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INCLUSION RELATIONS BETWEEN SOME CLASES
OF ALMOST HERMITE MANIFOLDS

Jovanka Nikié

Abstract. A new method for obtaining conditions for almost Hemite manifolds is in-
troduced. Almost Hermite manifolds contain K&hlar manifolds, Tachibana, almost K&hler, quasi
Kihler and Hermite manifolds. Inclusion relations betwen these manifolds are studied.

1. Introduction. An even dimensional differentiable manifold M™ is called
an almost Hermite manifold if there are defined a tensor field f of type (1,1) and
metric tensor g, satisfying

(L.1) fP+I=0, g(X.¥)=g(X,Y),

where X = fX, and X, Y are elements of the Lie algebra T(M™) of vector fields
on M™.

Let V be the Riemannian connexion. We can define a symmetric 2-covariant
tensor field F' by

(1.2) F(M,N) =g(fM,N)
and we can consider its covariant derivate VF defined by
(1.3) (VuF)(N,Q) =VF(M,N,Q) = g(Vu fN,Q).

Then we have
a) F(X,Y) = -F(Y,X) ¢) (VxF)(Y,Z) = —(VxF)(Y, Z)
b) F(X,Y) = F(X,Y) d) (VxF)(Y,Z) = (VxF)(Y, Z).

Definition 1. An almost Hermite manifold is called a Kahler manifold if
(1.4) (VxF)(Y,Z)=0.
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Definition 2. An almost Hermite manifold is called an almost Tachibana
manifold if

(1.5) (VxF)(Y,Z) - (VyF)(Z,X) = 0.

Definition 3. An almost Hermite manifold is called an almost K&hler manifold

if
(1.6) (VxF)Y,Z)+ (VyF)(Z,X)+ (VzF)(X,Y) =0.
. Definition 4. An almost Hermite manifold is called a quasi K&hler manifold
i
(1.7) (VxF)Y,Z2)+ (VgF)(Y,Z) = 0.

Definition 5. An almost Hermite manifold is called a Hermite manifold if
(1.8) (VxF)(Y,Z)- (VgF)(Y,Z)=0.

Conditions (1.4)—(1.8) will be called ”Hermite conditions”.
2. Hermite condition. Let us put Idzef(VXF)(Y, 7Z), o (VyF)(Z,X).
Then 0? = (VzF)(X,Y) and the following multiplication table holds

2

| I o o
I I o o?
o o o? I
o? o? I o
Table 1

The system consisting of the set R; of all linear combinations of I, o, 02 with
multiplication as defined in Table 1 is an infinite comutative ring. If an element
a € Ry is of the form a = I + Ao + Bo?, then a = 0 is a Hermite condition. Now
in R; we have 0® —I =04 (I —0) (I + 0+ 0?) = 0. Then four possibilities arise:

(1) I—0=0,I+ 0+ 0? #0. The manifold is an almost Tachibana manifold.
(2) I+0+02=0,1—0 #0. The manifold is an almost Kihler manifold.

(3) I—0 =0,I+0+ 0% =0. These equation yield ] = ¢ = 0> = 0. The
manifold is a Kahler manifold.

The intersection of the classes of almost Tachibana and almost K&hler mani-
folds is the class of K&hler manifolds.

(4) I —0 #0, I+ 0+ 0% # 0. The manifold is neither almost Tachibena nor
almost Kahler.
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Since I —o = 0, I + 0 + 0? = 0 are Hermite conditions, (I — 0)? = 0,
I-0)2=0,...,UT+0+0%)? =0, T+0+0%)% =0, ..., should also be
Hermite conditions. We proceed to examine them. (I —0)? =0+ I — 20 + 0% =
0 & 02 —2I 4+ 0 = 0, since 02 admits a multiplicative inverse. From the last two
equations we get 3(I —o) = 0. Thus (I —o)? = 0 is an almost Tachibana condition
and so are all the other powers of (I — o). From the multiplicative table it can
easily be established that (I + o +02)2 =3(I + 0+ 02). Thus (I + o +02)2 =0is
an almost Kahlerian condition and so are the other powers of I + o + 2.

THEOREM 2.1. Put
a = (V)?F)(Y7Z)7 /8 = (VXF)(y7Z)7 Y= (VXF)(Y,Z)

Then I, o, B, v admit the following multiplication table

| I a 8 ~y

I 1 a I} 8

«a «a -1 08 -0

g g Y -1 —a

L I A —a I
Table 2

The system consisting of the set Ry of all linear combinations of I, «, 3, v
with multiplication as defined in Table 2 is an infinite comutative ring.

