]. Main-
ly, these results concern the spaces H(p, q,p):= HP(q,¢) and h(p, g, p):=hP(q, )
with ¢(t) = t*, where H? and h? are Hardy and harmonic Hardy spaces, respec-
tively. (In this case we write a instead of .) The following result of Hardy and
Littlewood [8] and Flett [5, 6] is one of the most important results in this area.

THEOREM HLF. If 0 < p,q < 00 and 0 < a, B < oo then the operator DP~2
acts as an isomorphism from H(p,q,a) onto H(p,q,[3).

The operator D? : h(U) — h(U)(—o0 < s < 00) is defined by
(D*f)" (k) = (k| + 1)°F(k),  —o00 <k < oo

In Section 1 we give some extensions of Theorem HLF. For example, if ¢ is
a normal function and a > 0, then H(p,q, ) and H(p,q,a) are isomorphic via a
multiplier transform. However, this transform is more complicated than in the case
of Theorem HLF, and is not indepedent of p.

The multipliers from h(oo, 00, ¢) into itself, where ¢ satisfies additional re-
strictions on regularity of growth, were described by Shields and Williams [16]. In
Section 3 we describe the multipliers from h(p, ¢, ) to h(o0,qo,¥), p < 1, for any
quasi-normal function ¢. Using this we solve Problem B of [16].

It was shown by Duren and Shields [4] that g is a multiplier from H (1,1, )
into itself if and only if M;(r,¢') < C/(1—17), 0 < r < 1. We generalize this by
finding the multipliers from H(p,q,a) to H(po,qo, ), where p < min(1,po).

In Section 5 we briefly discuss the multipliers from H(p, ¢, ) to the sequence
space [®. Some partial solutions to this problem are given by Ahern and Jevtié
[1], Mateljevi¢ and Pavlovié [11, 12] and others. (See [1, 12] for information and
references). Here we consider the case p < 1 and find the multipliersfor any ¢ > 0
and s > 0. In the case p > 2 a stronger is known [2, 11].

Our method is based on the main result of Part I, which enables us to reduce
the multipliers from X (g, ) to Y (qo, ) to those from X to Y. For our purposes
it is convenient to introduce the spaces X[g, W] in the following way.



Mixed norm spaces of analytic and harmonic functions, II 99

Let N be a non-negative integer, and let A :={\,}§° be an increasing se-
quence of positive integers. For a sequence W:={w,}§° or harmonic polynomials
we write W € (N, A\) if the following conditions are satisfied:

f2) = waxf(2), feh), zel,
n=0

where the series is uniformly convergent on compact subsets of U;
Wy (k) =0 if [k] & [An—1,An4n) 20,

where A\_; = 0.
We define X[g, W) = {f € hu(U)  |fllx(qw) < 00}, where

oo
1 lx1g,w) = Y llw * fll%,  a < oo,
0

£l xto0,w) = sup [lwn * flIx.

These spaces are generalizations of the sequence spaces [(p, ¢) introduced by
Kellogg [10]. One can prove that X[g, W] are A-spaces. Their main properties will
be given in Sections 1 and 2.

1. Isomorphisms between X (g, ¢) and X|[q, W]

By Proposition 3.2, Part I, there exists a lacunary sequence A\ = {A,}§° of
positive integers such that ¢(A):= {p(An)}§° is normal, i.e.

Cl(]- + C)JSD()‘H) S (P()‘n+j) S CJSD()‘H)a j:n Z 0.

where ¢, ¢, C are positive constants.

For an A-space X let s(X) = hg(U), where E is the unique set of integers
such that hg(UR) C X C hg(U), R > 1. Let By be the class consisting of all
normed A-spaces and all HP with p > [/N.

THEOREM 1. Let N > 1, let A be a lacunary sequence, and let the sequence
»(A) be normal. Then there exists a sequence W € (N, \) and a function g € h(U)
such that for all X € By the following assertions hold:

a) The operator g* defined by g*(f) = f * g is an isomorphism of X(q,p)
onto Xq, [W].

b) ||lwnxfllx < K| f||x forn <0, f € X, where K is independent of X € Bn.

c) g(n) = g(—n) ~ 1/p(n+1), n>0. If N =1, then one can take §(n) =
1/¢(|n| +1).

