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TENSOR FIELDS AND CONNECTIONS ON CROSS-SECTIONS
IN THE FRAME BUNDLE OF SECOND ORDER
OF A PARALLELIZABLE MANIFOLD

Manuel De Leon, Modesto Salgado

Abstract. Let V be a field of global frames on a parallelizable manifold. Then V' defines a
cross-section in the frame bundle of second order F2M of M. The behaviour of the lifts of tensor
fields and connections on M to F2M along this cross-section is studied.

Introduction

Let M be an n-dimensional differentiable manifold, TM its tangent bundle
and T2 M its tangent bundle of order 2. When a vector field V is gixen on M, then
V defines a cross-section in TM and a cross-section in T2M. The behaviour of the
lifts of tensor fields and connections on M to TM and T2M along the corresponding
cross-sections are studied in [10] and [9], respectively.

When a field of global frames V is given on a parallelizable manifold M, it
defines a cross-section in the frame bundle F M of M and cross-section in the frame
bundle of second order F2M of M. The behaviour of the lifts of tensor fields and
connections on M to F'M along this cross-section is studied in [1]. In this paper, we
study the behaviour on cross-section in F2M of lifts of tensor fields and connections
on M to F2M.

In § 1 we first recall some properties of the lifts of tensor fields and connections
on M to F2M.

In §2 and §3, we study the lifts of tensor fields on M to F2M along the
cross-section determined by field of global frames on M.

Finally, §4 will be devoted to the study of the lifts of connections on M to
F2N along this cross-section.
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§ 1. Prolongations of tensor fields and linear connections
to the frame bundle of order 2

We shall recall, for later use, some properties of the frame bundle F2M of
order 2 over a differentiable manifold M of dimension n, and those of prolongations
of tensor fields and linear connections on M to F?M (cf. [2, 3, 4, 5, 8]).

The frame bundle F2M of order 2 is the set of all 2-jets of diffeomorphisms of
open neighbourhoods of 0 in R™ onto open subsets of M. Let m : F2 — M be the
target projection w(j2v) = v(0). Then « : F2M — M is a prinpal fibre bundle over
M with the stuctural group L2 of all 2-jets with the source and with the target at
0 of local diffeomorphisms of R™.

Let (U,z") be a coordinate neighbrohood with the local coordinate system
(z"). A system of local coordinates (z", X%, X)), Xhy = X}, 1 <a, 8 <n,
can be introduced in 7 }(U) in such a way that a 2-jet j2+v with v(0) € U has
coordinates as

d(z" 0 7) 0%(a" o)

h _ .k ho_ B

(11) r =z 0’7(0)’ Xa - ata (0)7 XaB - 6taat5 (O)a
where (t!,...,t") are the usual coordinates in R"™.

Let (U,z") and U,z") be two coordinate * neighborhouods of M related by
coordinate transformation z* = z"(2") in UNU. If we denote by («", X", X[5)
and (:Eh,YZ,YZﬁ) the induced coordinates in 7~1(U) and 7~ 1(U), respectively,
the coordinate transformation in 7= (U) U7~ (U) is given by
ozl . —n ozh ozh

gk aB T Grrogs Xo X5+ Ox" o

We shall denote by Z7 (M) (resp., Z7 (F?M)) the space of all tensor fields of
type (r,s) on M (resp., F2M).

(1.2) ih =z (2", X, =

1.1 Lifts of tensor fields. For any element f € T9(M), its lifts fO, (),

f@B) flah) = fBe) 1 <o, B <n,to F2M are elements of ZQ(F?M) given by
the following local expressions:

(13) SO f@@h), [ X00:f (&), [P XEXG0:0;f (a") + Xip0if ()
in the induced coordinate system (2*, X, X/ 5), f(¢") being the local expression of
f in (z"), where 9; = 8/0x".
For any element X € 74 (M), its prolongations X°, X(®) X (@8 x(8) —
X2 1 < a, B <n,are elements of Z} (F2M) and have the following properties:
X0£0 = (X £)°, Xﬂf(a) — (Xf)(a), XOf(a,ﬂ) — (Xf)(a’ﬁ),
(1.4) X(a)fO = O,X("‘)fo‘) = 5a/\(Xf)0’X(a)f(/\7u) = 5a>\(Xf)(u) +5au(Xf)(>\)
X@B) g0 =, x(B) N = x(@h) fhn) = gerghe(x )0
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f being an arbitrary element of Z§(M), 1 <\, u < n.