Ifb=1+ Aa+ 8B+ Cv € Ry then b = 0 is a Hermite condition. We have
the identity I —v? = 0« (I —v)(I +v) = 0. Again, four possibilities arise:

(1) I +~v=0,I—+v#0. The manifold is quasi Kahler.
(2) I —v=0, I+ #0. The manifold is Hermite.

(3) I—vy=0, I+~ =0. This gives I =+ = 0. The manifold is Kahler manifold.
Thus the intersection of the classes of quasi Kahler and Hermite manifolds is
the class of Kihler manifolds.

(4) I+~ +#0,I—~#0. The manifold is neither quasi Kéhler nor Hermite.

Also IT+7)2=IP+2y+~*=2(I+7)- (I —~)* =2(I — ). Thus the only
”Hermite conditions” that can be obtained in R, are quasi K&hler and Hermite
condition.

In R, we also have the identity
o~ =0&(a-p)a+p)=0.Buta—f=a(l+9), (@+f) =all-7)
and a — 8 = 0 is a quasi Kéhler condition. a + 8 = 0 is a Hermite condition.
(=B =-2(I+7), (a+B)?*=-2(I—7). Then (a —B)* =0, (a+5)*=0

give only a quasi Kdhler and Hermite condition and so on.
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THEOREM 2.2. (I +0+0?)(I +~) =0 is a quasi Kihler condition.
Proof.
(I+0+0*)(I+7)=0&(VxF)(Y,Z)+ (VyF)(Z,X)+ (VzF)(X,Y)
(2.1) +(VxF)(Y,2) + (Ve F)(Z,X) + (VzF)(X,Y) =0.

For barring Y and Z in (2.1), we obtain

(
— (VxF)(Y,2) + (Vy F)(Z,X) + (V2 F)(X,Y)
- (VxP)Y,2) + (VY F)(Z,X) + (VzF)(X,Y) = 0.

Substracting (2.2) from (2.1), we obtain
(2.3) (VxF)(Y,2) + (VxF)(Y,Z) = 0.

Conversely, (2.3) satisfies (2.2) or (2.1). The class of almost Kahler manifolds is
the subclass of the class of quasi K&dhler manifolds.

(2.2)

THEOREM 2.3. (I —o)(I +7v) =0 is a quasi Kdhler condition.
Proof.

(I-o)I+7)=0&

24 (VxF)(Y,Z2)+ (VxF)(Y, Z) - (Vv F)(2,X) - (Vg F)(Z,X) = 0.

For barring Y and Z, we obtain

(25)  —(VxF)Y,2) - (VF)(Y,2) - (VY F)(Z,X) - (Vg F)(Z,X) = 0.
Subtracting (2.5) from (2.4), we obtain
(2.6) (VxF)(Y,2) + (Vg F)(¥,Z) = 0.

Conversely, (2.6) satisfies (2.4) or (2.5). The class of almost Tachibana manifolds
is the subclass of the class of quasi Kahler manifolds.

Let A and B be class of manifolds; then A = B << A C B.
THEOREM 2.4. Inclusions among almost Hermite manifolds are given by the

following diagram
almost Kdihler

f 4
Hermite <= Kadhler quasi Kdhler
4 f

almost Tachibana

3. The Nijenhuis tensor. We shall denote by N the Nijenhuis tensor
defined by

N(X,Y,Z) = (VxF)(Y,Z) + (V¢ F)(Z,X) + (VxF)(Y,2) + (VY F)(Z,X).
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Let us put M(X,Y,Z) = (Vg F)(Y,Z) + (VxF)(Y, Z); then we have
(8) N(X,Y,Z) = a+f+ac+fo = (a+8)(I+0) (b) M(X,Y,Z) = a+.
From the last equation it easily follows that N(X,Y,Z) = M(X,Y,Z2)+ M (Y, Z, X).

THEOREM 3.1. On a quasi Kihler manifold « = 3. Hence N(X,Y,Z) =
20(1 + o), M(X,Y,Z) = 2a = 28. The necessary and sufficient condition for
N =0 on a quasi Kdhler manifold is that it reduces to o Kdhler manifold.

The results obtained so far in this paper are known but they are obtained
here in a much simpler way, using a new method. We proceed to give some new
theorems. From (a) and (b) it follows that

THEOREM 3.2 2M(X,Y,Z) = 2(a+f8) = (a+ B) I + o) — 0 + 0?%) =
= -0+0% -N(X,Y,Z) = N(X,Y, Z) — N(Y, Z,X) + N(Z,X,Y).

THEOREM 3.3. M(X,Y,Z) = -I +~ = M(X,Y,Z) = M(X,Y,Z).
M(X,Y,Z)=M(X,Y,Z) = M(X,Y,Z) = -M(X,Y, Z).
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