TENSOR FIELDS AND CONNECTIONS ON CROSS-SECTIONS IN THE FRAME BUNDLE OF SECOND ORDER OF A PARALLELIZABLE MANIFOLD

Manuel De Leon, Modesto Salgado

Abstract. Let V be a field of global frames on a parallelizable manifold. Then V defines a cross-section in the frame bundle of second order F^2M of M. The behaviour of the lifts of tensor fields and connections on M to F^2M along this cross-section is studied.

Introduction

Let M be an n-dimensional differentiable manifold, TM its tangent bundle and T^2M its tangent bundle of order 2. When a vector field V is given on M, then V defines a cross-section in TM and a cross-section in T^2M . The behaviour of the lifts of tensor fields and connections on M to TM and T^2M along the corresponding cross-sections are studied in [10] and [9], respectively.

When a field of global frames V is given on a parallelizable manifold M, it defines a cross-section in the frame bundle FM of M and cross-section in the frame bundle of second order F^2M of M. The behaviour of the lifts of tensor fields and connections on M to FM along this cross-section is studied in [1]. In this paper, we study the behaviour on cross-section in F^2M of lifts of tensor fields and connections on M to F^2M .

In § 1 we first recall some properties of the lifts of tensor fields and connections on M to F^2M .

In § 2 and § 3, we study the lifts of tensor fields on M to F^2M along the cross-section determined by field of global frames on M.

Finally, $\S\,4$ will be devoted to the study of the lifts of connections on M to F^2N along this cross-section.

§ 1. Prolongations of tensor fields and linear connections to the frame bundle of order 2

We shall recall, for later use, some properties of the frame bundle F^2M of order 2 over a differentiable manifold M of dimension n, and those of prolongations of tensor fields and linear connections on M to F^2M (cf. [2, 3, 4, 5, 8]).

The frame bundle F^2M of order 2 is the set of all 2-jets of diffeomorphisms of open neighbourhoods of 0 in \mathbb{R}^n onto open subsets of M. Let $\pi:F^2\to M$ be the target projection $\pi(j_0^2\gamma)=\gamma(0)$. Then $\pi:F^2M\to M$ is a prinpal fibre bundle over M with the stuctural group L_n^2 of all 2-jets with the source and with the target at 0 of local diffeomorphisms of \mathbb{R}^n .

Let (U, x^h) be a coordinate neighbrohood with the local coordinate system (x^h) . A system of local coordinates $(x^h, X^h_{\alpha}, X^h_{\alpha\beta})$, $X^h_{\alpha\beta} = X^h_{\beta\alpha}$, $1 \le \alpha$, $\beta \le n$, can be introduced in $\pi^{-1}(U)$ in such a way that a 2-jet $j_0^2 \gamma$ with $\gamma(0) \in U$ has coordinates as

$$(1.1) x^h = x^h \circ \gamma(0), \ X^h_\alpha = \frac{\partial (x^h \circ \gamma)}{\partial t^\alpha}(0), \ X^h_{\alpha\beta} = \frac{\partial^2 (x^h \circ \gamma)}{\partial t^\alpha \partial t^\beta}(0),$$

where (t^1, \ldots, t^n) are the usual coordinates in \mathbb{R}^n .

Let (U,x^h) and $\overline{U}, \overline{x}^h)$ be two coordinate neighborhounds of M related by coordinate transformation $\overline{x}^h = \overline{x}^h(x^h)$ in $U \cap \overline{U}$. If we denote by $(x^h, X^h_{\alpha}, X^h_{\alpha\beta})$ and $(\overline{x}^h, \overline{X}^h_{\alpha}, \overline{X}^h_{\alpha\beta})$ the induced coordinates in $\pi^{-1}(U)$ and $\pi^{-1}(\overline{U})$, respectively, the coordinate transformation in $\pi^{-1}(U) \cup \pi^{-1}(\overline{U})$ is given by

$$(1.2) \bar{x}^h = \bar{x}^h(x^h), \ \overline{X}_h^\alpha = \frac{\partial \bar{x}^h}{\partial x^k} X_\alpha^k, \ \overline{X}_{\alpha\beta}^h = \frac{\partial \bar{x}^h}{\partial x^r \partial x^s} X_\alpha^r X_\beta^s + \frac{\partial \bar{x}^h}{\partial x^r} X_{\alpha\beta}^r$$

We shall denote by $\mathcal{I}^r_s(M)$ (resp., $\mathcal{I}^r_s(F^2M)$) the space of all tensor fields of type (r,s) on M (resp., F^2M).

1.1 Lifts of tensor fields. For any element $f \in \mathcal{I}_0^0(M)$, its lifts $f^0, f^{(\alpha)}$, $f^{(\alpha,\beta)}, f^{(\alpha,\beta)} = f^{(\beta,\alpha)}, 1 \leq \alpha, \ \beta \leq n$, to F^2M are elements of $\mathcal{I}_0^0(F^2M)$ given by the following local expressions:

$$(1.3) \qquad f^0: f(x^h), \, f^{(\alpha)}: X^i_\alpha \partial_i f(x^h), \, f^{(\alpha,\beta)}: X^i_\alpha X^j_\beta \partial_i \partial_j f(x^h) + X^i_{\alpha\beta} \partial_i f(x^h)$$

in the induced coordinate system $(x^i, X^i_{\alpha}, X^i_{\alpha\beta}), f(x^h)$ being the local expression of f in (x^h) , where $\partial_i = \partial/\partial x^i$.