For any element 7 of Z9(M), its prolongations 7°,7(®), 7(@8) r(a,B) =
75 1 < a, B < n, are elements of 70(F2M) and have the following proper-
ties:

X0 = (rX)°, °(XW) =0, F2(X*) =0

@) x0 — (TX)(“), (@) (X(’\)) = 6MrX)°, 7(@B) (X(A,u)) =0
eB) x0 — (TX)(O"‘”, 7(es8) (X(f\)) — 5a/\(TX)(ﬁ) + 5ﬂ)\(7_X)(a)’
(@B (X M)y = §orgPk (7 X)),

(L.5)

X being an arbitrary element of Z3 (M), 1< a, 8 < n.

For any element K of ZQ(M) (resp., I;(M)), ¢ > 1, its prolongations
KO K@ K8 K(h) = KB 1 < a, B < n, are elements of Z0(F?(M))
(resp., J; (F?(M)) and are characterized by the following identities (cf. [3]):

K(XY),..., X)) = (K(X1,...,X,))°
(1.6) KX, X0) = (K(X1,...,X,))"

KEP(XD,...,XD) = (K(X1,...,X,)*?
for any vector fields Xi,...,X, on M.

1.2. Lifts of linear connections. Let there be given a linear connection V
on M. Then there exists a unique linear connection V° on F2M characterized by
the following identities:

V%Y = (VxY)?, V5o V® =V5 ., Y0 = (VxY)@,
V%o V@A) = ¥4 V0 = (VxY)@hd)

v())((a)y(ﬁ) = (VxY)(@P) 4 (VxY)Ba),

v())((a)y(ﬁ,'y) — Vg((a,ﬁ)Y('Y) — Vg((a,ﬁ)Y('”‘) =0,

(1.7)

for any vector fields X,Y, Zon M, 1 < a, 3,7, < n.

If T and R denote the torsion and curvature tensors of V, then the torsion
and curvature tensors of VO are T° and R°, respectively.

Remark. Observe that F2M is an open subset of the tangent bundle of n?-
velocities T? M over M (cf. [3]). Then the linear connection V° is nothing but the
resctriction to F2M of the 0-prolongation of V to T2M defined by Morimoto [8].

§ 2. Lifts of tensor fields on a cross-section determined by
a field of global frames

Let there be given a field of global frames V = (V4,...,V,,) on M, that is,
at each point x € M, (Vi(x),...,V,(z)) is a linear frame at . Then each V, is a
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vector field globally defined on M. Assume that V, has local components V*(z)
with respect to a coordinate system (U, z") in M, that is, V,, = V8, in U.

If, moreover, V is a torsion-free linear connection on M with local components
T}, then we can define a cross-section yy of F2M locally given by

(21) ’YV('Z'h) = (.’Eh,VO?, _F?]Vozzvﬁj)

Now, let V be the flat linear connection associated to the absolute parallelism
V=0MW,...,V,), that is,

(2.2) VxY =) X(Y*)Wa, X, Y €T3(M), Y =YV,

a=1

As it is well known [7], there exist a unique torsion-free linear connection V
with the same geodesics of V, namely, VxY = VxY —T(X - Y)/2,T being the
torsion of V. From (2.2), one easily deduces that local components of V are

(2.3) Tl =—1/2-{ASO;V} + AJO; V1Y,

(Af) being the inverse matrix of (V).

