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ALL REPRODUCTIVE SOLUTIONS OF FINITE EQUATIONS

Slavisa B. Presié

Summary. An equation, the solution set of which is a subset of a given finite set, is
called a finite equation. Applying some kind of algebraic structure we effectively determine all
reproductive solutions of such equations ( Theorem 1 and Theorem 2).

1. Let E be a given non-empty set and f: E — E a given function. An
z-equation

(1) fla) =z
is called reproductive [4] if the function f satisfies the identity
(2) f(f(z)) = f(2)

All solutions of a reproductive equation can be found in a trivial way. Namely, the
formula

(3) x = f(p) (pisan arbitrary element of E)

determines all solution of (1) provided this equation is a reproductive one. The
formula is an example of the so-called general reproductive solutions formula ([2],

31, [7)-

Next, any x-equation

(4) eq(z) (z is an unknown element of E; eq is a given
unary relation of E)

which has at least one solution is equivalent to a reproductive equation [4].

Accordingly, to solve a given z-equation (4) it suffices to find any reproductive
equation equivalent to (1). In this paper we are concerned with finding all such
reproductive equations in case of a finite equation.
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2. Let B = {09,01,... ,0,} be a given set of n + 1 elements and S = {0,1}.
Define the operation z¥ by

1, ife=y
5 Y= ,y e BUS
(5) v { 0, otherwise (@, )

The standard Boolean operations + and - ("or“ and ”and“) are described by

the following tables
0 1 -1 0 1
0 1 0o 0 0
1 1 11 0 1

Extend these operations to partial operations of the set BU S in the following way

= O+

6) z+0=2z, 0+z=x, 2-0=0, 0-2=0, z-1=2, 1-2=x (zxeBUS)
We consider the following z-equation

(7 50 2% + 512"+ 45,2 =0

where s; € {0,1} are given elements and z € B is unknown. Obviously the equation
(7) is possible iff the condition

(8) S0-81 -8, =0

holds.

In the sequel, assuming the condition (8), we are going to determine all re-
productive solutions of the equation (7).

First we introduce the following definition.

Let (0¢,01,...,0,) € S™! be any element. Then the set Z(oo,...,0n)
("the zero-set of (g, ... ,0,)") is defined as folows
9) bi € Z(0o,... ,0n) < 0; =0 (1=0,1,...,n)

For instance, if n = 3 we have
Z(1,0,1,0) = {b1bs}, Z(1,1,1,1) =0, Z(0,0,0,0) = {bo, b1, b2, b3}

Let now sq, ... , s, be any elements of S satisfying the condition (8). With respect
to the sequence sq,...,s, we define the so-called repro-function' A: B — B.
This is any function defined by a certain formula of the form

(10) A(IL’) = A0(305 s 75n)$bo et An(805 s 73n)$bn

where each coefficient Ag(sg,- .. ,s,) is determined by some equality of the form

A Ax(so,s) =bes kD Filoo,oon)sg el

o, #0, 000, =0

1 As a matter of fact, A is a function of the type A: S"t! x B — B.
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assuming that coefficients Fy(0o,... ,0,) € B satisfy the condition
(12) Fy(og,...,0n) € Z(00,--. ,0p)
For instance, if n = 2, k = 1 the equality (11) reads
Aq(s0,81,82) = b1sY + F1(0,1,0)s3s15% + F1(0,1,1)s9s1s3 + Fi(1,1,0)s551 89,
where the coefficients F3(0,1,0), F1(0,1,1), F1(1,1,0) can be any elements of B
satisfying the conditions (of type (12))
Fi(0,1,0) € {bo,bs}, F1(0,1,1) =bo, Fi(1,1,0) = b,

Note that generally, according to the condition sg---s, = 0, there exists at

least one repro-function with respect to the sequence sq, ... , Sp.

THEOREM 1. Let sg---s, =0, then the equation of the form
z = A(z)

is a reproductive equation and equivalent to the equation (7) if and only if A is a
repro-function.

Proof. Denote the equation (7) by g(z) = 0. Firstly, we prove the following
fact

(p) Let A(z) be determined by a certain equality of type (10) assuming only that
Ao(80y--- y8n)y «-+y An(s,...,8,) € B. Then the implication g(z) = 0 =
2 = A(z) holds if and only if for each coefficient A (s, ... ,s,) an equality
of the form (11) is satisfied, where Fi (o9, ... ,0,) can be any elements? of B.

The proof immediately follows from the following equivalences

(p) & (Vx € B)[s0x? +--- 4+ s,2P" =0 = 2 = Ag(s0,-.. ,80)2" + -+
+ A, (s0,--- ,sn)xb"]
& (Ve e {0,...,n})(sk = 0= Ar(so,-..,5n) = b)
< Ag(sg,...,8,) is determined by means of a certain equality (11), where
Fy (oo, ... ,0n) may be any elements of B.
Next we introduce the condition

(@) (Vz € B)so(A(x))? 4 -+ + s, (A(z))" = 0.