For any element $X \in \mathcal{I}_0^1(M)$, its prolongations $X^0, X^{(\alpha)}, X^{(\alpha,\beta)} X^{(\alpha,\beta)} = X^{(\beta,\alpha)}, \ 1 \leq \alpha, \ \beta \leq n$, are elements of $\mathcal{I}_0^1(F^2M)$ and have the following properties:

$$X^{0}f^{0} = (Xf)^{0}, \ X^{0}f^{(\alpha)} = (Xf)^{(\alpha)}, \ X^{0}f^{(\alpha,\beta)} = (Xf)^{(\alpha,\beta)},$$

$$(1.4) \quad X^{(\alpha)}f^{0} = 0, X^{(\alpha)}f^{(\lambda)} = \delta^{\alpha\lambda}(Xf)^{0}, X^{(\alpha)}f^{(\lambda,\mu)} = \delta^{\alpha\lambda}(Xf)^{(\mu)} + \delta^{\alpha\mu}(Xf)^{(\lambda)}$$

$$X^{(\alpha,\beta)}f^{0} = 0, \ X^{(\alpha,\beta)}f^{(\lambda)} = 0, \ X^{(\alpha,\beta)}f^{(\lambda,\mu)} = \delta^{\alpha\lambda}\delta^{\beta\mu}(Xf)^{0}$$

f being an arbitrary element of $\mathcal{I}_0^0(M)$, $1 \leq \lambda$, $\mu \leq n$.

For any element τ of $\mathcal{I}_1^0(M)$, its prolongations $\tau^0, \tau^{(\alpha)}, \tau^{(\alpha,\beta)}, \tau(\alpha,\beta) = \tau^{(\beta,\alpha)}, 1 \leq \alpha, \beta \leq n$, are elements of $\tau_1^0(F^2M)$ and have the following properties:

(1.5)
$$\tau^{0}X^{0} = (\tau X)^{0}, \ \tau^{0}(X^{(\lambda)}) = 0, \ \tau^{0}(X^{(\lambda,\mu)}) = 0$$

$$\tau^{(\alpha)}X^{0} = (\tau X)^{(\alpha)}, \ \tau^{(\alpha)}(X^{(\lambda)}) = \delta^{\alpha\lambda}(\tau X)^{0}, \ \tau^{(\alpha,\beta)}(X^{(\lambda,\mu)}) = 0$$

$$\tau^{(\alpha,\beta)}X^{0} = (\tau X)^{(\alpha,\beta)}, \ \tau^{(\alpha,\beta)}(X^{(\lambda)}) = \delta^{\alpha\lambda}(\tau X)^{(\beta)} + \delta^{\beta\lambda}(\tau X)^{(\alpha)},$$

$$\tau^{(\alpha,\beta)}(X^{(\lambda,\mu)}) = \delta^{\alpha\lambda}\delta^{\beta\mu}(\tau X)^{0}.$$

X being an arbitrary element of $\mathcal{I}_0^1(M)$, $1 \leq \alpha$, $\beta \leq n$.

For any element K of $\mathcal{I}_q^0(M)$ (resp., $\mathcal{I}_q^1(M)$), $q \geq 1$, its prolongations $K^0, K^{(\alpha)}, K^{(\alpha,\beta)}, K^{(\alpha,\beta)} = K^{(\beta,\alpha)}, \ 1 \leq \alpha, \ \beta \leq n$, are elements of $\mathcal{I}_q^0(F^2(M))$ (resp., $\mathcal{J}_q^1(F^2(M))$) and are characterized by the following identities (cf. [3]):

(1.6)
$$K^{0}(X_{1}^{0}, \dots, X_{q}^{0}) = (K(X_{1}, \dots, X_{q}))^{0}$$
$$K^{(\alpha)}(X_{1}^{0}, \dots, X_{q}^{0}) = (K(X_{1}, \dots, X_{q}))^{\alpha}$$
$$K^{(\alpha,\beta)}(X_{1}^{0}, \dots, X_{q}^{0}) = (K(X_{1}, \dots, X_{q}))^{(\alpha,\beta)}$$

for any vector fields X_1, \ldots, X_q on M.

1.2. Lifts of linear connections. Let there be given a linear connection ∇ on M. Then there exists a unique linear connection ∇^0 on F^2M characterized by the following identities:

(1.7)
$$\nabla_{X^{0}}^{0}Y^{0} = (\nabla_{X}Y)^{0}, \ \nabla_{X^{0}}^{0}Y^{(\alpha)} = \nabla_{X(\alpha)}^{0}Y^{0} = (\nabla_{X}Y)^{(\alpha)},$$

$$\nabla_{X^{0}}^{0}Y^{(\alpha,\beta)} = \nabla_{X^{(\alpha,\beta)}}^{0}Y^{0} = (\nabla_{X}Y)^{(\alpha,\beta)},$$

$$\nabla_{X^{(\alpha)}}^{0}Y^{(\beta)} = (\nabla_{X}Y)^{(\alpha,\beta)} + (\nabla_{X}Y)^{(\beta,\alpha)},$$

$$\nabla_{X^{(\alpha)}}^{0}Y^{(\beta,\gamma)} = \nabla_{X^{(\alpha,\beta)}}^{0}Y^{(\gamma)} = \nabla_{X^{(\alpha,\beta)}}^{0}Y^{(\gamma\mu)} = 0,$$

for any vector fields X, Y, Z on $M, 1 \le \alpha, \beta, \gamma, \mu < n$.

If T and R denote the torsion and curvature tensors of ∇ , then the torsion and curvature tensors of ∇^0 are T^0 and R^0 , respectively.

Remark. Observe that F^2M is an open subset of the tangent bundle of n^2 -velocities T^2M over M (cf. [3]). Then the linear connection ∇^0 is nothing but the resctriction to F^2M of the 0-prolongation of ∇ to T_n^2M defined by Morimoto [8].