Then we have a cross-section - of F? M, which will be said to be associated
with V. According to (2.1) and (2.3), vy is the n-submanifold of F?2M locally
expresed in 7=1(U) by

(24) o' =" X7 = V@), XDy = 1/2- {Vi(@")OV} () + Vi(@*)d V! (=)}

From (1.3) and (2.4), we have along v (M) the equations
(2:5) =10 1 = Lvo f fP =172 {(Lvavs + Lyava) f}

for f € I9(M), where Ly, f denotes the Lie derivative with respect to V and
‘CVQVB = Evaﬁvﬁ.

From (2.4) one easily deduces that the n vector fields given with respect to
the induced coorinates in F2M by

(2.6) B; = 0; + (61'V07)8ha+

+1/2-(QiVE0,VE + V0,0,V + 0iV50,V) + V50,0,V )0hags
are tangent to yy (M), where 8, = 8/0X]; and Ohap = 8/0X ;. For any element
X of T} (M) with local components X? we denote by BX the vector field on F2M
given in 7~ 1(U) by
(2.7) BX = X'B;.
Obviously, BX is tangent to vy (M) and the correspondence X — BX determines

a mapping B : Jg (M) = Z} (yv(M)) which is in fact the differential of vy : M —
F?M and so an isomorphism of Z§ (M) onto Z¢ (yy (M)).
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From (2.6) and (2.7), one easily obtains, for any X,Y € Z} (M),
(2.8) [BX,BY] = B[X,Y].

Let U be a coordinate neighbourhood in M; then the local vector fields

B;,C;,, D, Di,, = D;,, given by

(2.9) B; = B(8;), C;, = 8;, + (6,-Vé“)6haﬁ + (6iVL§“)6hBa,D,~aﬁ = 0.8

form a local family of frames along 7y (M) which will be called the adapted frame
of yy (M) in 7= ().

For each vector field X on M with local components X in U, we shall denote
by Co(X),Dop(X), Dop(X) = Dga(X), 1 <a, B <n, the vector fields
(2.10) Ca(X) = X'Ci,, Dup(X)=X'D;,,.

From (1.4), (2.9) and (2.10), we have along vy (M)

n

" 1
X°=BX +) CollveX)+ 5 " Dag(Lv.v, X + Ly,v. X),

a=1 a7B:1
(2.11) (@) "
x(@ — Ca(X) + > {Dap(LvaX + Dg,a(Ly,X)},
B—1
X8 = Dos(X),

for X € 7} (M), and, therefore

n 1 n

_ 0 o) 1 ap
BX = X°— o;(ﬁwxy ) _ : agzzl(ﬁvaVﬁX + LygyaX) @),
2.12 n
( ) Co(X) = x () _ Z{(LVaX)(a"@) + ([,VaX)w’a)},
B-1
Dag(X) = X ()

Then we have

PROPOSITION 2.1. X© is tangent to vy (M) if only if the Lie derivative of X
with respect to Vi, vanishes, that is, Ly, X =0, for everya=1,... ,n.

The adapted coframe of vy (M) in F2M dual to the adapted frame
{Bi,Cia,Dinp} is easily shown to be given along vy (M) by

ni =d$i, ni“ = —(3hVCf)d$h + dX;
(2.13) i =1/2- {OnV2EOVj + OWV50, Vi — VE00W VS — V30,0,V }da"
—{On Vo™ + 0, Vi YdX T + dX L.
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Let 7 be an element of Z?(M) with local components 7;. Then its lifts
70, 7(2) (28 have the components of the form

70 = (1,0,0), 7% = ((LyaT)n, 6%73,0)

(2.14)
TP = (1/2-{Lv, v, + LypvaThns O (Lv, T + 82 (Ly,7)n, 626 7)

respectively, in the adapted coframe.

Then we have

PROPOSITION 2.2. (i) A necessary and sufficient condition for the (a)-lift
(@) of a 1-form T on M to F2(M) to be zero for all vector fields tangent to vy (M)
is that the Lie derivative of T with respect to the vector field V,, vanishes, that is,
Lyar=0

(i) A necessary and sufficient condition for the (a, B)-lift of a 1-form T on
M to F?M to be zero for all vector fields tangent to vy (M) is that Ly, v, =
—LyvgvaT. A sufficient condition is that the Lie derivatives of T with respect to V,
and Vg vanish, that is, LyoT = Ly, T = 0.

