ON CLOSE-TO-CONVEX FUNCTIONS

D. K. Thomas

Abstract. Well-known coefficient and length results for the class of univalent close-to-convex functions are extended to a subclass of close-to-convex functions of high order.

1. Introduction. In [3] Goodman introduced the class $K(\beta)$ of normalised analytic functions which are close-to-convex of order $\beta \geq 0$, i.e. $f \in K(\beta)$ if f is analytic in $D = \{z : | z | < 1\}$ and if there exists $\varphi \in K(0) = C$ the class of normalised convex functions, such that for $z \in D$,

$$\left| \arg \frac{f'(z)}{\varphi'(z)} \right| \le \frac{\beta \pi}{2}.$$

When $0 \le \beta \le 1$, $K(\beta)$ consists of univalent functions, whilst if $\beta > 1$ f need not even be finitely valent.

Denote by V_k , $(k \geq 2)$ the class of locally univalent functions with bounded boundary rotation and by R_k the class of functions with bounded radial rotation. Then $\varphi \in V_k$ if, and only if, $z\varphi' \in R_k$ (see e.g. [2]). In [5] Noor considered the class T_k defined as follows:

Definition. Let $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ be analytic and locally univalent in D. Then for $k \geq 2$, $f \in T_k$ if there is a function $\varphi \in V_k$ such that for $z \in D$,

$$Re\frac{f'(z)}{\varphi''(z)} > 0 \tag{1}$$

Clearly $T_2 = K(1)$, the class of close-to-convex functions and it is easily seen [5] that $T_k \subset K(k/2)$ for $k \geq 2$

For $f \in K(1)$, Clunie and Pommerenke [1] showed that for $n \geq 2$, $n \mid a_n \mid < (2+\sqrt{2})e\,M(n/(n+1))$, where $M(r) = \max_{\theta} \mid f(re^{i\theta}) \mid$ and the author [7] showed that $L(r) < AM(r)\log 1/(1-r)$, where L(r) denotes the length of the image of $\{z : \mid z \mid = r\}$ by f(z) and where A is an absolute constant. The object of the

86 Thomas

present paper is to extend these results to the class T_k . The question of whether the results remain valid in the winder class $K(\beta)$ for $\beta > 1$ remains open.

2. Results. Theorem 1. Let $f \in T_k (k \geq 2)$, with $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$. Then for $n \geq 2$,

$$n \mid a_n \mid \le 3 \operatorname{ke} M(n/(n+1)) \tag{2}$$

Proof. We modify the method of Clunie and Pommerenke [1]. From (1) write

$$zf'(z) = g(z)h(z), (3)$$

so that $g \in R_k$, h(0) = 1 and $\Re h(z) > 0$ for $z \in D$.

Thus we can write $zf'(z) = 2g(z)\Re h(z) - g(z)\overline{h(z)}$. Now with $z = re^{i\theta}$,

$$na_n = \frac{1}{2\pi r^n} \int_0^{2\pi} z f'(z) e^{-in\theta} d\theta$$
$$= \frac{1}{\pi r^n} \int_0^{2\pi} g(z) \Re[h(z)] e^{-in\theta} d\theta - \frac{1}{2\pi r^n} \int_0^{2\pi} g(z) \overline{h(z)} e^{-in\theta} d\theta.$$

Therefore

$$n \mid a_n \mid \leq \frac{1}{\pi r^n} \int_0^{2\pi} |g(z)| \Re[h(z)] d\theta + \frac{1}{2\pi r^n} \left| \int_0^{2\pi} \overline{g(z)} h(z) e^{-in\theta} d\theta. \right|$$

= $I_1(r) + I_2(r)$ say

Since $\Re h(z) > 0$ for $z \in D$, (3) gives

$$|g(z)| \Re[h(z)] = \Re[zf'(z)e^{-i\arg g(z)}].$$

Thus integrating by parts

$$I_1(r) = \frac{1}{\pi r^n} \Re \int_0^{2\pi} f(z) e^{-1 \arg g(z)} d_{\theta}(\arg g(z)) \le \frac{k}{r^n} M(r),$$

since

$$\int_0^{2\pi} \left| \Re \frac{zg'(z)}{g(z)} \right| d\theta \le k\pi \tag{4}$$

For $I_2(r)$, we have from (3)

$$I_2(r) = \frac{1}{2\pi r^{2n}} \left| \int_0^{2\pi} z^{n+1} f'(z) e^{-2i \arg g(z)} d\theta \right|.$$
 (5)

Let $f_n(z) = \int_0^z t^n f'(t) dt$. Then integrating by parts gives

$$\mid f_n(z) \mid \le 2r^n M(r). \tag{6}$$

Finally integrating by parts in (5) shows that

$$I_2(r) = rac{1}{\pi r^{2n}} \left| \int_0^{2\pi} f_n(z) e^{-2i \arg g(z)} \Re rac{z g'(z)}{g(z)} d heta
ight| \leq rac{2k}{r^n} M(r)$$

on using (4) and (6).

