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ASYMPTOTIC EXPANSIONS OF SCHWARTZ’S
DISTRIBUTIONS

S. Pilipovié

Abstract. We investigate the generalized asymptotic expansions of distributions and give
some applications, mainly for the Weierstrass transform.

0. We give four definitions of the asymptotic expansion of distributions (for
the third one see also [1] and [10]). Two of them are related to the shift operator and
the other two are related to the dilation of a distribution. We give several structural
assertions concerning these notions. In the last section we give applications of these
notions, mainly for the Weirstrass transform. The example given in part 5 shows
that for an ordinary function the generalized asymptotic expansion leads to a new
classical Abelian result for its classical Weierstrass transform.

For the basic definitions of distribution spaces, see [8], and for the definition
and properties of slowly varying functions at co. see [9]. Note that D/, and S are
spaces of Schwartz distributions with elements having supports in [0, 00).

1. Denote by ¢, (k), m € N, a sequence of continuous positive functions
defined on (@, 00), an > 0, such that

Cm+1(]€) = O(cm(k))a k — oo, (m € N)

and by u,,, m € N, a sequence from D' such that u,, 20, m =1,...,p, p <
00, Um =0, m > p, or u,, # 0, m € N. Denote by A the set of pairs of sequences
(em(k), tm).

First, we reformulate Theorem and Corollary from [3]:

PROPOSITION 1. Let (¢ (k), um) € A and
(1) i ((kz)/em(k), o(2)) = (gm(2), p(2)), ¢ €D,

where g, #0 if u,, 70, m € N. Then for every m which u,, # 0 we have:

AMS Subject Classification (1980 ): Primary 46 F 10, 46 F 12, 44 A 15



120 Pilipovié

(i) cm(z) = "™ Ly (z), © € (am,o0) for some v, € R and some slowly varying
function L, ;
(i) gm is a homogeneous distribution with the orther of homogeneity v;
(iii) up € S'
(i) if v e R\{-1,-2,...} then the limit in (1) exists in the sense of convergence
inS'.

Remark 1. If we assume that (¢ (k),um) € A and u,, € D, (m =1,...,
p < oo or m € N), then [11, §3. Theorem 3] implies that all the assertions in
Proposition 1 hold without the restriction on v in (iv) and with

gm(m) = Cmfum-f—l(m)a T € R; Cm 7é 07 m = 17 P <00, Or me N.
Recall that [8],

Ht)t*/T(a+1), a>-1

teR).
D™ fayn1(t), a<-1, a+n>-1 ( )

fa+1(t) = {

Denote by A; a subset of A such that (¢, (k), um) € Ay if (1) holds for all
the m for which u,, # 0 and g,, #0 (m=1,... ,p < 0o or m € N), i. e. for which
Proposition 1 holds.

Definition 1. Let f € D' and (¢ (k), um) € A1 such that

) Tim ((£(2) = S wi®) (k) fem k), o)) =0, ¢ €D
i=1

form =1,...,p < o0 or m € N. Then we say that f has a quasiasymptotic
expansion at oo of the first kind with respect to (¢, (k), u + m) and we write

p(o0)
(3) F ey i (em(R)) at oo

i=1
Clearly, if (3) holds, then

p(o0)

F e > ul (K em (k) at oo
=1

Let f € D' and (3) hold for some (¢, (k), um) € Ay. Proposition 1 implies
that for every m for which u,, # 0, ¢y (k) = k*™ L (k), (k> am).

With f satisfying Definition 1 we have:

PROPOSITION 2. (i) f € S8'; (ii) If v, & —N, then (2) exists in the sense of
convergence in S' (for every m for which u, #0).

Proof . Since f(kz)/ci(k) — g1 # 0 in D', the Theorem from [3] mentioned
implies that f € S', whereas (ii) follows from Proposition 1 (iv).
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Remark 2. (Continuation of Remark 1). With the assumptions f € D!, u,, €
D!\ (m=1,...,p<ocorm € N) Definition 1 generalizes the definition of the open
quasiasymptotic expansion studied in [11, §10].