§ 2. Lifts of tensor fields on a cross-section determined by a field of global frames

Let there be given a field of global frames $V=(V_1,\ldots,V_n)$ on M, that is, at each point $x\in M$, $(V_1(x),\ldots,V_n(x))$ is a linear frame at x. Then each V_α is a

vector field globally defined on M. Assume that V_{α} has local components $V_{\alpha}^{h}(x)$ with respect to a coordinate system (U, x^{h}) in M, that is, $V_{\alpha} = V_{\alpha}^{h} \partial_{h}$ in U.

If, moreover, ∇ is a torsion-free linear connection on M with local components Γ_{ij}^h , then we can define a cross-section γ_{∇} of F^2M locally given by

(2.1)
$$\gamma_{\nabla}(x^h) = (x^h, V_{\alpha}^h, -\Gamma_{ij}^h V_{\alpha}^i V_{\beta}^j).$$

Now, let $\overline{\nabla}$ be the flat linear connection associated to the absolute parallelism $V = (V_1, \ldots, V_n)$, that is,

(2.2)
$$\overline{\nabla}_X Y = \sum_{\alpha=1}^n X(Y^\alpha) V_\alpha, \ X, Y \in \mathcal{I}_0^1(M), \ Y = Y^\alpha V_\alpha$$

As it is well known [7], there exist a unique torsion-free linear connection ∇ with the same geodesics of $\overline{\nabla}$, namely, $\nabla_X Y = \overline{\nabla}_X Y - \overline{T}(X - Y)/2, \overline{T}$ being the torsion of $\overline{\nabla}$. From (2.2), one easily deduces that local components of ∇ are

(2.3)
$$\Gamma^{h}_{ij} = -1/2 \cdot \{ \Lambda^{\alpha}_{j} \partial_{i} V^{h}_{\alpha} + \Lambda^{\alpha}_{i} \partial_{j} V^{h}_{\alpha} \},$$

 (Λ_i^{α}) being the inverse matrix of (V_{α}^i) .

Then we have a cross-section γ_V of F^2M , which will be said to be associated with V. According to (2.1) and (2.3), γ_V is the n-submanifold of F^2M locally expressed in $\pi^{-1}(U)$ by

$$(2.4) \quad x^h = x^h, X^H_{\alpha} = V^h_{\alpha}(x^s), \ X^h_{\alpha\beta} = 1/2 \cdot \{V^i_{\alpha}(x^s) \partial_i V^h_{\beta}(x^s) + V^i_{\beta}(x^s) \partial_i V^h_{\alpha}(x^s)\}.$$

From (1.3) and (2.4), we have along $\gamma_V(M)$ the equations

$$(2.5) f^0 - f^0, f^{(\alpha)} = \mathcal{L}_{V_{\alpha}} f, f^{(\alpha,\beta)} = 1/2 \cdot \{ (\mathcal{L}_{V_{\alpha} V_{\beta}} + \mathcal{L}_{V_{\beta} V_{\alpha}}) f \},$$

for $f \in \mathcal{I}_0^0(M)$, where $\mathcal{L}_{V_{\alpha}}f$ denotes the Lie derivative with respect to V and $\mathcal{L}_{V_{\alpha}V_{\beta}} = \mathcal{L}_{V_{\alpha}}\mathcal{L}_{V_{\beta}}$.

From (2.4) one easily deduces that the n vector fields given with respect to the induced coordinates in F^2M by

$$(2.6) \quad B_{i} = \partial_{i} + (\partial_{i}V_{\alpha}^{h})\partial_{h\alpha} + + 1/2 \cdot (\partial_{i}V_{\alpha}^{s}\partial_{s}V_{\beta}^{h} + V_{\alpha}^{s}\partial_{s}\partial_{i}V_{\beta}^{h} + \partial_{i}V_{\beta}^{s}\partial_{s}V_{\alpha}^{h} + V_{\beta}^{s}\partial_{s}\partial_{i}V_{\alpha}^{h})\partial_{h\alpha\beta}$$

are tangent to $\gamma_V(M)$, where $\partial_{h_\alpha} = \partial/\partial X^h_\alpha$ and $\partial h_{\alpha\beta} = \partial/\partial X^h_{\alpha\beta}$. For any element X of $\mathcal{I}^1_0(M)$ with local components X^i we denote by BX the vector field on F^2M given in $\pi^{-1}(U)$ by

$$(2.7) BX = X^i B_i.$$

Obviously, BX is tangent to $\gamma_V(M)$ and the correspondence $X \to BX$ determines a mapping $B: \mathcal{J}^1_0(M) \to \mathcal{I}^1_0(\gamma_V(M))$ which is in fact the differential of $\gamma_V: M \to F^2M$ and so an isomorphism of $\mathcal{I}^1_0(M)$ onto $\mathcal{I}^1_0(\gamma_V(M))$.

From (2.6) and (2.7), one easily obtains, for any $X, Y \in \mathcal{I}_0^1(M)$,

$$[BX, BY] = B[X, Y].$$

Let U be a coordinate neighbourhood in M; then the local vector fields $B_i, C_{i_{\alpha}}, D_{i_{\alpha\beta}}, D_{i_{\alpha\beta}} = D_{i_{\beta\alpha}}$ given by

$$(2.9) B_i = B(\partial_i), \ C_{i_{\alpha}} = \partial_{i_{\alpha}} + (\partial_i V_{\beta}^k) \partial_{h_{\alpha\beta}} + (\partial_i V_{\beta}^k) \partial_{h_{\beta\alpha}}, D_{i_{\alpha\beta}} = \partial_{i_{\alpha}\beta}$$

form a local family of frames along $\gamma_V(M)$ which will be called the *adapted frame* of $\gamma_V(M)$ in $\pi^{-1}(U)$.