Using (1.6), (2.9), (2.11), (2.12) and (2.13), we can find components of 0-lift,
(a)-lift and (a, B8)-lift of any tensor field on M of type (0,q) or (1,q), ¢ > 1, with
respect to the adapted frame. For instance, for an element G € Z9(M) we have

(

Gij 00 (,CVQG)ij (Snan’j 0

G°=| 0 00| G@=| §Gy 0 0
00 0

0 0 0
(2.15)
1/2- (Lv,v,G+Lv,v, Q)i 5""(EV5G)ij+5B"(£VQG)ij 5“"5B7Gij
GEP=[ MLy, G)ij + 6P (Lv.G)ij  °N91Gj + §915°) G 0
5OAGPRG; 0 0

G being the local components of G.
For an element F of J!(M) we obtain

(2.16)
Fy; 0 0
o= ( 5N (Ly, F) M 0 )
1/2 - (SAa(Spﬂ(EVaVEF-l-ﬁVﬁVaF);- éun(ﬁv)\F);--{-d)‘n(ﬁvﬂ F); (5’\775’”}7;

0 0 0
Flo) = PR 0 0
3Ly, F)i + 64 (Ly, F)i  §°XGMF} 4 5o F! 0

0 0 0
Flehf) = 0 00
e VI

F} being the local components of F.
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For an element of S of 73 (M), we have

Sk = Sk, (50);?E = (Lv, )ik (50);2” =1/2- (Lv,v, S + Ly, v, )k
oapy = O, =0
S (SO0 = (SO = (L, Sk + 6Ly, )
(SO)2%, = OMMEHYSh, + M GE (SO, = (SO = 8MeHISE,

and the rest of the components are equal to zero, S;:  being the local componenets
of S.

§ 3. Lifts of tensor fields of type (1, 1) and of type (0, 2) on a cross-section

3.1. Lifts of tensor fields of type (1, 1). Let F' € Z with local compo-
nents F}. Then, from (2.11) and (2.16), we have along v (M) that
(3.1)

F9(BX) :B(FX)+zn: Ca ((LVaF)X) +1 /2Zn:Da5((£Vang+£vﬁVaF)X)
a=1 a=1

FO(BX) = CalFX) + 3 D6 (Ly,F)X + 8(Ly, F)X)
A,p=1
F()(BX) = Doy (FX)

for any vector field X on M.

When F°(BX) is tangent to vy (M) for any vector field X on M, F? is said
to leave yy (M) invariant. Thus we have from (3.1).

PROPOSITION 3.1. F° leaves yy (M) invariant if and only if Ly oF = 0 for
every = 1,... ,n. The lifts F* and F(®F) 1 < o, 8 < n, do not have vy (M)
invariants unless F = 0.

Now, assume F° leaves vy (M) invariantr. Then we can define an element
(FO)* € Ti(yv (M) by

(3.2) (FO)#(BX) = F(BX) = B(FX)

for arbitrary X € Z}(M); (F°)# is called the tensor field induced on yy (M) from
FO.

Let us now recall from [3] that if F is a polynomial structure of rank r and
structural polynomial P(t) (i. e., rank F' = r and P(F) = 0) then its 0-lift F° to
F2M defines on F?2M a polynomial structure with the same structural polynomial
and with rank F® = 7(1 + n + n(n + 1)/2). Moreover, if Nr and Nro denote the
Nijenhuis tensor of F' and F?, respectively, then (Nz)? = Nyo

So, if F' defines on M a polynomial structure of rank r and P(F) = 0, and
if FO leaves vy (M) invariant, then (F°)# satisfies P((F°)#) = 0 and the rank of
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(F9)# =1, and hence, (F°)# defines on vy (M) a polynomial structure of the same
type.
Taking into account (2.11) and (2.17), one obtains