2. Another type of quasiasymptotic expansion at oo is given by the following
definition:

Definition 2. Let f € D' and (¢, (k), um) € A. We write

p(c0)

(4) flkz) ~F% " ui@) (ea(k)) at oo

i=1

iff for every m < p< oo orm € N

5) Jim ((£(ka) = 3" ui(e)es (k) fem k), ¢(@)) =0, ¢ €D

In this case we say that f has a quasiasymptotic expansion at co of the second type
with respect to (cm(k), um)-

Let us restrict this definition to a simpler case:
Definition 2’. Let f € S, (cm(k), um) € A with up, €S, (m=1,... ,p< o0
or m € N) and let the limit (5) exist in the sense of convergence in S’ (i. e. for

¢ € S). Then we say that f has a quasiasymptotic expansion at oo in &/ of the
second type with respect to (¢m(k), tm).

PROPOSITION 3. Let (¢ (k),um) € A and f € S', satisfy the conditions of
Definition 2°. Then:

(i) ui(t) = Alfa,11(t), t € R, c1(k) = k*' Ly (k), k > a1, for some a; > 0, and
some Ly, where Al # 0;

(ii) form=2,...,p<oo (ifp>2) orm e N, m > 2,u, is the solution of a
differential equation of the form
(6) lam=1(- " (lay (um)) -+ ) = Am fam+1(Am € R),
where 1, (u) = zu’ —vu(v € R, u € D).
If in (6) A # 0, then cp(k) = k*™ Ly (k), k > am, for some aym > 0 and
some Ly, .
(iii) if on > ap > -+ > ap (for p < 00) or a; < i for i > j, j € N, then for
m=2,...,p<ocormeN, m>2

m—1 m—1

™) U= 3 AT fusin + (Am/ 3 (am a,-)) Famt1,
j=1 i=1

where A;”, j=1,...,m—1 are suitable constants.

Proof . (i) For m = 1 we have:

Jim (f(kz)/e1(k), $(z)) = (u, ¢), ¢ €S.
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The well-known assertion [11], §3, Theorem 1] implies (3).
(i1) First note that f,y1 satisfies the differential equation I, (u) = 0.
For m = 2 we have

(8) lim )(f(kz) — ui(z)ei(k))/ca(k), p(x)) = (us, ) € S.

k—o0

This implies

9) Jim (k' (ke) — c1 (kK)o (2))fea (), ()
= (zuy(z), ¥(2)), wE€S.

Thus, multiptying (8) with —ay and adding that to (9) we obtain
Tim (L, f)(k2)fe2(k), 9(2)) = ((lay ) (@), 0(@),  p €S,

If o, u2 # 0, then by the same arguments as for m = 1 we obtain

ca(k) = k*?Ly(k) (k > az) for some as,
lasuz = As fo, 41 for some Ay # 0.

Instead of finishing this part of the proof by induction, we give the proof for
m = 3. After that the proof by induction becomes trivial. We have

m (((lay £)(k2) = (layu2)(2)ca (k) /c3(k), ¢(x))

li
k=00
= ((lay (us)(z), ¥(2)), p€S.
Since lg, (u2) = As fa,+1 we have
i (o, (o £)) (k) fe3(k), o(@)) =
= ((lay(la, (u3))(z), @(2)),  ¢€S.

Now, as in the case m = 2 we derive the necessary conclusions.

(#i) The particular solution of (5) is given by the last member in (6) because
of the identity 1, (fu+1) = (4 — v) fu+1, where p, v are arbitrary elements from R.

Note that I, (I,u) = 1,(l,u), (u € D).

Remark 3. If for some m,a,, = an—1 and A, # 0, then equation (5) does
not have such a “nice” solution. If we assume that the sequence ¢, (k) satisfies the
stronger condition:

Cm1(k)[em(kE) =O0(k™™™), em >0, m=1,... ,p< oo or m €N,
then by using the properties of slowly varying functions one can deduce that

o1 >ay...>ao0p or o; <aj, t>j, 4, j€N.
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Remark 4. Let us assume that Definition 2 holds for f and (¢, (k),un) and
that f € S, and u,, € S',. The question is whether the limit in (5) can be extended
to the whole of S? Note that Proposition 3 does not give an answer to this question.

Remark 5. If we assume that the assumptions of Remark 1 are satisfied for f
and (¢, (k), um), and if ¢, (k) are polynomials, then the quasiasymptotic expansion
of the first type is equivalent to the quasiasymptotic expansion of the second type.
In general this does not hold. For example, we have:

2In |z | 42t~ 2% |z | +2* (c1(k) =K' In k, co(k) = k*, k> 1),
(see Definition 1) and
(kx)®In(k |z |) + (kx)* ~T% (2°In |z )E°In k + (z® In | z | k5 + 2*k*

(see Definition 2).