For each vector field X on M with local components X^i in U, we shall denote by $C_{\alpha}(X), D_{\alpha\beta}(X), D_{\alpha\beta}(X) = D_{\beta\alpha}(X), 1 \le \alpha, \beta \le n$, the vector fields

$$(2.10) C_{\alpha}(X) = X^{i}C_{i_{\alpha}}, \ D_{\alpha\beta}(X) = X^{i}D_{i_{\alpha\beta}}.$$

From (1.4), (2.9) and (2.10), we have along $\gamma_V(M)$

$$X^{0} = BX + \sum_{\alpha=1}^{n} C_{\alpha}(\mathcal{L}_{V\alpha}X) + \frac{1}{2} \sum_{\alpha,\beta=1}^{n} D_{\alpha\beta}(\mathcal{L}_{V_{\alpha}V_{\beta}}X + \mathcal{L}_{V_{\beta}V_{\alpha}}X),$$

$$X^{(\alpha)} = C_{\alpha}(X) + \sum_{\beta=1}^{n} \{D_{\alpha\beta}(\mathcal{L}_{V\alpha}X + D_{\beta,\alpha}(\mathcal{L}_{V_{\beta}}X))\},$$

$$X^{\alpha\beta} = D_{\alpha\beta}(X),$$

for $X \in \mathcal{I}_0^1(M)$, and, therefore

$$BX = X^{0} - \sum_{\alpha=1}^{n} (\mathcal{L}_{V\alpha}X)^{(\alpha)} - \frac{1}{2} \sum_{\alpha,\beta=1}^{n} (\mathcal{L}_{V_{\alpha}V_{\beta}}X + \mathcal{L}_{V\beta V\alpha}X)^{(\alpha,\beta)},$$

$$(2.12) \qquad C_{\alpha}(X) = \qquad X^{(\alpha)} - \sum_{\beta=1}^{n} \left\{ (\mathcal{L}_{V\alpha}X)^{(\alpha,\beta)} + (\mathcal{L}_{V\alpha}X)^{(\beta,\alpha)} \right\},$$

$$D_{\alpha\beta}(X) = \qquad X^{(\alpha,\beta)}.$$

Then we have

Proposition 2.1. X^0 is tangent to $\gamma_V(M)$ if only if the Lie derivative of X with respect to V_{α} vanishes, that is, $\mathcal{L}_{V\alpha}X=0$, for every $\alpha=1,\ldots,n$.

The adapted coframe of $\gamma_V(M)$ in F^2M dual to the adapted frame $\{B_i, C_{i\alpha}, D_{i\alpha\beta}\}$ is easily shown to be given along $\gamma_V(M)$ by

$$\eta^{i} = dx^{i}, \ \eta^{i\alpha} = -(\partial_{h}V_{\alpha}^{i})dx^{h} + dX_{\alpha}^{i}
(2.13)$$

$$\eta_{\alpha\beta}^{i} = 1/2 \cdot \{\partial_{h}V_{\alpha}^{t}\partial_{t}V_{\beta}^{i} + \partial_{h}V_{\beta}^{t}\partial_{t}V_{\alpha}^{i} - V_{\alpha}^{t}\partial_{t}\partial_{h}V_{\beta}^{t} - V_{\beta}^{t}\partial_{t}\partial_{h}V_{\alpha}^{i}\}dx^{h}
-\{\partial_{h}V_{\beta}^{i}\delta^{\lambda\alpha} + \partial_{h}V_{\alpha}^{i}\delta^{\lambda\beta}\}dX_{\lambda}^{h} + dX_{\alpha\beta}^{i}.$$

Let τ be an element of $\mathcal{I}_1^0(M)$ with local components τ_i . Then its lifts $\tau^0, \tau^{(\alpha)}, \tau^{(\alpha,\beta)}$ have the components of the form

$$(2.14) \quad \tau^{0} = (\tau_{h}, 0, 0), \quad \tau^{(\alpha)} = ((\mathcal{L}_{V_{\alpha}}\tau)_{h}, \quad \delta^{\lambda\alpha}\tau_{h}, 0)$$

$$\tau^{(\alpha, \beta)} = (1/2 \cdot \{\mathcal{L}_{V_{\alpha}}V_{\beta}\tau + \mathcal{L}_{V_{\beta}}V_{\alpha}\tau\}_{h}, \delta^{\lambda\beta}(\mathcal{L}_{V_{\alpha}}\tau)_{h} + \delta^{\lambda\alpha}(\mathcal{L}_{V_{\beta}}\tau)_{h}, \delta^{\lambda\alpha}\delta^{\lambda\beta}\tau_{h})$$

respectively, in the adapted coframe.

Then we have

Proposition 2.2. (i) A necessary and sufficient condition for the (α)-lift $\tau^{(\alpha)}$ of a 1-form τ on M to $F^2(M)$ to be zero for all vector fields tangent to $\gamma_V(M)$ is that the Lie derivative of τ with respect to the vector field V_α vanishes, that is, $\mathcal{L}_{V\alpha}\tau=0$

(ii) A necessary and sufficient condition for the (α, β) -lift of a 1-form τ on M to F^2M to be zero for all vector fields tangent to $\gamma_V(M)$ is that $\mathcal{L}_{V_\alpha V_\beta} \tau = -\mathcal{L}_{V_\beta V_\alpha \tau}$. A sufficient condition is that the Lie derivatives of τ with respect to V_α and V_β vanish, that is, $\mathcal{L}_{V_\alpha \tau} = \mathcal{L}_{V_\beta \tau} = 0$.