Choosing r = n/(n+1) gives (2).

THEOREM 2. Let $f \in T_k (k \ge 2)$. Then for 0 < r < 1,

$$L(r) \le A(k)M(r)\log 1/(1-r),$$

where A(k) is a constant depending only upon k.

Proof. With $z = re^{i\theta}$, (3) gives

$$L(r) = \int_0^{2\pi} \left| zf'(z) \right| d\theta \le \int_0^r \int_0^{2\pi} \left| g'(\rho e^{i\theta}) h(\rho e^{i\theta}) \right| d\theta d\rho$$
$$+ \int_0^r \int_0^{2\pi} \left| g(\rho e^{i\theta}) h'(\rho e^{i\theta}) \right| d\theta d\rho = J_1(r) + J_2(r) \quad \text{say}.$$

Now $J_1(r) = \int_0^r \int_0^{2\pi} |f'(\rho e^{i\theta}) H(\rho e^{i\theta})| d\theta d\rho$, where $H(z) = \frac{zg'(z)}{g(z)}$. Thus

$$J_{1}(r) \leq \int_{0}^{r} \left(\int_{0}^{2\pi} |f'(\rho e^{i\theta}|^{2})^{\frac{1}{2}} \left(\int_{0}^{2\pi} |H(\rho e^{i\theta})|^{2} d\theta \right)^{\frac{1}{2}} d\rho$$

$$\leq 2\pi \int_{0}^{r} \left(1 + \sum_{n=2}^{\infty} n^{2} |a_{n}|^{2} \rho^{2n-2} \right)^{\frac{1}{2}} \left(\frac{1 + (k^{2} - 1)\rho^{2}}{1 - \rho^{2}} \right)^{\frac{1}{2}} d\rho$$

$$(7)$$

where we have used the Cauchy-Schwartz inequality, Parseval's equality and Lemma 2 in [5].

If $f \in K(\beta)$, $0 \le \beta \le 1$, then f is univalent in D [3]. However for $\beta > 1$, f need nor be finitely valent [4]. Thus to estimate the first expression in (7) we proceed as follows.

With $\rho = n/(n+1)$, (2) gives

$$\sum_{n=2}^{\infty} n^2 \mid a_n \mid^2 \rho^{2n-2} \le 9k^2 e^2 M(\sqrt{\rho})^2 \sum_{n=2}^{\infty} \rho^{n-2}.$$
 (8)

It follows immediately from the definition of T_k that the class T_k forms a subset of a linear-invariant family of order k/2+1. Using Lemma 2.6 of [6] we deduce that $M(\sqrt{\rho}) < 2^{k+2} M(\rho)/\sqrt{\rho}$. Thus from (7) and (8) we have $J_1(r) < A(k)M(r)\log 1/(1-r)$.

To estimate $J_2(r)$ we note that since $\Re h(z) > 0$ for $z \in D$, $|h'(\rho e^{i\theta})| \le 2 \Re h(\rho e^{i\theta})/(1-\rho^2)$. Thus

$$J_2(r) \leq 2 \int_0^r \int_0^{2\pi} \frac{\mid g(\rho e^{i\theta}) \mid \Re h(\rho e^{i\theta})}{1-\rho^2} d\theta d\rho \leq 2k\pi \int_0^r \frac{M(\rho)}{1-\rho^2} d\rho$$

as in the proof of Theorem 1. Combining the estimates for $J_1(r)$ and $J_2(r)$ gives Theorem 2.

88 Thomas

Remark. The proof of Theorem 2 shows that in fact

$$L(r) \le A(k) \int_0^r \frac{M(\rho)}{1-\rho} d\rho.$$

Thus if $f \in T_k$ and $M(r) < 1/(1-r)^{\alpha}$, $\alpha > 0$, then $L(r) < A(k,\alpha)/(1-r)^{\alpha}$, where $A(k,\alpha)$ denotes a constant depending only upon k and α .

REFERENCES

- J. Clunie and Ch. Pommerenke, On the coefficients of close-to-convex univalent functions,
 J. London Math. Soc. 41 (1966), 161-165.
- [2] P. L. Duren, Univalent Functions, Springer-Verlag, 1983.
- [3] A. W. Goodman, On close-to-convex functions of higher order, Ann. Univ. Sci. Budapest Eötöus Sect. Math 25 (1972), 17–30.
- [4] A. W. Goodman, A note on the Nashiro-Warschawski theorem, J. Anal. 25 (1972), 401-
- [5] K. I. Noor, On a generalisation of close-convexity, Internat. J. Math. Sci. 6 (1983), 327-334.
- [6] Ch. Pommerenke, Linear-invariante analytischer Functionen I, Math. Ann. 155 (1964), 108-154.
- [7] D. K. Thomas, On starlike and close-convex univalent functions, J. Lond. Math. Soc. 42 (1967), 427-435.

Department of Mathematics and Computer Science Swansea SA2 8PP, Wales, U. K. (Received 29 09 1988)