Define the operators D¥ and Dy, : h(U) = h(U) by

(Do f) (n) = f(m)/¢(In + 1), (D¥f) (n) =4 (In| + 1) f(n).
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The following theorem generalizes the case > 1 of Theorem HLF. It is an
immediate consequence of Theorem 1.1.

THEOREM 1.2. Let n be a lacunary sequence such that both ¢(A) and ¥(\)
are normal. Then D,D¥ acts as an isomorphism from h(p,q,¢), p > 1, onto

h(p,q,%).

Remark. The function 9 is extended to (0,00) in the same way as .

THEOREM 1.3. (with the hypotheses of Theorem 1.2.). For every p > 0 there
exists an analytic function g such that G(n) ~ Y(n + 1)/p(n + 1), n > 0, and the
operator g* is an isomorphism from H (p,q,¢) onto H(p,q,).

If o is normal, then the sequence {p(2")}§° is normal. Thus we have

COROLLARY 1.1. If ¢ is a normal function and « is a positive number, then
H(p,q,¢) and H(p,q,a) (p > 0) are isomorphic via a multiplier transform.

Proof of Theorem 1.1. By Theorems 2.1. and 4.1. (Part I) and their proofs,
there is W € (N, A\) such that (b) holds, w,(—k) = w, (k) and

oo

1/q
£l x (g,0) ~ {Z[@(l/An)llwn *fllx]} , fesX).

0

Thus it suffices to find a function g independent of X € By and satisfying (¢) and
(L.1) llwn * g * fll ~ o1/ An)llwn * Fll,  f€s(X), n=0

Let B, = ¢(1/A,)"™, n > 0, where m is a positive integer which will be
chosen later on. Define the functions g1, ..., g, in the following way:

oo
91(2) = Zann(z)a 9i =91%gj-1, 2<1<m.
0

We have
(o) oo n+N

wpxg1 = By, Z Wy, *Wp + Z(Bk — Bp)wp xwy, = Buwp, + Z (B — Bp)wp, xwy,
k=0 k=0 k=n—N

where By = B, and w; = 0 for £ < 0, Using the triangle inequality for || - [|%,
where s = 1/N, we obtain

lwnxgix fII° > BllwaxfII°=Y_ k =n — NN By =By |*|lwaxwir f|I°, f € s(X).

Hence, by (b),

n+N

l[wn * g1 % fI|* > Byllwn * fII* = K*llwa * fII* Y |Bi — Bal*.
k=n—N
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Since ¢(/\) is normal, there exists b € (0, 1) such that ¢(1/A, + N) > bp(1/A,,) for
all n > 0. Using this we get

> 6n+ N|By — By|* < (Bn = Noyn)*N + (Bp=n — Bn)*N
k=n—N

< NB3(1—b"™) + NB2(b~Y/™ —1)°.
Choose m so that
(1.2) NEK*(1—b'/m) + (b~Y/™ —1)* <272
Then ||wy, * g1 * f|| > 27! B,||w, * f|| and, by induction,

(1.3) lwn * gm * fI| > 27m90(1/)‘n)”wn * fl].

In the other direction, from the identity

n+N
woxgrxf= Y Brwpxwy*f
k=n—N
we obtain
n+N
llwn * g1 % fII° < K¥|lwp % £II° > Bj < Kyllw x f]I°(2N + 1)B_y.
k=n—N
This implies
(1.4) lwn * gm * fIl < Cllwn * fll, f€s(X), n>0,

where C' is a positive real constant.