Using (1.6), (2.9), (2.11), (2.12) and (2.13), we can find components of 0-lift, (α) -lift and (α,β) -lift of any tensor field on M of type (0,q) or $(1,q),\ q\geq 1$, with respect to the adapted frame. For instance, for an element $G\in\mathcal{I}_2^0(M)$ we have

$$G^0 = egin{pmatrix} G_{ij} & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix} \quad G^{(lpha)} = egin{pmatrix} (\mathcal{L}_{V_lpha} G)_{ij} & \delta^{\etalpha} G_{ij} & 0 \ \delta^{\lambdalpha} G_{ij} & 0 & 0 \ 0 & 0 & 0 \end{pmatrix}$$

$$(2.15)$$

$$G^{(\alpha,\beta)} = \begin{pmatrix} 1/2 \cdot (\mathcal{L}_{V_{\alpha}V_{\beta}}G + \mathcal{L}_{V_{\beta}V_{\alpha}}G)_{ij} & \delta^{\alpha\eta}(\mathcal{L}_{V_{\beta}}G)_{ij} + \delta^{\beta\eta}(\mathcal{L}_{V_{\alpha}}G)_{ij} & \delta^{\alpha\eta}\delta^{\beta\gamma}G_{ij} \\ \delta^{\alpha\lambda}(\mathcal{L}_{V_{\beta}}G)_{ij} + \delta^{\beta\lambda}(\mathcal{L}_{V_{\alpha}}G)_{ij} & \delta^{\alpha\lambda}\delta^{\beta\eta}G_{ij} + \delta^{\alpha\eta}\delta^{\beta\lambda}G_{ij} & 0 \\ \delta^{\alpha\lambda}\delta^{\beta\mu}G_{ii} & 0 & 0 \end{pmatrix}$$

 G_{ij} being the local components of G.

For an element F of $\mathcal{J}_1^1(M)$ we obtain

$$(2.16) F^{0} = \begin{pmatrix} F_{ij} & 0 & 0 \\ \delta^{\alpha\lambda} (\mathcal{L}_{V_{\alpha}} F)^{i}_{j} & \delta^{\lambda\eta} F^{i}_{j} & 0 \\ 1/2 \cdot \delta^{\lambda\alpha} \delta^{\mu\beta} (\mathcal{L}_{V_{\alpha} V_{\beta}} F + \mathcal{L}_{V_{\beta} V_{\alpha}} F)^{i}_{j} & \delta^{\mu\eta} (\mathcal{L}_{V\lambda} F)^{i}_{j} + \delta^{\lambda\eta} (\mathcal{L}_{V_{\mu}} F)^{i}_{j} & \delta^{\lambda\eta} \delta^{\mu\gamma} F^{i}_{j} \end{pmatrix}$$

$$F^{(\alpha)} = \begin{pmatrix} 0 & 0 & 0 \\ \delta^{\lambda\alpha} F^{i}_{j} & 0 & 0 \\ \delta^{\lambda\alpha} (\mathcal{L}_{V_{\mu}} F)^{i}_{j} + \delta^{\mu\alpha} (\mathcal{L}_{V_{\lambda}} F)^{i}_{j} & \delta^{\alpha\lambda} \delta^{\mu\eta} F^{i}_{j} + \delta^{\alpha\mu} \delta^{\lambda\eta} F^{i}_{j} & 0 \end{pmatrix}$$

$$F^{(\alpha,\beta)} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \delta^{\lambda\alpha} \delta^{\mu\beta} F^{i}_{j} & 0 & 0 \end{pmatrix}$$

 F_i^i being the local components of F.

For an element of S of $\mathcal{I}_2^1(M)$, we have

$$(2.17) \begin{cases} (S^{0})^{i}_{jk} = S^{i}_{jk}, (S^{0})^{i\lambda}_{jk} = (\mathcal{L}_{V_{\lambda}}S)^{i}_{jk}, (S^{0})^{i\lambda\mu}_{jk} = 1/2 \cdot (\mathcal{L}_{V_{\lambda}V_{\mu}}S + \mathcal{L}_{V_{\mu}V_{\lambda}}S)^{i}_{jk} \\ (S^{0})^{i\lambda}_{j\mu}_{k} = (S^{0})^{i\lambda}_{jk\mu}_{k} = \delta^{\lambda\mu}S^{i}_{jk} \\ (S^{0})^{i\lambda\mu}_{j\eta}_{k} = (S^{0})^{i\lambda\mu}_{jk\eta} = \delta^{\lambda\eta}(\mathcal{L}_{V_{\mu}}S)^{i}_{jk} + \delta^{\mu\eta}(\mathcal{L}_{V_{\lambda}}S)^{i}_{jk} \\ (S^{0})^{i\lambda\mu}_{j\eta}_{k\gamma} = \delta^{\lambda\eta}\delta^{\mu\gamma}S^{i}_{jk} + \delta^{\lambda\gamma}\delta^{\mu\eta}S^{i}_{jk}, \quad (S^{0})^{i\lambda\mu}_{j\eta\gamma}_{k} = (S^{0})^{i\lambda\mu}_{jk\eta\gamma} = \delta^{\lambda\eta}\delta^{\mu\gamma}S^{i}_{jk} \end{cases}$$

and the rest of the components are equal to zero, S_{jk}^i being the local components of S.

\S 3. Lifts of tensor fields of type (1, 1) and of type (0, 2) on a cross-section

3.1. Lifts of tensor fields of type (1, 1). Let $F \in \mathcal{I}_1^1$ with local components F_j^i . Then, from (2.11) and (2.16), we have along $\gamma_V(M)$ that (3.1)

$$F^{0}(BX) = B(FX) + \sum_{\alpha=1}^{n} C_{\alpha} \left((\mathcal{L}_{V_{\alpha}} F) X \right) + 1/2 \sum_{\alpha=1}^{n} D_{\alpha\beta} \left((\mathcal{L}_{V \alpha v \beta} F + \mathcal{L}_{V_{\beta} V_{\alpha}} F) X \right)$$

$$F^{(\alpha)}(BX) = C_{\alpha}(FX) + \sum_{\lambda,\mu=1}^{n} D_{\lambda\mu} \left(\delta^{\lambda\alpha} (\mathcal{L}_{V\mu} F) X + \delta^{\mu\alpha} (\mathcal{L}_{V_{\lambda}} F) X \right)$$

$$F^{(\alpha,\beta)}(BX) = D_{\alpha\beta}(FX)$$

for any vector field X on M.