(Np)’(BX, BY) =B(Np(X,Y)) + Y Cal(Lv, Np)(X,Y))+

a=n

3.3

(3.3) Lo

+ B Z Dos((Lv,vsNr + Lyv,v, Nr)(X,Y))
a,B=1

along vy (M), for any X,Y € Z}(M). Thus

PROPOSITIONS 3.2. Npo(BX,BY) is tangent to yv (M) for arbitrary ele-
ments X,Y € I} (M) if and only if Ly, Np =0 for everya=1,...,n
Now, we assume that F© leaves vy (M) invariant. Then from (2.8) and (3.2)

we obtain
Npo(BX,BY) = N(FO)#(BX, BY)

for arbitrary X,Y € Zj(M). Then, since Ly, F = 0 implies Ly, Ny = 0, from (3.3)
we have

PROPOSITION 3.3. Suppose that the 0-lift of F° of F to F?M leaves yy (M)
invariant. Then N poy# = 0 if and only if Np =0.

Next, let us suppose that F' € Z{(M) defines an almost complex structure on
M,ie. F? = —I. Then, F° defines an almost complex structure on F2M. Recall
that a submanifold in an almost complex manifold with structure F' is said to be
invariant or almost analytic when F' leaves the submanifold invariant. Thus, from
the previous propositions, we deduce

PROPOSITION 3.4. vy (M) is almost analytic in the almost complex manifold
F2M with structure F° if and only if each vector field V, is almost analytic, that
is, Ly, F = 0. In this case, yv (M) is an almost complex manifold with structure
tensor FO)# ; moreover N(poy# =0, that is, (FO)# is complex analytic, if and only
if F' is complex analytic, that is, Ngp = 0.

Let X € Z} (M) and F € T{ (M) such that F° leaves yy (M) invariant. Then,
(Lex (FO)#)(BY) = B((LxF)Y) for any Y € 7} (M). Therefore,

PROPOSITION 3.5. Let F' be an almost complex structure on M such that
FO leaves vy (M) invariant. Then, for any X € I (M), BX is almost analytic in
yv (M) if and only if X is almost analytic in M.

3.2. Lifts of tensor fields of type (0, 2).. Let G be a tensor field of type
(0, 2) on M. Then, from (2.15) we have along vy (M).

G°(BX,BY) = (G(X,Y))°
(3.4) G)(BX,BY) = {(Ly.G)(X,Y)}°
G@P(BX,BY) = {1/2(Lv.v,G + Lv,v.G)(X,Y)}°
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for all vector fields X,Y on M, 1 < a, # <n. Then, putting
(G°Y*(BX,BY) = G°(BX, BY), (G'“)#(BX,BY) = G'* (BX, BY)
(G>PH#(BX,BY) = G'“P(BX, BY)

we have elements (G°)#, (G(®)#, (G(*P)# € I9(yy (M)).
If G is a Riemann metric on M, then from (3.4) we deduce

PROPOSITION 3.6. vy (M) is a Riemann manifold with metric (G°)# and the
projection 7 : F2M — M is an isometry.

Next, assume that G € Z2(M) is a 2-form; then, (G°)# is a 2-form on vy (M),
and a straightforward computation shows the identity

d(G°Y*(BX,BY - BZ) = (dG(X,Y, Z))°
along vy (M), for every X,Y,Z € T} (M). Therefore,

PROPOSITION 3.7. (G°)# is closed along vy (M) if and only if G is closed.
Since rank (G°)# along yy (M) is equal to rank G on M, we easily deduce.

COROLLARY 3.8. vy (M) is a symplectic manifold with respect to (G°)# if
and only if M is a symplectic manifold with respect to G.

For an arbitrary G € Z9(M), we have along yv (M) (Lpx (G°)#)(BY,BZ) =
(LxG)(Y, Z))° for any X,Y, X € Z§(M). Therefore

COROLLARY 3.9. ) Under the hypothesis of Proposition 3.6, a vector field X
on M is Killing for the metric G on M if and only if BX is Killing for the metric
(GO)# on yv(M).

it) Under the hypothesis of Corollary 3.8, a vector field X on M is an infin-
itesimal symplectic authomorphism with respect to G on M if and only if BX is
such an automorphism with respect to (G°)# on M.