This example shows that Definition 1 is more natural than Definition 2 (or
2).

3. Let d,, be a sequence of positive continuous functions different from zero
in (am, ), am > 0, and dpt1(h) = o(dy(h)), h — oo(m € N). Denote by u,,
a sequence from D' such that u, # 0,m = 1,...,p < c©ouy = 0, m > p, or
um # 0, m € N. We denote by Y the set pairs of sequences (dy, (h), tm).

The following definition is a slight modification of a definition from [10]. We
adapt it in the sense of the notation given above.

Definition 3. An f € D' has an S-asymptotic expansion of second type with
respect to (dpm (h),un) € 3 if

1) lim (B = 3 w@dh)/dn(), $@), ¢ €D,

form=1,... ,p<ooormé€N.
In this case we write

p(c0)

fl@+h) ~"F " ui(z)di(h).

i=1
Remark 6. Definition 3 is a generalization of a corresponding definition for
the space &' given in [1].
PROPOSITION 4. Let f € D and (dyn(h), um) € Y. satisfy the condition of
Definition 8. Then we have:

(i) ui(t) = Alexp(ait), t € R, Al # 0, a1 € R, di(h) = exp(a1h) Ly
(exp h), h > a (for some a1 and some Ly );

(1) form =2, p< oo (if p>2) orm € N, uy, is the solution of the equation
(11) Lo, 1(-- (Laytm) -..) = A explant), Am € R,
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where L,u =u' —vu(u € D', v € R).
If in (11) A, # 0, then dy,(h) = exp(auh) Ly, (exp h), h > am;
(1ii) form=1,... ,p< oo orm €N,

m—1

(12) um(t) = z AT exp(ait) + pm—1(t) exp(amt), (t € R)

1=
where A", i =1,... ,m — 1, are suitable constants and p,,_1 is a suitable polyno-

mial of degree < m — 1.

Proof. (i) This is a direct consequence of [6, Theorem 5].
(71) We have

Lo(exp Bt) = (B — a)exp(Bt), t€ R, (a,8 €R)
La(Lgu) = Lg(Lau), (’LL S D’).

Let m = 2. We have:

(13)  lim ((f(z + h) —wi(2)di(h))/d2(h), ¢(z)) = (u2(2), ¢(2)), ¢ €D,

h—o0

(14)  Tim (' + h) = (@i (1)) /o), p(a)) = {uh(), @()), @ € D,
Multiplying (13) by —ay and adding that to (14) we obtain
T (L, 1)z + W)/da(), 9(a)) = (Layua), pla)), o€ D.

As in (i) from [7, Theorem 5] the assertion for m = 2 follows. Then by induction
we complete the proof of (i3).

(#i) The proof follows from the fact that, for a suitable polynomial p,,_1 of
order <m — 1, ppm—1(t) exp(ant), t € R, is the patricular solution of (11).

4. Denote by ), a subset of ) consisting of elements (d, (h), um) for which
we have

(15) Jm ((um (2 + h)/dm(h), (@) = (gn (@), ¢(2)),
€D, gn#0, m=1,... ,p< oo or m € N.
As remarked above, from [7, Theorem 5] it follows that
(16) dm(h = exp(ah) Ly, (exp h) #0, h > am, am € R,
where L,, is a suitable slowly varying function, m =1,... ;p < oo or m € N, and
gm(z) = Crexp(amz), Cry 20, m=1,... ,p< o0 or m € N.

So, we have that the first component of an element from ), is a sequence for which
(16) holds m =1,..., p< oo orm € N.
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Definition 4. Let f € D' and (d,,(h), um) € Y ;. If

m

(17) lim ((f(z +h) =Y wi(@+h)/dn(h), ¢(@)) =0,

h—o0 .
=1

peD, m=1,...,p<oo or meN,

then we say that f has an S-asymptotic expansion at oo of the first kind with
respect to (dp,(h), um), and we write

p(0)

(18) f@) ~ Y un@) ().

m=1

Clearly, if (18) holds, then

p(c0)
fl@) ~> Y un (@) (dm(h)).

m=1

Recall the definition of the space K}, introduced by Hasumi:

Ki={peC® sup {ch(mz)|?(z)|< o0}, m=0,1,...};
i<mz€eR
1 is its dual. Denote by K ,,. the space of all f € Lj,, such that f¢ € L' for
every ¢ € Ky (see [4]).