When $F^0(BX)$ is tangent to $\gamma_V(M)$ for any vector field X on M, F^0 is said to leave $\gamma_V(M)$ invariant. Thus we have from (3.1).

PROPOSITION 3.1. F^0 leaves $\gamma_V(M)$ invariant if and only if $\mathcal{L}_{V\alpha}F = 0$ for every $\alpha = 1, \ldots, n$. The lifts F^{α} and $F^{(\alpha,\beta)}$, $1 \leq \alpha, \beta \leq n$, do not have $\gamma_V(M)$ invariants unless F = 0.

Now, assume F^0 leaves $\gamma_V(M)$ invariantr. Then we can define an element $(F^0)^\# \in \mathcal{I}^1_{\mathsf{I}}(\gamma_V(M))$ by

$$(3.2) (F^0)^{\#}(BX) = F^0(BX) = B(FX)$$

for arbitrary $X \in \mathcal{I}_0^1(M); (F^0)^\#$ is called the tensor field induced on $\gamma_V(M)$ from F^0

Let us now recall from [3] that if F is a polynomial structure of rank r and structural polynomial P(t) (i. e., rank F = r and P(F) = 0) then its 0-lift F^0 to F^2M defines on F^2M a polynomial structure with the same structural polynomial and with rank $F^0 = r(1 + n + n(n+1)/2)$. Moreover, if N_F and N_{F^0} denote the Nijenhuis tensor of F and F^0 , respectively, then $(N_F)^0 = N_{F^0}$

So, if F defines on M a polynomial structure of rank r and P(F)=0, and if F^0 leaves $\gamma_V(M)$ invariant, then $(F^0)^\#$ satisfies $P((F^0)^\#)=0$ and the rank of

 $(F^0)^{\#}=r$, and hence, $(F^0)^{\#}$ defines on $\gamma_V(M)$ a polynomial structure of the same type.

Taking into account (2.11) and (2.17), one obtains

$$(N_F)^0(BX, BY) = B(N_F(X, Y)) + \sum_{\alpha=n}^n C_\alpha((\mathcal{L}_{V_\alpha} N_F)(X, Y)) + \frac{1}{2} \sum_{\alpha, \beta=1}^n D_{\alpha\beta}((\mathcal{L}_{V_\alpha V_\beta} N_F + \mathcal{L}_{V_\beta V_\alpha} N_F)(X, Y))$$

along $\gamma_V(M)$, for any $X, Y \in \mathcal{I}_0^1(M)$. Thus

PROPOSITIONS 3.2. $N_{F^0}(BX, BY)$ is tangent to $\gamma_V(M)$ for arbitrary elements $X, Y \in \mathcal{I}^1_0(M)$ if and only if $\mathcal{L}_{V_\alpha} N_F = 0$ for every $\alpha = 1, \ldots, n$.

Now, we assume that F^0 leaves $\gamma_V(M)$ invariant. Then from (2.8) and (3.2) we obtain

$$N_{F^0}(BX, BY) = N_{(F^0)\#}(BX, BY)$$

for arbitrary $X, Y \in \mathcal{I}_0^1(M)$. Then, since $\mathcal{L}_{V_{\alpha}}F = 0$ implies $\mathcal{L}_{V_{\alpha}}N_F = 0$, from (3.3) we have

Proposition 3.3. Suppose that the 0-lift of F^0 of F to F^2M leaves $\gamma_V(M)$ invariant. Then $N_{(F^0)^\#}=0$ if and only if $N_F=0$.

Next, let us suppose that $F \in \mathcal{I}_i^i(M)$ defines an almost complex structure on M, i.e. $F^2 = -I$. Then, F^0 defines an almost complex structure on F^2M . Recall that a submanifold in an almost complex manifold with structure F is said to be invariant or almost analytic when F leaves the submanifold invariant. Thus, from the previous propositions, we deduce

Proposition 3.4. $\gamma_V(M)$ is almost analytic in the almost complex manifold F^2M with structure F^0 if and only if each vector field V_{α} is almost analytic, that is, $\mathcal{L}_{V_{\alpha}}F=0$. In this case, $\gamma_V(M)$ is an almost complex manifold with structure tensor F^0 [#]; moreover $N_{(F^0)}$ # = 0, that is, (F^0) # is complex analytic, if and only if F is complex analytic, that is, $N_F=0$.

Let $X \in \mathcal{I}^1_0(M)$ and $F \in \mathcal{I}^1_1(M)$ such that F^0 leaves $\gamma_V(M)$ invariant. Then, $(\mathcal{L}_{BX}(F^0)^\#)(BY) = B((\mathcal{L}_XF)Y)$ for any $Y \in \mathcal{I}^1_0(M)$. Therefore,

Proposition 3.5. Let F be an almost complex structure on M such that F^0 leaves $\gamma_V(M)$ invariant. Then, for any $X \in \mathcal{I}^1_0(M)$, BX is almost analytic in $\gamma_V(M)$ if and only if X is almost analytic in M.

