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ON CLOSE-TO-CONVEX FUNCTIONS

D. K. Thomas

Abstract. Well-known coefficient and length results for the class of univalent close-to-
convex functions are extended to a subclass of close-to-convex functions of high order.

1. Introduction. In [3] Goodman introduced the class K () of normalised
analytic functions which are close-to-convex of order 8 > 0, ie. f € K(0) if f
is analytic in D = {z :| z |< 1} and if there exists ¢ € K(0) = C the class of
normalised convex functions, such that for z € D,

) f’(z)‘ Br
8| =2

When 0 < 8 <1, K(8) consists of univalent functions, whilst if 8 > 1 f need not
even be finitely valent.

Denote by Vi, (k > 2) the class of locally univalent functions with bounded
boundary rotation and by Ry the class of functions with bounded radial rotation.
Then ¢ € Vj if, and only if, z¢' € Ry, (see e.g. [2]). In [5] Noor considered the class
T}, defined as follows:

Definition. Let f(z) = 2+ > .-, a,z" be analytic and locally univalent in
D. Then for k > 2, f € T} if there is a function ¢ € V}, such that for z € D,

f'(z)
¢7(2)
Clearly To = K(1), the class of close-to-convex functions and it is easily seen [5]
that T, C K(k/2) for k > 2

For f € K(1), Clunie and Pommerenke [1] showed that for n > 2, n | a,, |<
(2+v2)e M(n/(n+1)), where M (r) = max, | f(re?) | and the author [7] showed
that L(r) < AM(r)log 1/(1 — r), where L(r) denotes the length of the image of
{# :| z |=r} by f(2) and where A is an absolute constant. The object of the

Re >0 (1)

AMS Subject Classification (1980 revision): Primary 30 C 45



86 Thomas

present, paper is to extend these results to the class Tj. The question of whether
the results remain valid in the winder class K () for 8 > 1 remains open.

2. Results. THEOREM 1. Let f € Tp(k > 2), with f(z) =z 4+ Y oo, anz™.
Then for n > 2,
n | an |< 3ke M(n/(n+1)) 2)

Proof. We modify the method of Clunie and Pommerenke [1]. From (1) write
2f'(z) = 9(z)M(2), 3)
so that g € R, h(0) =1 and Rh(z) > 0 for z € D.

Thus we can write zf'(z) = 2g(2)R h(z) — g(2)h(z). Now with z = rei?,

1 o ! —inf
nan =52 /0 zf'(z)e™"™df
1 2 o 1 2 L .
- ; g(2)R[h(2)]e”""do — 27”‘”/0 g9(2)h(2)e™ "™ db.
Therefore

nlonlso [T | RGNS+ | [ gEmEe s,

=L(r) + I(r) say

2nrn

Since R h(z) > 0 for z € D, (3) gives
| 9(2) | R[h(2)] = Rz f'(2)e~ P28 9()].

Thus integrating by parts

1 27
L) = —=R [ f(2)e™ 8 5 dy(arg (=) < = M(r),
rn 0 rn
since ) ()
T L z9'(z
R do < km 4
[ %5 < @
For I>(r), we have from (3)
1 27 ) 0; ( )
I. — n+1 gt —2zarg g(z .
) = 5oz | [ e o) ®)

Let fn(z) = [y t"f'(t)dt. Then integrating by parts gives
| fn(2) [< 27" M(r). (6)
Finally integrating by parts in (5) shows that

27 2%k

—2iarg g(z) Zgl(z) s
[ htore R2las| < Zarr)

1
12 (7‘) = 7{'7’2”’
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on using (4) and (6).
Choosing r =n/(n + 1) gives (2).
THEOREM 2. Let f € Ty(k > 2). Then for 0 <r <1,
L(r) < A(k)M(r)log1/(1 —r),
where A(k) is a constant depending only upon k.

Proof. With z = re®, (3) gives

L(r):/27r 2f'(z ‘dt9<//27r
[ [ o

Now Ji (r fo " | f'(pe®)H (pet?) | dfdp, where H(z) = Zgég). Thus

no< [ ([ T Floe ) : (f | Hipe®) a) i

T o0 3 1 k2 = 1)p2 3
5271_/0 (1+Zn2|an |2 p2n—2) (H—2)p> dp

n=2 l_p

(pe”)h(pe™) | dbdp

g(pe®)h' (pe?) ‘ dfdp = Ji(r) + J2(r) say.

(7)

where we have used the Cauchy-Schwartz inequality, Parseval’s equality and Lemma
2 in [5].

If fe K(B), 0< <1, then f is univalent in D [3]. However for 8 > 1, f
need nor be finitely valent [4]. Thus to estimate the first expression in (7) we
proceed as follows.

With p =n/(n+1), (2) gives

ZnQ | an |2 p2n—2 < ngGZM(\/ﬁ)Z an—2_ (8)
n=2 n=2

It follows immediately from the definition of T} that the class T} forms a
subset of a linear-invariant family of order k/2 + 1. Using Lemma 2.6 of [6] we
deduce that M(,/p) < 2*2M(p)/,/p. Thus from (7) and (8) we have Jy(r) <

A(k)M(r)log 1/(1 —r).
To estimate Jo(r) we note that since Rh(z) > 0 for z € D, | h'(pe'?) |<
2R h(pei?)/(1 — p?). Thus

2w 19 0 T M
<2/ / |g”e mh(pe )d0dp§2k7r/ : (Z)zdp
L1

as in the proof of Theorem 1. Combining the estimates for Ji(r) and Jy(r) gives
Theorem 2.
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Remark. The proof of Theorem 2 shows that in fact

L) < Ay [ 22y,
o 1=p
Thus if f € Ty and M(r) < 1/(1—7r)?, a > 0, then L(r) < A(k,a)/(1—r)*, where
A(k,a) denotes a constant depending only upon k and «.

REFERENCES

[1] J. Clunie and Ch. Pommerenke, On the coefficients of close-to-convez univalent functions,
J. London Math. Soc. 41 (1966), 161-165.

[2] P. L. Duren, Univalent Functions, Springer-Verlag, 1983.

[3] A. W. Goodman, On close-to-convez functions of higher order, Ann. Univ. Sci. Budapest
E6tous Sect. Math 25 (1972), 17-30.

[4] A. W. Goodman, A note on the Nashiro- Warschawski theorem, J. Anal. 25 (1972), 401—
408.

[5] K. 1. Noor, On a generalisation of close-convezity, Internat. J. Math. Sci.6 (1983), 327-334.

[6] Ch. Pommerenke, Linear-invariante analytischer Functionen I, Math. Ann. 155 (1964),
108-154.

[7] D. K. Thomas, On starlike and close-convez univalent functions, J. Lond. Math. Soc. 42
(1967), 427-435.

Department of Mathematics (Received 29 09 1988)
and Computer Science

Swansea SA2 8PP,

Wales, U. K.