PROPOSITION 5. Let f satisfy (18).

(i) Assume f € K, um €1 and let the slowly varying functions Ly, in (16)
be monotonous (for sufficiently large arguments) m = 1,... ,p < oo or m € N.
Then the limit in (17) may be extended from D to K;.

(i) Asume, f € S', uyy € S and d(h) = W™ L, (h), where every L, is

monotonous, m = 1,... ,p < 00 or m € N. Then the limit (17) may be extended
from D to S.

Proof . From [6] it easily follows that with the given assumptotions, (16) can
be extended from D to K1, i.e., S. This implies the assertions.

The ordinary asymptotic expansion implies this type of distributional asymp-
totic expansion. Namely, we have:

PROPOSITION 6. Let f € K ,,, and let uym and dy,m = 1,... ,p < 00 or
p € N, satisfy the assumptions of Proposition 5 (i).
If
p(0)
f(z) ~ Z um(z) as x — oo (in the ordinary sense),

m=1
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then

p(0)

F@) ~** S (@), (dm(h) = explamh) Lu(exp b))

m=1,...,p or méeN.

The proof of this proposition is similar to the proof of Proposition 3 in [4],
so we shall omit it.

Let us give two examples. If

f@)=vVz?2+2z, >0 and f(z) =0, z <o,

then we have
) s~ ot () + ()@ (V)

where d,,,(h) = h2~™, h > 0, m € N. Formula (19) quite naturaly follows from the
ordinary asymptotic expansion of f at oco. Note that the S-asymptotic expansion
of f of the second type at oo is much more complicate, and is not equal to (19).

In the example which follows we construct a function which has an S-
asymptotic expansion of the first type but has no ordinary asymptotic expansion.

Let () = 1,t € (n—2"n+2"),n € N, and ¢(t) = 0 outside of
these intervals. Let ¢q(z) = €*® [ 4 (t)dt, = € R, o € R. Since [; 9 (t)dt — 2
as £ — oo, we have that ,(z) ~ 2e**, z — oo but ¢, (z) does not have an
ordinary asymptotic behaviour [4]. Let (a;) be a strictly decreasing sequence of
positive numbers § € C*° = 1for z > 1,0 = 0 for z < 1/2 and let f(z) =
> pai(z)0(z — i), z € R. We have

f(z) ~ ngai(x), T — 00
i=1
with respect to the sequence {2e*¥;i € N}. This implies that
o
flz) ~%¢ Z Yai(z) with respect to {2e**, i € N}
m=1
and
(20) F(z) = f'(x) ~*¢ Z(pfu(m) with respect to {2e%*, i € N}
i=1
but F'(z) does not have an ordinary asymptotic expansion.
5. In this part we shall give some applications. First, we note that for the

distributional Laplace trasform the quasiasymptotic expansion of the first type of an
orginal at oo implies the ordinary asymptotic expansion of its Laplace transform at
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0. This is studied in [11, 12] and in a forthcoming paper of the author. Similary, for
the distributional Stieltjes transform we apply this notion, in a separate forthcoming
paper, for obtaining the corresponding Abelain type results at oco.

We shall give in this section some applications of the S-asymptotic expansivn
of the first kind. As a direct consequence of [5] we have:

PROPOSITION 6. Let

Then )
flx) = Zuz(:v) x> A for some A
i=1

iff for every positive continuous function d(h), h > A

lim ((f = um) (@ + h)/d(h), p(z)) =0, ¢ €D.

h—o0 "
=1
The Weiestrass kernel is defined by

k(s,t) = (4nt) "2~ /40 s e C, t € (0,1).

Obviously, for any s € C and t € (0,1), k(s — z,t) € K;. The Weiestrass transform
of an f € K is defined by (Wef)(s) = (f(z), k(s —z,t)) [4]. From [4, Proposition
4] the following proposition follows directly:

PROPOSITION 7. Assume that the assumptions of Proposition 5 (i) are satis-
fied. Then (in the ordinary sense) for any s € C

p(c0)

Wif(s+h)~ Y Asimdi(h), h— oo,
m=1

where Ag ¢ m = Wiup)(s), m=1,...p< oo or m € N.

Remark 7. Example (20) and this proposition show that for the classical
Weiestrass transform the notion of S-asymptotic expansion implies new classical
results for the behaviour of its transform.
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