3.2. Lifts of tensor fields of type (0, 2).. Let G be a tensor field of type (0, 2) on M. Then, from (2.15) we have along $\gamma_V(M)$.

$$G^{0}(BX, BY) = (G(X, Y))^{0}$$

$$G^{(\alpha)}(BX, BY) = \{(\mathcal{L}_{V_{\alpha}}G)(X, Y)\}^{0}$$

$$G^{(\alpha,\beta)}(BX, BY) = \{1/2(\mathcal{L}_{V_{\alpha}V_{\beta}}G + \mathcal{L}_{V_{\beta}V_{\alpha}}G)(X, Y)\}^{0}$$

for all vector fields X, Y on $M, 1 \le \alpha, \beta \le n$. Then, putting

$$(G^{0})^{\#}(BX,BY) = G^{0}(BX,BY), (G^{(\alpha)})^{\#}(BX,BY) = G^{(\alpha)}(BX,BY)$$
$$(G^{(\alpha,\beta)})^{\#}(BX,BY) = G^{(\alpha,\beta)}(BX,BY)$$

we have elements $(G^0)^{\#}, (G^{(\alpha)})^{\#}, (G^{(\alpha,\beta)})^{\#} \in \mathcal{I}_2^0(\gamma_V(M)).$

If G is a Riemann metric on M, then from (3.4) we deduce

Proposition 3.6. $\gamma_V(M)$ is a Riemann manifold with metric $(G^0)^\#$ and the projection $\pi: F^2M \to M$ is an isometry.

Next, assume that $G \in \mathcal{I}_0^2(M)$ is a 2-form; then, $(G^0)^{\#}$ is a 2-form on $\gamma_V(M)$, and a straightforward computation shows the identity

$$d(G^0)^{\#}(BX, BY \cdot BZ) = (dG(X, Y, Z))^0$$

along $\gamma_V(M)$, for every $X,Y,Z\in\mathcal{I}_0^1(M)$. Therefore,

PROPOSITION 3.7. $(G^0)^{\#}$ is closed along $\gamma_V(M)$ if and only if G is closed. Since rank $(G^0)^{\#}$ along $\gamma_V(M)$ is equal to rank G on M, we easily deduce.

COROLLARY 3.8. $\gamma_V(M)$ is a symplectic manifold with respect to $(G^0)^{\#}$ if and only if M is a symplectic manifold with respect to G.

For an arbitrary $G \in \mathcal{I}_2^0(M)$, we have along $\gamma_V(M)(\mathcal{L}_{BX}(G^0)^{\#})(BY,BZ) = ((\mathcal{L}_X G)(Y,Z))^0$ for any $X,Y,X \in \mathcal{I}_0^1(M)$. Therefore

COROLLARY 3.9. i) Under the hypothesis of Proposition 3.6, a vector field X on M is Killing for the metric G on M if and only if BX is Killing for the metric $(G^0)^\#$ on $\gamma_V(M)$.

ii) Under the hypothesis of Corollary 3.8, a vector field X on M is an infinitesimal symplectic authomorphism with respect to G on M if and only if BX is such an automorphism with respect to $(G^0)^{\#}$ on M.

\S 4. Linear connections induced on $\gamma_V(\mathbf{M})$

Let M be a manifold with a linear connection ∇ . Then the frame bundle of second order $F^2(M)$ of M is a manifold with linear connection ∇^0 . We now study the linear connection ∇' , induced from ∇^0 on $\gamma_V(M)$.

From (1.7) and (2.11) trough a direct computation we get along $\gamma_V(M)$

$$\nabla_{B_{i}}^{0}B_{j} = \Gamma_{ij}^{h}B_{h} + \sum_{\alpha=1}^{n} (\mathcal{L}_{v_{\alpha}}\nabla)_{ij}^{h}C_{h_{\alpha}} + \frac{1}{2}\sum_{\alpha,\beta=1}^{n} (\mathcal{L}_{V_{\alpha}V_{\beta}}\nabla + \mathcal{L}_{V_{\beta}V_{\alpha}}\nabla)_{ij}^{h}D_{h_{\alpha\beta}}$$

$$(4.1) \qquad \nabla_{B_{i}}^{0}C_{j\alpha} = \Gamma_{ij}^{h}C_{h_{\alpha}} + \sum_{\beta=1}^{n} \{(\mathcal{L}_{V_{\beta}}\nabla)_{ij}^{h}D_{h_{\alpha\beta}} + (\mathcal{L}_{V_{\beta}}\nabla)_{ij}^{h}D_{h_{\beta\alpha}}\}$$

$$\nabla_{B_{i}}^{0}D_{j_{\alpha\beta}} = \Gamma_{ij}^{h}D_{h_{\alpha\beta}}$$

where Γ_{ij}^h are the components of ∇ . Therefore

$$\nabla_{B_i}' B_j = \Gamma_{ij}^h B_h$$

defines the induced linear connection ∇' on $\gamma_V(M)$, and

$$\nabla_{B_i}^0 B_j = \nabla_{B_i}' B_j + \sum_{\alpha=1}^n (\mathcal{L}_{V_\alpha} \nabla)_{ij}^h C_{h_\alpha} + \frac{1}{2} \sum_{\alpha,\beta=1}^n (\mathcal{L}_{V_\alpha V_\beta} \nabla + \mathcal{L}_{V_\beta V_\alpha} \nabla)_{ij}^h D_{h_{\alpha\beta}}$$

is the Gauss formula for $\gamma_V(M)$.

PROPOSITION 4.1. $\gamma_V(M)$ is autoparallel with respect to ∇^0 if and only if each V_{α} , $1 \leq \alpha \leq n$, is an infinitesimal affine transformation on M, i.e. $\mathcal{L}_{V_{\alpha}}\nabla = 0$, for any $\alpha = 1, \ldots, n$.