In order to estimate the coefficients of g, observe that g, (k) = g1 (k)™. Thus
we have to prove i (k) ~ @(k+1)"Y™ k> 0. It is easily verified that §, (k) = By
for k < Ag. If £ > Ao then we choose n > 0 so that A\, < k < A,41. Then

G1(k) = Bog1 + D (Bj — Baga )i (k).
j=n—N

Taking X = H* and f(z) = 2z* in (b) we see that |w;(k)| < K for all j,k > 0,
where K is the same as in (1.2). Hence

|§(k)| > Bn-‘rl + Z (Bj - Bn+1)
j=n—N

S Bn+1 - K(Bn—N - Bn+1)N
< Bnt1 — KBny1(Bn-N/Bnyn — 1)N
< Bpi— KBy (b72/™ —1)N >27'B,,, 4,
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where m is chosen so that the inequalities (1.2) and K (b=2/™ — 1)N < 1/2 hold.
This proves that g, (k) > cp(k + 1)~1. The proof of the inequality g, (k) <
Cop(k + 1)~! is simple. Taking g = g,, we see that the condition (1.1) is satisfied.

In the case of normed spaces the result follows from Lemma 5.3 of Part I.

2. Multipliers from X|[q, W] to Y[g, W]

Let X,Y be A-spaces, s(X)Ns(Y) # 0. A function g € h(U) is a multiplier
from X to Y if the map f — f x g is a bounded linear operator from X to Y. If
the spaces are complete then this is equivalent with the requirement that fxg € Y
for all f € X. In Part I we have defined the space

(X =2Y)={gCs(X)Ns(Y):g is a multiplier from X to Y},
with the quasi-norm

lgllx,y = sup{llf *glly : f € X, [|If]lx <1}

We shall prove that there is a simple connection between the spaces
(X[g,W] = Y[go,W]) and (X — Y) provided that ||w, * fl|x < C||fllx, i-e.,
X C X[oo,W]. One can prove that all these spaces are A-spaces.

Throughout this section we suppose O < g, go < oo and

00 if ¢ £ qo,
Q= .
q%/(q —q) if ¢>qo

THEOREM 2.1. Let X C X[oo, W] where the inclusion is continuous. Then

(2.1) (Xlg, W] = Ygo, W]) = (X = Y)[g1, W].

Proof. Since wy, (k) = 0 for |k| € [An—1, An+n) We have

(2.2) wp*xw; =0 for [j—n|>N+1.
Let
n+N
P, = Z wj, n >0,
j=n—N

where w; = 0 for j < 0. From (2.2) and the identity f = > wy, * f it follows that
(2.3) P, xw, =w,, n>0,
(2.4) wp*P;=01if |j—n|>2N+1.

Let g € Z[q1] = Z[q1, W], Z = (X = Y). In view of (2.3) and the definition
of (X =»Y) we have

llwn * [ glly = [|Pn * [ wn x glly < ||Pax fllxllwn * gl|z-
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By Holder’s inequality
I * gllyao) < [{An}liallgll zig15
where A, = ||P, * f||x, n > 0. Using the inequality

n+N

1Pax fI<C Y oy £l

j=n—N

and Lemma 5.2 of Part I we find ||[{A,}|l;« < CJ|f[lx[q- This concludes the proof
of the inclusion Z[g;] C (X[q] = Y[qo])-

Let g € (X[q] — Y[qo]). Then
Ilf * gllyie) < Cllfllxiq, f € Xlg]-
Let [9(X) be the space of those sequences F' = {f,}5° for which f, € X, n >0 and
1F 12 x) == [I{[| frllx }lie < oo.

Let 19(X) be the subspace of 17(X) consisting of { fn} such that f, = 0 for n large
enough. Define the operators V,,, 0 < m < 2N, on l9(X) by

[}
Vi F = an,m *fn7
n=0

where P, ,;, = Pon41)ntm- Using the hypothesis X C X[oo] and the relation (2.4)

one shows that Vs are bounded linear operators from 19(X) to X[g]. (See Lemma
5.1, Part I.) It follows that