Obviously the sentence "z = A(z) is a reproductive equation, equivalent to the
equation f(x) = 0“is logiccally equivalent to the conjuction (p) A (¢). Accordingly,
the remaining part of the proof reads:

x = A(z) is a reproductive equation, equivalent to the equation f(z) =0

2Thus condition (8) is not assumed.
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() A (9)
(Vz € B)so(A(2))% +---+8,(A(x))? = 0, and A(2) is determined by means
of some equalities of the form (10), (11), where Fy(do,-.-,0,) are certain

elements of B
(VZ’ S B) S()(A()(S(), SN ,Sn)$b0 +---+ An(30> Lo 5Sn)$bn)b0 +t
+Sn(A0(80, . ,Sn).’lfbo + -+ An(SO, s 78n)mbn)b" =0

and Ag(sg,-..,8,), with k € {0,...,n}, are determined by some equalities
of the form (11).

Vi, & € {0,...,n}) siAZ"(so,... ,8n) = 0 and Ag(sg,...,sn), with k €
{0,...,n}, are determined by some equalities of the form (11). This part

of the proof is based on the following general facts: If ao,...,a,, b are any
elements of B then:
1° (agz® +---+ apab»)? = afab +--- + ababn (for all z € B)

2° (Vz € B) apz® + -+ +ap2b» =0& (Vi€ {0,... ,n})a; =0
Vi, k€{0,...,n ) si-( D> F(00,...,00)s° -+ s5") = 0, where

0, #0, 00---0,=0
Fy(so,...,8n) are certain elements of B. We have used the equality of the
form (11) and the identity s;o% s =0

(Vi, k€ {0,...,n}) ( Z oS0 - son

(0-07“' 70'n)esn+1
b; n —
Z F/ (0g,.-. ,00)80° ---87" =0
0 #0, 090, =0
(For the identity s; = > 0:s§°--- 57" holds).
(g0,... ,on)ES™ T

(Vi, k€ {0,...,n}) Z aiFlg"(ao,... ,0n)80° 89" =0

o1 #0, 70+0n=0
(Vi, k € {0,... ,n}) (Vao,...,0n € S)(P = 0;F}i(00,... ,0n) = 0)
where the condition oy, # 0, g - - -0, = 0 is denoted by P.
From F}, € B it follows that (Vk)(3j)Fr = b;. Hence we conclude the equality
Fy, = by where ¢ : {0,...,n} = {0,... ,n} is a certain function®.
(Voo,... 00 € S)(Vi, k€ {0,...,n}(P = 03byiyy = 0)
(Yog, ... ,0n € S)(VE € {0,... ,n}(P = o, = 0)
Forz #y=2aY¥ =0.
(Yoo, .. ,0n € S)(VE € {0,... ,n})(P = by) € Z(00,--- ,0n))
Using definition (9).
(Vog,... ,0n € S)(VE € {0,... ,n})(P = Fy € Z(09,.-. ,0n))
A is a repro-function

3¢ also depends on oo,... ,0n.
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The proof is complete.

From Theorem 1 immediately follows the following result on the reproductive
solutions.

THEOREM 2. If (7) is a possible equation then a formula
z = A(p) (p is any element of B)

represents a general reproductive solution of the equation (7) if and only if the
function A is a repro-function.

Ezample 1. Let B = {0,1,2}. Consider the z-equation
S0z’ + s1zt + 5922 =0 (s; are given and z is unknown)

This equation is possible if and only if sgs;s2 = 0. Any general reproductive
solution has the following form

(14) z = Aop® + Aip' + Asp?
where A; are defined by
Ag = (1 or 2)s3s%s9 + 1558955 + 2535159, Ay =159 + (0 or 2)s)s1sS + 2555759
Ay =255 + (0 or 1)s359s3 + 1555955
In these equalities a symbol of the form (p or ¢q) denotes an element which may be
p or q. Consequently there are exactly 8 formulas of the form (14).

3. Now we state an aplication of Theorems 1 and 2. Let n be a given natural
number and B = S™. Then according to the definition (5) we have the following
identity

R L

In connection with it the equation of the type (7) may be written in the following
form

(15) Y i inatt - ai =0
where a;,...;, € S are given, and z; € S are unknown elements. In other words,
(14) is the standard Boolean equation in z1,...,Z,. Theorems 1 and 2 can be

directly applied to the equation (15); consequently one effectively finds all general
reproductive solutions of it.
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