Now we recall that if R is the curvature tensor of ∇ , then the cutvature tensor of ∇^0 is R^0 . Using (1.7), (2.11) and (2.12) we obtain along $\gamma_V(M)$.

$$\begin{split} R^0(BX,BY)BZ &= B(R(X,Y)Z) + \sum_{\alpha=1}^n C_\alpha((\mathcal{L}_{V_\alpha}R)(X,Y,Z)) \\ &+ \frac{1}{2} \sum_{\alpha,\beta=1}^n D_{\alpha\beta}((\mathcal{L}_{V_\alpha V_\beta}R + \mathcal{L}_{V_\beta V_\alpha}R)(X,Y,Z)) \end{split}$$

for all vector fields X, Y, Z on M.

Then we have

PROPOSITION 4.2. Let R be the curvature tensor of a linear connection ∇ on M. Then, for all vector fields $\widetilde{X}, \widetilde{Y}, \widetilde{Z}$ tangent to $\gamma_V(M)$, $R^0(\widetilde{X}, \widetilde{Y}, \widetilde{Z})$ is tangent to $\gamma_V(M)$ if and only if $\mathcal{L}_{V_{\alpha}}R = 0$, for $\alpha = 1, \ldots, n$.

Let $F \in \mathcal{I}^1_0(M)$ be such that F^0 leaves $\gamma_V(M)$ invariant. Then, along $\gamma_V(M)$ we obtain $\nabla'_{BX}(F^0)^\#(BY) = B((\nabla_X F)Y)$, for any $X,Y \in \mathcal{I}^1_0(M)$. Therefore

Proposition 4.3. Let $F \in \mathcal{I}^1_1(M)$ be such that F^0 leaves $\gamma_V(M)$ invariant. Then $\nabla'(F^0)^\# = 0$ if and only if $\nabla'(F^0)^\# = 0$.

Let $G \in \mathcal{I}_2^0(M)$. Then we obtain along $\gamma_V(M)$.

$$(\nabla'_{BX}(G^0)^\#)(BY,BZ) = \{(\nabla_X G)(Y,Z)\}^0 \ \text{ for any } X,Y,Z \in \mathcal{I}^1_0(M).$$

Therefore, using Propositions 3.6. and 3.7 and Corollary 3.9, we deduce

Proposition 4.4. i) Let G be a Riemann metric on M and ∇ its Riemann connection. Then, the connection ∇' , induced on $\gamma_V(M)$ from ∇^0 , is the Riemann connection constructed from the metric $(G^0)^{\#}$ induced on $\gamma_V(M)$ from G^0 .

ii) Let G be an almost symplectic (resp., symplectic) 2-form on M and ∇ an adapted connection, i.e. $\nabla G=0$. Then, the linear connection ∇' , induced on $\gamma_V(M)$ from ∇^0 , is adapted with respect to the almost symplectic (resp., symplectic) from $(G^0)^\#$ induced from G^0 on $\gamma_V(M)$.

Now, let $F \in \mathcal{I}_1^1(M)$ and $G \in \mathcal{I}_2^0(M)$ such that F^0 leaves $\gamma_V(M)$ invariant. Then, along $\gamma_V(M)$.

$$(G^0)^{\#}((F^0)^{\#}(BX), (F^0)^{\#}(BY)) = (G^0)^{\#}(B(FX), B(FY)) = \{G(FX, FY)\}^0,$$

for all vector fields Y, Y on M.

If a Riemann metric G and a complex structure F on M satisfy the conditions G(FX, FY) = G(X, Y), $\nabla_X F = 0$, for all vector fields X, Y, ∇ being the Riemann connection determined by G, then (F, G) is a Kahlerian structure. Thus, taking into accound the previous results, we have

Proposition 4.5. Let (F,G) be a Kahlerian structure on M such that F^0 leaves $\gamma_V(M)$ invariant. Then $((F^0)^\#)$, $(G^0)^\#$) is a Kahlerian structure on $\gamma_V(M)$.

REFERENCES

- [1] L. A. Cordero, M. De Leone, Tensor fields and connections on cross-section in the frame bundle of a parallelizable manifold, Riv. Mat. Univ. Parma (4) 9 (1983), 433-455.
- [2] J. Gancerzewicz, Liftings of functions and vector fields to natural bundles, Dissetationes Math. 212 (1983).
- [3] J. Gancerzewicz, Complete lifts of tensor fields of type (1, k) to natural bundles, Zeszyty Naukowe UJ, Prace Mathematyczne, 23 (1983), 51-84.
- [4] M. De Leon, M. Salgado, G-structures on the frame bundle of second order, Riv. Mat. Univ. Parma (4) 11 (1985), 161-179.
- [5] M. De Leon, M. Salgado, Diagonal lifts of tensor fields to the frame bundle of second order, Acta Si. Math. 50 (1986), 67-86.
- [6] S. Kobayashi, Frame bundles of higher order contact, Proc. Symp. Pure Math. Vol. 3, Amer. Math. Soc. (1961).
- [7] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Vol. 1 and 2, Interscience, New York, 1963–1969.
- [8] A. Morimoto, Prolongations of geometric structures, Lect. Notes, Math. Inst. Nagoya Univ. 1969.
- [9] M. Tani, Tensor fields and connections on cross-sections in the tangent bundle of order 2, Kodai Math. Sem. Rep. 21 (1969), 310-325.
- [10] K. Yano, Tensor fields and connections on cross-sections in the tangent bundle of a differentiable manifold, Proc. Royal Soc. Edinburg 67 (1967), 277-288.

CECIME Consejo Superior de Investigaciones Cientificas Serrano, 123 28006 Madrid Spain

Spain

Departmento de Geometria y Topologia Facultad de Matemáticas Universidad de Santiago de Comostela (Received 19. 06 1987)