I(VinF) % glly(go) < ClIFllia(zy, F €19(X), 0<m<2N,

where C' is independent of F,m. This implies

o} 1/q0
{ > lwim * (Vi F) g||§19} < Ol F|ia(x),
k=0
where W, = WeNt1)k+m- If B # n then [2N + 1)k +m — 2N + 1)n —m| =
(2N + 1)k —n > 2N + 1, and this implies wg, , * Py m = 0, by (2.4). Hence
We,m * (VinF) = We.m * Poom * ft = We,m * i

(In the last step we have used (2.3).) Now we have

oo 1/q0
(2.5) { D Mwkm * g% fklli’?} < CllF |leax)-

k=0

Fix m, 0 <m < 2N, and ¢ < 1, and for every k > 0 choose h; € X so that
||hk||X =1 and

(2.6) lwk,m * g * hilly > ellwe,m * gllz-
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Putting fi = aphg, where {a;}3° € 19 = (R) (R is the scalar field) we get from
(2.5) and (2.6)

o 1/q0 0 1/q
{ > laellewem *gnz]qo} < c{ Zw} ,
k=0

k=0

where C' is independent of €, m and {ay}. This gives

00 1/q1
{znwk,m *gnqg} <o
k=0

for all m, 0 <m < 2N. If ¢; < oo then

oo 2N oo
D ollwaxgll™ =D llwkm * gl < o0
n=0 m=0 k=0

whence g € Z[q]; similarly for g; = co. This completes the proof of Theorem 2.1.
As a consequence of Theorems 1.1 and 2.1 we have

THEOREM 2.2. If Z = (X —Y), where X, Y are normecl spaces, then

(X(g,9) = Y(q0,9)) ={g9€s(X)Ns(Y :D%g € Z(q1,¢)}-

Proof. It follows from Theorem 1.1 that (X (q,¢) — Y (qo, ¢)) = (X[g, W] —
Y'[qo, W]) for a suitable W € (1,A). Now the desired result is obtained by using
Theorem 2.1 and then Theorem 1.1 and the fact that Z is a normed space.

3. Multipliers of h(p, g, )

In this section we apply the preceding results to the case of the spaces
h(p.a, %) = hP(q,¢). Note that if p > 1 then ||flls, = My(r,f), O < r < 1,
so that f € h(p,q, ) if and only if

/0 o(1 — )My (r, f)]%dim(r) < oo.

THEOREM 3.1. Let g, qo, q1, be as in Section 2, let p > 1 and 1/p+1/p' = 1.
For a function g the following are equivalent.
(i) g is a multiplier from h(1,q,p) to h(p,qo,¢);
(i1) g is a multiplier from h(p',q, ) to h(co,qo,¥);
(iii) D¥g € h(p,a1,¢).
Proof. By Theorem 2.2. (h(1,q,¢) = h(p,qo,)) is the set of all g € h(U)
such that D?g € (b — h?)(q1, ). Since (k! — hP) = (¥ — h™®) = h? we see
that (i) < (iii). The proof. of (ii) < (iii) is the same.



Mixed norm spaces of analytic and harmonic functions, II 105

COROLLARY 3.1. If p > 1 then the set

M(p,¢):=(h(p,q,9) = h(p,q,¥))

is independent of q. Furthermore

(3.1) M(o0,p) = M(1,9) = {g € h(U) : D¥g € h(1,00,¢)}.

Shields and Williams [16] proved that (3.1) holds provided that varphi satis-
fies some regularity conditions.

The set M (p,p) is an algebra with unit. It follows from Theorem 2.2 and
the equality (h? — hP) = (W’ — AP that M(p,¢) = M(p',¢). It is clear that
M(2,9) = {9 € h(U) : § is bounded}. Concerning the set M (p, ) we can only
prove that it increases with p € [1,2].

PROPOSITION 3.1. If1 < p < s <2 then M(p,p) C M(s,y).

Proof. Tt is trivial to check that (h? — h?) C (h*> = h?). By the Riesz-Thorin
theorem, (h? — hP) C (h* — h®) if p < s < 2. Now if g is in M(p, ) then by
Theorem 2.2, D¥g € (h? — hP) (00, ) C (h® = h®) (00, p), and this concludes the
proof.