§ 4. Linear connections induced on ~y (M)

Let M be a manifold with a linear connection V. Then the frame bundle of
second order F2(M) of M is a manifold with linear connection V°. We now study
the linear connection V', induced from V° on y (M).

From (1.7) and (2.11) trough a direct computation we get along ~yy (M)

n 1 n
V%, B; =Tl By+ az_l(,cvavﬁgcha +5 ﬁz_l(.cvavﬁv + Lv,v.V)}; D
(4.1) 0 h L b A
V%, Cio =T8Che + > {(LvsV)5Dhoy + (Lv; V) Dyl }
B=1
v%iDjaﬂ = F%Dhaﬂ
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where I‘z’-Lj are the components of V. Therefore
h
Vg, Bj = Tj;Bn

defines the induced linear connection V' on vy (M), and

n

- 1
VOBiBj = leiBj + Z(ﬁVav)?jCha + 5 Z (ﬁvavﬁv + £VEV¢1V)%D"LQ§

a=1 a,f=1
is the Gauss formula for vy (M).

PROPOSITION 4.1. vy (M) is autoparallel with respect to V° if and only if each
Va, 1 < a < n, is an infinitesimal affine transformation on M, i.e. Ly, V =0, for
anya=1,... n.

Now we recall that if R is the curvature tensor of V, then the cutvature tensor
of V0 is RC. Using (1.7), (2.11) and (2.12) we obtain along vy (M).

RY(BX,BY)BZ = B(R(X,Y)Z) + i Co((Lv, R)(X,Y, Z))

a=1

1 n
+3 " Dap((Lv.v, R+ Ly,v. R)(X,Y, Z))
a,f=1
for all vector fields X,Y,Z on M.
Then we have

PROPOSITION 4.2. Let R be the curvature tensor of a linear connection V on
M. Then, for all vector fields X,Y, Z tangent to vy (M), R°(X,Y, Z is tangent to
v (M) if and only if Ly, R=0, fora=1,... ,n.

Let F € 7§ (M) be such that FO leaves yy (M) invariant. Then, along vy (M)
we obtain Vg5 (F0)#(BY) = B((VxF)Y), for any X,Y € Z}(M). Therefore

PROPOSITION 4.3. Let F € I} (M) be such that F° leaves vy (M) invariant.
Then V'(F°)# = 0 if and only if V' (F°)# = 0.
Let G € Z9(M). Then we obtain along vy (M).

(Vpx (G)*)(BY, BZ) = {(VxG)(Y, 2)}° for any X,Y, Z € Iy(M).
Therefore, using Propositions 3.6. and 3.7 and Corollary 3.9, we deduce

PROPOSITION 4.4. i) Let G be a Riemann metric on M and V its Riemann
connection. Then, the connection V', induced on vy (M) from V°, is the Riemann
connection constructed from the metric (G°)* induced on vy (M) from G°.

ii) Let G be an almost symplectic (resp., symplectic) 2-form on M and V
an adapted connection, i.e. VG = 0. Then, the linear connection V', induced on
v (M) from V°, is adapted with respect to the almost symplectic (resp., symplectic)
from (G°)# induced from G° on vy (M).
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Now, let F € 7 (M) and G € Z§(M) such that F© leaves vy (M) invariant.
Then, along vy (M).

(GO)*((FO)*(BX), (F°)*(BY)) = (G°)*(B(FX), B(FY)) = {G(FX, FY)}",

for all vector fields Y,Y on M.

If a Riemann metric G and a complex structure F' on M satisfy the conditions
G(FX,FY)=G(X,Y), VxF =0, for all vector fields X,Y,V being the Riemann
connection determined by G, then (F,G) is a Kahlerian structure. Thus, taking
into accound the previous results, we have

PROPOSITION 4.5. Let (F,G) be a Kahlerian structure on M such that
FO leaves vy (M) invariant. Then ((F°)#), (G°)#) is a Kahlerian structure on

v (M).
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