In [16] Shields and Williams posed the question: If the spaces h(oo, 00, ) and
h(00,00,1) have the same set of multipliers are they isomorphic via a multiplier
transform? The answer is yes, as the following theorem shows.

THEOREM 3.2. If M (oo, p) = M(oco,v) then the operator D,D¥ acts as an
isomorphism from h(co,q, @) onto h(oco,q,v).

Proof. By Theorem 1.2, it is enough to find a lacunary sequence {\,} such
that both {¢(A,)} and {¥»(\,,)} are normal. Let

Z 2 and go(z Z 2%, U,

where {t,} and {s,} are lacunary sequences of integers such that {¢(¢,)} and
{t(sn)} are normal. By the well-known fact on lacunary trigonometric series,

1/2
M,y (r,D¥gs) ~ {Z’gb 228"} , 0<r<1.

Hence, by Lemma 3.1 of Part I, My (r, D¥gs) < C /(1 —7), i.e., D¥gs € h(1,00,).
Therefore go € M(00,%), by (3.1 ). Using this and the hypothesis M (oo, <p) =
M (o0, ) we conclude that go € M (oo, ). Hence, by (3.1 ), D¥gy € h(1,00,¢)
ie.,

1/2
{Zw “3"} < Clp(l—r).
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This implies

Z (P(Sk)2 S Cso(tn)Qa n 2 03

Tn
where T,, = {k : t, < s < tny1}. Since p(tn)legp(sy) < @(tnt1) < Cop(ty) for
k € T, we conclude that card (T},) < C < oo, n > 0. Using this and the analogous
fact for the sets {k : s, <t < sp+1} we find a positive integer m such that for all
n>0,7>1
(1) card{k : tp, < s < tptj} < My,
(i) card{k : sp, <t < sptj} <my.

Put A = tgm, k£ > 0. It is easy to see that the sequence {¢(Ar)} is normal.
Let ko be such that tgym > s0. If £ > ko choose n so that s, < tgm < Sp4+1. Then,
by (ii), Ak+j = tkm+jm > Sny; and, consequently,

Y(Akt3) [P Ak) > (snpj) /1 (Sng1) > ca?,

where @ > 1 and ¢ > 0 are constants. (Here we have used the hypothesis that
{¥(sn)} is normal.) On the other hand, it follows from (i) that s, ym41 > thmtm =
Ak+1- Hence

Y(Met1) [V (M) < P (Snpmr1)/1P(sn) < C.
Thus the sequence {¢)(\x)} is normal, what was to be proved.

As a further application of the equality (3.1) we have the following charac-
terization of self-conjugate spaces. The space h(p, g, ) is said to be self-conjugate
if

f € h(p,q,¢) implies Y f(n)z" € h(p,q,)-
n=0

If 1 < p < oo then h(p,q, p) is self-conjugate because of the Riesz theorem. Hardy
and Littlewood [7, 9] proved that h(p, 00, q) is self-conjugate for any p > 0. For
further information see [5, 6].

THEOREM 3.3. For every q € (0,00] the following statements are equivalent.
(i) h(1,q,p) is self-conjugate;
(ii) h(oo,q,p) is self-conjugate;

(iii) ¢ is a normal function.

Proof. Observe that h(p,q,p) is self-conjugate if and only if the function
Yo 2™ belongs to M(p,p). Since M(1,¢) = M(oo,¢) we see that (i) & (ii).
Assuming (iii) we have to prove that D¥h € H(1,00,¢), where h(z) = 1/(1 —
z) = — Yo" 2". By Theorem 1.2, this is equivalent with D*h € H(1,00,1). Since
D'h(z) = (1 — 2)~2 we have M;(r, D'h) = (1 —r2)7!, and this gives the desired
result.

To prove that (i) implies (iii) we use the inequality

oo
1> = S+ D)), feH,

0
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[3, Theorem 6.1]. In particular,
1 o
M, (r,D?h) > = Z(n + 1) rp(n+1)r"0<r < 1.
™%
Thus if (i) holds then Y °(n +1)"'p(n + 1)r™ < ¢/¢(1 — r). This implies

Ak41

ew) Y (n+ 1) <C/p(1/Mr1), k>0,

n=>A

where {)\.,} is a lacunary sequence of integers such that o(Ag) ~ 2%, i.e. p(1/A;) ~
27k, (See Proposition 3.2 Part I1.) Tt follows that A\g11/Ax < C, k > 0. By using
this one shows that ¢~ (2t) < Cp~(t), t > 0, where ¢~ is the inverse function.
Hence ¢ (t/C) < ¢(t)/2, and this concludes the proof of the theorem.

4. Multipliers from H(p,q,a) to H(po, qo, @)
Let a be a positive real number. A function f € H(U) (= the class of analytic
functions) belongs to H(p,q,a) = HP(g, ) if and only if

1/q

{ /0 1- r)qa_lMg(r, f)dr} < 00.

If ¢ = oo this should be read as

sup (1 —7)*Mp(r, f) < oco.
0<r<1

The main results of this section is the following.

THEOREM 4.1. Let p<1,po > p and 0 < q, go < 0o. A function g € H(U)
is a multiplier from H(p,q, ) to H(po,qo,) if and only if D/Pg € H(po,q1,1).

Here, as before, ¢1 = c0(q < @o); @1 = @ (¢ = ); &1 = 9q0/(q — qo) if
go < g < 0.

Note that D'/?g € H(py,q1,1) if and only if

1/q1

1
{ / (L—r) = M (r, dl/Pg)dr} < 0.
0

COROLLARY 4.1. Let p < 1. Then g is a multiplier from H (p,q, ) to itself if
and only if M,(r,D'/Pg) < C/(l—7),0<r < 1.
This generalizes a result of Duren and Shields [4] (p = ¢ = 1).

Let N be a positive integer and choose a sequence W = {wy}§° of harmonic
polynomials such that W € (N, {27}{°) (see Introduction) and for allp > 1/(N+1)
and ¢ >0

s 1/q
11l (p,q,0) ~ { D 27wy x fllp]"} feHU),
0
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where || - ||, stands for the norm of HP. Since
ontN
wnx f(2) = Y @a(i) ()7
j=2n-1

we have, by Lemma 3.1 [11],
2N lwn # fllp < Mp(r,wn x f) <" Hlwp £l
(n>1,0<r <1). After elementary calculations it follows that
27" wn * fllp ~ llwn * fllt,s,a),  f€HU), n>0,
where s is an arbitrary positive number or co. Thus we have the following.
THEOREM 4.2. Let p>1/(N+1),0< ¢ <00 and 0 < s < o0o. Then

H(p,q,@) = H(p,s,a)[q, W].

Observe that the polynomials w,, are independent of p, g, s.
Combining Theorems 4.2 and 2.1 wc get the identity

(41) (H(p, q, (1) - H(po,qo,/@)) = (H(p,O0,0t) - H(p07oo7/6))[q17w)7

which shows that the general case of Theorem 4.1 follows from the special case
go = q = 0.

Proof of Theorem 4.1. Let g be a multiplier from H (p, oo, @) to H(pg, 00, a).
Then

||g*f7'||H(po,oo,a) SC||fT||H(p7OO7a)> 0<r< ]-7

where f(z) = > o2 y(n+1)™'2™ and m is an integer such that a +1/p—m < 0.
It is easily verified that f(2)(1 — 2)™ is a polynomial. Therefore

Mp ) <C [ 1= pel el 0<p<t
|z|=1
If we put z = (( + p)/(1 + p¢) we see that the last integral equals
=y [ pgpm?lag)
I¢l=1
Since pm — 2 > —1 we find M,(p, f) < C(1 —p)'/?™ 0 < p < 1, whence
”fr”H(p,oo,oc) < Csup(l - p)a(l - pr)l/p_m
p

< Csup —p(1 — pr)*(1 — pr)*/>=m
<C@—rp)ett/e—m o< <1
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It follows that

(1 - T)aMpo ('r27f * g) S ”g * fr”H(po,oo,a) S C(]- - ,,_)a—i—l/p—m,
ie. D""lg = fxg € H(py,00,m — 1/p). Applying Theorem HLF, quoted in
Introduction) we conclude that D'/?g € H(po, 00, 1).

To continue the proof we need the following lemma,
LEMMA 4.1 [13]. Let f € HP, 0<p <1, and g € Hy, ¢ > p. Then

My(r, fx9) < (L=n)""YPlIfllpliglg, 0<r<1.

We return to the proof of Theorem 4.1. Let D'/Pg € H(py,00,1) and f €
H(p,o0,a), p <1, pg > p. We have to prove that h:= f x g belongs to H (pg, 00, ).
We have, by the lemma,

My, (T3,D1/ph) = Mpo(Ta frx Dl/pgr) <(1- T)lil/p”fr”p”Dl/pgr”po-

It follows from the hypotheses that ||f.||, < C(1 —r)~ and ||D'/?g,||,, < C(1 —
r)~!, so that M, (r®, D'/?h) < C(1 —r)=*~'/? ie. D'/Ph € H(po,00,a + 1/p).
Hence h € H(pg,00,1), by Theorem HLF.

The preceding discussion shows that D/? is an isomorphism of the space
(H(p,0,0) = H(pg,00,a)) onto H(p,o0,1). By using (4.1) we conclude that, if
p,po > 1/(N +1), then D'/? is an isomorphism of (H(p,q,a) — H(po, go,@)) onto
H(pg,00,1)[q1, W]. But the last space is equal to H(pg,q1,1), by Theorem 4.2.
This completes the proof of Theorem 4.1.

5. Multipliers into [P spaces

A complex sequence {a,}52, is of class I(p,q) (0 < p,q < o0) if
oo

(e} en

n=0
where Jo = {0} and J, = {j : 27! < j < 2"}, n > 1. Tt is easily checked that if
{a,} is in I(p,¢) then the function f(z) = > ;" anz™ in analytic in the unit disc.

Therefore [(p,q) may be treated as a space of analytic functions. Furthermore,
I(p,q) is an A-space (with the obvious quasi-norm). Note that I? = [(p, p).

Let N and W be as in Section 4. Then we have ||w,, * f||lz < C||fl||z, where
X = H(oo,q,a) and C is independent of f,n. In particular, taking f(z) = 27 we
see that @, (j)| < C, j,n > 0. Using this one can easily prove the following.

LeEmMA 5.1. I(p, q) = IP[g, W] for all p,q > 0.
Now we can. use Theorem 2.1 and 4.2 to obtain

(H(p7Q>a) - l(p0>qO)) = (H(p,oo,a) - lpo)[qu],
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where p > 1/(N+1). If p < 1 then the space H (p, 00, o) — IP°) is easily determined
and is isomorphic to [P0, via the operator D®t1/P=1_ See [12]. In the special case
Po = go = s we have the following result.

THEOREM 5.1. Letp < 1 and 0 < s < oo. A function g € H{U) is a
multiplier from H(p,q,a) to I° if and only if

{(n+ )P g(n)}o2, € Us, q1),

where g1 = 00 if s > q; 1 = qs/(q—s) if s < q.
Some special cases of this theorem were proved by Ahern and Jevti¢ [1] (p =
1,s > 1) and Mateljevi¢ and Pavlovi¢ [12] (p < 1,s > q).

6. Problems
Let ¢ be a normal function and a > 0.

Problem 1. Find a function g € H(U) (if it exists) such that, for all p, ¢, the
map f — f x g is an isomorphism from H(p,q, ) onto H(p,q,a).

Note that the form of g should be independent of p > 0.

By using the complex maximal theorem and our results this problem is easily
reduced to the following.

Problem 2. Does there exist an equivalent function 1 such that

w(1/8) :/1 rtdn(r) and tm/1/1(1/t):/1 rdu(r), t>1,

0 0
for some positive Borel measures 7, ;4 and some integer m > 0?7
Added in proof. The author solved Problem 1 above.
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